1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <limits.h> // For LONG_MIN, LONG_MAX. 6 7 #if V8_TARGET_ARCH_ARM 8 9 #include "src/assembler-inl.h" 10 #include "src/base/bits.h" 11 #include "src/base/division-by-constant.h" 12 #include "src/base/utils/random-number-generator.h" 13 #include "src/bootstrapper.h" 14 #include "src/callable.h" 15 #include "src/code-factory.h" 16 #include "src/code-stubs.h" 17 #include "src/counters.h" 18 #include "src/debug/debug.h" 19 #include "src/double.h" 20 #include "src/external-reference-table.h" 21 #include "src/frames-inl.h" 22 #include "src/instruction-stream.h" 23 #include "src/objects-inl.h" 24 #include "src/register-configuration.h" 25 #include "src/runtime/runtime.h" 26 #include "src/snapshot/snapshot.h" 27 #include "src/wasm/wasm-code-manager.h" 28 29 #include "src/arm/macro-assembler-arm.h" 30 31 namespace v8 { 32 namespace internal { 33 34 MacroAssembler::MacroAssembler(Isolate* isolate, 35 const AssemblerOptions& options, void* buffer, 36 int size, CodeObjectRequired create_code_object) 37 : TurboAssembler(isolate, options, buffer, size, create_code_object) { 38 if (create_code_object == CodeObjectRequired::kYes) { 39 // Unlike TurboAssembler, which can be used off the main thread and may not 40 // allocate, macro assembler creates its own copy of the self-reference 41 // marker in order to disambiguate between self-references during nested 42 // code generation (e.g.: codegen of the current object triggers stub 43 // compilation through CodeStub::GetCode()). 44 code_object_ = Handle<HeapObject>::New( 45 *isolate->factory()->NewSelfReferenceMarker(), isolate); 46 } 47 } 48 49 int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, 50 Register exclusion1, 51 Register exclusion2, 52 Register exclusion3) const { 53 int bytes = 0; 54 RegList exclusions = 0; 55 if (exclusion1 != no_reg) { 56 exclusions |= exclusion1.bit(); 57 if (exclusion2 != no_reg) { 58 exclusions |= exclusion2.bit(); 59 if (exclusion3 != no_reg) { 60 exclusions |= exclusion3.bit(); 61 } 62 } 63 } 64 65 RegList list = (kCallerSaved | lr.bit()) & ~exclusions; 66 67 bytes += NumRegs(list) * kPointerSize; 68 69 if (fp_mode == kSaveFPRegs) { 70 bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; 71 } 72 73 return bytes; 74 } 75 76 int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, 77 Register exclusion2, Register exclusion3) { 78 int bytes = 0; 79 RegList exclusions = 0; 80 if (exclusion1 != no_reg) { 81 exclusions |= exclusion1.bit(); 82 if (exclusion2 != no_reg) { 83 exclusions |= exclusion2.bit(); 84 if (exclusion3 != no_reg) { 85 exclusions |= exclusion3.bit(); 86 } 87 } 88 } 89 90 RegList list = (kCallerSaved | lr.bit()) & ~exclusions; 91 stm(db_w, sp, list); 92 93 bytes += NumRegs(list) * kPointerSize; 94 95 if (fp_mode == kSaveFPRegs) { 96 SaveFPRegs(sp, lr); 97 bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; 98 } 99 100 return bytes; 101 } 102 103 int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, 104 Register exclusion2, Register exclusion3) { 105 int bytes = 0; 106 if (fp_mode == kSaveFPRegs) { 107 RestoreFPRegs(sp, lr); 108 bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; 109 } 110 111 RegList exclusions = 0; 112 if (exclusion1 != no_reg) { 113 exclusions |= exclusion1.bit(); 114 if (exclusion2 != no_reg) { 115 exclusions |= exclusion2.bit(); 116 if (exclusion3 != no_reg) { 117 exclusions |= exclusion3.bit(); 118 } 119 } 120 } 121 122 RegList list = (kCallerSaved | lr.bit()) & ~exclusions; 123 ldm(ia_w, sp, list); 124 125 bytes += NumRegs(list) * kPointerSize; 126 127 return bytes; 128 } 129 130 void TurboAssembler::LoadFromConstantsTable(Register destination, 131 int constant_index) { 132 DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant( 133 Heap::kBuiltinsConstantsTableRootIndex)); 134 135 // The ldr call below could end up clobbering ip when the offset does not fit 136 // into 12 bits (and thus needs to be loaded from the constant pool). In that 137 // case, we need to be extra-careful and temporarily use another register as 138 // the target. 139 140 const uint32_t offset = 141 FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag; 142 const bool could_clobber_ip = !is_uint12(offset); 143 144 Register reg = destination; 145 if (could_clobber_ip) { 146 Push(r7); 147 reg = r7; 148 } 149 150 LoadRoot(reg, Heap::kBuiltinsConstantsTableRootIndex); 151 ldr(destination, MemOperand(reg, offset)); 152 153 if (could_clobber_ip) { 154 DCHECK_EQ(reg, r7); 155 Pop(r7); 156 } 157 } 158 159 void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { 160 ldr(destination, MemOperand(kRootRegister, offset)); 161 } 162 163 void TurboAssembler::LoadRootRegisterOffset(Register destination, 164 intptr_t offset) { 165 if (offset == 0) { 166 Move(destination, kRootRegister); 167 } else { 168 add(destination, kRootRegister, Operand(offset)); 169 } 170 } 171 172 void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); } 173 174 void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, 175 Condition cond) { 176 mov(pc, Operand(target, rmode), LeaveCC, cond); 177 } 178 179 void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, 180 Condition cond) { 181 DCHECK(!RelocInfo::IsCodeTarget(rmode)); 182 Jump(static_cast<intptr_t>(target), rmode, cond); 183 } 184 185 void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, 186 Condition cond) { 187 DCHECK(RelocInfo::IsCodeTarget(rmode)); 188 if (FLAG_embedded_builtins) { 189 int builtin_index = Builtins::kNoBuiltinId; 190 bool target_is_isolate_independent_builtin = 191 isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && 192 Builtins::IsIsolateIndependent(builtin_index); 193 if (target_is_isolate_independent_builtin && 194 options().use_pc_relative_calls_and_jumps) { 195 int32_t code_target_index = AddCodeTarget(code); 196 b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); 197 return; 198 } else if (root_array_available_ && options().isolate_independent_code) { 199 UseScratchRegisterScope temps(this); 200 Register scratch = temps.Acquire(); 201 IndirectLoadConstant(scratch, code); 202 add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); 203 Jump(scratch, cond); 204 return; 205 } else if (target_is_isolate_independent_builtin && 206 options().inline_offheap_trampolines) { 207 // Inline the trampoline. 208 RecordCommentForOffHeapTrampoline(builtin_index); 209 EmbeddedData d = EmbeddedData::FromBlob(); 210 Address entry = d.InstructionStartOfBuiltin(builtin_index); 211 // Use ip directly instead of using UseScratchRegisterScope, as we do not 212 // preserve scratch registers across calls. 213 mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); 214 Jump(ip, cond); 215 return; 216 } 217 } 218 // 'code' is always generated ARM code, never THUMB code 219 Jump(static_cast<intptr_t>(code.address()), rmode, cond); 220 } 221 222 void TurboAssembler::Call(Register target, Condition cond) { 223 // Block constant pool for the call instruction sequence. 224 BlockConstPoolScope block_const_pool(this); 225 blx(target, cond); 226 } 227 228 void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, 229 TargetAddressStorageMode mode, 230 bool check_constant_pool) { 231 // Check if we have to emit the constant pool before we block it. 232 if (check_constant_pool) MaybeCheckConstPool(); 233 // Block constant pool for the call instruction sequence. 234 BlockConstPoolScope block_const_pool(this); 235 236 bool old_predictable_code_size = predictable_code_size(); 237 if (mode == NEVER_INLINE_TARGET_ADDRESS) { 238 set_predictable_code_size(true); 239 } 240 241 // Use ip directly instead of using UseScratchRegisterScope, as we do not 242 // preserve scratch registers across calls. 243 244 // Call sequence on V7 or later may be : 245 // movw ip, #... @ call address low 16 246 // movt ip, #... @ call address high 16 247 // blx ip 248 // @ return address 249 // Or for pre-V7 or values that may be back-patched 250 // to avoid ICache flushes: 251 // ldr ip, [pc, #...] @ call address 252 // blx ip 253 // @ return address 254 255 mov(ip, Operand(target, rmode)); 256 blx(ip, cond); 257 258 if (mode == NEVER_INLINE_TARGET_ADDRESS) { 259 set_predictable_code_size(old_predictable_code_size); 260 } 261 } 262 263 void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, 264 Condition cond, TargetAddressStorageMode mode, 265 bool check_constant_pool) { 266 DCHECK(RelocInfo::IsCodeTarget(rmode)); 267 if (FLAG_embedded_builtins) { 268 int builtin_index = Builtins::kNoBuiltinId; 269 bool target_is_isolate_independent_builtin = 270 isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && 271 Builtins::IsIsolateIndependent(builtin_index); 272 if (target_is_isolate_independent_builtin && 273 options().use_pc_relative_calls_and_jumps) { 274 int32_t code_target_index = AddCodeTarget(code); 275 bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); 276 return; 277 } else if (root_array_available_ && options().isolate_independent_code) { 278 // Use ip directly instead of using UseScratchRegisterScope, as we do not 279 // preserve scratch registers across calls. 280 IndirectLoadConstant(ip, code); 281 add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); 282 Call(ip, cond); 283 return; 284 } else if (target_is_isolate_independent_builtin && 285 options().inline_offheap_trampolines) { 286 // Inline the trampoline. 287 RecordCommentForOffHeapTrampoline(builtin_index); 288 EmbeddedData d = EmbeddedData::FromBlob(); 289 Address entry = d.InstructionStartOfBuiltin(builtin_index); 290 // Use ip directly instead of using UseScratchRegisterScope, as we do not 291 // preserve scratch registers across calls. 