Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
      6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
      7 
      8 #include "src/arm/assembler-arm.h"
      9 #include "src/assembler.h"
     10 #include "src/bailout-reason.h"
     11 #include "src/globals.h"
     12 #include "src/turbo-assembler.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 // Give alias names to registers for calling conventions.
     18 constexpr Register kReturnRegister0 = r0;
     19 constexpr Register kReturnRegister1 = r1;
     20 constexpr Register kReturnRegister2 = r2;
     21 constexpr Register kJSFunctionRegister = r1;
     22 constexpr Register kContextRegister = r7;
     23 constexpr Register kAllocateSizeRegister = r1;
     24 constexpr Register kSpeculationPoisonRegister = r9;
     25 constexpr Register kInterpreterAccumulatorRegister = r0;
     26 constexpr Register kInterpreterBytecodeOffsetRegister = r5;
     27 constexpr Register kInterpreterBytecodeArrayRegister = r6;
     28 constexpr Register kInterpreterDispatchTableRegister = r8;
     29 
     30 constexpr Register kJavaScriptCallArgCountRegister = r0;
     31 constexpr Register kJavaScriptCallCodeStartRegister = r2;
     32 constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
     33 constexpr Register kJavaScriptCallNewTargetRegister = r3;
     34 constexpr Register kJavaScriptCallExtraArg1Register = r2;
     35 
     36 constexpr Register kOffHeapTrampolineRegister = ip;
     37 constexpr Register kRuntimeCallFunctionRegister = r1;
     38 constexpr Register kRuntimeCallArgCountRegister = r0;
     39 constexpr Register kRuntimeCallArgvRegister = r2;
     40 constexpr Register kWasmInstanceRegister = r3;
     41 
     42 // ----------------------------------------------------------------------------
     43 // Static helper functions
     44 
     45 // Generate a MemOperand for loading a field from an object.
     46 inline MemOperand FieldMemOperand(Register object, int offset) {
     47   return MemOperand(object, offset - kHeapObjectTag);
     48 }
     49 
     50 
     51 // Give alias names to registers
     52 constexpr Register cp = r7;              // JavaScript context pointer.
     53 constexpr Register kRootRegister = r10;  // Roots array pointer.
     54 
     55 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     56 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     57 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     58 
     59 
     60 Register GetRegisterThatIsNotOneOf(Register reg1,
     61                                    Register reg2 = no_reg,
     62                                    Register reg3 = no_reg,
     63                                    Register reg4 = no_reg,
     64                                    Register reg5 = no_reg,
     65                                    Register reg6 = no_reg);
     66 
     67 enum TargetAddressStorageMode {
     68   CAN_INLINE_TARGET_ADDRESS,
     69   NEVER_INLINE_TARGET_ADDRESS
     70 };
     71 
     72 class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
     73  public:
     74   TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
     75                  void* buffer, int buffer_size,
     76                  CodeObjectRequired create_code_object)
     77       : TurboAssemblerBase(isolate, options, buffer, buffer_size,
     78                            create_code_object) {}
     79 
     80   // Activation support.
     81   void EnterFrame(StackFrame::Type type,
     82                   bool load_constant_pool_pointer_reg = false);
     83   // Returns the pc offset at which the frame ends.
     84   int LeaveFrame(StackFrame::Type type);
     85 
     86   // Push a fixed frame, consisting of lr, fp
     87   void PushCommonFrame(Register marker_reg = no_reg);
     88 
     89   // Generates function and stub prologue code.
     90   void StubPrologue(StackFrame::Type type);
     91   void Prologue();
     92 
     93   // Push a standard frame, consisting of lr, fp, context and JS function
     94   void PushStandardFrame(Register function_reg);
     95 
     96   void InitializeRootRegister();
     97 
     98   void Push(Register src) { push(src); }
     99 
    100   void Push(Handle<HeapObject> handle);
    101   void Push(Smi* smi);
    102 
    103   // Push two registers.  Pushes leftmost register first (to highest address).
