Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <limits.h>  // For LONG_MIN, LONG_MAX.
      6 
      7 #if V8_TARGET_ARCH_ARM
      8 
      9 #include "src/assembler-inl.h"
     10 #include "src/base/bits.h"
     11 #include "src/base/division-by-constant.h"
     12 #include "src/base/utils/random-number-generator.h"
     13 #include "src/bootstrapper.h"
     14 #include "src/callable.h"
     15 #include "src/code-factory.h"
     16 #include "src/code-stubs.h"
     17 #include "src/counters.h"
     18 #include "src/debug/debug.h"
     19 #include "src/double.h"
     20 #include "src/external-reference-table.h"
     21 #include "src/frames-inl.h"
     22 #include "src/instruction-stream.h"
     23 #include "src/objects-inl.h"
     24 #include "src/register-configuration.h"
     25 #include "src/runtime/runtime.h"
     26 #include "src/snapshot/snapshot.h"
     27 #include "src/wasm/wasm-code-manager.h"
     28 
     29 #include "src/arm/macro-assembler-arm.h"
     30 
     31 namespace v8 {
     32 namespace internal {
     33 
     34 MacroAssembler::MacroAssembler(Isolate* isolate,
     35                                const AssemblerOptions& options, void* buffer,
     36                                int size, CodeObjectRequired create_code_object)
     37     : TurboAssembler(isolate, options, buffer, size, create_code_object) {
     38   if (create_code_object == CodeObjectRequired::kYes) {
     39     // Unlike TurboAssembler, which can be used off the main thread and may not
     40     // allocate, macro assembler creates its own copy of the self-reference
     41     // marker in order to disambiguate between self-references during nested
     42     // code generation (e.g.: codegen of the current object triggers stub
     43     // compilation through CodeStub::GetCode()).
     44     code_object_ = Handle<HeapObject>::New(
     45         *isolate->factory()->NewSelfReferenceMarker(), isolate);
     46   }
     47 }
     48 
     49 int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
     50                                                     Register exclusion1,
     51                                                     Register exclusion2,
     52                                                     Register exclusion3) const {
     53   int bytes = 0;
     54   RegList exclusions = 0;
     55   if (exclusion1 != no_reg) {
     56     exclusions |= exclusion1.bit();
     57     if (exclusion2 != no_reg) {
     58       exclusions |= exclusion2.bit();
     59       if (exclusion3 != no_reg) {
     60         exclusions |= exclusion3.bit();
     61       }
     62     }
     63   }
     64 
     65   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
     66 
     67   bytes += NumRegs(list) * kPointerSize;
     68 
     69   if (fp_mode == kSaveFPRegs) {
     70     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
     71   }
     72 
     73   return bytes;
     74 }
     75 
     76 int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
     77                                     Register exclusion2, Register exclusion3) {
     78   int bytes = 0;
     79   RegList exclusions = 0;
     80   if (exclusion1 != no_reg) {
     81     exclusions |= exclusion1.bit();
     82     if (exclusion2 != no_reg) {
     83       exclusions |= exclusion2.bit();
     84       if (exclusion3 != no_reg) {
     85         exclusions |= exclusion3.bit();
     86       }
     87     }
     88   }
     89 
     90   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
     91   stm(db_w, sp, list);
     92 
     93   bytes += NumRegs(list) * kPointerSize;
     94 
     95   if (fp_mode == kSaveFPRegs) {
     96     SaveFPRegs(sp, lr);
     97     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
     98   }
     99 
    100   return bytes;
    101 }
    102 
    103 int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
    104                                    Register exclusion2, Register exclusion3) {
    105   int bytes = 0;
    106   if (fp_mode == kSaveFPRegs) {
    107     RestoreFPRegs(sp, lr);
    108     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
    109   }
    110 
    111   RegList exclusions = 0;
    112   if (exclusion1 != no_reg) {
    113     exclusions |= exclusion1.bit();
    114     if (exclusion2 != no_reg) {
    115       exclusions |= exclusion2.bit();
    116       if (exclusion3 != no_reg) {
    117         exclusions |= exclusion3.bit();
    118       }
    119     }
    120   }
    121 
    122   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
    123   ldm(ia_w, sp, list);
    124 
    125   bytes += NumRegs(list) * kPointerSize;
    126 
    127   return bytes;
    128 }
    129 
    130 void TurboAssembler::LoadFromConstantsTable(Register destination,
    131                                             int constant_index) {
    132   DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(
    133       Heap::kBuiltinsConstantsTableRootIndex));
    134 
    135   // The ldr call below could end up clobbering ip when the offset does not fit
    136   // into 12 bits (and thus needs to be loaded from the constant pool). In that
    137   // case, we need to be extra-careful and temporarily use another register as
    138   // the target.
    139 
    140   const uint32_t offset =
    141       FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag;
    142   const bool could_clobber_ip = !is_uint12(offset);
    143 
    144   Register reg = destination;
    145   if (could_clobber_ip) {
    146     Push(r7);
    147     reg = r7;
    148   }
    149 
    150   LoadRoot(reg, Heap::kBuiltinsConstantsTableRootIndex);
    151   ldr(destination, MemOperand(reg, offset));
    152 
    153   if (could_clobber_ip) {
    154     DCHECK_EQ(reg, r7);
    155     Pop(r7);
    156   }
    157 }
    158 
    159 void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
    160   ldr(destination, MemOperand(kRootRegister, offset));
    161 }
    162 
    163 void TurboAssembler::LoadRootRegisterOffset(Register destination,
    164                                             intptr_t offset) {
    165   if (offset == 0) {
    166     Move(destination, kRootRegister);
    167   } else {
    168     add(destination, kRootRegister, Operand(offset));
    169   }
    170 }
    171 
    172 void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); }
    173 
    174 void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
    175                           Condition cond) {
    176   mov(pc, Operand(target, rmode), LeaveCC, cond);
    177 }
    178 
    179 void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode,
    180                           Condition cond) {
    181   DCHECK(!RelocInfo::IsCodeTarget(rmode));
    182   Jump(static_cast<intptr_t>(target), rmode, cond);
    183 }
    184 
    185 void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
    186                           Condition cond) {
    187   DCHECK(RelocInfo::IsCodeTarget(rmode));
    188   if (FLAG_embedded_builtins) {
    189     int builtin_index = Builtins::kNoBuiltinId;
    190     bool target_is_isolate_independent_builtin =
    191         isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
    192         Builtins::IsIsolateIndependent(builtin_index);
    193     if (target_is_isolate_independent_builtin &&
    194         options().use_pc_relative_calls_and_jumps) {
    195       int32_t code_target_index = AddCodeTarget(code);
    196       b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET);
    197       return;
    198     } else if (root_array_available_ && options().isolate_independent_code) {
    199       UseScratchRegisterScope temps(this);
    200       Register scratch = temps.Acquire();
    201       IndirectLoadConstant(scratch, code);
    202       add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
    203       Jump(scratch, cond);
    204       return;
    205     } else if (target_is_isolate_independent_builtin &&
    206                options().inline_offheap_trampolines) {
    207       // Inline the trampoline.
    208       RecordCommentForOffHeapTrampoline(builtin_index);
    209       EmbeddedData d = EmbeddedData::FromBlob();
    210       Address entry = d.InstructionStartOfBuiltin(builtin_index);
    211       // Use ip directly instead of using UseScratchRegisterScope, as we do not
    212       // preserve scratch registers across calls.
    213       mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
    214       Jump(ip, cond);
    215       return;
    216     }
    217   }
    218   // 'code' is always generated ARM code, never THUMB code
    219   Jump(static_cast<intptr_t>(code.address()), rmode, cond);
    220 }
    221 
    222 void TurboAssembler::Call(Register target, Condition cond) {
    223   // Block constant pool for the call instruction sequence.
    224   BlockConstPoolScope block_const_pool(this);
    225   blx(target, cond);
    226 }
    227 
    228 void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
    229                           TargetAddressStorageMode mode,
    230                           bool check_constant_pool) {
    231   // Check if we have to emit the constant pool before we block it.
    232   if (check_constant_pool) MaybeCheckConstPool();
    233   // Block constant pool for the call instruction sequence.
    234   BlockConstPoolScope block_const_pool(this);
    235 
    236   bool old_predictable_code_size = predictable_code_size();
    237   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
    238     set_predictable_code_size(true);
    239   }
    240 
    241   // Use ip directly instead of using UseScratchRegisterScope, as we do not
    242   // preserve scratch registers across calls.