292 mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); 293 Call(ip, cond); 294 return; 295 } 296 } 297 // 'code' is always generated ARM code, never THUMB code 298 Call(code.address(), rmode, cond, mode); 299 } 300 301 void TurboAssembler::Ret(Condition cond) { bx(lr, cond); } 302 303 void TurboAssembler::Drop(int count, Condition cond) { 304 if (count > 0) { 305 add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); 306 } 307 } 308 309 void TurboAssembler::Drop(Register count, Condition cond) { 310 add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond); 311 } 312 313 void TurboAssembler::Ret(int drop, Condition cond) { 314 Drop(drop, cond); 315 Ret(cond); 316 } 317 318 void TurboAssembler::Call(Label* target) { bl(target); } 319 320 void TurboAssembler::Push(Handle<HeapObject> handle) { 321 UseScratchRegisterScope temps(this); 322 Register scratch = temps.Acquire(); 323 mov(scratch, Operand(handle)); 324 push(scratch); 325 } 326 327 void TurboAssembler::Push(Smi* smi) { 328 UseScratchRegisterScope temps(this); 329 Register scratch = temps.Acquire(); 330 mov(scratch, Operand(smi)); 331 push(scratch); 332 } 333 334 void TurboAssembler::Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); } 335 336 void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { 337 if (FLAG_embedded_builtins) { 338 if (root_array_available_ && options().isolate_independent_code) { 339 IndirectLoadConstant(dst, value); 340 return; 341 } 342 } 343 mov(dst, Operand(value)); 344 } 345 346 void TurboAssembler::Move(Register dst, ExternalReference reference) { 347 if (FLAG_embedded_builtins) { 348 if (root_array_available_ && options().isolate_independent_code) { 349 IndirectLoadExternalReference(dst, reference); 350 return; 351 } 352 } 353 mov(dst, Operand(reference)); 354 } 355 356 void TurboAssembler::Move(Register dst, Register src, Condition cond) { 357 if (dst != src) { 358 mov(dst, src, LeaveCC, cond); 359 } 360 } 361 362 void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src, 363 Condition cond) { 364 if (dst != src) { 365 vmov(dst, src, cond); 366 } 367 } 368 369 void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src, 370 Condition cond) { 371 if (dst != src) { 372 vmov(dst, src, cond); 373 } 374 } 375 376 void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) { 377 if (dst != src) { 378 vmov(dst, src); 379 } 380 } 381 382 void TurboAssembler::Swap(Register srcdst0, Register srcdst1) { 383 DCHECK(srcdst0 != srcdst1); 384 UseScratchRegisterScope temps(this); 385 Register scratch = temps.Acquire(); 386 mov(scratch, srcdst0); 387 mov(srcdst0, srcdst1); 388 mov(srcdst1, scratch); 389 } 390 391 void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) { 392 DCHECK(srcdst0 != srcdst1); 393 DCHECK(VfpRegisterIsAvailable(srcdst0)); 394 DCHECK(VfpRegisterIsAvailable(srcdst1)); 395 396 if (CpuFeatures::IsSupported(NEON)) { 397 vswp(srcdst0, srcdst1); 398 } else { 399 UseScratchRegisterScope temps(this); 400 DwVfpRegister scratch = temps.AcquireD(); 401 vmov(scratch, srcdst0); 402 vmov(srcdst0, srcdst1); 403 vmov(srcdst1, scratch); 404 } 405 } 406 407 void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) { 408 DCHECK(srcdst0 != srcdst1); 409 vswp(srcdst0, srcdst1); 410 } 411 412 void MacroAssembler::Mls(Register dst, Register src1, Register src2, 413 Register srcA, Condition cond) { 414 if (CpuFeatures::IsSupported(ARMv7)) { 415 CpuFeatureScope scope(this, ARMv7); 416 mls(dst, src1, src2, srcA, cond); 417 } else { 418 UseScratchRegisterScope temps(this); 419 Register scratch = temps.Acquire(); 420 DCHECK(srcA != scratch); 421 mul(scratch, src1, src2, LeaveCC, cond); 422 sub(dst, srcA, scratch, LeaveCC, cond); 423 } 424 } 425 426 427 void MacroAssembler::And(Register dst, Register src1, const Operand& src2, 428 Condition cond) { 429 if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) && 430 src2.immediate() == 0) { 431 mov(dst, Operand::Zero(), LeaveCC, cond); 432 } else if (!(src2.InstructionsRequired(this) == 1) && 433 !src2.MustOutputRelocInfo(this) && 434 CpuFeatures::IsSupported(ARMv7) && 435 base::bits::IsPowerOfTwo(src2.immediate() + 1)) { 436 CpuFeatureScope scope(this, ARMv7); 437 ubfx(dst, src1, 0, 438 WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond); 439 } else { 440 and_(dst, src1, src2, LeaveCC, cond); 441 } 442 } 443 444 445 void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, 446 Condition cond) { 447 DCHECK_LT(lsb, 32); 448 if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { 449 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); 450 and_(dst, src1, Operand(mask), LeaveCC, cond); 451 if (lsb != 0) { 452 mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); 453 } 454 } else { 455 CpuFeatureScope scope(this, ARMv7); 456 ubfx(dst, src1, lsb, width, cond); 457 } 458 } 459 460 461 void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, 462 Condition cond) { 463 DCHECK_LT(lsb, 32); 464 if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { 465 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); 466 and_(dst, src1, Operand(mask), LeaveCC, cond); 467 int shift_up = 32 - lsb - width; 468 int shift_down = lsb + shift_up; 469 if (shift_up != 0) { 470 mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); 471 } 472 if (shift_down != 0) { 473 mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); 474 } 475 } else { 476 CpuFeatureScope scope(this, ARMv7); 477 sbfx(dst, src1, lsb, width, cond); 478 } 479 } 480 481 482 void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width, 483 Condition cond) { 484 DCHECK_LT(lsb, 32); 485 if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { 486 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); 487 bic(dst, src, Operand(mask)); 488 } else { 489 CpuFeatureScope scope(this, ARMv7); 490 Move(dst, src, cond); 491 bfc(dst, lsb, width, cond); 492 } 493 } 494 495 void MacroAssembler::Load(Register dst, 496 const MemOperand& src, 497 Representation r) { 498 DCHECK(!r.IsDouble()); 499 if (r.IsInteger8()) { 500 ldrsb(dst, src); 501 } else if (r.IsUInteger8()) { 502 ldrb(dst, src); 503 } else if (r.IsInteger16()) { 504 ldrsh(dst, src); 505 } else if (r.IsUInteger16()) { 506 ldrh(dst, src); 507 } else { 508 ldr(dst, src); 509 } 510 } 511 512 void MacroAssembler::Store(Register src, 513 const MemOperand& dst, 514 Representation r) { 515 DCHECK(!r.IsDouble()); 516 if (r.IsInteger8() || r.IsUInteger8()) { 517 strb(src, dst); 518 } else if (r.IsInteger16() || r.IsUInteger16()) { 519 strh(src, dst); 520 } else { 521 if (r.IsHeapObject()) { 522 AssertNotSmi(src); 523 } else if (r.IsSmi()) { 524 AssertSmi(src); 525 } 526 str(src, dst); 527 } 528 } 529 530 void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index, 531 Condition cond) { 532 ldr(destination, MemOperand(kRootRegister, RootRegisterOffset(index)), cond); 533 } 534 535 536 void MacroAssembler::RecordWriteField(Register object, int offset, 537 Register value, Register dst, 538 LinkRegisterStatus lr_status, 539 SaveFPRegsMode save_fp, 540 RememberedSetAction remembered_set_action, 541 SmiCheck smi_check) { 542 // First, check if a write barrier is even needed. The tests below 543 // catch stores of Smis. 544 Label done; 545 546 // Skip barrier if writing a smi. 547 if (smi_check == INLINE_SMI_CHECK) { 548 JumpIfSmi(value, &done); 549 } 550 551 // Although the object register is tagged, the offset is relative to the start 552 // of the object, so so offset must be a multiple of kPointerSize. 553 DCHECK(IsAligned(offset, kPointerSize)); 554 555 add(dst, object, Operand(offset - kHeapObjectTag)); 556 if (emit_debug_code()) { 557 Label ok; 558 tst(dst, Operand(kPointerSize - 1)); 559 b(eq, &ok); 560 stop("Unaligned cell in write barrier"); 561 bind(&ok); 562 } 563 564 RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, 565 OMIT_SMI_CHECK); 566 567 bind(&done); 568 569 // Clobber clobbered input registers when running with the debug-code flag 570 // turned on to provoke errors. 571 if (emit_debug_code()) { 572 mov(value, Operand(bit_cast<int32_t>(kZapValue + 4))); 573 mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8))); 574 } 575 } 576 577 void TurboAssembler::SaveRegisters(RegList registers) { 578 DCHECK_GT(NumRegs(registers), 0); 579 RegList regs = 0; 580 for (int i = 0; i < Register::kNumRegisters; ++i) { 581 if ((registers >> i) & 1u) { 582 regs |= Register::from_code(i).bit(); 583 } 584 } 585 586 stm(db_w, sp, regs); 587 } 588 589 void TurboAssembler::RestoreRegisters(RegList registers) { 590 DCHECK_GT(NumRegs(registers), 0); 591 RegList regs = 0; 592 for (int i = 0; i < Register::kNumRegisters; ++i) { 593 if ((registers >> i) & 1u) { 594 regs |= Register::from_code(i).bit(); 595 } 596 } 597 ldm(ia_w, sp, regs); 598 } 599 600 void TurboAssembler::CallRecordWriteStub( 601 Register object, Register address, 602 RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { 603 // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, 604 // i.e. always emit remember set and save FP registers in RecordWriteStub. If 605 // large performance regression is observed, we should use these values to 606 // avoid unnecessary work. 607 608 Callable const callable = 609 Builtins::CallableFor(isolate(), Builtins::kRecordWrite); 610 RegList registers = callable.descriptor().allocatable_registers(); 611 612 SaveRegisters(registers); 613 614 Register object_parameter(callable.descriptor().GetRegisterParameter( 615 RecordWriteDescriptor::kObject)); 616 Register slot_parameter( 617 callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); 618 Register isolate_parameter(callable.descriptor().GetRegisterParameter( 619 RecordWriteDescriptor::kIsolate)); 620 Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( 621 RecordWriteDescriptor::kRememberedSet)); 622 Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( 623 RecordWriteDescriptor::kFPMode)); 624 625 Push(object); 626 Push(address); 627 628 Pop(slot_parameter); 629 Pop(object_parameter); 630 631 Move(isolate_parameter, ExternalReference::isolate_address(isolate())); 632 Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); 633 Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); 634 Call(callable.code(), RelocInfo::CODE_TARGET); 635 636 RestoreRegisters(registers); 637 } 638 639 // Will clobber 3 registers: object, address, and value. The register 'object' 640 // contains a heap object pointer. The heap object tag is shifted away. 641 // A scratch register also needs to be available. 