Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SelectionDAG class, and transitively defines the
     11 // SDNode class and subclasses.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
     16 #define LLVM_CODEGEN_SELECTIONDAG_H
     17 
     18 #include "llvm/ADT/APFloat.h"
     19 #include "llvm/ADT/APInt.h"
     20 #include "llvm/ADT/ArrayRef.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/FoldingSet.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringMap.h"
     27 #include "llvm/ADT/ilist.h"
     28 #include "llvm/ADT/iterator.h"
     29 #include "llvm/ADT/iterator_range.h"
     30 #include "llvm/Analysis/AliasAnalysis.h"
     31 #include "llvm/Analysis/DivergenceAnalysis.h"
     32 #include "llvm/CodeGen/DAGCombine.h"
     33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     34 #include "llvm/CodeGen/ISDOpcodes.h"
     35 #include "llvm/CodeGen/MachineFunction.h"
     36 #include "llvm/CodeGen/MachineMemOperand.h"
     37 #include "llvm/CodeGen/SelectionDAGNodes.h"
     38 #include "llvm/CodeGen/ValueTypes.h"
     39 #include "llvm/IR/DebugLoc.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/IR/Metadata.h"
     42 #include "llvm/Support/Allocator.h"
     43 #include "llvm/Support/ArrayRecycler.h"
     44 #include "llvm/Support/AtomicOrdering.h"
     45 #include "llvm/Support/Casting.h"
     46 #include "llvm/Support/CodeGen.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/MachineValueType.h"
     49 #include "llvm/Support/RecyclingAllocator.h"
     50 #include <algorithm>
     51 #include <cassert>
     52 #include <cstdint>
     53 #include <functional>
     54 #include <map>
     55 #include <string>
     56 #include <tuple>
     57 #include <utility>
     58 #include <vector>
     59 
     60 namespace llvm {
     61 
     62 class BlockAddress;
     63 class Constant;
     64 class ConstantFP;
     65 class ConstantInt;
     66 class DataLayout;
     67 struct fltSemantics;
     68 class GlobalValue;
     69 struct KnownBits;
     70 class LLVMContext;
     71 class MachineBasicBlock;
     72 class MachineConstantPoolValue;
     73 class MCSymbol;
     74 class OptimizationRemarkEmitter;
     75 class SDDbgValue;
     76 class SDDbgLabel;
     77 class SelectionDAG;
     78 class SelectionDAGTargetInfo;
     79 class TargetLibraryInfo;
     80 class TargetLowering;
     81 class TargetMachine;
     82 class TargetSubtargetInfo;
     83 class Value;
     84 
     85 class SDVTListNode : public FoldingSetNode {
     86   friend struct FoldingSetTrait<SDVTListNode>;
     87 
     88   /// A reference to an Interned FoldingSetNodeID for this node.
     89   /// The Allocator in SelectionDAG holds the data.
     90   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
     91   /// The size of this list is not expected to be big so it won't introduce
     92   /// a memory penalty.
     93   FoldingSetNodeIDRef FastID;
     94   const EVT *VTs;
     95   unsigned int NumVTs;
     96   /// The hash value for SDVTList is fixed, so cache it to avoid
     97   /// hash calculation.
     98   unsigned HashValue;
     99 
    100 public:
    101   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
    102       FastID(ID), VTs(VT), NumVTs(Num) {
    103     HashValue = ID.ComputeHash();
    104   }
    105 
    106   SDVTList getSDVTList() {
    107     SDVTList result = {VTs, NumVTs};
    108     return result;
    109   }
    110 };
    111 
    112 /// Specialize FoldingSetTrait for SDVTListNode
    113 /// to avoid computing temp FoldingSetNodeID and hash value.
    114 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
    115   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
    116     ID = X.FastID;
    117   }
    118 
    119   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
    120                      unsigned IDHash, FoldingSetNodeID &TempID) {
    121     if (X.HashValue != IDHash)
    122       return false;
    123     return ID == X.FastID;
    124   }
    125 
    126   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
    127     return X.HashValue;
    128   }
    129 };
    130 
    131 template <> struct ilist_alloc_traits<SDNode> {
    132   static void deleteNode(SDNode *) {
    133     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
    134   }
    135 };
    136 
    137 /// Keeps track of dbg_value information through SDISel.  We do
    138 /// not build SDNodes for these so as not to perturb the generated code;
    139 /// instead the info is kept off to the side in this structure. Each SDNode may
    140 /// have one or more associated dbg_value entries. This information is kept in
    141 /// DbgValMap.
    142 /// Byval parameters are handled separately because they don't use alloca's,
    143 /// which busts the normal mechanism.  There is good reason for handling all
    144 /// parameters separately:  they may not have code generated for them, they
    145 /// should always go at the beginning of the function regardless of other code
    146 /// motion, and debug info for them is potentially useful even if the parameter
    147 /// is unused.  Right now only byval parameters are handled separately.
    148 class SDDbgInfo {
    149   BumpPtrAllocator Alloc;
    150   SmallVector<SDDbgValue*, 32> DbgValues;
    151   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
    152   SmallVector<SDDbgLabel*, 4> DbgLabels;
    153   using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
    154   DbgValMapType DbgValMap;
    155 
    156 public:
    157   SDDbgInfo() = default;
    158   SDDbgInfo(const SDDbgInfo &) = delete;
    159   SDDbgInfo &operator=(const SDDbgInfo &) = delete;
    160 
    161   void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
    162     if (isParameter) {
    163       ByvalParmDbgValues.push_back(V);
    164     } else     DbgValues.push_back(V);
    165     if (Node)
    166       DbgValMap[Node].push_back(V);
    167   }
    168 
    169   void add(SDDbgLabel *L) {
    170     DbgLabels.push_back(L);
    171   }
    172 
    173   /// Invalidate all DbgValues attached to the node and remove
    174   /// it from the Node-to-DbgValues map.
    175   void erase(const SDNode *Node);
    176 
    177   void clear() {
    178     DbgValMap.clear();
    179     DbgValues.clear();
    180     ByvalParmDbgValues.clear();
    181     DbgLabels.clear();
    182     Alloc.Reset();
    183   }
    184 
    185   BumpPtrAllocator &getAlloc() { return Alloc; }
    186 
    187   bool empty() const {
    188     return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
    189   }
    190 
    191   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
    192     DbgValMapType::iterator I = DbgValMap.find(Node);
    193     if (I != DbgValMap.end())
    194       return I->second;
    195     return ArrayRef<SDDbgValue*>();
    196   }
    197 
    198   using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
    199   using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
    200 
    201   DbgIterator DbgBegin() { return DbgValues.begin(); }
    202   DbgIterator DbgEnd()   { return DbgValues.end(); }
    203   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
    204   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
    205   DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
    206   DbgLabelIterator DbgLabelEnd()   { return DbgLabels.end(); }
    207 };
    208 
    209 void checkForCycles(const SelectionDAG *DAG, bool force = false);
    210 
    211 /// This is used to represent a portion of an LLVM function in a low-level
    212 /// Data Dependence DAG representation suitable for instruction selection.
    213 /// This DAG is constructed as the first step of instruction selection in order
    214 /// to allow implementation of machine specific optimizations
    215 /// and code simplifications.
    216 ///
    217 /// The representation used by the SelectionDAG is a target-independent
    218 /// representation, which has some similarities to the GCC RTL representation,
    219 /// but is significantly more simple, powerful, and is a graph form instead of a
    220 /// linear form.