    243 
    244   // Call sequence on V7 or later may be :
    245   //  movw  ip, #... @ call address low 16
    246   //  movt  ip, #... @ call address high 16
    247   //  blx   ip
    248   //                      @ return address
    249   // Or for pre-V7 or values that may be back-patched
    250   // to avoid ICache flushes:
    251   //  ldr   ip, [pc, #...] @ call address
    252   //  blx   ip
    253   //                      @ return address
    254 
    255   mov(ip, Operand(target, rmode));
    256   blx(ip, cond);
    257 
    258   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
    259     set_predictable_code_size(old_predictable_code_size);
    260   }
    261 }
    262 
    263 void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
    264                           Condition cond, TargetAddressStorageMode mode,
    265                           bool check_constant_pool) {
    266   DCHECK(RelocInfo::IsCodeTarget(rmode));
    267   if (FLAG_embedded_builtins) {
    268     int builtin_index = Builtins::kNoBuiltinId;
    269     bool target_is_isolate_independent_builtin =
    270         isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
    271         Builtins::IsIsolateIndependent(builtin_index);
    272     if (target_is_isolate_independent_builtin &&
    273         options().use_pc_relative_calls_and_jumps) {
    274       int32_t code_target_index = AddCodeTarget(code);
    275       bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET);
    276       return;
    277     } else if (root_array_available_ && options().isolate_independent_code) {
    278       // Use ip directly instead of using UseScratchRegisterScope, as we do not
    279       // preserve scratch registers across calls.
    280       IndirectLoadConstant(ip, code);
    281       add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
    282       Call(ip, cond);
    283       return;
    284     } else if (target_is_isolate_independent_builtin &&
    285                options().inline_offheap_trampolines) {
    286       // Inline the trampoline.
    287       RecordCommentForOffHeapTrampoline(builtin_index);
    288       EmbeddedData d = EmbeddedData::FromBlob();
    289       Address entry = d.InstructionStartOfBuiltin(builtin_index);
    290       // Use ip directly instead of using UseScratchRegisterScope, as we do not
    291       // preserve scratch registers across calls.
    292       mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
    293       Call(ip, cond);
    294       return;
    295     }
    296   }
    297   // 'code' is always generated ARM code, never THUMB code
    298   Call(code.address(), rmode, cond, mode);
    299 }
    300 
    301 void TurboAssembler::Ret(Condition cond) { bx(lr, cond); }
    302 
    303 void TurboAssembler::Drop(int count, Condition cond) {
    304   if (count > 0) {
    305     add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
    306   }
    307 }
    308 
    309 void TurboAssembler::Drop(Register count, Condition cond) {
    310   add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond);
    311 }
    312 
    313 void TurboAssembler::Ret(int drop, Condition cond) {
    314   Drop(drop, cond);
    315   Ret(cond);
    316 }
    317 
    318 void TurboAssembler::Call(Label* target) { bl(target); }
    319 
    320 void TurboAssembler::Push(Handle<HeapObject> handle) {
    321   UseScratchRegisterScope temps(this);
    322   Register scratch = temps.Acquire();
    323   mov(scratch, Operand(handle));
    324   push(scratch);
    325 }
    326 
    327 void TurboAssembler::Push(Smi* smi) {
    328   UseScratchRegisterScope temps(this);
    329   Register scratch = temps.Acquire();
    330   mov(scratch, Operand(smi));
    331   push(scratch);
    332 }
    333 
    334 void TurboAssembler::Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
    335 
    336 void TurboAssembler::Move(Register dst, Handle<HeapObject> value) {
    337   if (FLAG_embedded_builtins) {
    338     if (root_array_available_ && options().isolate_independent_code) {
    339       IndirectLoadConstant(dst, value);
    340       return;
    341     }
    342   }
    343   mov(dst, Operand(value));
    344 }
    345 
    346 void TurboAssembler::Move(Register dst, ExternalReference reference) {
    347   if (FLAG_embedded_builtins) {
    348     if (root_array_available_ && options().isolate_independent_code) {
    349       IndirectLoadExternalReference(dst, reference);
    350       return;
    351     }
    352   }
    353   mov(dst, Operand(reference));
    354 }
    355 
    356 void TurboAssembler::Move(Register dst, Register src, Condition cond) {
    357   if (dst != src) {
    358     mov(dst, src, LeaveCC, cond);
    359   }
    360 }
    361 
    362 void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src,
    363                           Condition cond) {
    364   if (dst != src) {
    365     vmov(dst, src, cond);
    366   }
    367 }
    368 
    369 void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src,
    370                           Condition cond) {
    371   if (dst != src) {
    372     vmov(dst, src, cond);
    373   }
    374 }
    375 
    376 void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) {
    377   if (dst != src) {
    378     vmov(dst, src);
    379   }
    380 }
    381 
    382 void TurboAssembler::Swap(Register srcdst0, Register srcdst1) {
    383   DCHECK(srcdst0 != srcdst1);
    384   UseScratchRegisterScope temps(this);
    385   Register scratch = temps.Acquire();
    386   mov(scratch, srcdst0);
    387   mov(srcdst0, srcdst1);
    388   mov(srcdst1, scratch);
    389 }
    390 
    391 void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) {
    392   DCHECK(srcdst0 != srcdst1);
    393   DCHECK(VfpRegisterIsAvailable(srcdst0));
    394   DCHECK(VfpRegisterIsAvailable(srcdst1));
    395 
    396   if (CpuFeatures::IsSupported(NEON)) {
    397     vswp(srcdst0, srcdst1);
    398   } else {
    399     UseScratchRegisterScope temps(this);
    400     DwVfpRegister scratch = temps.AcquireD();
    401     vmov(scratch, srcdst0);
    402     vmov(srcdst0, srcdst1);
    403     vmov(srcdst1, scratch);
    404   }
    405 }
    406 
    407 void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) {
    408   DCHECK(srcdst0 != srcdst1);
    409   vswp(srcdst0, srcdst1);
    410 }
    411 
    412 void MacroAssembler::Mls(Register dst, Register src1, Register src2,
    413                          Register srcA, Condition cond) {
    414   if (CpuFeatures::IsSupported(ARMv7)) {
    415     CpuFeatureScope scope(this, ARMv7);
    416     mls(dst, src1, src2, srcA, cond);
    417   } else {
    418     UseScratchRegisterScope temps(this);
    419     Register scratch = temps.Acquire();
    420     DCHECK(srcA != scratch);
    421     mul(scratch, src1, src2, LeaveCC, cond);
    422     sub(dst, srcA, scratch, LeaveCC, cond);
    423   }
    424 }
    425 
    426 
    427 void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
    428                          Condition cond) {
    429   if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) &&
    430       src2.immediate() == 0) {
    431     mov(dst, Operand::Zero(), LeaveCC, cond);
    432   } else if (!(src2.InstructionsRequired(this) == 1) &&
    433              !src2.MustOutputRelocInfo(this) &&
    434              CpuFeatures::IsSupported(ARMv7) &&
    435              base::bits::IsPowerOfTwo(src2.immediate() + 1)) {
    436     CpuFeatureScope scope(this, ARMv7);
    437     ubfx(dst, src1, 0,
    438         WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
    439   } else {
    440     and_(dst, src1, src2, LeaveCC, cond);
    441   }
    442 }
    443 
    444 
    445 void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
    446                           Condition cond) {
    447   DCHECK_LT(lsb, 32);
    448   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    449     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    450     and_(dst, src1, Operand(mask), LeaveCC, cond);
    451     if (lsb != 0) {
    452       mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
    453     }
    454   } else {
    455     CpuFeatureScope scope(this, ARMv7);
    456     ubfx(dst, src1, lsb, width, cond);
    457   }
    458 }
    459 
    460 
    461 void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
    462                           Condition cond) {
    463   DCHECK_LT(lsb, 32);
    464   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    465     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    466     and_(dst, src1, Operand(mask), LeaveCC, cond);
    467     int shift_up = 32 - lsb - width;
    468     int shift_down = lsb + shift_up;
    469     if (shift_up != 0) {
    470       mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
    471     }
    472     if (shift_down != 0) {
    473       mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
    474     }
    475   } else {
    476     CpuFeatureScope scope(this, ARMv7);
    477     sbfx(dst, src1, lsb, width, cond);
    478   }
    479 }
    480 
    481 
    482 void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width,
    483                          Condition cond) {
    484   DCHECK_LT(lsb, 32);
    485   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    486     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    487     bic(dst, src, Operand(mask));
    488   } else {
    489     CpuFeatureScope scope(this, ARMv7);
    490     Move(dst, src, cond);
    491     bfc(dst, lsb, width, cond);
    492   }
    493 }
    494 
    495 void MacroAssembler::Load(Register dst,
    496                           const MemOperand& src,
    497                           Representation r) {
    498   DCHECK(!r.IsDouble());
    499   if (r.IsInteger8()) {
    500     ldrsb(dst, src);
    501   } else if (r.IsUInteger8()) {
    502     ldrb(dst, src);
    503   } else if (r.IsInteger16()) {
    504     ldrsh(dst, src);
    505   } else if (r.IsUInteger16()) {
    506     ldrh(dst, src);
    507   } else {
    508     ldr(dst, src);
    509   }
    510 }
    511 
    512 void MacroAssembler::Store(Register src,
    513                            const MemOperand& dst,
    514                            Representation r) {
    515   DCHECK(!r.IsDouble());
    516   if (r.IsInteger8() || r.IsUInteger8()) {
    517     strb(src, dst);
    518   } else if (r.IsInteger16() || r.IsUInteger16()) {
    519     strh(src, dst);
    520   } else {
    521     if (r.IsHeapObject()) {
    522       AssertNotSmi(src);
    523     } else if (r.IsSmi()) {
    524       AssertSmi(src);
    525     }
    526     str(src, dst);
    527   }
    528 }
    529 
    530 void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
    531                               Condition cond) {
    532   ldr(destination, MemOperand(kRootRegister, RootRegisterOffset(index)), cond);
    533 }
    534 
    535 
    536 void MacroAssembler::RecordWriteField(Register object, int offset,
    537                                       Register value, Register dst,
    538                                       LinkRegisterStatus lr_status,
    539                                       SaveFPRegsMode save_fp,
    540                                       RememberedSetAction remembered_set_action,
    541                                       SmiCheck smi_check) {
    542   // First, check if a write barrier is even needed. The tests below
    543   // catch stores of Smis.