642 void MacroAssembler::RecordWrite(Register object, Register address, 643 Register value, LinkRegisterStatus lr_status, 644 SaveFPRegsMode fp_mode, 645 RememberedSetAction remembered_set_action, 646 SmiCheck smi_check) { 647 DCHECK(object != value); 648 if (emit_debug_code()) { 649 { 650 UseScratchRegisterScope temps(this); 651 Register scratch = temps.Acquire(); 652 ldr(scratch, MemOperand(address)); 653 cmp(scratch, value); 654 } 655 Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); 656 } 657 658 if (remembered_set_action == OMIT_REMEMBERED_SET && 659 !FLAG_incremental_marking) { 660 return; 661 } 662 663 // First, check if a write barrier is even needed. The tests below 664 // catch stores of smis and stores into the young generation. 665 Label done; 666 667 if (smi_check == INLINE_SMI_CHECK) { 668 JumpIfSmi(value, &done); 669 } 670 671 CheckPageFlag(value, 672 value, // Used as scratch. 673 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); 674 CheckPageFlag(object, 675 value, // Used as scratch. 676 MemoryChunk::kPointersFromHereAreInterestingMask, 677 eq, 678 &done); 679 680 // Record the actual write. 681 if (lr_status == kLRHasNotBeenSaved) { 682 push(lr); 683 } 684 CallRecordWriteStub(object, address, remembered_set_action, fp_mode); 685 if (lr_status == kLRHasNotBeenSaved) { 686 pop(lr); 687 } 688 689 bind(&done); 690 691 // Count number of write barriers in generated code. 692 isolate()->counters()->write_barriers_static()->Increment(); 693 { 694 UseScratchRegisterScope temps(this); 695 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, 696 temps.Acquire(), value); 697 } 698 699 // Clobber clobbered registers when running with the debug-code flag 700 // turned on to provoke errors. 701 if (emit_debug_code()) { 702 mov(address, Operand(bit_cast<int32_t>(kZapValue + 12))); 703 mov(value, Operand(bit_cast<int32_t>(kZapValue + 16))); 704 } 705 } 706 707 void TurboAssembler::PushCommonFrame(Register marker_reg) { 708 if (marker_reg.is_valid()) { 709 if (marker_reg.code() > fp.code()) { 710 stm(db_w, sp, fp.bit() | lr.bit()); 711 mov(fp, Operand(sp)); 712 Push(marker_reg); 713 } else { 714 stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); 715 add(fp, sp, Operand(kPointerSize)); 716 } 717 } else { 718 stm(db_w, sp, fp.bit() | lr.bit()); 719 mov(fp, sp); 720 } 721 } 722 723 void TurboAssembler::PushStandardFrame(Register function_reg) { 724 DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code()); 725 stm(db_w, sp, (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() | 726 fp.bit() | lr.bit()); 727 int offset = -StandardFrameConstants::kContextOffset; 728 offset += function_reg.is_valid() ? kPointerSize : 0; 729 add(fp, sp, Operand(offset)); 730 } 731 732 733 // Push and pop all registers that can hold pointers. 734 void MacroAssembler::PushSafepointRegisters() { 735 // Safepoints expect a block of contiguous register values starting with r0. 736 DCHECK_EQ(kSafepointSavedRegisters, (1 << kNumSafepointSavedRegisters) - 1); 737 // Safepoints expect a block of kNumSafepointRegisters values on the 738 // stack, so adjust the stack for unsaved registers. 739 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 740 DCHECK_GE(num_unsaved, 0); 741 sub(sp, sp, Operand(num_unsaved * kPointerSize)); 742 stm(db_w, sp, kSafepointSavedRegisters); 743 } 744 745 void MacroAssembler::PopSafepointRegisters() { 746 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 747 ldm(ia_w, sp, kSafepointSavedRegisters); 748 add(sp, sp, Operand(num_unsaved * kPointerSize)); 749 } 750 751 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { 752 // The registers are pushed starting with the highest encoding, 753 // which means that lowest encodings are closest to the stack pointer. 754 DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); 755 return reg_code; 756 } 757 758 void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst, 759 const DwVfpRegister src, 760 const Condition cond) { 761 // Subtracting 0.0 preserves all inputs except for signalling NaNs, which 762 // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0 763 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. 764 vsub(dst, src, kDoubleRegZero, cond); 765 } 766 767 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, 768 const SwVfpRegister src2, 769 const Condition cond) { 770 // Compare and move FPSCR flags to the normal condition flags. 771 VFPCompareAndLoadFlags(src1, src2, pc, cond); 772 } 773 774 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, 775 const float src2, 776 const Condition cond) { 777 // Compare and move FPSCR flags to the normal condition flags. 778 VFPCompareAndLoadFlags(src1, src2, pc, cond); 779 } 780 781 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, 782 const DwVfpRegister src2, 783 const Condition cond) { 784 // Compare and move FPSCR flags to the normal condition flags. 785 VFPCompareAndLoadFlags(src1, src2, pc, cond); 786 } 787 788 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, 789 const double src2, 790 const Condition cond) { 791 // Compare and move FPSCR flags to the normal condition flags. 792 VFPCompareAndLoadFlags(src1, src2, pc, cond); 793 } 794 795 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, 796 const SwVfpRegister src2, 797 const Register fpscr_flags, 798 const Condition cond) { 799 // Compare and load FPSCR. 800 vcmp(src1, src2, cond); 801 vmrs(fpscr_flags, cond); 802 } 803 804 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, 805 const float src2, 806 const Register fpscr_flags, 807 const Condition cond) { 808 // Compare and load FPSCR. 809 vcmp(src1, src2, cond); 810 vmrs(fpscr_flags, cond); 811 } 812 813 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, 814 const DwVfpRegister src2, 815 const Register fpscr_flags, 816 const Condition cond) { 817 // Compare and load FPSCR. 818 vcmp(src1, src2, cond); 819 vmrs(fpscr_flags, cond); 820 } 821 822 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, 823 const double src2, 824 const Register fpscr_flags, 825 const Condition cond) { 826 // Compare and load FPSCR. 827 vcmp(src1, src2, cond); 828 vmrs(fpscr_flags, cond); 829 } 830 831 void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) { 832 if (src.code() < 16) { 833 const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); 834 vmov(dst, loc.high()); 835 } else { 836 vmov(NeonS32, dst, src, 1); 837 } 838 } 839 840 void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) { 841 if (dst.code() < 16) { 842 const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); 843 vmov(loc.high(), src); 844 } else { 845 vmov(NeonS32, dst, 1, src); 846 } 847 } 848 849 void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) { 850 if (src.code() < 16) { 851 const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); 852 vmov(dst, loc.low()); 853 } else { 854 vmov(NeonS32, dst, src, 0); 855 } 856 } 857 858 void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) { 859 if (dst.code() < 16) { 860 const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); 861 vmov(loc.low(), src); 862 } else { 863 vmov(NeonS32, dst, 0, src); 864 } 865 } 866 867 void TurboAssembler::VmovExtended(Register dst, int src_code) { 868 DCHECK_LE(SwVfpRegister::kNumRegisters, src_code); 869 DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code); 870 if (src_code & 0x1) { 871 VmovHigh(dst, DwVfpRegister::from_code(src_code / 2)); 872 } else { 873 VmovLow(dst, DwVfpRegister::from_code(src_code / 2)); 874 } 875 } 876 877 void TurboAssembler::VmovExtended(int dst_code, Register src) { 878 DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code); 879 DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code); 880 if (dst_code & 0x1) { 881 VmovHigh(DwVfpRegister::from_code(dst_code / 2), src); 882 } else { 883 VmovLow(DwVfpRegister::from_code(dst_code / 2), src); 884 } 885 } 886 887 void TurboAssembler::VmovExtended(int dst_code, int src_code) { 888 if (src_code == dst_code) return; 889 890 if (src_code < SwVfpRegister::kNumRegisters && 891 dst_code < SwVfpRegister::kNumRegisters) { 892 // src and dst are both s-registers. 893 vmov(SwVfpRegister::from_code(dst_code), 894 SwVfpRegister::from_code(src_code)); 895 return; 896 } 897 DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2); 898 DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2); 899 int dst_offset = dst_code & 1; 900 int src_offset = src_code & 1; 901 if (CpuFeatures::IsSupported(NEON)) { 902 UseScratchRegisterScope temps(this); 903 DwVfpRegister scratch = temps.AcquireD(); 904 // On Neon we can shift and insert from d-registers. 905 if (src_offset == dst_offset) { 906 // Offsets are the same, use vdup to copy the source to the opposite lane. 907 vdup(Neon32, scratch, src_d_reg, src_offset); 908 // Here we are extending the lifetime of scratch. 909 src_d_reg = scratch; 910 src_offset = dst_offset ^ 1; 911 } 912 if (dst_offset) { 913 if (dst_d_reg == src_d_reg) { 914 vdup(Neon32, dst_d_reg, src_d_reg, 0); 915 } else { 916 vsli(Neon64, dst_d_reg, src_d_reg, 32); 917 } 918 } else { 919 if (dst_d_reg == src_d_reg) { 920 vdup(Neon32, dst_d_reg, src_d_reg, 1); 921 } else { 922 vsri(Neon64, dst_d_reg, src_d_reg, 32); 923 } 924 } 925 return; 926 } 927 928 // Without Neon, use the scratch registers to move src and/or dst into 929 // s-registers. 930 UseScratchRegisterScope temps(this); 931 LowDwVfpRegister d_scratch = temps.AcquireLowD(); 932 LowDwVfpRegister d_scratch2 = temps.AcquireLowD(); 933 int s_scratch_code = d_scratch.low().code(); 934 int s_scratch_code2 = d_scratch2.low().code(); 935 if (src_code < SwVfpRegister::kNumRegisters) { 936 // src is an s-register, dst is not. 937 vmov(d_scratch, dst_d_reg); 938 vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), 939 SwVfpRegister::from_code(src_code)); 940 vmov(dst_d_reg, d_scratch); 941 } else if (dst_code < SwVfpRegister::kNumRegisters) { 942 // dst is an s-register, src is not. 943 vmov(d_scratch, src_d_reg); 944 vmov(SwVfpRegister::from_code(dst_code), 945 SwVfpRegister::from_code(s_scratch_code + src_offset)); 946 } else { 947 // Neither src or dst are s-registers. Both scratch double registers are 948 // available when there are 32 VFP registers. 