    221 ///
    222 class SelectionDAG {
    223   const TargetMachine &TM;
    224   const SelectionDAGTargetInfo *TSI = nullptr;
    225   const TargetLowering *TLI = nullptr;
    226   const TargetLibraryInfo *LibInfo = nullptr;
    227   MachineFunction *MF;
    228   Pass *SDAGISelPass = nullptr;
    229   LLVMContext *Context;
    230   CodeGenOpt::Level OptLevel;
    231 
    232   DivergenceAnalysis * DA = nullptr;
    233   FunctionLoweringInfo * FLI = nullptr;
    234 
    235   /// The function-level optimization remark emitter.  Used to emit remarks
    236   /// whenever manipulating the DAG.
    237   OptimizationRemarkEmitter *ORE;
    238 
    239   /// The starting token.
    240   SDNode EntryNode;
    241 
    242   /// The root of the entire DAG.
    243   SDValue Root;
    244 
    245   /// A linked list of nodes in the current DAG.
    246   ilist<SDNode> AllNodes;
    247 
    248   /// The AllocatorType for allocating SDNodes. We use
    249   /// pool allocation with recycling.
    250   using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
    251                                                sizeof(LargestSDNode),
    252                                                alignof(MostAlignedSDNode)>;
    253 
    254   /// Pool allocation for nodes.
    255   NodeAllocatorType NodeAllocator;
    256 
    257   /// This structure is used to memoize nodes, automatically performing
    258   /// CSE with existing nodes when a duplicate is requested.
    259   FoldingSet<SDNode> CSEMap;
    260 
    261   /// Pool allocation for machine-opcode SDNode operands.
    262   BumpPtrAllocator OperandAllocator;
    263   ArrayRecycler<SDUse> OperandRecycler;
    264 
    265   /// Pool allocation for misc. objects that are created once per SelectionDAG.
    266   BumpPtrAllocator Allocator;
    267 
    268   /// Tracks dbg_value and dbg_label information through SDISel.
    269   SDDbgInfo *DbgInfo;
    270 
    271   uint16_t NextPersistentId = 0;
    272 
    273 public:
    274   /// Clients of various APIs that cause global effects on
    275   /// the DAG can optionally implement this interface.  This allows the clients
    276   /// to handle the various sorts of updates that happen.
    277   ///
    278   /// A DAGUpdateListener automatically registers itself with DAG when it is
    279   /// constructed, and removes itself when destroyed in RAII fashion.
    280   struct DAGUpdateListener {
    281     DAGUpdateListener *const Next;
    282     SelectionDAG &DAG;
    283 
    284     explicit DAGUpdateListener(SelectionDAG &D)
    285       : Next(D.UpdateListeners), DAG(D) {
    286       DAG.UpdateListeners = this;
    287     }
    288 
    289     virtual ~DAGUpdateListener() {
    290       assert(DAG.UpdateListeners == this &&
    291              "DAGUpdateListeners must be destroyed in LIFO order");
    292       DAG.UpdateListeners = Next;
    293     }
    294 
    295     /// The node N that was deleted and, if E is not null, an
    296     /// equivalent node E that replaced it.
    297     virtual void NodeDeleted(SDNode *N, SDNode *E);
    298 
    299     /// The node N that was updated.
    300     virtual void NodeUpdated(SDNode *N);
    301   };
    302 
    303   struct DAGNodeDeletedListener : public DAGUpdateListener {
    304     std::function<void(SDNode *, SDNode *)> Callback;
    305 
    306     DAGNodeDeletedListener(SelectionDAG &DAG,
    307                            std::function<void(SDNode *, SDNode *)> Callback)
    308         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
    309 
    310     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
    311   };
    312 
    313   /// When true, additional steps are taken to
    314   /// ensure that getConstant() and similar functions return DAG nodes that
    315   /// have legal types. This is important after type legalization since
    316   /// any illegally typed nodes generated after this point will not experience
    317   /// type legalization.
    318   bool NewNodesMustHaveLegalTypes = false;
    319 
    320 private:
    321   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
    322   friend struct DAGUpdateListener;
    323 
    324   /// Linked list of registered DAGUpdateListener instances.
    325   /// This stack is maintained by DAGUpdateListener RAII.
    326   DAGUpdateListener *UpdateListeners = nullptr;
    327 
    328   /// Implementation of setSubgraphColor.
    329   /// Return whether we had to truncate the search.
    330   bool setSubgraphColorHelper(SDNode *N, const char *Color,
    331                               DenseSet<SDNode *> &visited,
    332                               int level, bool &printed);
    333 
    334   template <typename SDNodeT, typename... ArgTypes>
    335   SDNodeT *newSDNode(ArgTypes &&... Args) {
    336     return new (NodeAllocator.template Allocate<SDNodeT>())
    337         SDNodeT(std::forward<ArgTypes>(Args)...);
    338   }
    339 
    340   /// Build a synthetic SDNodeT with the given args and extract its subclass
    341   /// data as an integer (e.g. for use in a folding set).
    342   ///
    343   /// The args to this function are the same as the args to SDNodeT's
    344   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
    345   /// omitted.
    346   template <typename SDNodeT, typename... ArgTypes>
    347   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
    348                                                ArgTypes &&... Args) {
    349     // The compiler can reduce this expression to a constant iff we pass an
    350     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
    351     // on the subclass data.
    352     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
    353         .getRawSubclassData();
    354   }
    355 
    356   template <typename SDNodeTy>
    357   static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
    358                                                 SDVTList VTs, EVT MemoryVT,
    359                                                 MachineMemOperand *MMO) {
    360     return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
    361          .getRawSubclassData();
    362   }
    363 
    364   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
    365 
    366   void removeOperands(SDNode *Node) {
    367     if (!Node->OperandList)
    368       return;
    369     OperandRecycler.deallocate(
    370         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
    371         Node->OperandList);
    372     Node->NumOperands = 0;
    373     Node->OperandList = nullptr;
    374   }
    375   void CreateTopologicalOrder(std::vector<SDNode*>& Order);
    376 public:
    377   explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
    378   SelectionDAG(const SelectionDAG &) = delete;
    379   SelectionDAG &operator=(const SelectionDAG &) = delete;
    380   ~SelectionDAG();
    381 
    382   /// Prepare this SelectionDAG to process code in the given MachineFunction.
    383   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
    384             Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
    385             DivergenceAnalysis * Divergence);
    386 
    387   void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
    388     FLI = FuncInfo;
    389   }
    390 
    391   /// Clear state and free memory necessary to make this
    392   /// SelectionDAG ready to process a new block.
    393   void clear();
    394 
    395   MachineFunction &getMachineFunction() const { return *MF; }
    396   const Pass *getPass() const { return SDAGISelPass; }
    397 
    398   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
    399   const TargetMachine &getTarget() const { return TM; }
    400   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
    401   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
    402   const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
    403   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
    404   LLVMContext *getContext() const {return Context; }
    405   OptimizationRemarkEmitter &getORE() const { return *ORE; }
    406 
    407   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
    408   void viewGraph(const std::string &Title);
    409   void viewGraph();
    410 
    411 #ifndef NDEBUG
    412   std::map<const SDNode *, std::string> NodeGraphAttrs;
    413 #endif
    414 
    415   /// Clear all previously defined node graph attributes.
    416   /// Intended to be used from a debugging tool (eg. gdb).
    417   void clearGraphAttrs();
    418 
    419   /// Set graph attributes for a node. (eg. "color=red".)
    420   void setGraphAttrs(const SDNode *N, const char *Attrs);
    421 
    422   /// Get graph attributes for a node. (eg. "color=red".)
    423   /// Used from getNodeAttributes.
    424   const std::string getGraphAttrs(const SDNode *N) const;
    425 
    426   /// Convenience for setting node color attribute.