    104   void Push(Register src1, Register src2, Condition cond = al) {
    105     if (src1.code() > src2.code()) {
    106       stm(db_w, sp, src1.bit() | src2.bit(), cond);
    107     } else {
    108       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    109       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    110     }
    111   }
    112 
    113   // Push three registers.  Pushes leftmost register first (to highest address).
    114   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    115     if (src1.code() > src2.code()) {
    116       if (src2.code() > src3.code()) {
    117         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    118       } else {
    119         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    120         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
    121       }
    122     } else {
    123       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    124       Push(src2, src3, cond);
    125     }
    126   }
    127 
    128   // Push four registers.  Pushes leftmost register first (to highest address).
    129   void Push(Register src1, Register src2, Register src3, Register src4,
    130             Condition cond = al) {
    131     if (src1.code() > src2.code()) {
    132       if (src2.code() > src3.code()) {
    133         if (src3.code() > src4.code()) {
    134           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    135               cond);
    136         } else {
    137           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    138           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
    139         }
    140       } else {
    141         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    142         Push(src3, src4, cond);
    143       }
    144     } else {
    145       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    146       Push(src2, src3, src4, cond);
    147     }
    148   }
    149 
    150   // Push five registers.  Pushes leftmost register first (to highest address).
    151   void Push(Register src1, Register src2, Register src3, Register src4,
    152             Register src5, Condition cond = al) {
    153     if (src1.code() > src2.code()) {
    154       if (src2.code() > src3.code()) {
    155         if (src3.code() > src4.code()) {
    156           if (src4.code() > src5.code()) {
    157             stm(db_w, sp,
    158                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
    159                 cond);
    160           } else {
    161             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    162                 cond);
    163             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
    164           }
    165         } else {
    166           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    167           Push(src4, src5, cond);
    168         }
    169       } else {
    170         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    171         Push(src3, src4, src5, cond);
    172       }
    173     } else {
    174       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    175       Push(src2, src3, src4, src5, cond);
    176     }
    177   }
    178 
    179   void Pop(Register dst) { pop(dst); }
    180 
    181   // Pop two registers. Pops rightmost register first (from lower address).
    182   void Pop(Register src1, Register src2, Condition cond = al) {
    183     DCHECK(src1 != src2);
    184     if (src1.code() > src2.code()) {
    185       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    186     } else {
    187       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
    188       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    189     }
    190   }
    191 
    192   // Pop three registers.  Pops rightmost register first (from lower address).
    193   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    194     DCHECK(!AreAliased(src1, src2, src3));
    195     if (src1.code() > src2.code()) {
    196       if (src2.code() > src3.code()) {
    197         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    198       } else {
    199         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
    200         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    201       }
    202     } else {
    203       Pop(src2, src3, cond);
    204       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    205     }
    206   }
    207 
    208   // Pop four registers.  Pops rightmost register first (from lower address).
    209   void Pop(Register src1, Register src2, Register src3, Register src4,
    210            Condition cond = al) {
    211     DCHECK(!AreAliased(src1, src2, src3, src4));
    212     if (src1.code() > src2.code()) {
    213       if (src2.code() > src3.code()) {
    214         if (src3.code() > src4.code()) {
    215           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    216               cond);
    217         } else {
    218           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
    219           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    220         }
    221       } else {
    222         Pop(src3, src4, cond);
    223         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    224       }
    225     } else {
    226       Pop(src2, src3, src4, cond);
    227       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    228     }
    229   }
    230 
    231   // Before calling a C-function from generated code, align arguments on stack.
    232   // After aligning the frame, non-register arguments must be stored in
    233   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
    234   // are word sized. If double arguments are used, this function assumes that
    235   // all double arguments are stored before core registers; otherwise the
    236   // correct alignment of the double values is not guaranteed.
    237   // Some compilers/platforms require the stack to be aligned when calling
    238   // C++ code.
    239   // Needs a scratch register to do some arithmetic. This register will be
    240   // trashed.
    241   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers = 0,
    242                             Register scratch = no_reg);
    243 
    244   // Removes current frame and its arguments from the stack preserving
    245   // the arguments and a return address pushed to the stack for the next call.