949 vmov(d_scratch, src_d_reg); 950 vmov(d_scratch2, dst_d_reg); 951 vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), 952 SwVfpRegister::from_code(s_scratch_code2 + src_offset)); 953 vmov(dst_d_reg, d_scratch2); 954 } 955 } 956 957 void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) { 958 if (dst_code < SwVfpRegister::kNumRegisters) { 959 vldr(SwVfpRegister::from_code(dst_code), src); 960 } else { 961 UseScratchRegisterScope temps(this); 962 LowDwVfpRegister scratch = temps.AcquireLowD(); 963 // TODO(bbudge) If Neon supported, use load single lane form of vld1. 964 int dst_s_code = scratch.low().code() + (dst_code & 1); 965 vmov(scratch, DwVfpRegister::from_code(dst_code / 2)); 966 vldr(SwVfpRegister::from_code(dst_s_code), src); 967 vmov(DwVfpRegister::from_code(dst_code / 2), scratch); 968 } 969 } 970 971 void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) { 972 if (src_code < SwVfpRegister::kNumRegisters) { 973 vstr(SwVfpRegister::from_code(src_code), dst); 974 } else { 975 // TODO(bbudge) If Neon supported, use store single lane form of vst1. 976 UseScratchRegisterScope temps(this); 977 LowDwVfpRegister scratch = temps.AcquireLowD(); 978 int src_s_code = scratch.low().code() + (src_code & 1); 979 vmov(scratch, DwVfpRegister::from_code(src_code / 2)); 980 vstr(SwVfpRegister::from_code(src_s_code), dst); 981 } 982 } 983 984 void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src, 985 NeonDataType dt, int lane) { 986 int size = NeonSz(dt); // 0, 1, 2 987 int byte = lane << size; 988 int double_word = byte >> kDoubleSizeLog2; 989 int double_byte = byte & (kDoubleSize - 1); 990 int double_lane = double_byte >> size; 991 DwVfpRegister double_source = 992 DwVfpRegister::from_code(src.code() * 2 + double_word); 993 vmov(dt, dst, double_source, double_lane); 994 } 995 996 void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src, 997 NeonDataType dt, int lane) { 998 int size = NeonSz(dt); // 0, 1, 2 999 int byte = lane << size; 1000 int double_byte = byte & (kDoubleSize - 1); 1001 int double_lane = double_byte >> size; 1002 vmov(dt, dst, src, double_lane); 1003 } 1004 1005 void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src, 1006 int lane) { 1007 int s_code = src.code() * 4 + lane; 1008 VmovExtended(dst.code(), s_code); 1009 } 1010 1011 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, 1012 Register src_lane, NeonDataType dt, int lane) { 1013 Move(dst, src); 1014 int size = NeonSz(dt); // 0, 1, 2 1015 int byte = lane << size; 1016 int double_word = byte >> kDoubleSizeLog2; 1017 int double_byte = byte & (kDoubleSize - 1); 1018 int double_lane = double_byte >> size; 1019 DwVfpRegister double_dst = 1020 DwVfpRegister::from_code(dst.code() * 2 + double_word); 1021 vmov(dt, double_dst, double_lane, src_lane); 1022 } 1023 1024 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, 1025 SwVfpRegister src_lane, int lane) { 1026 Move(dst, src); 1027 int s_code = dst.code() * 4 + lane; 1028 VmovExtended(s_code, src_lane.code()); 1029 } 1030 1031 void TurboAssembler::LslPair(Register dst_low, Register dst_high, 1032 Register src_low, Register src_high, 1033 Register shift) { 1034 DCHECK(!AreAliased(dst_high, src_low)); 1035 DCHECK(!AreAliased(dst_high, shift)); 1036 UseScratchRegisterScope temps(this); 1037 Register scratch = temps.Acquire(); 1038 1039 Label less_than_32; 1040 Label done; 1041 rsb(scratch, shift, Operand(32), SetCC); 1042 b(gt, &less_than_32); 1043 // If shift >= 32 1044 and_(scratch, shift, Operand(0x1F)); 1045 lsl(dst_high, src_low, Operand(scratch)); 1046 mov(dst_low, Operand(0)); 1047 jmp(&done); 1048 bind(&less_than_32); 1049 // If shift < 32 1050 lsl(dst_high, src_high, Operand(shift)); 1051 orr(dst_high, dst_high, Operand(src_low, LSR, scratch)); 1052 lsl(dst_low, src_low, Operand(shift)); 1053 bind(&done); 1054 } 1055 1056 void TurboAssembler::LslPair(Register dst_low, Register dst_high, 1057 Register src_low, Register src_high, 1058 uint32_t shift) { 1059 DCHECK(!AreAliased(dst_high, src_low)); 1060 Label less_than_32; 1061 Label done; 1062 if (shift == 0) { 1063 Move(dst_high, src_high); 1064 Move(dst_low, src_low); 1065 } else if (shift == 32) { 1066 Move(dst_high, src_low); 1067 Move(dst_low, Operand(0)); 1068 } else if (shift >= 32) { 1069 shift &= 0x1F; 1070 lsl(dst_high, src_low, Operand(shift)); 1071 mov(dst_low, Operand(0)); 1072 } else { 1073 lsl(dst_high, src_high, Operand(shift)); 1074 orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift)); 1075 lsl(dst_low, src_low, Operand(shift)); 1076 } 1077 } 1078 1079 void TurboAssembler::LsrPair(Register dst_low, Register dst_high, 1080 Register src_low, Register src_high, 1081 Register shift) { 1082 DCHECK(!AreAliased(dst_low, src_high)); 1083 DCHECK(!AreAliased(dst_low, shift)); 1084 UseScratchRegisterScope temps(this); 1085 Register scratch = temps.Acquire(); 1086 1087 Label less_than_32; 1088 Label done; 1089 rsb(scratch, shift, Operand(32), SetCC); 1090 b(gt, &less_than_32); 1091 // If shift >= 32 1092 and_(scratch, shift, Operand(0x1F)); 1093 lsr(dst_low, src_high, Operand(scratch)); 1094 mov(dst_high, Operand(0)); 1095 jmp(&done); 1096 bind(&less_than_32); 1097 // If shift < 32 1098 1099 lsr(dst_low, src_low, Operand(shift)); 1100 orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); 1101 lsr(dst_high, src_high, Operand(shift)); 1102 bind(&done); 1103 } 1104 1105 void TurboAssembler::LsrPair(Register dst_low, Register dst_high, 1106 Register src_low, Register src_high, 1107 uint32_t shift) { 1108 DCHECK(!AreAliased(dst_low, src_high)); 1109 Label less_than_32; 1110 Label done; 1111 if (shift == 32) { 1112 mov(dst_low, src_high); 1113 mov(dst_high, Operand(0)); 1114 } else if (shift > 32) { 1115 shift &= 0x1F; 1116 lsr(dst_low, src_high, Operand(shift)); 1117 mov(dst_high, Operand(0)); 1118 } else if (shift == 0) { 1119 Move(dst_low, src_low); 1120 Move(dst_high, src_high); 1121 } else { 1122 lsr(dst_low, src_low, Operand(shift)); 1123 orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); 1124 lsr(dst_high, src_high, Operand(shift)); 1125 } 1126 } 1127 1128 void TurboAssembler::AsrPair(Register dst_low, Register dst_high, 1129 Register src_low, Register src_high, 1130 Register shift) { 1131 DCHECK(!AreAliased(dst_low, src_high)); 1132 DCHECK(!AreAliased(dst_low, shift)); 1133 UseScratchRegisterScope temps(this); 1134 Register scratch = temps.Acquire(); 1135 1136 Label less_than_32; 1137 Label done; 1138 rsb(scratch, shift, Operand(32), SetCC); 1139 b(gt, &less_than_32); 1140 // If shift >= 32 1141 and_(scratch, shift, Operand(0x1F)); 1142 asr(dst_low, src_high, Operand(scratch)); 1143 asr(dst_high, src_high, Operand(31)); 1144 jmp(&done); 1145 bind(&less_than_32); 1146 // If shift < 32 1147 lsr(dst_low, src_low, Operand(shift)); 1148 orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); 1149 asr(dst_high, src_high, Operand(shift)); 1150 bind(&done); 1151 } 1152 1153 void TurboAssembler::AsrPair(Register dst_low, Register dst_high, 1154 Register src_low, Register src_high, 1155 uint32_t shift) { 1156 DCHECK(!AreAliased(dst_low, src_high)); 1157 Label less_than_32; 1158 Label done; 1159 if (shift == 32) { 1160 mov(dst_low, src_high); 1161 asr(dst_high, src_high, Operand(31)); 1162 } else if (shift > 32) { 1163 shift &= 0x1F; 1164 asr(dst_low, src_high, Operand(shift)); 1165 asr(dst_high, src_high, Operand(31)); 1166 } else if (shift == 0) { 1167 Move(dst_low, src_low); 1168 Move(dst_high, src_high); 1169 } else { 1170 lsr(dst_low, src_low, Operand(shift)); 1171 orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); 1172 asr(dst_high, src_high, Operand(shift)); 1173 } 1174 } 1175 1176 void TurboAssembler::StubPrologue(StackFrame::Type type) { 1177 UseScratchRegisterScope temps(this); 1178 Register scratch = temps.Acquire(); 1179 mov(scratch, Operand(StackFrame::TypeToMarker(type))); 1180 PushCommonFrame(scratch); 1181 } 1182 1183 void TurboAssembler::Prologue() { PushStandardFrame(r1); } 1184 1185 void TurboAssembler::EnterFrame(StackFrame::Type type, 1186 bool load_constant_pool_pointer_reg) { 1187 // r0-r3: preserved 1188 UseScratchRegisterScope temps(this); 1189 Register scratch = temps.Acquire(); 1190 mov(scratch, Operand(StackFrame::TypeToMarker(type))); 1191 PushCommonFrame(scratch); 1192 } 1193 1194 int TurboAssembler::LeaveFrame(StackFrame::Type type) { 1195 // r0: preserved 1196 // r1: preserved 1197 // r2: preserved 1198 1199 // Drop the execution stack down to the frame pointer and restore 1200 // the caller frame pointer and return address. 1201 mov(sp, fp); 1202 int frame_ends = pc_offset(); 1203 ldm(ia_w, sp, fp.bit() | lr.bit()); 1204 return frame_ends; 1205 } 1206 1207 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, 1208 StackFrame::Type frame_type) { 1209 DCHECK(frame_type == StackFrame::EXIT || 1210 frame_type == StackFrame::BUILTIN_EXIT); 1211 UseScratchRegisterScope temps(this); 1212 Register scratch = temps.Acquire(); 1213 1214 // Set up the frame structure on the stack. 1215 DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); 1216 DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); 1217 DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); 1218 mov(scratch, Operand(StackFrame::TypeToMarker(frame_type))); 1219 PushCommonFrame(scratch); 1220 // Reserve room for saved entry sp and code object. 1221 sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); 1222 if (emit_debug_code()) { 1223 mov(scratch, Operand::Zero()); 1224 str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); 1225 } 1226 Move(scratch, CodeObject()); 1227 str(scratch, MemOperand(fp, ExitFrameConstants::kCodeOffset)); 1228 1229 // Save the frame pointer and the context in top. 1230 Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, 1231 isolate())); 1232 str(fp, MemOperand(scratch)); 1233 Move(scratch, 1234 ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); 1235 str(cp, MemOperand(scratch)); 1236 1237 // Optionally save all double registers. 