    427   void setGraphColor(const SDNode *N, const char *Color);
    428 
    429   /// Convenience for setting subgraph color attribute.
    430   void setSubgraphColor(SDNode *N, const char *Color);
    431 
    432   using allnodes_const_iterator = ilist<SDNode>::const_iterator;
    433 
    434   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
    435   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
    436 
    437   using allnodes_iterator = ilist<SDNode>::iterator;
    438 
    439   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
    440   allnodes_iterator allnodes_end() { return AllNodes.end(); }
    441 
    442   ilist<SDNode>::size_type allnodes_size() const {
    443     return AllNodes.size();
    444   }
    445 
    446   iterator_range<allnodes_iterator> allnodes() {
    447     return make_range(allnodes_begin(), allnodes_end());
    448   }
    449   iterator_range<allnodes_const_iterator> allnodes() const {
    450     return make_range(allnodes_begin(), allnodes_end());
    451   }
    452 
    453   /// Return the root tag of the SelectionDAG.
    454   const SDValue &getRoot() const { return Root; }
    455 
    456   /// Return the token chain corresponding to the entry of the function.
    457   SDValue getEntryNode() const {
    458     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
    459   }
    460 
    461   /// Set the current root tag of the SelectionDAG.
    462   ///
    463   const SDValue &setRoot(SDValue N) {
    464     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
    465            "DAG root value is not a chain!");
    466     if (N.getNode())
    467       checkForCycles(N.getNode(), this);
    468     Root = N;
    469     if (N.getNode())
    470       checkForCycles(this);
    471     return Root;
    472   }
    473 
    474   void VerifyDAGDiverence();
    475 
    476   /// This iterates over the nodes in the SelectionDAG, folding
    477   /// certain types of nodes together, or eliminating superfluous nodes.  The
    478   /// Level argument controls whether Combine is allowed to produce nodes and
    479   /// types that are illegal on the target.
    480   void Combine(CombineLevel Level, AliasAnalysis *AA,
    481                CodeGenOpt::Level OptLevel);
    482 
    483   /// This transforms the SelectionDAG into a SelectionDAG that
    484   /// only uses types natively supported by the target.
    485   /// Returns "true" if it made any changes.
    486   ///
    487   /// Note that this is an involved process that may invalidate pointers into
    488   /// the graph.
    489   bool LegalizeTypes();
    490 
    491   /// This transforms the SelectionDAG into a SelectionDAG that is
    492   /// compatible with the target instruction selector, as indicated by the
    493   /// TargetLowering object.
    494   ///
    495   /// Note that this is an involved process that may invalidate pointers into
    496   /// the graph.
    497   void Legalize();
    498 
    499   /// Transforms a SelectionDAG node and any operands to it into a node
    500   /// that is compatible with the target instruction selector, as indicated by
    501   /// the TargetLowering object.
    502   ///
    503   /// \returns true if \c N is a valid, legal node after calling this.
    504   ///
    505   /// This essentially runs a single recursive walk of the \c Legalize process
    506   /// over the given node (and its operands). This can be used to incrementally
    507   /// legalize the DAG. All of the nodes which are directly replaced,
    508   /// potentially including N, are added to the output parameter \c
    509   /// UpdatedNodes so that the delta to the DAG can be understood by the
    510   /// caller.
    511   ///
    512   /// When this returns false, N has been legalized in a way that make the
    513   /// pointer passed in no longer valid. It may have even been deleted from the
    514   /// DAG, and so it shouldn't be used further. When this returns true, the
    515   /// N passed in is a legal node, and can be immediately processed as such.
    516   /// This may still have done some work on the DAG, and will still populate
    517   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
    518   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
    519 
    520   /// This transforms the SelectionDAG into a SelectionDAG
    521   /// that only uses vector math operations supported by the target.  This is
    522   /// necessary as a separate step from Legalize because unrolling a vector
    523   /// operation can introduce illegal types, which requires running
    524   /// LegalizeTypes again.
    525   ///
    526   /// This returns true if it made any changes; in that case, LegalizeTypes
    527   /// is called again before Legalize.
    528   ///
    529   /// Note that this is an involved process that may invalidate pointers into
    530   /// the graph.
    531   bool LegalizeVectors();
    532 
    533   /// This method deletes all unreachable nodes in the SelectionDAG.
    534   void RemoveDeadNodes();
    535 
    536   /// Remove the specified node from the system.  This node must
    537   /// have no referrers.
    538   void DeleteNode(SDNode *N);
    539 
    540   /// Return an SDVTList that represents the list of values specified.
    541   SDVTList getVTList(EVT VT);
    542   SDVTList getVTList(EVT VT1, EVT VT2);
    543   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
    544   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
    545   SDVTList getVTList(ArrayRef<EVT> VTs);
    546 
    547   //===--------------------------------------------------------------------===//
    548   // Node creation methods.
    549 
    550   /// Create a ConstantSDNode wrapping a constant value.
    551   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    552   ///
    553   /// If only legal types can be produced, this does the necessary
    554   /// transformations (e.g., if the vector element type is illegal).
    555   /// @{
    556   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    557                       bool isTarget = false, bool isOpaque = false);
    558   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    559                       bool isTarget = false, bool isOpaque = false);
    560 
    561   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
    562                              bool IsOpaque = false) {
    563     return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
    564                        VT, IsTarget, IsOpaque);
    565   }
    566 
    567   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    568                       bool isTarget = false, bool isOpaque = false);
    569   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
    570                             bool isTarget = false);
    571   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    572                             bool isOpaque = false) {
    573     return getConstant(Val, DL, VT, true, isOpaque);
    574   }
    575   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    576                             bool isOpaque = false) {
    577     return getConstant(Val, DL, VT, true, isOpaque);
    578   }
    579   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    580                             bool isOpaque = false) {
    581     return getConstant(Val, DL, VT, true, isOpaque);
    582   }
    583 
    584   /// Create a true or false constant of type \p VT using the target's
    585   /// BooleanContent for type \p OpVT.
    586   SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
    587   /// @}
    588 
    589   /// Create a ConstantFPSDNode wrapping a constant value.
    590   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    591   ///
    592   /// If only legal types can be produced, this does the necessary
    593   /// transformations (e.g., if the vector element type is illegal).
    594   /// The forms that take a double should only be used for simple constants
    595   /// that can be exactly represented in VT.  No checks are made.
    596   /// @{
    597   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
    598                         bool isTarget = false);
    599   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
    600                         bool isTarget = false);
    601   SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
    602                         bool isTarget = false);
    603   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
    604     return getConstantFP(Val, DL, VT, true);
    605   }
    606   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
    607     return getConstantFP(Val, DL, VT, true);
    608   }
    609   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
    610     return getConstantFP(Val, DL, VT, true);
    611   }
    612   /// @}
    613 
    614   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    615                            int64_t offset = 0, bool isTargetGA = false,
    616                            unsigned char TargetFlags = 0);
    617   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    618                                  int64_t offset = 0,
    619                                  unsigned char TargetFlags = 0) {
    620     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
    621   }
    622   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
    623   SDValue getTargetFrameIndex(int FI, EVT VT) {
    624     return getFrameIndex(FI, VT, true);
    625   }
    626   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
    627                        unsigned char TargetFlags = 0);
    628   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
    629     return getJumpTable(JTI, VT, true, TargetFlags);
    630   }
    631   SDValue getConstantPool(const Constant *C, EVT VT,
    632                           unsigned Align = 0, int Offs = 0, bool isT=false,
    633                           unsigned char TargetFlags = 0);
    634   SDValue getTargetConstantPool(const Constant *C, EVT VT,
    635                                 unsigned Align = 0, int Offset = 0,
    636                                 unsigned char TargetFlags = 0) {
    637     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    638   }
    639   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
    640                           unsigned Align = 0, int Offs = 0, bool isT=false,
    641                           unsigned char TargetFlags = 0);
    642   SDValue getTargetConstantPool(MachineConstantPoolValue *C,
    643                                   EVT VT, unsigned Align = 0,
    644                                   int Offset = 0, unsigned char TargetFlags=0) {
    645     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    646   }
    647   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
    648                          unsigned char TargetFlags = 0);
    649   // When generating a branch to a BB, we don't in general know enough
    650   // to provide debug info for the BB at that time, so keep this one around.