    246   // Both |callee_args_count| and |caller_args_count_reg| do not include
    247   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    248   // is trashed.
    249   void PrepareForTailCall(const ParameterCount& callee_args_count,
    250                           Register caller_args_count_reg, Register scratch0,
    251                           Register scratch1);
    252 
    253   // There are two ways of passing double arguments on ARM, depending on
    254   // whether soft or hard floating point ABI is used. These functions
    255   // abstract parameter passing for the three different ways we call
    256   // C functions from generated code.
    257   void MovToFloatParameter(DwVfpRegister src);
    258   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
    259   void MovToFloatResult(DwVfpRegister src);
    260 
    261   // Calls a C function and cleans up the space for arguments allocated
    262   // by PrepareCallCFunction. The called function is not allowed to trigger a
    263   // garbage collection, since that might move the code and invalidate the
    264   // return address (unless this is somehow accounted for by the called
    265   // function).
    266   void CallCFunction(ExternalReference function, int num_arguments);
    267   void CallCFunction(Register function, int num_arguments);
    268   void CallCFunction(ExternalReference function, int num_reg_arguments,
    269                      int num_double_arguments);
    270   void CallCFunction(Register function, int num_reg_arguments,
    271                      int num_double_arguments);
    272 
    273   void MovFromFloatParameter(DwVfpRegister dst);
    274   void MovFromFloatResult(DwVfpRegister dst);
    275 
    276   // Calls Abort(msg) if the condition cond is not satisfied.
    277   // Use --debug_code to enable.
    278   void Assert(Condition cond, AbortReason reason);
    279 
    280   // Like Assert(), but always enabled.
    281   void Check(Condition cond, AbortReason reason);
    282 
    283   // Print a message to stdout and abort execution.
    284   void Abort(AbortReason msg);
    285 
    286   inline bool AllowThisStubCall(CodeStub* stub);
    287 
    288   void LslPair(Register dst_low, Register dst_high, Register src_low,
    289                Register src_high, Register shift);
    290   void LslPair(Register dst_low, Register dst_high, Register src_low,
    291                Register src_high, uint32_t shift);
    292   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    293                Register src_high, Register shift);
    294   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    295                Register src_high, uint32_t shift);
    296   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    297                Register src_high, Register shift);
    298   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    299                Register src_high, uint32_t shift);
    300 
    301   void LoadFromConstantsTable(Register destination,
    302                               int constant_index) override;
    303   void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
    304   void LoadRootRelative(Register destination, int32_t offset) override;
    305 
    306   static constexpr int kCallStubSize = 2 * kInstrSize;
    307   void CallStubDelayed(CodeStub* stub);
    308 
    309   // Call a runtime routine. This expects {centry} to contain a fitting CEntry
    310   // builtin for the target runtime function and uses an indirect call.
    311   void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
    312 
    313   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    314   void Call(Register target, Condition cond = al);
    315   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al,
    316             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
    317             bool check_constant_pool = true);
    318   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    319             Condition cond = al,
    320             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS,
    321             bool check_constant_pool = true);
    322   void Call(Label* target);
    323 
    324   // This should only be used when assembling a deoptimizer call because of
    325   // the CheckConstPool invocation, which is only needed for deoptimization.
    326   void CallForDeoptimization(Address target, int deopt_id,
    327                              RelocInfo::Mode rmode) {
    328     USE(deopt_id);
    329     Call(target, rmode);
    330     CheckConstPool(false, false);
    331   }
    332 
    333   // Emit code to discard a non-negative number of pointer-sized elements
    334   // from the stack, clobbering only the sp register.
    335   void Drop(int count, Condition cond = al);
    336   void Drop(Register count, Condition cond = al);
    337 
    338   void Ret(Condition cond = al);
    339   void Ret(int drop, Condition cond = al);
    340 
    341   // Compare single values and move the result to the normal condition flags.
    342   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
    343                              const Condition cond = al);
    344   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
    345                              const Condition cond = al);
    346 
    347   // Compare double values and move the result to the normal condition flags.