1238 if (save_doubles) { 1239 SaveFPRegs(sp, scratch); 1240 // Note that d0 will be accessible at 1241 // fp - ExitFrameConstants::kFrameSize - 1242 // DwVfpRegister::kNumRegisters * kDoubleSize, 1243 // since the sp slot and code slot were pushed after the fp. 1244 } 1245 1246 // Reserve place for the return address and stack space and align the frame 1247 // preparing for calling the runtime function. 1248 const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 1249 sub(sp, sp, Operand((stack_space + 1) * kPointerSize)); 1250 if (frame_alignment > 0) { 1251 DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); 1252 and_(sp, sp, Operand(-frame_alignment)); 1253 } 1254 1255 // Set the exit frame sp value to point just before the return address 1256 // location. 1257 add(scratch, sp, Operand(kPointerSize)); 1258 str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); 1259 } 1260 1261 int TurboAssembler::ActivationFrameAlignment() { 1262 #if V8_HOST_ARCH_ARM 1263 // Running on the real platform. Use the alignment as mandated by the local 1264 // environment. 1265 // Note: This will break if we ever start generating snapshots on one ARM 1266 // platform for another ARM platform with a different alignment. 1267 return base::OS::ActivationFrameAlignment(); 1268 #else // V8_HOST_ARCH_ARM 1269 // If we are using the simulator then we should always align to the expected 1270 // alignment. As the simulator is used to generate snapshots we do not know 1271 // if the target platform will need alignment, so this is controlled from a 1272 // flag. 1273 return FLAG_sim_stack_alignment; 1274 #endif // V8_HOST_ARCH_ARM 1275 } 1276 1277 void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, 1278 bool argument_count_is_length) { 1279 ConstantPoolUnavailableScope constant_pool_unavailable(this); 1280 UseScratchRegisterScope temps(this); 1281 Register scratch = temps.Acquire(); 1282 1283 // Optionally restore all double registers. 1284 if (save_doubles) { 1285 // Calculate the stack location of the saved doubles and restore them. 1286 const int offset = ExitFrameConstants::kFixedFrameSizeFromFp; 1287 sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize)); 1288 RestoreFPRegs(r3, scratch); 1289 } 1290 1291 // Clear top frame. 1292 mov(r3, Operand::Zero()); 1293 Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, 1294 isolate())); 1295 str(r3, MemOperand(scratch)); 1296 1297 // Restore current context from top and clear it in debug mode. 1298 Move(scratch, 1299 ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); 1300 ldr(cp, MemOperand(scratch)); 1301 #ifdef DEBUG 1302 mov(r3, Operand(Context::kInvalidContext)); 1303 Move(scratch, 1304 ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); 1305 str(r3, MemOperand(scratch)); 1306 #endif 1307 1308 // Tear down the exit frame, pop the arguments, and return. 1309 mov(sp, Operand(fp)); 1310 ldm(ia_w, sp, fp.bit() | lr.bit()); 1311 if (argument_count.is_valid()) { 1312 if (argument_count_is_length) { 1313 add(sp, sp, argument_count); 1314 } else { 1315 add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); 1316 } 1317 } 1318 } 1319 1320 void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) { 1321 if (use_eabi_hardfloat()) { 1322 Move(dst, d0); 1323 } else { 1324 vmov(dst, r0, r1); 1325 } 1326 } 1327 1328 1329 // On ARM this is just a synonym to make the purpose clear. 1330 void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) { 1331 MovFromFloatResult(dst); 1332 } 1333 1334 void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, 1335 Register caller_args_count_reg, 1336 Register scratch0, Register scratch1) { 1337 #if DEBUG 1338 if (callee_args_count.is_reg()) { 1339 DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, 1340 scratch1)); 1341 } else { 1342 DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); 1343 } 1344 #endif 1345 1346 // Calculate the end of destination area where we will put the arguments 1347 // after we drop current frame. We add kPointerSize to count the receiver 1348 // argument which is not included into formal parameters count. 1349 Register dst_reg = scratch0; 1350 add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2)); 1351 add(dst_reg, dst_reg, 1352 Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); 1353 1354 Register src_reg = caller_args_count_reg; 1355 // Calculate the end of source area. +kPointerSize is for the receiver. 1356 if (callee_args_count.is_reg()) { 1357 add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2)); 1358 add(src_reg, src_reg, Operand(kPointerSize)); 1359 } else { 1360 add(src_reg, sp, 1361 Operand((callee_args_count.immediate() + 1) * kPointerSize)); 1362 } 1363 1364 if (FLAG_debug_code) { 1365 cmp(src_reg, dst_reg); 1366 Check(lo, AbortReason::kStackAccessBelowStackPointer); 1367 } 1368 1369 // Restore caller's frame pointer and return address now as they will be 1370 // overwritten by the copying loop. 1371 ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); 1372 ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1373 1374 // Now copy callee arguments to the caller frame going backwards to avoid 1375 // callee arguments corruption (source and destination areas could overlap). 1376 1377 // Both src_reg and dst_reg are pointing to the word after the one to copy, 1378 // so they must be pre-decremented in the loop. 1379 Register tmp_reg = scratch1; 1380 Label loop, entry; 1381 b(&entry); 1382 bind(&loop); 1383 ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); 1384 str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); 1385 bind(&entry); 1386 cmp(sp, src_reg); 1387 b(ne, &loop); 1388 1389 // Leave current frame. 1390 mov(sp, dst_reg); 1391 } 1392 1393 void MacroAssembler::InvokePrologue(const ParameterCount& expected, 1394 const ParameterCount& actual, Label* done, 1395 bool* definitely_mismatches, 1396 InvokeFlag flag) { 1397 bool definitely_matches = false; 1398 *definitely_mismatches = false; 1399 Label regular_invoke; 1400 1401 // Check whether the expected and actual arguments count match. If not, 1402 // setup registers according to contract with ArgumentsAdaptorTrampoline: 1403 // r0: actual arguments count 1404 // r1: function (passed through to callee) 1405 // r2: expected arguments count 1406 1407 // The code below is made a lot easier because the calling code already sets 1408 // up actual and expected registers according to the contract if values are 1409 // passed in registers. 1410 DCHECK(actual.is_immediate() || actual.reg() == r0); 1411 DCHECK(expected.is_immediate() || expected.reg() == r2); 1412 1413 if (expected.is_immediate()) { 1414 DCHECK(actual.is_immediate()); 1415 mov(r0, Operand(actual.immediate())); 1416 if (expected.immediate() == actual.immediate()) { 1417 definitely_matches = true; 1418 } else { 1419 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 1420 if (expected.immediate() == sentinel) { 1421 // Don't worry about adapting arguments for builtins that 1422 // don't want that done. Skip adaption code by making it look 1423 // like we have a match between expected and actual number of 1424 // arguments. 1425 definitely_matches = true; 1426 } else { 1427 *definitely_mismatches = true; 1428 mov(r2, Operand(expected.immediate())); 1429 } 1430 } 1431 } else { 1432 if (actual.is_immediate()) { 1433 mov(r0, Operand(actual.immediate())); 1434 cmp(expected.reg(), Operand(actual.immediate())); 1435 b(eq, ®ular_invoke); 1436 } else { 1437 cmp(expected.reg(), Operand(actual.reg())); 1438 b(eq, ®ular_invoke); 1439 } 1440 } 1441 1442 if (!definitely_matches) { 1443 Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); 1444 if (flag == CALL_FUNCTION) { 1445 Call(adaptor); 1446 if (!*definitely_mismatches) { 1447 b(done); 1448 } 1449 } else { 1450 Jump(adaptor, RelocInfo::CODE_TARGET); 1451 } 1452 bind(®ular_invoke); 1453 } 1454 } 1455 1456 void MacroAssembler::CheckDebugHook(Register fun, Register new_target, 1457 const ParameterCount& expected, 1458 const ParameterCount& actual) { 1459 Label skip_hook; 1460 1461 ExternalReference debug_hook_active = 1462 ExternalReference::debug_hook_on_function_call_address(isolate()); 1463 Move(r4, debug_hook_active); 1464 ldrsb(r4, MemOperand(r4)); 1465 cmp(r4, Operand(0)); 1466 b(eq, &skip_hook); 1467 1468 { 1469 // Load receiver to pass it later to DebugOnFunctionCall hook. 1470 if (actual.is_reg()) { 1471 mov(r4, actual.reg()); 1472 } else { 1473 mov(r4, Operand(actual.immediate())); 1474 } 1475 ldr(r4, MemOperand(sp, r4, LSL, kPointerSizeLog2)); 1476 FrameScope frame(this, 1477 has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); 1478 if (expected.is_reg()) { 1479 SmiTag(expected.reg()); 1480 Push(expected.reg()); 1481 } 1482 if (actual.is_reg()) { 1483 SmiTag(actual.reg()); 1484 Push(actual.reg()); 1485 } 1486 if (new_target.is_valid()) { 1487 Push(new_target); 1488 } 1489 Push(fun); 1490 Push(fun); 1491 Push(r4); 1492 CallRuntime(Runtime::kDebugOnFunctionCall); 1493 Pop(fun); 1494 if (new_target.is_valid()) { 1495 Pop(new_target); 1496 } 1497 if (actual.is_reg()) { 1498 Pop(actual.reg()); 1499 SmiUntag(actual.reg()); 1500 } 1501 if (expected.is_reg()) { 1502 Pop(expected.reg()); 1503 SmiUntag(expected.reg()); 1504 } 1505 } 1506 bind(&skip_hook); 1507 } 1508 1509 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, 1510 const ParameterCount& expected, 1511 const ParameterCount& actual, 1512 InvokeFlag flag) { 1513 // You can't call a function without a valid frame. 1514 DCHECK(flag == JUMP_FUNCTION || has_frame()); 1515 DCHECK(function == r1); 1516 DCHECK_IMPLIES(new_target.is_valid(), new_target == r3); 1517 1518 // On function call, call into the debugger if necessary. 1519 CheckDebugHook(function, new_target, expected, actual); 1520 1521 // Clear the new.target register if not given. 