    544   Label done;
    545 
    546   // Skip barrier if writing a smi.
    547   if (smi_check == INLINE_SMI_CHECK) {
    548     JumpIfSmi(value, &done);
    549   }
    550 
    551   // Although the object register is tagged, the offset is relative to the start
    552   // of the object, so so offset must be a multiple of kPointerSize.
    553   DCHECK(IsAligned(offset, kPointerSize));
    554 
    555   add(dst, object, Operand(offset - kHeapObjectTag));
    556   if (emit_debug_code()) {
    557     Label ok;
    558     tst(dst, Operand(kPointerSize - 1));
    559     b(eq, &ok);
    560     stop("Unaligned cell in write barrier");
    561     bind(&ok);
    562   }
    563 
    564   RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
    565               OMIT_SMI_CHECK);
    566 
    567   bind(&done);
    568 
    569   // Clobber clobbered input registers when running with the debug-code flag
    570   // turned on to provoke errors.
    571   if (emit_debug_code()) {
    572     mov(value, Operand(bit_cast<int32_t>(kZapValue + 4)));
    573     mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8)));
    574   }
    575 }
    576 
    577 void TurboAssembler::SaveRegisters(RegList registers) {
    578   DCHECK_GT(NumRegs(registers), 0);
    579   RegList regs = 0;
    580   for (int i = 0; i < Register::kNumRegisters; ++i) {
    581     if ((registers >> i) & 1u) {
    582       regs |= Register::from_code(i).bit();
    583     }
    584   }
    585 
    586   stm(db_w, sp, regs);
    587 }
    588 
    589 void TurboAssembler::RestoreRegisters(RegList registers) {
    590   DCHECK_GT(NumRegs(registers), 0);
    591   RegList regs = 0;
    592   for (int i = 0; i < Register::kNumRegisters; ++i) {
    593     if ((registers >> i) & 1u) {
    594       regs |= Register::from_code(i).bit();
    595     }
    596   }
    597   ldm(ia_w, sp, regs);
    598 }
    599 
    600 void TurboAssembler::CallRecordWriteStub(
    601     Register object, Register address,
    602     RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
    603   // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode,
    604   // i.e. always emit remember set and save FP registers in RecordWriteStub. If
    605   // large performance regression is observed, we should use these values to
    606   // avoid unnecessary work.
    607 
    608   Callable const callable =
    609       Builtins::CallableFor(isolate(), Builtins::kRecordWrite);
    610   RegList registers = callable.descriptor().allocatable_registers();
    611 
    612   SaveRegisters(registers);
    613 
    614   Register object_parameter(callable.descriptor().GetRegisterParameter(
    615       RecordWriteDescriptor::kObject));
    616   Register slot_parameter(
    617       callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot));
    618   Register isolate_parameter(callable.descriptor().GetRegisterParameter(
    619       RecordWriteDescriptor::kIsolate));
    620   Register remembered_set_parameter(callable.descriptor().GetRegisterParameter(
    621       RecordWriteDescriptor::kRememberedSet));
    622   Register fp_mode_parameter(callable.descriptor().GetRegisterParameter(
    623       RecordWriteDescriptor::kFPMode));
    624 
    625   Push(object);
    626   Push(address);
    627 
    628   Pop(slot_parameter);
    629   Pop(object_parameter);
    630 
    631   Move(isolate_parameter, ExternalReference::isolate_address(isolate()));
    632   Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action));
    633   Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
    634   Call(callable.code(), RelocInfo::CODE_TARGET);
    635 
    636   RestoreRegisters(registers);
    637 }
    638 
    639 // Will clobber 3 registers: object, address, and value. The register 'object'
    640 // contains a heap object pointer. The heap object tag is shifted away.
    641 // A scratch register also needs to be available.
    642 void MacroAssembler::RecordWrite(Register object, Register address,
    643                                  Register value, LinkRegisterStatus lr_status,
    644                                  SaveFPRegsMode fp_mode,
    645                                  RememberedSetAction remembered_set_action,
    646                                  SmiCheck smi_check) {
    647   DCHECK(object != value);
    648   if (emit_debug_code()) {
    649     {
    650       UseScratchRegisterScope temps(this);
    651       Register scratch = temps.Acquire();
    652       ldr(scratch, MemOperand(address));
    653       cmp(scratch, value);
    654     }
    655     Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite);
    656   }
    657 
    658   if (remembered_set_action == OMIT_REMEMBERED_SET &&
    659       !FLAG_incremental_marking) {
    660     return;
    661   }
    662 
    663   // First, check if a write barrier is even needed. The tests below
    664   // catch stores of smis and stores into the young generation.
    665   Label done;
    666 
    667   if (smi_check == INLINE_SMI_CHECK) {
    668     JumpIfSmi(value, &done);
    669   }
    670 
    671   CheckPageFlag(value,
    672                 value,  // Used as scratch.
    673                 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
    674   CheckPageFlag(object,
    675                 value,  // Used as scratch.
    676                 MemoryChunk::kPointersFromHereAreInterestingMask,
    677                 eq,
    678                 &done);
    679 
    680   // Record the actual write.
    681   if (lr_status == kLRHasNotBeenSaved) {
    682     push(lr);
    683   }
    684   CallRecordWriteStub(object, address, remembered_set_action, fp_mode);
    685   if (lr_status == kLRHasNotBeenSaved) {
    686     pop(lr);
    687   }
    688 
    689   bind(&done);
    690 
    691   // Count number of write barriers in generated code.
    692   isolate()->counters()->write_barriers_static()->Increment();
    693   {
    694     UseScratchRegisterScope temps(this);
    695     IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1,
    696                      temps.Acquire(), value);
    697   }
    698 
    699   // Clobber clobbered registers when running with the debug-code flag
    700   // turned on to provoke errors.
    701   if (emit_debug_code()) {
    702     mov(address, Operand(bit_cast<int32_t>(kZapValue + 12)));
    703     mov(value, Operand(bit_cast<int32_t>(kZapValue + 16)));
    704   }
    705 }
    706 
    707 void TurboAssembler::PushCommonFrame(Register marker_reg) {
    708   if (marker_reg.is_valid()) {
    709     if (marker_reg.code() > fp.code()) {
    710       stm(db_w, sp, fp.bit() | lr.bit());
    711       mov(fp, Operand(sp));
    712       Push(marker_reg);
    713     } else {
    714       stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit());
    715       add(fp, sp, Operand(kPointerSize));
    716     }
    717   } else {
    718     stm(db_w, sp, fp.bit() | lr.bit());
    719     mov(fp, sp);
    720   }
    721 }
    722 
    723 void TurboAssembler::PushStandardFrame(Register function_reg) {
    724   DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code());
    725   stm(db_w, sp, (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() |
    726                     fp.bit() | lr.bit());
    727   int offset = -StandardFrameConstants::kContextOffset;
    728   offset += function_reg.is_valid() ? kPointerSize : 0;
    729   add(fp, sp, Operand(offset));
    730 }
    731 
    732 
    733 // Push and pop all registers that can hold pointers.