    348   void VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2,
    349                              const Condition cond = al);
    350   void VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2,
    351                              const Condition cond = al);
    352 
    353   // If the value is a NaN, canonicalize the value else, do nothing.
    354   void VFPCanonicalizeNaN(const DwVfpRegister dst, const DwVfpRegister src,
    355                           const Condition cond = al);
    356   void VFPCanonicalizeNaN(const DwVfpRegister value,
    357                           const Condition cond = al) {
    358     VFPCanonicalizeNaN(value, value, cond);
    359   }
    360 
    361   void VmovHigh(Register dst, DwVfpRegister src);
    362   void VmovHigh(DwVfpRegister dst, Register src);
    363   void VmovLow(Register dst, DwVfpRegister src);
    364   void VmovLow(DwVfpRegister dst, Register src);
    365 
    366   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
    367                      Label* condition_met);
    368 
    369   // Check whether d16-d31 are available on the CPU. The result is given by the
    370   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
    371   void CheckFor32DRegs(Register scratch);
    372 
    373   void SaveRegisters(RegList registers);
    374   void RestoreRegisters(RegList registers);
    375 
    376   void CallRecordWriteStub(Register object, Register address,
    377                            RememberedSetAction remembered_set_action,
    378                            SaveFPRegsMode fp_mode);
    379 
    380   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
    381   // values to location, saving [d0..(d15|d31)].
    382   void SaveFPRegs(Register location, Register scratch);
    383 
    384   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
    385   // values to location, restoring [d0..(d15|d31)].
    386   void RestoreFPRegs(Register location, Register scratch);
    387 
    388   // Calculate how much stack space (in bytes) are required to store caller
    389   // registers excluding those specified in the arguments.
    390   int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
    391                                       Register exclusion1 = no_reg,
    392                                       Register exclusion2 = no_reg,
    393                                       Register exclusion3 = no_reg) const;
    394 
    395   // Push caller saved registers on the stack, and return the number of bytes
    396   // stack pointer is adjusted.
    397   int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
    398                       Register exclusion2 = no_reg,
    399                       Register exclusion3 = no_reg);
    400   // Restore caller saved registers from the stack, and return the number of
    401   // bytes stack pointer is adjusted.
    402   int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
    403                      Register exclusion2 = no_reg,
    404                      Register exclusion3 = no_reg);
    405   void Jump(Register target, Condition cond = al);
    406   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
    407   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    408 
    409   // Perform a floating-point min or max operation with the
    410   // (IEEE-754-compatible) semantics of ARM64's fmin/fmax. Some cases, typically
    411   // NaNs or +/-0.0, are expected to be rare and are handled in out-of-line
    412   // code. The specific behaviour depends on supported instructions.
    413   //
    414   // These functions assume (and assert) that left!=right. It is permitted
    415   // for the result to alias either input register.
    416   void FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
    417                 Label* out_of_line);
    418   void FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
    419                 Label* out_of_line);
    420   void FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
    421                 Label* out_of_line);
    422   void FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
    423                 Label* out_of_line);
    424 
    425   // Generate out-of-line cases for the macros above.
    426   void FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
    427                          SwVfpRegister right);
    428   void FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
    429                          SwVfpRegister right);
    430   void FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
    431                          DwVfpRegister right);
    432   void FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
    433                          DwVfpRegister right);
    434 
    435   void ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane);
    436   void ExtractLane(Register dst, DwVfpRegister src, NeonDataType dt, int lane);
    437   void ExtractLane(SwVfpRegister dst, QwNeonRegister src, int lane);
    438   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane,
    439                    NeonDataType dt, int lane);
    440   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
    441                    SwVfpRegister src_lane, int lane);
    442 
    443   // Register move. May do nothing if the registers are identical.
    444   void Move(Register dst, Smi* smi);
    445   void Move(Register dst, Handle<HeapObject> value);
    446   void Move(Register dst, ExternalReference reference);
    447   void Move(Register dst, Register src, Condition cond = al);
    448   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
    449             Condition cond = al) {
    450     if (!src.IsRegister() || src.rm() != dst || sbit != LeaveCC) {
    451       mov(dst, src, sbit, cond);
    452     }
    453   }
    454   void Move(SwVfpRegister dst, SwVfpRegister src, Condition cond = al);
    455   void Move(DwVfpRegister dst, DwVfpRegister src, Condition cond = al);
    456   void Move(QwNeonRegister dst, QwNeonRegister src);
    457 
    458   // Simulate s-register moves for imaginary s32 - s63 registers.