1522 if (!new_target.is_valid()) { 1523 LoadRoot(r3, Heap::kUndefinedValueRootIndex); 1524 } 1525 1526 Label done; 1527 bool definitely_mismatches = false; 1528 InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); 1529 if (!definitely_mismatches) { 1530 // We call indirectly through the code field in the function to 1531 // allow recompilation to take effect without changing any of the 1532 // call sites. 1533 Register code = kJavaScriptCallCodeStartRegister; 1534 ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset)); 1535 add(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); 1536 if (flag == CALL_FUNCTION) { 1537 Call(code); 1538 } else { 1539 DCHECK(flag == JUMP_FUNCTION); 1540 Jump(code); 1541 } 1542 1543 // Continue here if InvokePrologue does handle the invocation due to 1544 // mismatched parameter counts. 1545 bind(&done); 1546 } 1547 } 1548 1549 void MacroAssembler::InvokeFunction(Register fun, Register new_target, 1550 const ParameterCount& actual, 1551 InvokeFlag flag) { 1552 // You can't call a function without a valid frame. 1553 DCHECK(flag == JUMP_FUNCTION || has_frame()); 1554 1555 // Contract with called JS functions requires that function is passed in r1. 1556 DCHECK(fun == r1); 1557 1558 Register expected_reg = r2; 1559 Register temp_reg = r4; 1560 1561 ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); 1562 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); 1563 ldrh(expected_reg, 1564 FieldMemOperand(temp_reg, 1565 SharedFunctionInfo::kFormalParameterCountOffset)); 1566 1567 ParameterCount expected(expected_reg); 1568 InvokeFunctionCode(fun, new_target, expected, actual, flag); 1569 } 1570 1571 void MacroAssembler::InvokeFunction(Register function, 1572 const ParameterCount& expected, 1573 const ParameterCount& actual, 1574 InvokeFlag flag) { 1575 // You can't call a function without a valid frame. 1576 DCHECK(flag == JUMP_FUNCTION || has_frame()); 1577 1578 // Contract with called JS functions requires that function is passed in r1. 1579 DCHECK(function == r1); 1580 1581 // Get the function and setup the context. 1582 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); 1583 1584 InvokeFunctionCode(r1, no_reg, expected, actual, flag); 1585 } 1586 1587 void MacroAssembler::MaybeDropFrames() { 1588 // Check whether we need to drop frames to restart a function on the stack. 1589 ExternalReference restart_fp = 1590 ExternalReference::debug_restart_fp_address(isolate()); 1591 Move(r1, restart_fp); 1592 ldr(r1, MemOperand(r1)); 1593 tst(r1, r1); 1594 Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, 1595 ne); 1596 } 1597 1598 void MacroAssembler::PushStackHandler() { 1599 // Adjust this code if not the case. 1600 STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); 1601 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); 1602 1603 Push(Smi::kZero); // Padding. 1604 // Link the current handler as the next handler. 1605 mov(r6, Operand(ExternalReference::Create(IsolateAddressId::kHandlerAddress, 1606 isolate()))); 1607 ldr(r5, MemOperand(r6)); 1608 push(r5); 1609 // Set this new handler as the current one. 1610 str(sp, MemOperand(r6)); 1611 } 1612 1613 1614 void MacroAssembler::PopStackHandler() { 1615 UseScratchRegisterScope temps(this); 1616 Register scratch = temps.Acquire(); 1617 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 1618 pop(r1); 1619 mov(scratch, Operand(ExternalReference::Create( 1620 IsolateAddressId::kHandlerAddress, isolate()))); 1621 str(r1, MemOperand(scratch)); 1622 add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); 1623 } 1624 1625 1626 void MacroAssembler::CompareObjectType(Register object, 1627 Register map, 1628 Register type_reg, 1629 InstanceType type) { 1630 UseScratchRegisterScope temps(this); 1631 const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg; 1632 1633 ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); 1634 CompareInstanceType(map, temp, type); 1635 } 1636 1637 1638 void MacroAssembler::CompareInstanceType(Register map, 1639 Register type_reg, 1640 InstanceType type) { 1641 ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); 1642 cmp(type_reg, Operand(type)); 1643 } 1644 1645 1646 void MacroAssembler::CompareRoot(Register obj, 1647 Heap::RootListIndex index) { 1648 UseScratchRegisterScope temps(this); 1649 Register scratch = temps.Acquire(); 1650 DCHECK(obj != scratch); 1651 LoadRoot(scratch, index); 1652 cmp(obj, scratch); 1653 } 1654 1655 void MacroAssembler::CallStub(CodeStub* stub, 1656 Condition cond) { 1657 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. 1658 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, CAN_INLINE_TARGET_ADDRESS, 1659 false); 1660 } 1661 1662 void TurboAssembler::CallStubDelayed(CodeStub* stub) { 1663 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. 1664 1665 // Block constant pool for the call instruction sequence. 1666 BlockConstPoolScope block_const_pool(this); 1667 1668 #ifdef DEBUG 1669 Label start; 1670 bind(&start); 1671 #endif 1672 1673 // Call sequence on V7 or later may be : 1674 // movw ip, #... @ call address low 16 1675 // movt ip, #... @ call address high 16 1676 // blx ip 1677 // @ return address 1678 // Or for pre-V7 or values that may be back-patched 1679 // to avoid ICache flushes: 1680 // ldr ip, [pc, #...] @ call address 1681 // blx ip 1682 // @ return address 1683 1684 mov(ip, Operand::EmbeddedCode(stub)); 1685 blx(ip, al); 1686 1687 DCHECK_EQ(kCallStubSize, SizeOfCodeGeneratedSince(&start)); 1688 } 1689 1690 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { 1691 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); 1692 } 1693 1694 bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { 1695 return has_frame() || !stub->SometimesSetsUpAFrame(); 1696 } 1697 1698 void MacroAssembler::TryDoubleToInt32Exact(Register result, 1699 DwVfpRegister double_input, 1700 LowDwVfpRegister double_scratch) { 1701 DCHECK(double_input != double_scratch); 1702 vcvt_s32_f64(double_scratch.low(), double_input); 1703 vmov(result, double_scratch.low()); 1704 vcvt_f64_s32(double_scratch, double_scratch.low()); 1705 VFPCompareAndSetFlags(double_input, double_scratch); 1706 } 1707 1708 void TurboAssembler::TryInlineTruncateDoubleToI(Register result, 1709 DwVfpRegister double_input, 1710 Label* done) { 1711 UseScratchRegisterScope temps(this); 1712 SwVfpRegister single_scratch = SwVfpRegister::no_reg(); 1713 if (temps.CanAcquireVfp<SwVfpRegister>()) { 1714 single_scratch = temps.AcquireS(); 1715 } else { 1716 // Re-use the input as a scratch register. However, we can only do this if 1717 // the input register is d0-d15 as there are no s32+ registers. 1718 DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters); 1719 LowDwVfpRegister double_scratch = 1720 LowDwVfpRegister::from_code(double_input.code()); 1721 single_scratch = double_scratch.low(); 1722 } 1723 vcvt_s32_f64(single_scratch, double_input); 1724 vmov(result, single_scratch); 1725 1726 Register scratch = temps.Acquire(); 1727 // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done. 1728 sub(scratch, result, Operand(1)); 1729 cmp(scratch, Operand(0x7FFFFFFE)); 1730 b(lt, done); 1731 } 1732 1733 void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, 1734 Register result, 1735 DwVfpRegister double_input, 1736 StubCallMode stub_mode) { 1737 Label done; 1738 1739 TryInlineTruncateDoubleToI(result, double_input, &done); 1740 1741 // If we fell through then inline version didn't succeed - call stub instead. 1742 push(lr); 1743 sub(sp, sp, Operand(kDoubleSize)); // Put input on stack. 1744 vstr(double_input, MemOperand(sp, 0)); 1745 1746 if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { 1747 Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); 1748 } else { 1749 Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); 1750 } 1751 ldr(result, MemOperand(sp, 0)); 1752 1753 add(sp, sp, Operand(kDoubleSize)); 1754 pop(lr); 1755 1756 bind(&done); 1757 } 1758 1759 void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid, 1760 Register centry) { 1761 const Runtime::Function* f = Runtime::FunctionForId(fid); 1762 // TODO(1236192): Most runtime routines don't need the number of 1763 // arguments passed in because it is constant. At some point we 1764 // should remove this need and make the runtime routine entry code 1765 // smarter. 1766 mov(r0, Operand(f->nargs)); 1767 Move(r1, ExternalReference::Create(f)); 1768 DCHECK(!AreAliased(centry, r0, r1)); 1769 add(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag)); 1770 Call(centry); 1771 } 1772 1773 void MacroAssembler::CallRuntime(const Runtime::Function* f, 1774 int num_arguments, 1775 SaveFPRegsMode save_doubles) { 1776 // All parameters are on the stack. r0 has the return value after call. 1777 1778 // If the expected number of arguments of the runtime function is 1779 // constant, we check that the actual number of arguments match the 1780 // expectation. 1781 CHECK(f->nargs < 0 || f->nargs == num_arguments); 1782 1783 // TODO(1236192): Most runtime routines don't need the number of 1784 // arguments passed in because it is constant. At some point we 1785 // should remove this need and make the runtime routine entry code 1786 // smarter. 1787 mov(r0, Operand(num_arguments)); 1788 Move(r1, ExternalReference::Create(f)); 1789 Handle<Code> code = 1790 CodeFactory::CEntry(isolate(), f->result_size, save_doubles); 1791 Call(code, RelocInfo::CODE_TARGET); 1792 } 1793 1794 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { 1795 const Runtime::Function* function = Runtime::FunctionForId(fid); 1796 DCHECK_EQ(1, function->result_size); 1797 if (function->nargs >= 0) { 1798 // TODO(1236192): Most runtime routines don't need the number of 1799 // arguments passed in because it is constant. At some point we 1800 // should remove this need and make the runtime routine entry code 1801 // smarter. 1802 mov(r0, Operand(function->nargs)); 1803 } 1804 JumpToExternalReference(ExternalReference::Create(fid)); 1805 } 1806 1807 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, 1808 bool builtin_exit_frame) { 1809 #if defined(__thumb__) 1810 // Thumb mode builtin. 