    734 void MacroAssembler::PushSafepointRegisters() {
    735   // Safepoints expect a block of contiguous register values starting with r0.
    736   DCHECK_EQ(kSafepointSavedRegisters, (1 << kNumSafepointSavedRegisters) - 1);
    737   // Safepoints expect a block of kNumSafepointRegisters values on the
    738   // stack, so adjust the stack for unsaved registers.
    739   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    740   DCHECK_GE(num_unsaved, 0);
    741   sub(sp, sp, Operand(num_unsaved * kPointerSize));
    742   stm(db_w, sp, kSafepointSavedRegisters);
    743 }
    744 
    745 void MacroAssembler::PopSafepointRegisters() {
    746   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    747   ldm(ia_w, sp, kSafepointSavedRegisters);
    748   add(sp, sp, Operand(num_unsaved * kPointerSize));
    749 }
    750 
    751 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
    752   // The registers are pushed starting with the highest encoding,
    753   // which means that lowest encodings are closest to the stack pointer.
    754   DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
    755   return reg_code;
    756 }
    757 
    758 void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst,
    759                                         const DwVfpRegister src,
    760                                         const Condition cond) {
    761   // Subtracting 0.0 preserves all inputs except for signalling NaNs, which
    762   // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0
    763   // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
    764   vsub(dst, src, kDoubleRegZero, cond);
    765 }
    766 
    767 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1,
    768                                            const SwVfpRegister src2,
    769                                            const Condition cond) {
    770   // Compare and move FPSCR flags to the normal condition flags.
    771   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    772 }
    773 
    774 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1,
    775                                            const float src2,
    776                                            const Condition cond) {
    777   // Compare and move FPSCR flags to the normal condition flags.
    778   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    779 }
    780 
    781 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
    782                                            const DwVfpRegister src2,
    783                                            const Condition cond) {
    784   // Compare and move FPSCR flags to the normal condition flags.
    785   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    786 }
    787 
    788 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
    789                                            const double src2,
    790                                            const Condition cond) {
    791   // Compare and move FPSCR flags to the normal condition flags.
    792   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    793 }
    794 
    795 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1,
    796                                             const SwVfpRegister src2,
    797                                             const Register fpscr_flags,
    798                                             const Condition cond) {
    799   // Compare and load FPSCR.
    800   vcmp(src1, src2, cond);
    801   vmrs(fpscr_flags, cond);
    802 }
    803 
    804 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1,
    805                                             const float src2,
    806                                             const Register fpscr_flags,
    807                                             const Condition cond) {
    808   // Compare and load FPSCR.
    809   vcmp(src1, src2, cond);
    810   vmrs(fpscr_flags, cond);
    811 }
    812 
    813 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
    814                                             const DwVfpRegister src2,
    815                                             const Register fpscr_flags,
    816                                             const Condition cond) {
    817   // Compare and load FPSCR.
    818   vcmp(src1, src2, cond);
    819   vmrs(fpscr_flags, cond);
    820 }
    821 
    822 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
    823                                             const double src2,
    824                                             const Register fpscr_flags,
    825                                             const Condition cond) {
    826   // Compare and load FPSCR.
    827   vcmp(src1, src2, cond);
    828   vmrs(fpscr_flags, cond);
    829 }
    830 
    831 void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) {
    832   if (src.code() < 16) {
    833     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
    834     vmov(dst, loc.high());
    835   } else {
    836     vmov(NeonS32, dst, src, 1);
    837   }
    838 }
    839 
    840 void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) {
    841   if (dst.code() < 16) {
    842     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
    843     vmov(loc.high(), src);
    844   } else {
    845     vmov(NeonS32, dst, 1, src);
    846   }
    847 }
    848 
    849 void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) {
    850   if (src.code() < 16) {
    851     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
    852     vmov(dst, loc.low());
    853   } else {
    854     vmov(NeonS32, dst, src, 0);
    855   }
    856 }
    857 
    858 void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) {
    859   if (dst.code() < 16) {
    860     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
    861     vmov(loc.low(), src);
    862   } else {
    863     vmov(NeonS32, dst, 0, src);
    864   }
    865 }
    866 
    867 void TurboAssembler::VmovExtended(Register dst, int src_code) {
    868   DCHECK_LE(SwVfpRegister::kNumRegisters, src_code);
    869   DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code);
    870   if (src_code & 0x1) {
    871     VmovHigh(dst, DwVfpRegister::from_code(src_code / 2));
    872   } else {
    873     VmovLow(dst, DwVfpRegister::from_code(src_code / 2));
    874   }
    875 }
    876 
    877 void TurboAssembler::VmovExtended(int dst_code, Register src) {
    878   DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code);
    879   DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code);
    880   if (dst_code & 0x1) {
    881     VmovHigh(DwVfpRegister::from_code(dst_code / 2), src);
    882   } else {
    883     VmovLow(DwVfpRegister::from_code(dst_code / 2), src);
    884   }
    885 }
    886 
    887 void TurboAssembler::VmovExtended(int dst_code, int src_code) {
    888   if (src_code == dst_code) return;
    889 
    890   if (src_code < SwVfpRegister::kNumRegisters &&
    891       dst_code < SwVfpRegister::kNumRegisters) {
    892     // src and dst are both s-registers.
    893     vmov(SwVfpRegister::from_code(dst_code),
    894          SwVfpRegister::from_code(src_code));
    895     return;
    896   }
    897   DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2);
    898   DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2);
    899   int dst_offset = dst_code & 1;
    900   int src_offset = src_code & 1;
    901   if (CpuFeatures::IsSupported(NEON)) {
    902     UseScratchRegisterScope temps(this);
    903     DwVfpRegister scratch = temps.AcquireD();
    904     // On Neon we can shift and insert from d-registers.
    905     if (src_offset == dst_offset) {
    906       // Offsets are the same, use vdup to copy the source to the opposite lane.
    907       vdup(Neon32, scratch, src_d_reg, src_offset);
    908       // Here we are extending the lifetime of scratch.
    909       src_d_reg = scratch;
    910       src_offset = dst_offset ^ 1;
    911     }
    912     if (dst_offset) {
    913       if (dst_d_reg == src_d_reg) {
    914         vdup(Neon32, dst_d_reg, src_d_reg, 0);
    915       } else {
    916         vsli(Neon64, dst_d_reg, src_d_reg, 32);
    917       }
    918     } else {
    919       if (dst_d_reg == src_d_reg) {
    920         vdup(Neon32, dst_d_reg, src_d_reg, 1);
    921       } else {
    922         vsri(Neon64, dst_d_reg, src_d_reg, 32);
    923       }
    924     }
    925     return;
    926   }
    927 
    928   // Without Neon, use the scratch registers to move src and/or dst into
    929   // s-registers.
    930   UseScratchRegisterScope temps(this);
    931   LowDwVfpRegister d_scratch = temps.AcquireLowD();
    932   LowDwVfpRegister d_scratch2 = temps.AcquireLowD();
    933   int s_scratch_code = d_scratch.low().code();
    934   int s_scratch_code2 = d_scratch2.low().code();
    935   if (src_code < SwVfpRegister::kNumRegisters) {
    936     // src is an s-register, dst is not.
    937     vmov(d_scratch, dst_d_reg);
    938     vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset),
    939          SwVfpRegister::from_code(src_code));
    940     vmov(dst_d_reg, d_scratch);
    941   } else if (dst_code < SwVfpRegister::kNumRegisters) {
    942     // dst is an s-register, src is not.
    943     vmov(d_scratch, src_d_reg);
    944     vmov(SwVfpRegister::from_code(dst_code),
    945          SwVfpRegister::from_code(s_scratch_code + src_offset));
    946   } else {
    947     // Neither src or dst are s-registers. Both scratch double registers are
    948     // available when there are 32 VFP registers.
    949     vmov(d_scratch, src_d_reg);
    950     vmov(d_scratch2, dst_d_reg);
    951     vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset),
    952          SwVfpRegister::from_code(s_scratch_code2 + src_offset));
    953     vmov(dst_d_reg, d_scratch2);
    954   }
    955 }
    956 
    957 void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) {
    958   if (dst_code < SwVfpRegister::kNumRegisters) {
    959     vldr(SwVfpRegister::from_code(dst_code), src);
    960   } else {
    961     UseScratchRegisterScope temps(this);
    962     LowDwVfpRegister scratch = temps.AcquireLowD();
    963     // TODO(bbudge) If Neon supported, use load single lane form of vld1.