    651   SDValue getBasicBlock(MachineBasicBlock *MBB);
    652   SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
    653   SDValue getExternalSymbol(const char *Sym, EVT VT);
    654   SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
    655   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
    656                                   unsigned char TargetFlags = 0);
    657   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
    658 
    659   SDValue getValueType(EVT);
    660   SDValue getRegister(unsigned Reg, EVT VT);
    661   SDValue getRegisterMask(const uint32_t *RegMask);
    662   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
    663   SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
    664                        MCSymbol *Label);
    665   SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
    666                           int64_t Offset = 0, bool isTarget = false,
    667                           unsigned char TargetFlags = 0);
    668   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
    669                                 int64_t Offset = 0,
    670                                 unsigned char TargetFlags = 0) {
    671     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
    672   }
    673 
    674   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
    675                        SDValue N) {
    676     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
    677                    getRegister(Reg, N.getValueType()), N);
    678   }
    679 
    680   // This version of the getCopyToReg method takes an extra operand, which
    681   // indicates that there is potentially an incoming glue value (if Glue is not
    682   // null) and that there should be a glue result.
    683   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
    684                        SDValue Glue) {
    685     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    686     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
    687     return getNode(ISD::CopyToReg, dl, VTs,
    688                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    689   }
    690 
    691   // Similar to last getCopyToReg() except parameter Reg is a SDValue
    692   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
    693                        SDValue Glue) {
    694     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    695     SDValue Ops[] = { Chain, Reg, N, Glue };
    696     return getNode(ISD::CopyToReg, dl, VTs,
    697                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    698   }
    699 
    700   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
    701     SDVTList VTs = getVTList(VT, MVT::Other);
    702     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
    703     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
    704   }
    705 
    706   // This version of the getCopyFromReg method takes an extra operand, which
    707   // indicates that there is potentially an incoming glue value (if Glue is not
    708   // null) and that there should be a glue result.
    709   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
    710                          SDValue Glue) {
    711     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
    712     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
    713     return getNode(ISD::CopyFromReg, dl, VTs,
    714                    makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
    715   }
    716 
    717   SDValue getCondCode(ISD::CondCode Cond);
    718 
    719   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
    720   /// which must be a vector type, must match the number of mask elements
    721   /// NumElts. An integer mask element equal to -1 is treated as undefined.
    722   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
    723                            ArrayRef<int> Mask);
    724 
    725   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    726   /// which must be a vector type, must match the number of operands in Ops.
    727   /// The operands must have the same type as (or, for integers, a type wider
    728   /// than) VT's element type.
    729   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
    730     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    731     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    732   }
    733 
    734   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    735   /// which must be a vector type, must match the number of operands in Ops.
    736   /// The operands must have the same type as (or, for integers, a type wider
    737   /// than) VT's element type.
    738   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
    739     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    740     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    741   }
    742 
    743   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
    744   /// elements. VT must be a vector type. Op's type must be the same as (or,
    745   /// for integers, a type wider than) VT's element type.
    746   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
    747     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    748     if (Op.getOpcode() == ISD::UNDEF) {
    749       assert((VT.getVectorElementType() == Op.getValueType() ||
    750               (VT.isInteger() &&
    751                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
    752              "A splatted value must have a width equal or (for integers) "
    753              "greater than the vector element type!");
    754       return getNode(ISD::UNDEF, SDLoc(), VT);
    755     }
    756 
    757     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
    758     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    759   }
    760 
    761   /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
    762   /// the shuffle node in input but with swapped operands.
    763   ///
    764   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
    765   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
    766 
    767   /// Convert Op, which must be of float type, to the
    768   /// float type VT, by either extending or rounding (by truncation).
    769   SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
    770 
    771   /// Convert Op, which must be of integer type, to the
    772   /// integer type VT, by either any-extending or truncating it.
    773   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    774 
    775   /// Convert Op, which must be of integer type, to the
    776   /// integer type VT, by either sign-extending or truncating it.
    777   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    778 
    779   /// Convert Op, which must be of integer type, to the
    780   /// integer type VT, by either zero-extending or truncating it.
    781   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    782 
    783   /// Return the expression required to zero extend the Op
    784   /// value assuming it was the smaller SrcTy value.
    785   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
    786 
    787   /// Return an operation which will any-extend the low lanes of the operand
    788   /// into the specified vector type. For example,
    789   /// this can convert a v16i8 into a v4i32 by any-extending the low four
    790   /// lanes of the operand from i8 to i32.
    791   SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    792 
    793   /// Return an operation which will sign extend the low lanes of the operand
    794   /// into the specified vector type. For example,
    795   /// this can convert a v16i8 into a v4i32 by sign extending the low four
    796   /// lanes of the operand from i8 to i32.
    797   SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    798 
    799   /// Return an operation which will zero extend the low lanes of the operand
    800   /// into the specified vector type. For example,
    801   /// this can convert a v16i8 into a v4i32 by zero extending the low four
    802   /// lanes of the operand from i8 to i32.
    803   SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    804 
    805   /// Convert Op, which must be of integer type, to the integer type VT,
    806   /// by using an extension appropriate for the target's
    807   /// BooleanContent for type OpVT or truncating it.
    808   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
    809 
    810   /// Create a bitwise NOT operation as (XOR Val, -1).
    811   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
    812 
    813   /// Create a logical NOT operation as (XOR Val, BooleanOne).
    814   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
    815 
    816   /// Create an add instruction with appropriate flags when used for
    817   /// addressing some offset of an object. i.e. if a load is split into multiple
    818   /// components, create an add nuw from the base pointer to the offset.
    819   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
    820     EVT VT = Op.getValueType();
    821     return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
    822   }
    823 
    824   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
    825     EVT VT = Op.getValueType();
    826 
    827     // The object itself can't wrap around the address space, so it shouldn't be
    828     // possible for the adds of the offsets to the split parts to overflow.
    829     SDNodeFlags Flags;
    830     Flags.setNoUnsignedWrap(true);
    831     return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
    832   }
    833 
    834   /// Return a new CALLSEQ_START node, that starts new call frame, in which
    835   /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
    836   /// OutSize specifies part of the frame set up prior to the sequence.
    837   SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
    838                            const SDLoc &DL) {
    839     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    840     SDValue Ops[] = { Chain,
    841                       getIntPtrConstant(InSize, DL, true),
    842                       getIntPtrConstant(OutSize, DL, true) };
    843     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
    844   }
    845 
    846   /// Return a new CALLSEQ_END node, which always must have a
    847   /// glue result (to ensure it's not CSE'd).
    848   /// CALLSEQ_END does not have a useful SDLoc.
    849   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
    850                          SDValue InGlue, const SDLoc &DL) {
    851     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
    852     SmallVector<SDValue, 4> Ops;
    853     Ops.push_back(Chain);
    854     Ops.push_back(Op1);
    855     Ops.push_back(Op2);
    856     if (InGlue.getNode())
    857       Ops.push_back(InGlue);
    858     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
    859   }
    860 
    861   /// Return true if the result of this operation is always undefined.