1811 DCHECK_EQ(builtin.address() & 1, 1); 1812 #endif 1813 Move(r1, builtin); 1814 Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, 1815 kArgvOnStack, builtin_exit_frame); 1816 Jump(code, RelocInfo::CODE_TARGET); 1817 } 1818 1819 void MacroAssembler::JumpToInstructionStream(Address entry) { 1820 mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); 1821 Jump(kOffHeapTrampolineRegister); 1822 } 1823 1824 void MacroAssembler::LoadWeakValue(Register out, Register in, 1825 Label* target_if_cleared) { 1826 cmp(in, Operand(kClearedWeakHeapObject)); 1827 b(eq, target_if_cleared); 1828 1829 and_(out, in, Operand(~kWeakHeapObjectMask)); 1830 } 1831 1832 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, 1833 Register scratch1, Register scratch2) { 1834 DCHECK_GT(value, 0); 1835 if (FLAG_native_code_counters && counter->Enabled()) { 1836 Move(scratch2, ExternalReference::Create(counter)); 1837 ldr(scratch1, MemOperand(scratch2)); 1838 add(scratch1, scratch1, Operand(value)); 1839 str(scratch1, MemOperand(scratch2)); 1840 } 1841 } 1842 1843 1844 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, 1845 Register scratch1, Register scratch2) { 1846 DCHECK_GT(value, 0); 1847 if (FLAG_native_code_counters && counter->Enabled()) { 1848 Move(scratch2, ExternalReference::Create(counter)); 1849 ldr(scratch1, MemOperand(scratch2)); 1850 sub(scratch1, scratch1, Operand(value)); 1851 str(scratch1, MemOperand(scratch2)); 1852 } 1853 } 1854 1855 void TurboAssembler::Assert(Condition cond, AbortReason reason) { 1856 if (emit_debug_code()) 1857 Check(cond, reason); 1858 } 1859 1860 void TurboAssembler::Check(Condition cond, AbortReason reason) { 1861 Label L; 1862 b(cond, &L); 1863 Abort(reason); 1864 // will not return here 1865 bind(&L); 1866 } 1867 1868 void TurboAssembler::Abort(AbortReason reason) { 1869 Label abort_start; 1870 bind(&abort_start); 1871 const char* msg = GetAbortReason(reason); 1872 #ifdef DEBUG 1873 RecordComment("Abort message: "); 1874 RecordComment(msg); 1875 #endif 1876 1877 // Avoid emitting call to builtin if requested. 1878 if (trap_on_abort()) { 1879 stop(msg); 1880 return; 1881 } 1882 1883 if (should_abort_hard()) { 1884 // We don't care if we constructed a frame. Just pretend we did. 1885 FrameScope assume_frame(this, StackFrame::NONE); 1886 Move32BitImmediate(r0, Operand(static_cast<int>(reason))); 1887 PrepareCallCFunction(1, 0, r1); 1888 Move(r1, ExternalReference::abort_with_reason()); 1889 // Use Call directly to avoid any unneeded overhead. The function won't 1890 // return anyway. 1891 Call(r1); 1892 return; 1893 } 1894 1895 Move(r1, Smi::FromInt(static_cast<int>(reason))); 1896 1897 // Disable stub call restrictions to always allow calls to abort. 1898 if (!has_frame()) { 1899 // We don't actually want to generate a pile of code for this, so just 1900 // claim there is a stack frame, without generating one. 1901 FrameScope scope(this, StackFrame::NONE); 1902 Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); 1903 } else { 1904 Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); 1905 } 1906 // will not return here 1907 } 1908 1909 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { 1910 ldr(dst, NativeContextMemOperand()); 1911 ldr(dst, ContextMemOperand(dst, index)); 1912 } 1913 1914 1915 void TurboAssembler::InitializeRootRegister() { 1916 ExternalReference roots_array_start = 1917 ExternalReference::roots_array_start(isolate()); 1918 mov(kRootRegister, Operand(roots_array_start)); 1919 add(kRootRegister, kRootRegister, Operand(kRootRegisterBias)); 1920 } 1921 1922 void MacroAssembler::SmiTag(Register reg, SBit s) { 1923 add(reg, reg, Operand(reg), s); 1924 } 1925 1926 void MacroAssembler::SmiTag(Register dst, Register src, SBit s) { 1927 add(dst, src, Operand(src), s); 1928 } 1929 1930 void MacroAssembler::UntagAndJumpIfSmi( 1931 Register dst, Register src, Label* smi_case) { 1932 STATIC_ASSERT(kSmiTag == 0); 1933 SmiUntag(dst, src, SetCC); 1934 b(cc, smi_case); // Shifter carry is not set for a smi. 1935 } 1936 1937 void MacroAssembler::SmiTst(Register value) { 1938 tst(value, Operand(kSmiTagMask)); 1939 } 1940 1941 void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) { 1942 tst(value, Operand(kSmiTagMask)); 1943 b(eq, smi_label); 1944 } 1945 1946 void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) { 1947 cmp(x, Operand(y)); 1948 b(eq, dest); 1949 } 1950 1951 void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) { 1952 cmp(x, Operand(y)); 1953 b(lt, dest); 1954 } 1955 1956 void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) { 1957 tst(value, Operand(kSmiTagMask)); 1958 b(ne, not_smi_label); 1959 } 1960 1961 void MacroAssembler::JumpIfEitherSmi(Register reg1, 1962 Register reg2, 1963 Label* on_either_smi) { 1964 STATIC_ASSERT(kSmiTag == 0); 1965 tst(reg1, Operand(kSmiTagMask)); 1966 tst(reg2, Operand(kSmiTagMask), ne); 1967 b(eq, on_either_smi); 1968 } 1969 1970 void MacroAssembler::AssertNotSmi(Register object) { 1971 if (emit_debug_code()) { 1972 STATIC_ASSERT(kSmiTag == 0); 1973 tst(object, Operand(kSmiTagMask)); 1974 Check(ne, AbortReason::kOperandIsASmi); 1975 } 1976 } 1977 1978 1979 void MacroAssembler::AssertSmi(Register object) { 1980 if (emit_debug_code()) { 1981 STATIC_ASSERT(kSmiTag == 0); 1982 tst(object, Operand(kSmiTagMask)); 1983 Check(eq, AbortReason::kOperandIsNotASmi); 1984 } 1985 } 1986 1987 void MacroAssembler::AssertConstructor(Register object) { 1988 if (emit_debug_code()) { 1989 STATIC_ASSERT(kSmiTag == 0); 1990 tst(object, Operand(kSmiTagMask)); 1991 Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor); 1992 push(object); 1993 ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); 1994 ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset)); 1995 tst(object, Operand(Map::IsConstructorBit::kMask)); 1996 pop(object); 1997 Check(ne, AbortReason::kOperandIsNotAConstructor); 1998 } 1999 } 2000 2001 void MacroAssembler::AssertFunction(Register object) { 2002 if (emit_debug_code()) { 2003 STATIC_ASSERT(kSmiTag == 0); 2004 tst(object, Operand(kSmiTagMask)); 2005 Check(ne, AbortReason::kOperandIsASmiAndNotAFunction); 2006 push(object); 2007 CompareObjectType(object, object, object, JS_FUNCTION_TYPE); 2008 pop(object); 2009 Check(eq, AbortReason::kOperandIsNotAFunction); 2010 } 2011 } 2012 2013 2014 void MacroAssembler::AssertBoundFunction(Register object) { 2015 if (emit_debug_code()) { 2016 STATIC_ASSERT(kSmiTag == 0); 2017 tst(object, Operand(kSmiTagMask)); 2018 Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction); 2019 push(object); 2020 CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); 2021 pop(object); 2022 Check(eq, AbortReason::kOperandIsNotABoundFunction); 2023 } 2024 } 2025 2026 void MacroAssembler::AssertGeneratorObject(Register object) { 2027 if (!emit_debug_code()) return; 2028 tst(object, Operand(kSmiTagMask)); 2029 Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject); 2030 2031 // Load map 2032 Register map = object; 2033 push(object); 2034 ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); 2035 2036 // Check if JSGeneratorObject 2037 Label do_check; 2038 Register instance_type = object; 2039 CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); 2040 b(eq, &do_check); 2041 2042 // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) 2043 cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); 2044 2045 bind(&do_check); 2046 // Restore generator object to register and perform assertion 2047 pop(object); 2048 Check(eq, AbortReason::kOperandIsNotAGeneratorObject); 2049 } 2050 2051 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, 2052 Register scratch) { 2053 if (emit_debug_code()) { 2054 Label done_checking; 2055 AssertNotSmi(object); 2056 CompareRoot(object, Heap::kUndefinedValueRootIndex); 2057 b(eq, &done_checking); 2058 ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 2059 CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); 2060 Assert(eq, AbortReason::kExpectedUndefinedOrCell); 2061 bind(&done_checking); 2062 } 2063 } 2064 2065 2066 void TurboAssembler::CheckFor32DRegs(Register scratch) { 2067 Move(scratch, ExternalReference::cpu_features()); 2068 ldr(scratch, MemOperand(scratch)); 2069 tst(scratch, Operand(1u << VFP32DREGS)); 2070 } 2071 2072 void TurboAssembler::SaveFPRegs(Register location, Register scratch) { 2073 CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); 2074 CheckFor32DRegs(scratch); 2075 vstm(db_w, location, d16, d31, ne); 2076 sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); 2077 vstm(db_w, location, d0, d15); 2078 } 2079 2080 void TurboAssembler::RestoreFPRegs(Register location, Register scratch) { 2081 CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); 2082 CheckFor32DRegs(scratch); 2083 vldm(ia_w, location, d0, d15); 2084 vldm(ia_w, location, d16, d31, ne); 2085 add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); 2086 } 2087 2088 template <typename T> 2089 void TurboAssembler::FloatMaxHelper(T result, T left, T right, 2090 Label* out_of_line) { 2091 // This trivial case is caught sooner, so that the out-of-line code can be 2092 // completely avoided. 2093 DCHECK(left != right); 2094 2095 if (CpuFeatures::IsSupported(ARMv8)) { 2096 CpuFeatureScope scope(this, ARMv8); 2097 VFPCompareAndSetFlags(left, right); 2098 b(vs, out_of_line); 2099 vmaxnm(result, left, right); 2100 } else { 2101 Label done; 2102 VFPCompareAndSetFlags(left, right); 2103 b(vs, out_of_line); 2104 // Avoid a conditional instruction if the result register is unique. 2105 bool aliased_result_reg = result == left || result == right; 2106 Move(result, right, aliased_result_reg ? mi : al); 2107 Move(result, left, gt); 2108 b(ne, &done); 2109 // Left and right are equal, but check for +/-0. 