    964     int dst_s_code = scratch.low().code() + (dst_code & 1);
    965     vmov(scratch, DwVfpRegister::from_code(dst_code / 2));
    966     vldr(SwVfpRegister::from_code(dst_s_code), src);
    967     vmov(DwVfpRegister::from_code(dst_code / 2), scratch);
    968   }
    969 }
    970 
    971 void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) {
    972   if (src_code < SwVfpRegister::kNumRegisters) {
    973     vstr(SwVfpRegister::from_code(src_code), dst);
    974   } else {
    975     // TODO(bbudge) If Neon supported, use store single lane form of vst1.
    976     UseScratchRegisterScope temps(this);
    977     LowDwVfpRegister scratch = temps.AcquireLowD();
    978     int src_s_code = scratch.low().code() + (src_code & 1);
    979     vmov(scratch, DwVfpRegister::from_code(src_code / 2));
    980     vstr(SwVfpRegister::from_code(src_s_code), dst);
    981   }
    982 }
    983 
    984 void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src,
    985                                  NeonDataType dt, int lane) {
    986   int size = NeonSz(dt);  // 0, 1, 2
    987   int byte = lane << size;
    988   int double_word = byte >> kDoubleSizeLog2;
    989   int double_byte = byte & (kDoubleSize - 1);
    990   int double_lane = double_byte >> size;
    991   DwVfpRegister double_source =
    992       DwVfpRegister::from_code(src.code() * 2 + double_word);
    993   vmov(dt, dst, double_source, double_lane);
    994 }
    995 
    996 void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src,
    997                                  NeonDataType dt, int lane) {
    998   int size = NeonSz(dt);  // 0, 1, 2
    999   int byte = lane << size;
   1000   int double_byte = byte & (kDoubleSize - 1);
   1001   int double_lane = double_byte >> size;
   1002   vmov(dt, dst, src, double_lane);
   1003 }
   1004 
   1005 void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src,
   1006                                  int lane) {
   1007   int s_code = src.code() * 4 + lane;
   1008   VmovExtended(dst.code(), s_code);
   1009 }
   1010 
   1011 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
   1012                                  Register src_lane, NeonDataType dt, int lane) {
   1013   Move(dst, src);
   1014   int size = NeonSz(dt);  // 0, 1, 2
   1015   int byte = lane << size;
   1016   int double_word = byte >> kDoubleSizeLog2;
   1017   int double_byte = byte & (kDoubleSize - 1);
   1018   int double_lane = double_byte >> size;
   1019   DwVfpRegister double_dst =
   1020       DwVfpRegister::from_code(dst.code() * 2 + double_word);
   1021   vmov(dt, double_dst, double_lane, src_lane);
   1022 }
   1023 
   1024 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
   1025                                  SwVfpRegister src_lane, int lane) {
   1026   Move(dst, src);
   1027   int s_code = dst.code() * 4 + lane;
   1028   VmovExtended(s_code, src_lane.code());
   1029 }
   1030 
   1031 void TurboAssembler::LslPair(Register dst_low, Register dst_high,
   1032                              Register src_low, Register src_high,
   1033                              Register shift) {
   1034   DCHECK(!AreAliased(dst_high, src_low));
   1035   DCHECK(!AreAliased(dst_high, shift));
   1036   UseScratchRegisterScope temps(this);
   1037   Register scratch = temps.Acquire();
   1038 
   1039   Label less_than_32;
   1040   Label done;
   1041   rsb(scratch, shift, Operand(32), SetCC);
   1042   b(gt, &less_than_32);
   1043   // If shift >= 32
   1044   and_(scratch, shift, Operand(0x1F));
   1045   lsl(dst_high, src_low, Operand(scratch));
   1046   mov(dst_low, Operand(0));
   1047   jmp(&done);
   1048   bind(&less_than_32);
   1049   // If shift < 32
   1050   lsl(dst_high, src_high, Operand(shift));
   1051   orr(dst_high, dst_high, Operand(src_low, LSR, scratch));
   1052   lsl(dst_low, src_low, Operand(shift));
   1053   bind(&done);
   1054 }
   1055 
   1056 void TurboAssembler::LslPair(Register dst_low, Register dst_high,
   1057                              Register src_low, Register src_high,
   1058                              uint32_t shift) {
   1059   DCHECK(!AreAliased(dst_high, src_low));
   1060   Label less_than_32;
   1061   Label done;
   1062   if (shift == 0) {
   1063     Move(dst_high, src_high);
   1064     Move(dst_low, src_low);
   1065   } else if (shift == 32) {
   1066     Move(dst_high, src_low);
   1067     Move(dst_low, Operand(0));
   1068   } else if (shift >= 32) {
   1069     shift &= 0x1F;
   1070     lsl(dst_high, src_low, Operand(shift));
   1071     mov(dst_low, Operand(0));
   1072   } else {
   1073     lsl(dst_high, src_high, Operand(shift));
   1074     orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift));
   1075     lsl(dst_low, src_low, Operand(shift));
   1076   }
   1077 }
   1078 
   1079 void TurboAssembler::LsrPair(Register dst_low, Register dst_high,
   1080                              Register src_low, Register src_high,
   1081                              Register shift) {
   1082   DCHECK(!AreAliased(dst_low, src_high));
   1083   DCHECK(!AreAliased(dst_low, shift));
   1084   UseScratchRegisterScope temps(this);
   1085   Register scratch = temps.Acquire();
   1086 
   1087   Label less_than_32;
   1088   Label done;
   1089   rsb(scratch, shift, Operand(32), SetCC);
   1090   b(gt, &less_than_32);
   1091   // If shift >= 32
   1092   and_(scratch, shift, Operand(0x1F));
   1093   lsr(dst_low, src_high, Operand(scratch));
   1094   mov(dst_high, Operand(0));
   1095   jmp(&done);
   1096   bind(&less_than_32);
   1097   // If shift < 32
   1098 
   1099   lsr(dst_low, src_low, Operand(shift));
   1100   orr(dst_low, dst_low, Operand(src_high, LSL, scratch));
   1101   lsr(dst_high, src_high, Operand(shift));
   1102   bind(&done);
   1103 }
   1104 
   1105 void TurboAssembler::LsrPair(Register dst_low, Register dst_high,
   1106                              Register src_low, Register src_high,
   1107                              uint32_t shift) {
   1108   DCHECK(!AreAliased(dst_low, src_high));
   1109   Label less_than_32;
   1110   Label done;
   1111   if (shift == 32) {
   1112     mov(dst_low, src_high);
   1113     mov(dst_high, Operand(0));
   1114   } else if (shift > 32) {
   1115     shift &= 0x1F;
   1116     lsr(dst_low, src_high, Operand(shift));
   1117     mov(dst_high, Operand(0));
   1118   } else if (shift == 0) {
   1119     Move(dst_low, src_low);
   1120     Move(dst_high, src_high);
   1121   } else {
   1122     lsr(dst_low, src_low, Operand(shift));
   1123     orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift));
   1124     lsr(dst_high, src_high, Operand(shift));
   1125   }
   1126 }
   1127 
   1128 void TurboAssembler::AsrPair(Register dst_low, Register dst_high,
   1129                              Register src_low, Register src_high,
   1130                              Register shift) {
   1131   DCHECK(!AreAliased(dst_low, src_high));
   1132   DCHECK(!AreAliased(dst_low, shift));
   1133   UseScratchRegisterScope temps(this);
   1134   Register scratch = temps.Acquire();
   1135 
   1136   Label less_than_32;
   1137   Label done;
   1138   rsb(scratch, shift, Operand(32), SetCC);
   1139   b(gt, &less_than_32);
   1140   // If shift >= 32
   1141   and_(scratch, shift, Operand(0x1F));
   1142   asr(dst_low, src_high, Operand(scratch));
   1143   asr(dst_high, src_high, Operand(31));
   1144   jmp(&done);
   1145   bind(&less_than_32);
   1146   // If shift < 32
   1147   lsr(dst_low, src_low, Operand(shift));
   1148   orr(dst_low, dst_low, Operand(src_high, LSL, scratch));
   1149   asr(dst_high, src_high, Operand(shift));
   1150   bind(&done);
   1151 }
   1152 
   1153 void TurboAssembler::AsrPair(Register dst_low, Register dst_high,
   1154                              Register src_low, Register src_high,
   1155                              uint32_t shift) {
   1156   DCHECK(!AreAliased(dst_low, src_high));
   1157   Label less_than_32;
   1158   Label done;
   1159   if (shift == 32) {
   1160     mov(dst_low, src_high);
   1161     asr(dst_high, src_high, Operand(31));
   1162   } else if (shift > 32) {
   1163     shift &= 0x1F;
   1164     asr(dst_low, src_high, Operand(shift));
   1165     asr(dst_high, src_high, Operand(31));
   1166   } else if (shift == 0) {
   1167     Move(dst_low, src_low);
   1168     Move(dst_high, src_high);
   1169   } else {
   1170     lsr(dst_low, src_low, Operand(shift));
   1171     orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift));
   1172     asr(dst_high, src_high, Operand(shift));
   1173   }
   1174 }
   1175 
   1176 void TurboAssembler::StubPrologue(StackFrame::Type type) {
   1177   UseScratchRegisterScope temps(this);
   1178   Register scratch = temps.Acquire();
   1179   mov(scratch, Operand(StackFrame::TypeToMarker(type)));
   1180   PushCommonFrame(scratch);
   1181 }
   1182 
   1183 void TurboAssembler::Prologue() { PushStandardFrame(r1); }
   1184 
   1185 void TurboAssembler::EnterFrame(StackFrame::Type type,
   1186                                 bool load_constant_pool_pointer_reg) {
   1187   // r0-r3: preserved
   1188   UseScratchRegisterScope temps(this);
   1189   Register scratch = temps.Acquire();
   1190   mov(scratch, Operand(StackFrame::TypeToMarker(type)));
   1191   PushCommonFrame(scratch);
   1192 }
   1193 
   1194 int TurboAssembler::LeaveFrame(StackFrame::Type type) {
   1195   // r0: preserved
   1196   // r1: preserved
   1197   // r2: preserved
   1198 
   1199   // Drop the execution stack down to the frame pointer and restore
   1200   // the caller frame pointer and return address.