    459   void VmovExtended(Register dst, int src_code);
    460   void VmovExtended(int dst_code, Register src);
    461   // Move between s-registers and imaginary s-registers.
    462   void VmovExtended(int dst_code, int src_code);
    463   void VmovExtended(int dst_code, const MemOperand& src);
    464   void VmovExtended(const MemOperand& dst, int src_code);
    465 
    466   // Register swap. Note that the register operands should be distinct.
    467   void Swap(Register srcdst0, Register srcdst1);
    468   void Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1);
    469   void Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1);
    470 
    471   // Get the actual activation frame alignment for target environment.
    472   static int ActivationFrameAlignment();
    473 
    474   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
    475 
    476   void SmiUntag(Register reg, SBit s = LeaveCC) {
    477     mov(reg, Operand::SmiUntag(reg), s);
    478   }
    479   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
    480     mov(dst, Operand::SmiUntag(src), s);
    481   }
    482 
    483   // Load an object from the root table.
    484   void LoadRoot(Register destination, Heap::RootListIndex index) override {
    485     LoadRoot(destination, index, al);
    486   }
    487   void LoadRoot(Register destination, Heap::RootListIndex index,
    488                 Condition cond);
    489 
    490   // Jump if the register contains a smi.
    491   void JumpIfSmi(Register value, Label* smi_label);
    492 
    493   void JumpIfEqual(Register x, int32_t y, Label* dest);
    494   void JumpIfLessThan(Register x, int32_t y, Label* dest);
    495 
    496   // Performs a truncating conversion of a floating point number as used by
    497   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    498   // succeeds, otherwise falls through if result is saturated. On return
    499   // 'result' either holds answer, or is clobbered on fall through.
    500   //
    501   // Only public for the test code in test-code-stubs-arm.cc.
    502   void TryInlineTruncateDoubleToI(Register result, DwVfpRegister input,
    503                                   Label* done);
    504 
    505   // Performs a truncating conversion of a floating point number as used by
    506   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    507   // Exits with 'result' holding the answer.
    508   void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
    509                          DwVfpRegister double_input, StubCallMode stub_mode);
    510 
    511   // EABI variant for double arguments in use.
    512   bool use_eabi_hardfloat() {
    513 #ifdef __arm__
    514     return base::OS::ArmUsingHardFloat();
    515 #elif USE_EABI_HARDFLOAT
    516     return true;
    517 #else
    518     return false;
    519 #endif
    520   }
    521 
    522   // Compute the start of the generated instruction stream from the current PC.
    523   // This is an alternative to embedding the {CodeObject} handle as a reference.
    524   void ComputeCodeStartAddress(Register dst);
    525 
    526   void ResetSpeculationPoisonRegister();
    527 
    528  private:
    529   // Compare single values and then load the fpscr flags to a register.
    530   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
    531                               const SwVfpRegister src2,
    532                               const Register fpscr_flags,
    533                               const Condition cond = al);
    534   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
    535                               const Register fpscr_flags,
    536                               const Condition cond = al);
    537 
    538   // Compare double values and then load the fpscr flags to a register.
    539   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    540                               const DwVfpRegister src2,
    541                               const Register fpscr_flags,
    542                               const Condition cond = al);
    543   void VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2,
    544                               const Register fpscr_flags,
    545                               const Condition cond = al);
    546 
    547   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
    548 
    549   // Implementation helpers for FloatMin and FloatMax.