    862   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
    863 
    864   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
    865   SDValue getUNDEF(EVT VT) {
    866     return getNode(ISD::UNDEF, SDLoc(), VT);
    867   }
    868 
    869   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
    870   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
    871     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
    872   }
    873 
    874   /// Gets or creates the specified node.
    875   ///
    876   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    877                   ArrayRef<SDUse> Ops);
    878   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    879                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
    880   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
    881                   ArrayRef<SDValue> Ops);
    882   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
    883                   ArrayRef<SDValue> Ops);
    884 
    885   // Specialize based on number of operands.
    886   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
    887   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
    888                   const SDNodeFlags Flags = SDNodeFlags());
    889   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    890                   SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
    891   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    892                   SDValue N2, SDValue N3,
    893                   const SDNodeFlags Flags = SDNodeFlags());
    894   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    895                   SDValue N2, SDValue N3, SDValue N4);
    896   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    897                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    898 
    899   // Specialize again based on number of operands for nodes with a VTList
    900   // rather than a single VT.
    901   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
    902   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
    903   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
    904                   SDValue N2);
    905   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
    906                   SDValue N2, SDValue N3);
    907   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
    908                   SDValue N2, SDValue N3, SDValue N4);
    909   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
    910                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    911 
    912   /// Compute a TokenFactor to force all the incoming stack arguments to be
    913   /// loaded from the stack. This is used in tail call lowering to protect
    914   /// stack arguments from being clobbered.
    915   SDValue getStackArgumentTokenFactor(SDValue Chain);
    916 
    917   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    918                     SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
    919                     bool isTailCall, MachinePointerInfo DstPtrInfo,
    920                     MachinePointerInfo SrcPtrInfo);
    921 
    922   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    923                      SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    924                      MachinePointerInfo DstPtrInfo,
    925                      MachinePointerInfo SrcPtrInfo);
    926 
    927   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    928                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    929                     MachinePointerInfo DstPtrInfo);
    930 
    931   SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
    932                           unsigned DstAlign, SDValue Src, unsigned SrcAlign,
    933                           SDValue Size, Type *SizeTy, unsigned ElemSz,
    934                           bool isTailCall, MachinePointerInfo DstPtrInfo,
    935                           MachinePointerInfo SrcPtrInfo);
    936 
    937   SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
    938                            unsigned DstAlign, SDValue Src, unsigned SrcAlign,
    939                            SDValue Size, Type *SizeTy, unsigned ElemSz,
    940                            bool isTailCall, MachinePointerInfo DstPtrInfo,
    941                            MachinePointerInfo SrcPtrInfo);
    942 
    943   SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
    944                           unsigned DstAlign, SDValue Value, SDValue Size,
    945                           Type *SizeTy, unsigned ElemSz, bool isTailCall,
    946                           MachinePointerInfo DstPtrInfo);
    947 
    948   /// Helper function to make it easier to build SetCC's if you just
    949   /// have an ISD::CondCode instead of an SDValue.
    950   ///
    951   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
    952                    ISD::CondCode Cond) {
    953     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
    954       "Cannot compare scalars to vectors");
    955     assert(LHS.getValueType().isVector() == VT.isVector() &&
    956       "Cannot compare scalars to vectors");
    957     assert(Cond != ISD::SETCC_INVALID &&
    958         "Cannot create a setCC of an invalid node.");
    959     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
    960   }
    961 
    962   /// Helper function to make it easier to build Select's if you just
    963   /// have operands and don't want to check for vector.
    964   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
    965                     SDValue RHS) {
    966     assert(LHS.getValueType() == RHS.getValueType() &&
    967            "Cannot use select on differing types");
    968     assert(VT.isVector() == LHS.getValueType().isVector() &&
    969            "Cannot mix vectors and scalars");
    970     return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
    971                    Cond, LHS, RHS);
    972   }
    973 
    974   /// Helper function to make it easier to build SelectCC's if you
    975   /// just have an ISD::CondCode instead of an SDValue.
    976   ///
    977   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
    978                       SDValue False, ISD::CondCode Cond) {
    979     return getNode(ISD::SELECT_CC, DL, True.getValueType(),
    980                    LHS, RHS, True, False, getCondCode(Cond));
    981   }
    982 
    983   /// VAArg produces a result and token chain, and takes a pointer
    984   /// and a source value as input.
    985   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    986                    SDValue SV, unsigned Align);
    987 
    988   /// Gets a node for an atomic cmpxchg op. There are two
    989   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
    990   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
    991   /// a success flag (initially i1), and a chain.
    992   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    993                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    994                            SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
    995                            unsigned Alignment, AtomicOrdering SuccessOrdering,
    996                            AtomicOrdering FailureOrdering,
    997                            SyncScope::ID SSID);
    998   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    999                            SDVTList VTs, SDValue Chain, SDValue Ptr,
   1000                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
   1001 
   1002   /// Gets a node for an atomic op, produces result (if relevant)
   1003   /// and chain and takes 2 operands.
   1004   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
   1005                     SDValue Ptr, SDValue Val, const Value *PtrVal,
   1006                     unsigned Alignment, AtomicOrdering Ordering,
   1007                     SyncScope::ID SSID);
   1008   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
   1009                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
   1010 
   1011   /// Gets a node for an atomic op, produces result and chain and
   1012   /// takes 1 operand.
   1013   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
   1014                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
   1015 
   1016   /// Gets a node for an atomic op, produces result and chain and takes N
   1017   /// operands.
   1018   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
   1019                     SDVTList VTList, ArrayRef<SDValue> Ops,
   1020                     MachineMemOperand *MMO);
   1021 
   1022   /// Creates a MemIntrinsicNode that may produce a
   1023   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
   1024   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
   1025   /// less than FIRST_TARGET_MEMORY_OPCODE.
   1026   SDValue getMemIntrinsicNode(
   1027     unsigned Opcode, const SDLoc &dl, SDVTList VTList,
   1028     ArrayRef<SDValue> Ops, EVT MemVT,
   1029     MachinePointerInfo PtrInfo,
   1030     unsigned Align = 0,
   1031     MachineMemOperand::Flags Flags
   1032     = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
   1033     unsigned Size = 0);
   1034 
   1035   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
   1036                               ArrayRef<SDValue> Ops, EVT MemVT,
   1037                               MachineMemOperand *MMO);
   1038 
   1039   /// Create a MERGE_VALUES node from the given operands.
   1040   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
   1041 
   1042   /// Loads are not normal binary operators: their result type is not
   1043   /// determined by their operands, and they produce a value AND a token chain.
   1044   ///
   1045   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
   1046   /// you want.  The MOStore flag must not be set.
   1047   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
   1048                   MachinePointerInfo PtrInfo, unsigned Alignment = 0,
   1049                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1050                   const AAMDNodes &AAInfo = AAMDNodes(),
   1051                   const MDNode *Ranges = nullptr);
   1052   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
   1053                   MachineMemOperand *MMO);
   1054   SDValue
   1055   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
   1056              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
   1057              unsigned Alignment = 0,
   1058              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1059              const AAMDNodes &AAInfo = AAMDNodes());
   1060   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
   1061                      SDValue Chain, SDValue Ptr, EVT MemVT,
   1062                      MachineMemOperand *MMO);
   1063   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
   1064                          SDValue Offset, ISD::MemIndexedMode AM);
   1065   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
   1066                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
   1067                   MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
   1068                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1069                   const AAMDNodes &AAInfo = AAMDNodes(),
   1070                   const MDNode *Ranges = nullptr);
   1071   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
   1072                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
   1073                   EVT MemVT, MachineMemOperand *MMO);
   1074 
   1075   /// Helper function to build ISD::STORE nodes.