   1201   mov(sp, fp);
   1202   int frame_ends = pc_offset();
   1203   ldm(ia_w, sp, fp.bit() | lr.bit());
   1204   return frame_ends;
   1205 }
   1206 
   1207 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
   1208                                     StackFrame::Type frame_type) {
   1209   DCHECK(frame_type == StackFrame::EXIT ||
   1210          frame_type == StackFrame::BUILTIN_EXIT);
   1211   UseScratchRegisterScope temps(this);
   1212   Register scratch = temps.Acquire();
   1213 
   1214   // Set up the frame structure on the stack.
   1215   DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
   1216   DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
   1217   DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
   1218   mov(scratch, Operand(StackFrame::TypeToMarker(frame_type)));
   1219   PushCommonFrame(scratch);
   1220   // Reserve room for saved entry sp and code object.
   1221   sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp));
   1222   if (emit_debug_code()) {
   1223     mov(scratch, Operand::Zero());
   1224     str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
   1225   }
   1226   Move(scratch, CodeObject());
   1227   str(scratch, MemOperand(fp, ExitFrameConstants::kCodeOffset));
   1228 
   1229   // Save the frame pointer and the context in top.
   1230   Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
   1231                                           isolate()));
   1232   str(fp, MemOperand(scratch));
   1233   Move(scratch,
   1234        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
   1235   str(cp, MemOperand(scratch));
   1236 
   1237   // Optionally save all double registers.
   1238   if (save_doubles) {
   1239     SaveFPRegs(sp, scratch);
   1240     // Note that d0 will be accessible at
   1241     //   fp - ExitFrameConstants::kFrameSize -
   1242     //   DwVfpRegister::kNumRegisters * kDoubleSize,
   1243     // since the sp slot and code slot were pushed after the fp.
   1244   }
   1245 
   1246   // Reserve place for the return address and stack space and align the frame
   1247   // preparing for calling the runtime function.
   1248   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   1249   sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
   1250   if (frame_alignment > 0) {
   1251     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
   1252     and_(sp, sp, Operand(-frame_alignment));
   1253   }
   1254 
   1255   // Set the exit frame sp value to point just before the return address
   1256   // location.
   1257   add(scratch, sp, Operand(kPointerSize));
   1258   str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
   1259 }
   1260 
   1261 int TurboAssembler::ActivationFrameAlignment() {
   1262 #if V8_HOST_ARCH_ARM
   1263   // Running on the real platform. Use the alignment as mandated by the local
   1264   // environment.
   1265   // Note: This will break if we ever start generating snapshots on one ARM
   1266   // platform for another ARM platform with a different alignment.
   1267   return base::OS::ActivationFrameAlignment();
   1268 #else  // V8_HOST_ARCH_ARM
   1269   // If we are using the simulator then we should always align to the expected
   1270   // alignment. As the simulator is used to generate snapshots we do not know
   1271   // if the target platform will need alignment, so this is controlled from a
   1272   // flag.
   1273   return FLAG_sim_stack_alignment;
   1274 #endif  // V8_HOST_ARCH_ARM
   1275 }
   1276 
   1277 void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
   1278                                     bool argument_count_is_length) {
   1279   ConstantPoolUnavailableScope constant_pool_unavailable(this);
   1280   UseScratchRegisterScope temps(this);
   1281   Register scratch = temps.Acquire();
   1282 
   1283   // Optionally restore all double registers.
   1284   if (save_doubles) {
   1285     // Calculate the stack location of the saved doubles and restore them.
   1286     const int offset = ExitFrameConstants::kFixedFrameSizeFromFp;
   1287     sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize));
   1288     RestoreFPRegs(r3, scratch);
   1289   }
   1290 
   1291   // Clear top frame.
   1292   mov(r3, Operand::Zero());
   1293   Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
   1294                                           isolate()));
   1295   str(r3, MemOperand(scratch));
   1296 
   1297   // Restore current context from top and clear it in debug mode.
   1298   Move(scratch,
   1299        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
   1300   ldr(cp, MemOperand(scratch));
   1301 #ifdef DEBUG
   1302   mov(r3, Operand(Context::kInvalidContext));
   1303   Move(scratch,
   1304        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
   1305   str(r3, MemOperand(scratch));
   1306 #endif
   1307 
   1308   // Tear down the exit frame, pop the arguments, and return.
   1309   mov(sp, Operand(fp));
   1310   ldm(ia_w, sp, fp.bit() | lr.bit());
   1311   if (argument_count.is_valid()) {
   1312     if (argument_count_is_length) {
   1313       add(sp, sp, argument_count);
   1314     } else {
   1315       add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
   1316     }
   1317   }
   1318 }
   1319 
   1320 void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) {
   1321   if (use_eabi_hardfloat()) {
   1322     Move(dst, d0);
   1323   } else {
   1324     vmov(dst, r0, r1);
   1325   }
   1326 }
   1327 
   1328 
   1329 // On ARM this is just a synonym to make the purpose clear.
   1330 void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) {
   1331   MovFromFloatResult(dst);
   1332 }
   1333 
   1334 void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
   1335                                         Register caller_args_count_reg,
   1336                                         Register scratch0, Register scratch1) {
   1337 #if DEBUG
   1338   if (callee_args_count.is_reg()) {
   1339     DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
   1340                        scratch1));
   1341   } else {
   1342     DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
   1343   }
   1344 #endif
   1345 
   1346   // Calculate the end of destination area where we will put the arguments
   1347   // after we drop current frame. We add kPointerSize to count the receiver
   1348   // argument which is not included into formal parameters count.
   1349   Register dst_reg = scratch0;
   1350   add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2));
   1351   add(dst_reg, dst_reg,
   1352       Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
   1353 
   1354   Register src_reg = caller_args_count_reg;
   1355   // Calculate the end of source area. +kPointerSize is for the receiver.
   1356   if (callee_args_count.is_reg()) {
   1357     add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2));
   1358     add(src_reg, src_reg, Operand(kPointerSize));
   1359   } else {
   1360     add(src_reg, sp,
   1361         Operand((callee_args_count.immediate() + 1) * kPointerSize));
   1362   }
   1363 
   1364   if (FLAG_debug_code) {
   1365     cmp(src_reg, dst_reg);
   1366     Check(lo, AbortReason::kStackAccessBelowStackPointer);
   1367   }
   1368 
   1369   // Restore caller's frame pointer and return address now as they will be
   1370   // overwritten by the copying loop.
   1371   ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
   1372   ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1373 
   1374   // Now copy callee arguments to the caller frame going backwards to avoid
   1375   // callee arguments corruption (source and destination areas could overlap).