    550   template <typename T>
    551   void FloatMaxHelper(T result, T left, T right, Label* out_of_line);
    552   template <typename T>
    553   void FloatMinHelper(T result, T left, T right, Label* out_of_line);
    554   template <typename T>
    555   void FloatMaxOutOfLineHelper(T result, T left, T right);
    556   template <typename T>
    557   void FloatMinOutOfLineHelper(T result, T left, T right);
    558 
    559   int CalculateStackPassedWords(int num_reg_arguments,
    560                                 int num_double_arguments);
    561 
    562   void CallCFunctionHelper(Register function, int num_reg_arguments,
    563                            int num_double_arguments);
    564 };
    565 
    566 // MacroAssembler implements a collection of frequently used macros.
    567 class MacroAssembler : public TurboAssembler {
    568  public:
    569   MacroAssembler(Isolate* isolate, void* buffer, int size,
    570                  CodeObjectRequired create_code_object)
    571       : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
    572                        size, create_code_object) {}
    573   MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
    574                  void* buffer, int size, CodeObjectRequired create_code_object);
    575 
    576   void Mls(Register dst, Register src1, Register src2, Register srcA,
    577            Condition cond = al);
    578   void And(Register dst, Register src1, const Operand& src2,
    579            Condition cond = al);
    580   void Ubfx(Register dst, Register src, int lsb, int width,
    581             Condition cond = al);
    582   void Sbfx(Register dst, Register src, int lsb, int width,
    583             Condition cond = al);
    584 
    585   void Load(Register dst, const MemOperand& src, Representation r);
    586   void Store(Register src, const MemOperand& dst, Representation r);
    587 
    588   // ---------------------------------------------------------------------------
    589   // GC Support
    590 
    591   // Check if object is in new space.  Jumps if the object is not in new space.
    592   // The register scratch can be object itself, but scratch will be clobbered.
    593   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    594     InNewSpace(object, scratch, eq, branch);
    595   }
    596 
    597   // Check if object is in new space.  Jumps if the object is in new space.
    598   // The register scratch can be object itself, but it will be clobbered.
    599   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    600     InNewSpace(object, scratch, ne, branch);
    601   }
    602 
    603   // Check if an object has a given incremental marking color.
    604   void HasColor(Register object, Register scratch0, Register scratch1,
    605                 Label* has_color, int first_bit, int second_bit);
    606 
    607   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
    608                    Label* on_black);
    609 
    610   // Checks the color of an object.  If the object is white we jump to the
    611   // incremental marker.
    612   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    613                    Register scratch3, Label* value_is_white);
    614 
    615   // Notify the garbage collector that we wrote a pointer into an object.
    616   // |object| is the object being stored into, |value| is the object being
    617   // stored.  value and scratch registers are clobbered by the operation.
    618   // The offset is the offset from the start of the object, not the offset from
    619   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    620   void RecordWriteField(
    621       Register object, int offset, Register value, Register scratch,
    622       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    623       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    624       SmiCheck smi_check = INLINE_SMI_CHECK);
    625 
    626   // For a given |object| notify the garbage collector that the slot |address|
    627   // has been written.  |value| is the object being stored. The value and
    628   // address registers are clobbered by the operation.
    629   void RecordWrite(
    630       Register object, Register address, Register value,
    631       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    632       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    633       SmiCheck smi_check = INLINE_SMI_CHECK);
    634 
    635   // Push and pop the registers that can hold pointers, as defined by the
    636   // RegList constant kSafepointSavedRegisters.
    637   void PushSafepointRegisters();
    638   void PopSafepointRegisters();
    639 
    640   // Enter exit frame.
    641   // stack_space - extra stack space, used for alignment before call to C.
    642   void EnterExitFrame(bool save_doubles, int stack_space = 0,
    643                       StackFrame::Type frame_type = StackFrame::EXIT);
    644 
    645   // Leave the current exit frame. Expects the return value in r0.
    646   // Expect the number of values, pushed prior to the exit frame, to
    647   // remove in a register (or no_reg, if there is nothing to remove).
    648   void LeaveExitFrame(bool save_doubles, Register argument_count,
    649                       bool argument_count_is_length = false);
    650 
    651   // Load the global proxy from the current context.
    652   void LoadGlobalProxy(Register dst) {
    653     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    654   }
    655 
    656   void LoadNativeContextSlot(int index, Register dst);
    657 
    658   // ---------------------------------------------------------------------------
    659   // JavaScript invokes
    660 
    661   // Invoke the JavaScript function code by either calling or jumping.