   1076   ///
   1077   /// This function will set the MOStore flag on MMOFlags, but you can set it if
   1078   /// you want.  The MOLoad and MOInvariant flags must not be set.
   1079   SDValue
   1080   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1081            MachinePointerInfo PtrInfo, unsigned Alignment = 0,
   1082            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1083            const AAMDNodes &AAInfo = AAMDNodes());
   1084   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1085                    MachineMemOperand *MMO);
   1086   SDValue
   1087   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1088                 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
   1089                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1090                 const AAMDNodes &AAInfo = AAMDNodes());
   1091   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
   1092                         SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
   1093   SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
   1094                           SDValue Offset, ISD::MemIndexedMode AM);
   1095 
   1096   /// Returns sum of the base pointer and offset.
   1097   SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
   1098 
   1099   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
   1100                         SDValue Mask, SDValue Src0, EVT MemVT,
   1101                         MachineMemOperand *MMO, ISD::LoadExtType,
   1102                         bool IsExpanding = false);
   1103   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
   1104                          SDValue Ptr, SDValue Mask, EVT MemVT,
   1105                          MachineMemOperand *MMO, bool IsTruncating = false,
   1106                          bool IsCompressing = false);
   1107   SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
   1108                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
   1109   SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
   1110                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
   1111 
   1112   /// Return (create a new or find existing) a target-specific node.
   1113   /// TargetMemSDNode should be derived class from MemSDNode.
   1114   template <class TargetMemSDNode>
   1115   SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
   1116                              const SDLoc &dl, EVT MemVT,
   1117                              MachineMemOperand *MMO);
   1118 
   1119   /// Construct a node to track a Value* through the backend.
   1120   SDValue getSrcValue(const Value *v);
   1121 
   1122   /// Return an MDNodeSDNode which holds an MDNode.
   1123   SDValue getMDNode(const MDNode *MD);
   1124 
   1125   /// Return a bitcast using the SDLoc of the value operand, and casting to the
   1126   /// provided type. Use getNode to set a custom SDLoc.
   1127   SDValue getBitcast(EVT VT, SDValue V);
   1128 
   1129   /// Return an AddrSpaceCastSDNode.
   1130   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
   1131                            unsigned DestAS);
   1132 
   1133   /// Return the specified value casted to
   1134   /// the target's desired shift amount type.
   1135   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
   1136 
   1137   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
   1138   SDValue expandVAArg(SDNode *Node);
   1139 
   1140   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
   1141   SDValue expandVACopy(SDNode *Node);
   1142 
   1143   /// *Mutate* the specified node in-place to have the
   1144   /// specified operands.  If the resultant node already exists in the DAG,
   1145   /// this does not modify the specified node, instead it returns the node that
   1146   /// already exists.  If the resultant node does not exist in the DAG, the
   1147   /// input node is returned.  As a degenerate case, if you specify the same
   1148   /// input operands as the node already has, the input node is returned.
   1149   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
   1150   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
   1151   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1152                                SDValue Op3);
   1153   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1154                                SDValue Op3, SDValue Op4);
   1155   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1156                                SDValue Op3, SDValue Op4, SDValue Op5);
   1157   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
   1158 
   1159   // Propagates the change in divergence to users
   1160   void updateDivergence(SDNode * N);
   1161 
   1162   /// These are used for target selectors to *mutate* the
   1163   /// specified node to have the specified return type, Target opcode, and
   1164   /// operands.  Note that target opcodes are stored as
   1165   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
   1166   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
   1167   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
   1168   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
   1169                        SDValue Op1, SDValue Op2);
   1170   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
   1171                        SDValue Op1, SDValue Op2, SDValue Op3);
   1172   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
   1173                        ArrayRef<SDValue> Ops);
   1174   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
   1175   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
   1176                        EVT VT2, ArrayRef<SDValue> Ops);
   1177   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
   1178                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1179   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1180                        EVT VT2, SDValue Op1);
   1181   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
   1182                        EVT VT2, SDValue Op1, SDValue Op2);
   1183   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
   1184                        ArrayRef<SDValue> Ops);
   1185 
   1186   /// This *mutates* the specified node to have the specified
   1187   /// return type, opcode, and operands.
   1188   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
   1189                       ArrayRef<SDValue> Ops);
   1190 
   1191   /// Mutate the specified strict FP node to its non-strict equivalent,
   1192   /// unlinking the node from its chain and dropping the metadata arguments.
   1193   /// The node must be a strict FP node.
   1194   SDNode *mutateStrictFPToFP(SDNode *Node);
   1195 
   1196   /// These are used for target selectors to create a new node
   1197   /// with specified return type(s), MachineInstr opcode, and operands.
   1198   ///
   1199   /// Note that getMachineNode returns the resultant node.  If there is already
   1200   /// a node of the specified opcode and operands, it returns that node instead
   1201   /// of the current one.
   1202   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
   1203   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1204                                 SDValue Op1);
   1205   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1206                                 SDValue Op1, SDValue Op2);
   1207   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1208                                 SDValue Op1, SDValue Op2, SDValue Op3);
   1209   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1210                                 ArrayRef<SDValue> Ops);
   1211   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1212                                 EVT VT2, SDValue Op1, SDValue Op2);
   1213   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1214                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
   1215   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1216                                 EVT VT2, ArrayRef<SDValue> Ops);
   1217   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1218                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
   1219   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1220                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
   1221                                 SDValue Op3);
   1222   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1223                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1224   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
   1225                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
   1226   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
   1227                                 ArrayRef<SDValue> Ops);
   1228 
   1229   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
   1230   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1231                                  SDValue Operand);
   1232 
   1233   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
   1234   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1235                                 SDValue Operand, SDValue Subreg);
   1236 
   1237   /// Get the specified node if it's already available, or else return NULL.
   1238   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
   1239                           const SDNodeFlags Flags = SDNodeFlags());
   1240 
   1241   /// Creates a SDDbgValue node.
   1242   SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
   1243                           unsigned R, bool IsIndirect, const DebugLoc &DL,
   1244                           unsigned O);
   1245 
   1246   /// Creates a constant SDDbgValue node.
   1247   SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
   1248                                   const Value *C, const DebugLoc &DL,
   1249                                   unsigned O);
   1250 
   1251   /// Creates a FrameIndex SDDbgValue node.
   1252   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
   1253                                     unsigned FI, bool IsIndirect,
   1254                                     const DebugLoc &DL, unsigned O);
   1255 
   1256   /// Creates a VReg SDDbgValue node.
   1257   SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
   1258                               unsigned VReg, bool IsIndirect,
   1259                               const DebugLoc &DL, unsigned O);
   1260 
   1261   /// Creates a SDDbgLabel node.
   1262   SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
   1263 
   1264   /// Transfer debug values from one node to another, while optionally
   1265   /// generating fragment expressions for split-up values. If \p InvalidateDbg
   1266   /// is set, debug values are invalidated after they are transferred.
   1267   void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
   1268                          unsigned SizeInBits = 0, bool InvalidateDbg = true);
   1269 
   1270   /// Remove the specified node from the system. If any of its
   1271   /// operands then becomes dead, remove them as well. Inform UpdateListener
   1272   /// for each node deleted.
   1273   void RemoveDeadNode(SDNode *N);
   1274 
   1275   /// This method deletes the unreachable nodes in the
   1276   /// given list, and any nodes that become unreachable as a result.
   1277   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
   1278 
   1279   /// Modify anything using 'From' to use 'To' instead.