   1376 
   1377   // Both src_reg and dst_reg are pointing to the word after the one to copy,
   1378   // so they must be pre-decremented in the loop.
   1379   Register tmp_reg = scratch1;
   1380   Label loop, entry;
   1381   b(&entry);
   1382   bind(&loop);
   1383   ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex));
   1384   str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex));
   1385   bind(&entry);
   1386   cmp(sp, src_reg);
   1387   b(ne, &loop);
   1388 
   1389   // Leave current frame.
   1390   mov(sp, dst_reg);
   1391 }
   1392 
   1393 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
   1394                                     const ParameterCount& actual, Label* done,
   1395                                     bool* definitely_mismatches,
   1396                                     InvokeFlag flag) {
   1397   bool definitely_matches = false;
   1398   *definitely_mismatches = false;
   1399   Label regular_invoke;
   1400 
   1401   // Check whether the expected and actual arguments count match. If not,
   1402   // setup registers according to contract with ArgumentsAdaptorTrampoline:
   1403   //  r0: actual arguments count
   1404   //  r1: function (passed through to callee)
   1405   //  r2: expected arguments count
   1406 
   1407   // The code below is made a lot easier because the calling code already sets
   1408   // up actual and expected registers according to the contract if values are
   1409   // passed in registers.
   1410   DCHECK(actual.is_immediate() || actual.reg() == r0);
   1411   DCHECK(expected.is_immediate() || expected.reg() == r2);
   1412 
   1413   if (expected.is_immediate()) {
   1414     DCHECK(actual.is_immediate());
   1415     mov(r0, Operand(actual.immediate()));
   1416     if (expected.immediate() == actual.immediate()) {
   1417       definitely_matches = true;
   1418     } else {
   1419       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   1420       if (expected.immediate() == sentinel) {
   1421         // Don't worry about adapting arguments for builtins that
   1422         // don't want that done. Skip adaption code by making it look
   1423         // like we have a match between expected and actual number of
   1424         // arguments.
   1425         definitely_matches = true;
   1426       } else {
   1427         *definitely_mismatches = true;
   1428         mov(r2, Operand(expected.immediate()));
   1429       }
   1430     }
   1431   } else {
   1432     if (actual.is_immediate()) {
   1433       mov(r0, Operand(actual.immediate()));
   1434       cmp(expected.reg(), Operand(actual.immediate()));
   1435       b(eq, &regular_invoke);
   1436     } else {
   1437       cmp(expected.reg(), Operand(actual.reg()));
   1438       b(eq, &regular_invoke);
   1439     }
   1440   }
   1441 
   1442   if (!definitely_matches) {
   1443     Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
   1444     if (flag == CALL_FUNCTION) {
   1445       Call(adaptor);
   1446       if (!*definitely_mismatches) {
   1447         b(done);
   1448       }
   1449     } else {
   1450       Jump(adaptor, RelocInfo::CODE_TARGET);
   1451     }
   1452     bind(&regular_invoke);
   1453   }
   1454 }
   1455 
   1456 void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
   1457                                     const ParameterCount& expected,
   1458                                     const ParameterCount& actual) {
   1459   Label skip_hook;
   1460 
   1461   ExternalReference debug_hook_active =
   1462       ExternalReference::debug_hook_on_function_call_address(isolate());
   1463   Move(r4, debug_hook_active);
   1464   ldrsb(r4, MemOperand(r4));
   1465   cmp(r4, Operand(0));
   1466   b(eq, &skip_hook);
   1467 
   1468   {
   1469     // Load receiver to pass it later to DebugOnFunctionCall hook.
   1470     if (actual.is_reg()) {
   1471       mov(r4, actual.reg());
   1472     } else {
   1473       mov(r4, Operand(actual.immediate()));
   1474     }
   1475     ldr(r4, MemOperand(sp, r4, LSL, kPointerSizeLog2));
   1476     FrameScope frame(this,
   1477                      has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
   1478     if (expected.is_reg()) {
   1479       SmiTag(expected.reg());
   1480       Push(expected.reg());
   1481     }
   1482     if (actual.is_reg()) {
   1483       SmiTag(actual.reg());
   1484       Push(actual.reg());
   1485     }
   1486     if (new_target.is_valid()) {
   1487       Push(new_target);
   1488     }
   1489     Push(fun);
   1490     Push(fun);
   1491     Push(r4);
   1492     CallRuntime(Runtime::kDebugOnFunctionCall);
   1493     Pop(fun);
   1494     if (new_target.is_valid()) {
   1495       Pop(new_target);
   1496     }
   1497     if (actual.is_reg()) {
   1498       Pop(actual.reg());
   1499       SmiUntag(actual.reg());
   1500     }
   1501     if (expected.is_reg()) {
   1502       Pop(expected.reg());
   1503       SmiUntag(expected.reg());
   1504     }
   1505   }
   1506   bind(&skip_hook);
   1507 }
   1508 
   1509 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
   1510                                         const ParameterCount& expected,
   1511                                         const ParameterCount& actual,
   1512                                         InvokeFlag flag) {
   1513   // You can't call a function without a valid frame.
   1514   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1515   DCHECK(function == r1);
   1516   DCHECK_IMPLIES(new_target.is_valid(), new_target == r3);
   1517 
   1518   // On function call, call into the debugger if necessary.
   1519   CheckDebugHook(function, new_target, expected, actual);
   1520 
   1521   // Clear the new.target register if not given.
   1522   if (!new_target.is_valid()) {
   1523     LoadRoot(r3, Heap::kUndefinedValueRootIndex);
   1524   }
   1525 
   1526   Label done;
   1527   bool definitely_mismatches = false;
   1528   InvokePrologue(expected, actual, &done, &definitely_mismatches, flag);
   1529   if (!definitely_mismatches) {
   1530     // We call indirectly through the code field in the function to
   1531     // allow recompilation to take effect without changing any of the
   1532     // call sites.
   1533     Register code = kJavaScriptCallCodeStartRegister;
   1534     ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset));
   1535     add(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
   1536     if (flag == CALL_FUNCTION) {
   1537       Call(code);
   1538     } else {
   1539       DCHECK(flag == JUMP_FUNCTION);
   1540       Jump(code);
   1541     }
   1542 
   1543     // Continue here if InvokePrologue does handle the invocation due to
   1544     // mismatched parameter counts.
   1545     bind(&done);
   1546   }
   1547 }
   1548 
   1549 void MacroAssembler::InvokeFunction(Register fun, Register new_target,
   1550                                     const ParameterCount& actual,
   1551                                     InvokeFlag flag) {
   1552   // You can't call a function without a valid frame.
   1553   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1554 
   1555   // Contract with called JS functions requires that function is passed in r1.
   1556   DCHECK(fun == r1);
   1557 
   1558   Register expected_reg = r2;
   1559   Register temp_reg = r4;
   1560 
   1561   ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   1562   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
   1563   ldrh(expected_reg,
   1564        FieldMemOperand(temp_reg,
   1565                        SharedFunctionInfo::kFormalParameterCountOffset));
   1566 
   1567   ParameterCount expected(expected_reg);
   1568   InvokeFunctionCode(fun, new_target, expected, actual, flag);
   1569 }
   1570 
   1571 void MacroAssembler::InvokeFunction(Register function,
   1572                                     const ParameterCount& expected,
   1573                                     const ParameterCount& actual,
   1574                                     InvokeFlag flag) {
   1575   // You can't call a function without a valid frame.
   1576   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1577 
   1578   // Contract with called JS functions requires that function is passed in r1.
   1579   DCHECK(function == r1);
   1580 
   1581   // Get the function and setup the context.
   1582   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
   1583 
   1584   InvokeFunctionCode(r1, no_reg, expected, actual, flag);
   1585 }
   1586 
   1587 void MacroAssembler::MaybeDropFrames() {
   1588   // Check whether we need to drop frames to restart a function on the stack.
   1589   ExternalReference restart_fp =
   1590       ExternalReference::debug_restart_fp_address(isolate());
   1591   Move(r1, restart_fp);
   1592   ldr(r1, MemOperand(r1));
   1593   tst(r1, r1);
   1594   Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET,
   1595        ne);
   1596 }
   1597 
   1598 void MacroAssembler::PushStackHandler() {
   1599   // Adjust this code if not the case.
   1600   STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize);
   1601   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   1602 
   1603   Push(Smi::kZero);  // Padding.
   1604   // Link the current handler as the next handler.