    662   void InvokeFunctionCode(Register function, Register new_target,
    663                           const ParameterCount& expected,
    664                           const ParameterCount& actual, InvokeFlag flag);
    665 
    666   // On function call, call into the debugger if necessary.
    667   void CheckDebugHook(Register fun, Register new_target,
    668                       const ParameterCount& expected,
    669                       const ParameterCount& actual);
    670 
    671   // Invoke the JavaScript function in the given register. Changes the
    672   // current context to the context in the function before invoking.
    673   void InvokeFunction(Register function, Register new_target,
    674                       const ParameterCount& actual, InvokeFlag flag);
    675 
    676   void InvokeFunction(Register function, const ParameterCount& expected,
    677                       const ParameterCount& actual, InvokeFlag flag);
    678 
    679   // Frame restart support
    680   void MaybeDropFrames();
    681 
    682   // Exception handling
    683 
    684   // Push a new stack handler and link into stack handler chain.
    685   void PushStackHandler();
    686 
    687   // Unlink the stack handler on top of the stack from the stack handler chain.
    688   // Must preserve the result register.
    689   void PopStackHandler();
    690 
    691   // ---------------------------------------------------------------------------
    692   // Support functions.
    693 
    694   // Compare object type for heap object.  heap_object contains a non-Smi
    695   // whose object type should be compared with the given type.  This both
    696   // sets the flags and leaves the object type in the type_reg register.
    697   // It leaves the map in the map register (unless the type_reg and map register
    698   // are the same register).  It leaves the heap object in the heap_object
    699   // register unless the heap_object register is the same register as one of the
    700   // other registers.
    701   // Type_reg can be no_reg. In that case a scratch register is used.
    702   void CompareObjectType(Register heap_object,
    703                          Register map,
    704                          Register type_reg,
    705                          InstanceType type);
    706 
    707   // Compare instance type in a map.  map contains a valid map object whose
    708   // object type should be compared with the given type.  This both
    709   // sets the flags and leaves the object type in the type_reg register.
    710   void CompareInstanceType(Register map,
    711                            Register type_reg,
    712                            InstanceType type);
    713 
    714   // Compare the object in a register to a value from the root list.
    715   // Acquires a scratch register.
    716   void CompareRoot(Register obj, Heap::RootListIndex index);
    717   void PushRoot(Heap::RootListIndex index) {
    718     UseScratchRegisterScope temps(this);
    719     Register scratch = temps.Acquire();
    720     LoadRoot(scratch, index);
    721     Push(scratch);
    722   }
    723 
    724   // Compare the object in a register to a value and jump if they are equal.
    725   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    726     CompareRoot(with, index);
    727     b(eq, if_equal);
    728   }
    729 
    730   // Compare the object in a register to a value and jump if they are not equal.
    731   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    732                      Label* if_not_equal) {
    733     CompareRoot(with, index);
    734     b(ne, if_not_equal);
    735   }
    736 
    737   // Try to convert a double to a signed 32-bit integer.
    738   // Z flag set to one and result assigned if the conversion is exact.
    739   void TryDoubleToInt32Exact(Register result,
    740                              DwVfpRegister double_input,
    741                              LowDwVfpRegister double_scratch);
    742 
    743   // ---------------------------------------------------------------------------
    744   // Runtime calls
    745 
    746   // Call a code stub.
    747   void CallStub(CodeStub* stub,
    748                 Condition cond = al);
    749 
    750   // Call a code stub.
    751   void TailCallStub(CodeStub* stub, Condition cond = al);
    752 
    753   // Call a runtime routine.
    754   void CallRuntime(const Runtime::Function* f,
    755                    int num_arguments,
    756                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
    757 
    758   // Convenience function: Same as above, but takes the fid instead.
    759   void CallRuntime(Runtime::FunctionId fid,
    760                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    761     const Runtime::Function* function = Runtime::FunctionForId(fid);
    762     CallRuntime(function, function->nargs, save_doubles);
    763   }
    764 
    765   // Convenience function: Same as above, but takes the fid instead.