   1280   /// This can cause recursive merging of nodes in the DAG.  Use the first
   1281   /// version if 'From' is known to have a single result, use the second
   1282   /// if you have two nodes with identical results (or if 'To' has a superset
   1283   /// of the results of 'From'), use the third otherwise.
   1284   ///
   1285   /// These methods all take an optional UpdateListener, which (if not null) is
   1286   /// informed about nodes that are deleted and modified due to recursive
   1287   /// changes in the dag.
   1288   ///
   1289   /// These functions only replace all existing uses. It's possible that as
   1290   /// these replacements are being performed, CSE may cause the From node
   1291   /// to be given new uses. These new uses of From are left in place, and
   1292   /// not automatically transferred to To.
   1293   ///
   1294   void ReplaceAllUsesWith(SDValue From, SDValue To);
   1295   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
   1296   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
   1297 
   1298   /// Replace any uses of From with To, leaving
   1299   /// uses of other values produced by From.getNode() alone.
   1300   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
   1301 
   1302   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
   1303   /// This correctly handles the case where
   1304   /// there is an overlap between the From values and the To values.
   1305   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
   1306                                   unsigned Num);
   1307 
   1308   /// If an existing load has uses of its chain, create a token factor node with
   1309   /// that chain and the new memory node's chain and update users of the old
   1310   /// chain to the token factor. This ensures that the new memory node will have
   1311   /// the same relative memory dependency position as the old load. Returns the
   1312   /// new merged load chain.
   1313   SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
   1314 
   1315   /// Topological-sort the AllNodes list and a
   1316   /// assign a unique node id for each node in the DAG based on their
   1317   /// topological order. Returns the number of nodes.
   1318   unsigned AssignTopologicalOrder();
   1319 
   1320   /// Move node N in the AllNodes list to be immediately
   1321   /// before the given iterator Position. This may be used to update the
   1322   /// topological ordering when the list of nodes is modified.
   1323   void RepositionNode(allnodes_iterator Position, SDNode *N) {
   1324     AllNodes.insert(Position, AllNodes.remove(N));
   1325   }
   1326 
   1327   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
   1328   /// a vector type, the element semantics are returned.
   1329   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
   1330     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
   1331     default: llvm_unreachable("Unknown FP format");
   1332     case MVT::f16:     return APFloat::IEEEhalf();
   1333     case MVT::f32:     return APFloat::IEEEsingle();
   1334     case MVT::f64:     return APFloat::IEEEdouble();
   1335     case MVT::f80:     return APFloat::x87DoubleExtended();
   1336     case MVT::f128:    return APFloat::IEEEquad();
   1337     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
   1338     }
   1339   }
   1340 
   1341   /// Add a dbg_value SDNode. If SD is non-null that means the
   1342   /// value is produced by SD.
   1343   void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
   1344 
   1345   /// Add a dbg_label SDNode.
   1346   void AddDbgLabel(SDDbgLabel *DB);
   1347 
   1348   /// Get the debug values which reference the given SDNode.
   1349   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
   1350     return DbgInfo->getSDDbgValues(SD);
   1351   }
   1352 
   1353 public:
   1354   /// Return true if there are any SDDbgValue nodes associated
   1355   /// with this SelectionDAG.
   1356   bool hasDebugValues() const { return !DbgInfo->empty(); }
   1357 
   1358   SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
   1359   SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
   1360 
   1361   SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
   1362     return DbgInfo->ByvalParmDbgBegin();
   1363   }
   1364 
   1365   SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
   1366     return DbgInfo->ByvalParmDbgEnd();
   1367   }
   1368 
   1369   SDDbgInfo::DbgLabelIterator DbgLabelBegin() {
   1370     return DbgInfo->DbgLabelBegin();
   1371   }
   1372   SDDbgInfo::DbgLabelIterator DbgLabelEnd() {
   1373     return DbgInfo->DbgLabelEnd();
   1374   }
   1375 
   1376   /// To be invoked on an SDNode that is slated to be erased. This
   1377   /// function mirrors \c llvm::salvageDebugInfo.
   1378   void salvageDebugInfo(SDNode &N);
   1379 
   1380   void dump() const;
   1381 
   1382   /// Create a stack temporary, suitable for holding the specified value type.
   1383   /// If minAlign is specified, the slot size will have at least that alignment.
   1384   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
   1385 
   1386   /// Create a stack temporary suitable for holding either of the specified
   1387   /// value types.
   1388   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
   1389 
   1390   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
   1391                            const GlobalAddressSDNode *GA,
   1392                            const SDNode *N2);
   1393 
   1394   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1395                                  SDNode *Cst1, SDNode *Cst2);
   1396 
   1397   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1398                                  const ConstantSDNode *Cst1,
   1399                                  const ConstantSDNode *Cst2);
   1400 
   1401   SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1402                                        ArrayRef<SDValue> Ops,
   1403                                        const SDNodeFlags Flags = SDNodeFlags());
   1404 
   1405   /// Constant fold a setcc to true or false.
   1406   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
   1407                     const SDLoc &dl);
   1408 
   1409   /// See if the specified operand can be simplified with the knowledge that only
   1410   /// the bits specified by Mask are used.  If so, return the simpler operand,
   1411   /// otherwise return a null SDValue.
   1412   ///
   1413   /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
   1414   /// simplify nodes with multiple uses more aggressively.)
   1415   SDValue GetDemandedBits(SDValue V, const APInt &Mask);
   1416 
   1417   /// Return true if the sign bit of Op is known to be zero.
   1418   /// We use this predicate to simplify operations downstream.
   1419   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
   1420 
   1421   /// Return true if 'Op & Mask' is known to be zero.  We
   1422   /// use this predicate to simplify operations downstream.  Op and Mask are
   1423   /// known to be the same type.
   1424   bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
   1425     const;
   1426 
   1427   /// Determine which bits of Op are known to be either zero or one and return
   1428   /// them in Known. For vectors, the known bits are those that are shared by
   1429   /// every vector element.
   1430   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1431   /// TargetLowering class to allow target nodes to be understood.
   1432   void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
   1433 
   1434   /// Determine which bits of Op are known to be either zero or one and return
   1435   /// them in Known. The DemandedElts argument allows us to only collect the
   1436   /// known bits that are shared by the requested vector elements.
   1437   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1438   /// TargetLowering class to allow target nodes to be understood.
   1439   void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
   1440                         unsigned Depth = 0) const;
   1441 
   1442   /// Used to represent the possible overflow behavior of an operation.
   1443   /// Never: the operation cannot overflow.
   1444   /// Always: the operation will always overflow.
   1445   /// Sometime: the operation may or may not overflow.
   1446   enum OverflowKind {
   1447     OFK_Never,
   1448     OFK_Sometime,
   1449     OFK_Always,
   1450   };
   1451 
   1452   /// Determine if the result of the addition of 2 node can overflow.
   1453   OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
   1454 
   1455   /// Test if the given value is known to have exactly one bit set. This differs
   1456   /// from computeKnownBits in that it doesn't necessarily determine which bit
   1457   /// is set.
   1458   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
   1459 
   1460   /// Return the number of times the sign bit of the register is replicated into
   1461   /// the other bits. We know that at least 1 bit is always equal to the sign
   1462   /// bit (itself), but other cases can give us information. For example,
   1463   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1464   /// to each other, so we return 3. Targets can implement the
   1465   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
   1466   /// target nodes to be understood.