2110 VFPCompareAndSetFlags(left, 0.0); 2111 b(eq, out_of_line); 2112 // The arguments are equal and not zero, so it doesn't matter which input we 2113 // pick. We have already moved one input into the result (if it didn't 2114 // already alias) so there's nothing more to do. 2115 bind(&done); 2116 } 2117 } 2118 2119 template <typename T> 2120 void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) { 2121 DCHECK(left != right); 2122 2123 // ARMv8: At least one of left and right is a NaN. 2124 // Anything else: At least one of left and right is a NaN, or both left and 2125 // right are zeroes with unknown sign. 2126 2127 // If left and right are +/-0, select the one with the most positive sign. 2128 // If left or right are NaN, vadd propagates the appropriate one. 2129 vadd(result, left, right); 2130 } 2131 2132 template <typename T> 2133 void TurboAssembler::FloatMinHelper(T result, T left, T right, 2134 Label* out_of_line) { 2135 // This trivial case is caught sooner, so that the out-of-line code can be 2136 // completely avoided. 2137 DCHECK(left != right); 2138 2139 if (CpuFeatures::IsSupported(ARMv8)) { 2140 CpuFeatureScope scope(this, ARMv8); 2141 VFPCompareAndSetFlags(left, right); 2142 b(vs, out_of_line); 2143 vminnm(result, left, right); 2144 } else { 2145 Label done; 2146 VFPCompareAndSetFlags(left, right); 2147 b(vs, out_of_line); 2148 // Avoid a conditional instruction if the result register is unique. 2149 bool aliased_result_reg = result == left || result == right; 2150 Move(result, left, aliased_result_reg ? mi : al); 2151 Move(result, right, gt); 2152 b(ne, &done); 2153 // Left and right are equal, but check for +/-0. 2154 VFPCompareAndSetFlags(left, 0.0); 2155 // If the arguments are equal and not zero, it doesn't matter which input we 2156 // pick. We have already moved one input into the result (if it didn't 2157 // already alias) so there's nothing more to do. 2158 b(ne, &done); 2159 // At this point, both left and right are either 0 or -0. 2160 // We could use a single 'vorr' instruction here if we had NEON support. 2161 // The algorithm used is -((-L) + (-R)), which is most efficiently expressed 2162 // as -((-L) - R). 2163 if (left == result) { 2164 DCHECK(right != result); 2165 vneg(result, left); 2166 vsub(result, result, right); 2167 vneg(result, result); 2168 } else { 2169 DCHECK(left != result); 2170 vneg(result, right); 2171 vsub(result, result, left); 2172 vneg(result, result); 2173 } 2174 bind(&done); 2175 } 2176 } 2177 2178 template <typename T> 2179 void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) { 2180 DCHECK(left != right); 2181 2182 // At least one of left and right is a NaN. Use vadd to propagate the NaN 2183 // appropriately. +/-0 is handled inline. 2184 vadd(result, left, right); 2185 } 2186 2187 void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left, 2188 SwVfpRegister right, Label* out_of_line) { 2189 FloatMaxHelper(result, left, right, out_of_line); 2190 } 2191 2192 void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left, 2193 SwVfpRegister right, Label* out_of_line) { 2194 FloatMinHelper(result, left, right, out_of_line); 2195 } 2196 2197 void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left, 2198 DwVfpRegister right, Label* out_of_line) { 2199 FloatMaxHelper(result, left, right, out_of_line); 2200 } 2201 2202 void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left, 2203 DwVfpRegister right, Label* out_of_line) { 2204 FloatMinHelper(result, left, right, out_of_line); 2205 } 2206 2207 void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left, 2208 SwVfpRegister right) { 2209 FloatMaxOutOfLineHelper(result, left, right); 2210 } 2211 2212 void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left, 2213 SwVfpRegister right) { 2214 FloatMinOutOfLineHelper(result, left, right); 2215 } 2216 2217 void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left, 2218 DwVfpRegister right) { 2219 FloatMaxOutOfLineHelper(result, left, right); 2220 } 2221 2222 void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left, 2223 DwVfpRegister right) { 2224 FloatMinOutOfLineHelper(result, left, right); 2225 } 2226 2227 static const int kRegisterPassedArguments = 4; 2228 2229 int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, 2230 int num_double_arguments) { 2231 int stack_passed_words = 0; 2232 if (use_eabi_hardfloat()) { 2233 // In the hard floating point calling convention, we can use 2234 // all double registers to pass doubles. 2235 if (num_double_arguments > DoubleRegister::NumRegisters()) { 2236 stack_passed_words += 2237 2 * (num_double_arguments - DoubleRegister::NumRegisters()); 2238 } 2239 } else { 2240 // In the soft floating point calling convention, every double 2241 // argument is passed using two registers. 2242 num_reg_arguments += 2 * num_double_arguments; 2243 } 2244 // Up to four simple arguments are passed in registers r0..r3. 2245 if (num_reg_arguments > kRegisterPassedArguments) { 2246 stack_passed_words += num_reg_arguments - kRegisterPassedArguments; 2247 } 2248 return stack_passed_words; 2249 } 2250 2251 void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, 2252 int num_double_arguments, 2253 Register scratch) { 2254 int frame_alignment = ActivationFrameAlignment(); 2255 int stack_passed_arguments = CalculateStackPassedWords( 2256 num_reg_arguments, num_double_arguments); 2257 if (frame_alignment > kPointerSize) { 2258 UseScratchRegisterScope temps(this); 2259 if (!scratch.is_valid()) scratch = temps.Acquire(); 2260 // Make stack end at alignment and make room for num_arguments - 4 words 2261 // and the original value of sp. 2262 mov(scratch, sp); 2263 sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); 2264 DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); 2265 and_(sp, sp, Operand(-frame_alignment)); 2266 str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); 2267 } else if (stack_passed_arguments > 0) { 2268 sub(sp, sp, Operand(stack_passed_arguments * kPointerSize)); 2269 } 2270 } 2271 2272 void TurboAssembler::MovToFloatParameter(DwVfpRegister src) { 2273 DCHECK(src == d0); 2274 if (!use_eabi_hardfloat()) { 2275 vmov(r0, r1, src); 2276 } 2277 } 2278 2279 2280 // On ARM this is just a synonym to make the purpose clear. 2281 void TurboAssembler::MovToFloatResult(DwVfpRegister src) { 2282 MovToFloatParameter(src); 2283 } 2284 2285 void TurboAssembler::MovToFloatParameters(DwVfpRegister src1, 2286 DwVfpRegister src2) { 2287 DCHECK(src1 == d0); 2288 DCHECK(src2 == d1); 2289 if (!use_eabi_hardfloat()) { 2290 vmov(r0, r1, src1); 2291 vmov(r2, r3, src2); 2292 } 2293 } 2294 2295 void TurboAssembler::CallCFunction(ExternalReference function, 2296 int num_reg_arguments, 2297 int num_double_arguments) { 2298 UseScratchRegisterScope temps(this); 2299 Register scratch = temps.Acquire(); 2300 Move(scratch, function); 2301 CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments); 2302 } 2303 2304 void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, 2305 int num_double_arguments) { 2306 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); 2307 } 2308 2309 void TurboAssembler::CallCFunction(ExternalReference function, 2310 int num_arguments) { 2311 CallCFunction(function, num_arguments, 0); 2312 } 2313 2314 void TurboAssembler::CallCFunction(Register function, int num_arguments) { 2315 CallCFunction(function, num_arguments, 0); 2316 } 2317 2318 void TurboAssembler::CallCFunctionHelper(Register function, 2319 int num_reg_arguments, 2320 int num_double_arguments) { 2321 DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); 2322 DCHECK(has_frame()); 2323 // Make sure that the stack is aligned before calling a C function unless 2324 // running in the simulator. The simulator has its own alignment check which 2325 // provides more information. 2326 #if V8_HOST_ARCH_ARM 2327 if (emit_debug_code()) { 2328 int frame_alignment = base::OS::ActivationFrameAlignment(); 2329 int frame_alignment_mask = frame_alignment - 1; 2330 if (frame_alignment > kPointerSize) { 2331 DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); 2332 Label alignment_as_expected; 2333 tst(sp, Operand(frame_alignment_mask)); 2334 b(eq, &alignment_as_expected); 2335 // Don't use Check here, as it will call Runtime_Abort possibly 2336 // re-entering here. 2337 stop("Unexpected alignment"); 2338 bind(&alignment_as_expected); 2339 } 2340 } 2341 #endif 2342 2343 // Just call directly. The function called cannot cause a GC, or 2344 // allow preemption, so the return address in the link register 2345 // stays correct. 2346 Call(function); 2347 int stack_passed_arguments = CalculateStackPassedWords( 2348 num_reg_arguments, num_double_arguments); 2349 if (ActivationFrameAlignment() > kPointerSize) { 2350 ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); 2351 } else { 2352 add(sp, sp, Operand(stack_passed_arguments * kPointerSize)); 2353 } 2354 } 2355 2356 void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, 2357 Condition cc, Label* condition_met) { 2358 DCHECK(cc == eq || cc == ne); 2359 Bfc(scratch, object, 0, kPageSizeBits); 2360 ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); 2361 tst(scratch, Operand(mask)); 2362 b(cc, condition_met); 2363 } 2364 2365 Register GetRegisterThatIsNotOneOf(Register reg1, 2366 Register reg2, 2367 Register reg3, 2368 Register reg4, 2369 Register reg5, 2370 Register reg6) { 2371 RegList regs = 0; 2372 if (reg1.is_valid()) regs |= reg1.bit(); 2373 if (reg2.is_valid()) regs |= reg2.bit(); 2374 if (reg3.is_valid()) regs |= reg3.bit(); 2375 if (reg4.is_valid()) regs |= reg4.bit(); 2376 if (reg5.is_valid()) regs |= reg5.bit(); 2377 if (reg6.is_valid()) regs |= reg6.bit(); 2378 2379 const RegisterConfiguration* config = RegisterConfiguration::Default(); 2380 for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { 2381 int code = config->GetAllocatableGeneralCode(i); 2382 Register candidate = Register::from_code(code); 2383 if (regs & candidate.bit()) continue; 2384 return candidate; 2385 } 2386 UNREACHABLE(); 2387 } 2388 2389 void TurboAssembler::ComputeCodeStartAddress(Register dst) { 2390 // We can use the register pc - 8 for the address of the current instruction. 2391 sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta)); 2392 } 2393 2394 void TurboAssembler::ResetSpeculationPoisonRegister() { 2395 mov(kSpeculationPoisonRegister, Operand(-1)); 2396 } 2397 2398 } // namespace internal 2399 } // namespace v8 2400 2401 #endif // V8_TARGET_ARCH_ARM 2402