    766   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
    767                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    768     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
    769   }
    770 
    771   // Convenience function: tail call a runtime routine (jump).
    772   void TailCallRuntime(Runtime::FunctionId fid);
    773 
    774   // Jump to a runtime routine.
    775   void JumpToExternalReference(const ExternalReference& builtin,
    776                                bool builtin_exit_frame = false);
    777 
    778   // Generates a trampoline to jump to the off-heap instruction stream.
    779   void JumpToInstructionStream(Address entry);
    780 
    781   // ---------------------------------------------------------------------------
    782   // In-place weak references.
    783   void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
    784 
    785   // ---------------------------------------------------------------------------
    786   // StatsCounter support
    787 
    788   void IncrementCounter(StatsCounter* counter, int value,
    789                         Register scratch1, Register scratch2);
    790   void DecrementCounter(StatsCounter* counter, int value,
    791                         Register scratch1, Register scratch2);
    792 
    793   // ---------------------------------------------------------------------------
    794   // Smi utilities
    795 
    796   void SmiTag(Register reg, SBit s = LeaveCC);
    797   void SmiTag(Register dst, Register src, SBit s = LeaveCC);
    798 
    799   // Untag the source value into destination and jump if source is a smi.
    800   // Souce and destination can be the same register.
    801   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
    802 
    803   // Test if the register contains a smi (Z == 0 (eq) if true).
    804   void SmiTst(Register value);
    805   // Jump if either of the registers contain a non-smi.
    806   void JumpIfNotSmi(Register value, Label* not_smi_label);
    807   // Jump if either of the registers contain a smi.
    808   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
    809 
    810   // Abort execution if argument is a smi, enabled via --debug-code.
    811   void AssertNotSmi(Register object);
    812   void AssertSmi(Register object);
    813 
    814   // Abort execution if argument is not a Constructor, enabled via --debug-code.
    815   void AssertConstructor(Register object);
    816 
    817   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
    818   void AssertFunction(Register object);
    819 
    820   // Abort execution if argument is not a JSBoundFunction,
    821   // enabled via --debug-code.
    822   void AssertBoundFunction(Register object);
    823 
    824   // Abort execution if argument is not a JSGeneratorObject (or subclass),
    825   // enabled via --debug-code.
    826   void AssertGeneratorObject(Register object);
    827 
    828   // Abort execution if argument is not undefined or an AllocationSite, enabled
    829   // via --debug-code.
    830   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
    831 
    832   template<typename Field>
    833   void DecodeField(Register dst, Register src) {
    834     Ubfx(dst, src, Field::kShift, Field::kSize);
    835   }
    836 
    837   template<typename Field>
    838   void DecodeField(Register reg) {
    839     DecodeField<Field>(reg, reg);
    840   }
    841 
    842  private:
    843   // Helper functions for generating invokes.
    844   void InvokePrologue(const ParameterCount& expected,
    845                       const ParameterCount& actual, Label* done,
    846                       bool* definitely_mismatches, InvokeFlag flag);
    847 
    848   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
    849   void InNewSpace(Register object,
    850                   Register scratch,
    851                   Condition cond,  // eq for new space, ne otherwise.
    852                   Label* branch);
    853 
    854   // Compute memory operands for safepoint stack slots.
    855   static int SafepointRegisterStackIndex(int reg_code);
    856 
    857   // Needs access to SafepointRegisterStackIndex for compiled frame
    858   // traversal.
    859   friend class StandardFrame;
    860 };
    861 
    862 // -----------------------------------------------------------------------------
    863 // Static helper functions.
    864 
    865 inline MemOperand ContextMemOperand(Register context, int index = 0) {
    866   return MemOperand(context, Context::SlotOffset(index));
    867 }
    868 
    869 
    870 inline MemOperand NativeContextMemOperand() {
    871   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
    872 }
    873 
    874 #define ACCESS_MASM(masm) masm->
    875 
    876 }  // namespace internal
    877 }  // namespace v8
    878 
    879 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
    880