   1467   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
   1468 
   1469   /// Return the number of times the sign bit of the register is replicated into
   1470   /// the other bits. We know that at least 1 bit is always equal to the sign
   1471   /// bit (itself), but other cases can give us information. For example,
   1472   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1473   /// to each other, so we return 3. The DemandedElts argument allows
   1474   /// us to only collect the minimum sign bits of the requested vector elements.
   1475   /// Targets can implement the ComputeNumSignBitsForTarget method in the
   1476   /// TargetLowering class to allow target nodes to be understood.
   1477   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
   1478                               unsigned Depth = 0) const;
   1479 
   1480   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
   1481   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
   1482   /// is guaranteed to have the same semantics as an ADD. This handles the
   1483   /// equivalence:
   1484   ///     X|Cst == X+Cst iff X&Cst = 0.
   1485   bool isBaseWithConstantOffset(SDValue Op) const;
   1486 
   1487   /// Test whether the given SDValue is known to never be NaN.
   1488   bool isKnownNeverNaN(SDValue Op) const;
   1489 
   1490   /// Test whether the given floating point SDValue is known to never be
   1491   /// positive or negative zero.
   1492   bool isKnownNeverZeroFloat(SDValue Op) const;
   1493 
   1494   /// Test whether the given SDValue is known to contain non-zero value(s).
   1495   bool isKnownNeverZero(SDValue Op) const;
   1496 
   1497   /// Test whether two SDValues are known to compare equal. This
   1498   /// is true if they are the same value, or if one is negative zero and the
   1499   /// other positive zero.
   1500   bool isEqualTo(SDValue A, SDValue B) const;
   1501 
   1502   /// Return true if A and B have no common bits set. As an example, this can
   1503   /// allow an 'add' to be transformed into an 'or'.
   1504   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
   1505 
   1506   /// Utility function used by legalize and lowering to
   1507   /// "unroll" a vector operation by splitting out the scalars and operating
   1508   /// on each element individually.  If the ResNE is 0, fully unroll the vector
   1509   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
   1510   /// If the  ResNE is greater than the width of the vector op, unroll the
   1511   /// vector op and fill the end of the resulting vector with UNDEFS.
   1512   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
   1513 
   1514   /// Return true if loads are next to each other and can be
   1515   /// merged. Check that both are nonvolatile and if LD is loading
   1516   /// 'Bytes' bytes from a location that is 'Dist' units away from the
   1517   /// location that the 'Base' load is loading from.
   1518   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
   1519                                       unsigned Bytes, int Dist) const;
   1520 
   1521   /// Infer alignment of a load / store address. Return 0 if
   1522   /// it cannot be inferred.
   1523   unsigned InferPtrAlignment(SDValue Ptr) const;
   1524 
   1525   /// Compute the VTs needed for the low/hi parts of a type
   1526   /// which is split (or expanded) into two not necessarily identical pieces.
   1527   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
   1528 
   1529   /// Split the vector with EXTRACT_SUBVECTOR using the provides
   1530   /// VTs and return the low/high part.
   1531   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
   1532                                           const EVT &LoVT, const EVT &HiVT);
   1533 
   1534   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
   1535   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
   1536     EVT LoVT, HiVT;
   1537     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
   1538     return SplitVector(N, DL, LoVT, HiVT);
   1539   }
   1540 
   1541   /// Split the node's operand with EXTRACT_SUBVECTOR and
   1542   /// return the low/high part.
   1543   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
   1544   {
   1545     return SplitVector(N->getOperand(OpNo), SDLoc(N));
   1546   }
   1547 
   1548   /// Append the extracted elements from Start to Count out of the vector Op
   1549   /// in Args. If Count is 0, all of the elements will be extracted.
   1550   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
   1551                              unsigned Start = 0, unsigned Count = 0);
   1552 
   1553   /// Compute the default alignment value for the given type.
   1554   unsigned getEVTAlignment(EVT MemoryVT) const;
   1555 
   1556   /// Test whether the given value is a constant int or similar node.
   1557   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
   1558 
   1559   /// Test whether the given value is a constant FP or similar node.
   1560   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
   1561 
   1562   /// \returns true if \p N is any kind of constant or build_vector of
   1563   /// constants, int or float. If a vector, it may not necessarily be a splat.
   1564   inline bool isConstantValueOfAnyType(SDValue N) {
   1565     return isConstantIntBuildVectorOrConstantInt(N) ||
   1566            isConstantFPBuildVectorOrConstantFP(N);
   1567   }
   1568 
   1569 private:
   1570   void InsertNode(SDNode *N);
   1571   bool RemoveNodeFromCSEMaps(SDNode *N);
   1572   void AddModifiedNodeToCSEMaps(SDNode *N);
   1573   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
   1574   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
   1575                                void *&InsertPos);
   1576   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
   1577                                void *&InsertPos);
   1578   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
   1579 
   1580   void DeleteNodeNotInCSEMaps(SDNode *N);
   1581   void DeallocateNode(SDNode *N);
   1582 
   1583   void allnodes_clear();
   1584 
   1585   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1586   /// not, return the insertion token that will make insertion faster.  This
   1587   /// overload is for nodes other than Constant or ConstantFP, use the other one
   1588   /// for those.
   1589   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
   1590 
   1591   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1592   /// not, return the insertion token that will make insertion faster.  Performs
   1593   /// additional processing for constant nodes.
   1594   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
   1595                               void *&InsertPos);
   1596 
   1597   /// List of non-single value types.
   1598   FoldingSet<SDVTListNode> VTListMap;
   1599 
   1600   /// Maps to auto-CSE operations.
   1601   std::vector<CondCodeSDNode*> CondCodeNodes;
   1602 
   1603   std::vector<SDNode*> ValueTypeNodes;
   1604   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
   1605   StringMap<SDNode*> ExternalSymbols;
   1606 
   1607   std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
   1608   DenseMap<MCSymbol *, SDNode *> MCSymbols;
   1609 };
   1610 
   1611 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
   1612   using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
   1613 
   1614   static nodes_iterator nodes_begin(SelectionDAG *G) {
   1615     return nodes_iterator(G->allnodes_begin());
   1616   }
   1617 
   1618   static nodes_iterator nodes_end(SelectionDAG *G) {
   1619     return nodes_iterator(G->allnodes_end());
   1620   }
   1621 };
   1622 
   1623 template <class TargetMemSDNode>
   1624 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
   1625                                          ArrayRef<SDValue> Ops,
   1626                                          const SDLoc &dl, EVT MemVT,
   1627                                          MachineMemOperand *MMO) {
   1628   /// Compose node ID and try to find an existing node.
   1629   FoldingSetNodeID ID;
   1630   unsigned Opcode =
   1631     TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
   1632   ID.AddInteger(Opcode);
   1633   ID.AddPointer(VTs.VTs);
   1634   for (auto& Op : Ops) {
   1635     ID.AddPointer(Op.getNode());
   1636     ID.AddInteger(Op.getResNo());
   1637   }
   1638   ID.AddInteger(MemVT.getRawBits());
   1639   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
   1640   ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
   1641     dl.getIROrder(), VTs, MemVT, MMO));
   1642 
   1643   void *IP = nullptr;
   1644   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
   1645     cast<TargetMemSDNode>(E)->refineAlignment(MMO);
   1646     return SDValue(E, 0);
   1647   }
   1648 
   1649   /// Existing node was not found. Create a new one.
   1650   auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
   1651                                        MemVT, MMO);
   1652   createOperands(N, Ops);
   1653   CSEMap.InsertNode(N, IP);
   1654   InsertNode(N);
   1655   return SDValue(N, 0);
   1656 }
   1657 
   1658 } // end namespace llvm
   1659 
   1660 #endif // LLVM_CODEGEN_SELECTIONDAG_H
   1661