   1605   mov(r6, Operand(ExternalReference::Create(IsolateAddressId::kHandlerAddress,
   1606                                             isolate())));
   1607   ldr(r5, MemOperand(r6));
   1608   push(r5);
   1609   // Set this new handler as the current one.
   1610   str(sp, MemOperand(r6));
   1611 }
   1612 
   1613 
   1614 void MacroAssembler::PopStackHandler() {
   1615   UseScratchRegisterScope temps(this);
   1616   Register scratch = temps.Acquire();
   1617   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   1618   pop(r1);
   1619   mov(scratch, Operand(ExternalReference::Create(
   1620                    IsolateAddressId::kHandlerAddress, isolate())));
   1621   str(r1, MemOperand(scratch));
   1622   add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
   1623 }
   1624 
   1625 
   1626 void MacroAssembler::CompareObjectType(Register object,
   1627                                        Register map,
   1628                                        Register type_reg,
   1629                                        InstanceType type) {
   1630   UseScratchRegisterScope temps(this);
   1631   const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg;
   1632 
   1633   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   1634   CompareInstanceType(map, temp, type);
   1635 }
   1636 
   1637 
   1638 void MacroAssembler::CompareInstanceType(Register map,
   1639                                          Register type_reg,
   1640                                          InstanceType type) {
   1641   ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
   1642   cmp(type_reg, Operand(type));
   1643 }
   1644 
   1645 
   1646 void MacroAssembler::CompareRoot(Register obj,
   1647                                  Heap::RootListIndex index) {
   1648   UseScratchRegisterScope temps(this);
   1649   Register scratch = temps.Acquire();
   1650   DCHECK(obj != scratch);
   1651   LoadRoot(scratch, index);
   1652   cmp(obj, scratch);
   1653 }
   1654 
   1655 void MacroAssembler::CallStub(CodeStub* stub,
   1656                               Condition cond) {
   1657   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
   1658   Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, CAN_INLINE_TARGET_ADDRESS,
   1659        false);
   1660 }
   1661 
   1662 void TurboAssembler::CallStubDelayed(CodeStub* stub) {
   1663   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
   1664 
   1665   // Block constant pool for the call instruction sequence.
   1666   BlockConstPoolScope block_const_pool(this);
   1667 
   1668 #ifdef DEBUG
   1669   Label start;
   1670   bind(&start);
   1671 #endif
   1672 
   1673   // Call sequence on V7 or later may be :
   1674   //  movw  ip, #... @ call address low 16
   1675   //  movt  ip, #... @ call address high 16
   1676   //  blx   ip
   1677   //                      @ return address
   1678   // Or for pre-V7 or values that may be back-patched
   1679   // to avoid ICache flushes:
   1680   //  ldr   ip, [pc, #...] @ call address
   1681   //  blx   ip
   1682   //                      @ return address
   1683 
   1684   mov(ip, Operand::EmbeddedCode(stub));
   1685   blx(ip, al);
   1686 
   1687   DCHECK_EQ(kCallStubSize, SizeOfCodeGeneratedSince(&start));
   1688 }
   1689 
   1690 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
   1691   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
   1692 }
   1693 
   1694 bool TurboAssembler::AllowThisStubCall(CodeStub* stub) {
   1695   return has_frame() || !stub->SometimesSetsUpAFrame();
   1696 }
   1697 
   1698 void MacroAssembler::TryDoubleToInt32Exact(Register result,
   1699                                            DwVfpRegister double_input,
   1700                                            LowDwVfpRegister double_scratch) {
   1701   DCHECK(double_input != double_scratch);
   1702   vcvt_s32_f64(double_scratch.low(), double_input);
   1703   vmov(result, double_scratch.low());
   1704   vcvt_f64_s32(double_scratch, double_scratch.low());
   1705   VFPCompareAndSetFlags(double_input, double_scratch);
   1706 }
   1707 
   1708 void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
   1709                                                 DwVfpRegister double_input,
   1710                                                 Label* done) {
   1711   UseScratchRegisterScope temps(this);
   1712   SwVfpRegister single_scratch = SwVfpRegister::no_reg();
   1713   if (temps.CanAcquireVfp<SwVfpRegister>()) {
   1714     single_scratch = temps.AcquireS();
   1715   } else {
   1716     // Re-use the input as a scratch register. However, we can only do this if
   1717     // the input register is d0-d15 as there are no s32+ registers.
   1718     DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters);
   1719     LowDwVfpRegister double_scratch =
   1720         LowDwVfpRegister::from_code(double_input.code());
   1721     single_scratch = double_scratch.low();
   1722   }
   1723   vcvt_s32_f64(single_scratch, double_input);
   1724   vmov(result, single_scratch);
   1725 
   1726   Register scratch = temps.Acquire();
   1727   // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done.
   1728   sub(scratch, result, Operand(1));
   1729   cmp(scratch, Operand(0x7FFFFFFE));
   1730   b(lt, done);
   1731 }
   1732 
   1733 void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
   1734                                        Register result,
   1735                                        DwVfpRegister double_input,
   1736                                        StubCallMode stub_mode) {
   1737   Label done;
   1738 
   1739   TryInlineTruncateDoubleToI(result, double_input, &done);
   1740 
   1741   // If we fell through then inline version didn't succeed - call stub instead.
   1742   push(lr);
   1743   sub(sp, sp, Operand(kDoubleSize));  // Put input on stack.
   1744   vstr(double_input, MemOperand(sp, 0));
   1745 
   1746   if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
   1747     Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
   1748   } else {
   1749     Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
   1750   }
   1751   ldr(result, MemOperand(sp, 0));
   1752 
   1753   add(sp, sp, Operand(kDoubleSize));
   1754   pop(lr);
   1755 
   1756   bind(&done);
   1757 }
   1758 
   1759 void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid,
   1760                                            Register centry) {
   1761   const Runtime::Function* f = Runtime::FunctionForId(fid);
   1762   // TODO(1236192): Most runtime routines don't need the number of
   1763   // arguments passed in because it is constant. At some point we
   1764   // should remove this need and make the runtime routine entry code
   1765   // smarter.
   1766   mov(r0, Operand(f->nargs));
   1767   Move(r1, ExternalReference::Create(f));
   1768   DCHECK(!AreAliased(centry, r0, r1));
   1769   add(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag));
   1770   Call(centry);
   1771 }
   1772 
   1773 void MacroAssembler::CallRuntime(const Runtime::Function* f,
   1774                                  int num_arguments,
   1775                                  SaveFPRegsMode save_doubles) {
   1776   // All parameters are on the stack.  r0 has the return value after call.
   1777 
   1778   // If the expected number of arguments of the runtime function is
   1779   // constant, we check that the actual number of arguments match the
   1780   // expectation.
   1781   CHECK(f->nargs < 0 || f->nargs == num_arguments);
   1782 
   1783   // TODO(1236192): Most runtime routines don't need the number of
   1784   // arguments passed in because it is constant. At some point we
   1785   // should remove this need and make the runtime routine entry code
   1786   // smarter.
   1787   mov(r0, Operand(num_arguments));
   1788   Move(r1, ExternalReference::Create(f));
   1789   Handle<Code> code =
   1790       CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
   1791   Call(code, RelocInfo::CODE_TARGET);
   1792 }
   1793 
   1794 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
   1795   const Runtime::Function* function = Runtime::FunctionForId(fid);
   1796   DCHECK_EQ(1, function->result_size);
   1797   if (function->nargs >= 0) {
   1798     // TODO(1236192): Most runtime routines don't need the number of
   1799     // arguments passed in because it is constant. At some point we
   1800     // should remove this need and make the runtime routine entry code
   1801     // smarter.
   1802     mov(r0, Operand(function->nargs));
   1803   }
   1804   JumpToExternalReference(ExternalReference::Create(fid));
   1805 }
   1806 
   1807 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
   1808                                              bool builtin_exit_frame) {
   1809 #if defined(__thumb__)
   1810   // Thumb mode builtin.
   1811   DCHECK_EQ(builtin.address() & 1, 1);
   1812 #endif
   1813   Move(r1, builtin);
   1814   Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
   1815                                           kArgvOnStack, builtin_exit_frame);
   1816   Jump(code, RelocInfo::CODE_TARGET);
   1817 }
   1818 
   1819 void MacroAssembler::JumpToInstructionStream(Address entry) {
   1820   mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
   1821   Jump(kOffHeapTrampolineRegister);
   1822 }
   1823 
   1824 void MacroAssembler::LoadWeakValue(Register out, Register in,
   1825                                    Label* target_if_cleared) {
   1826   cmp(in, Operand(kClearedWeakHeapObject));
   1827   b(eq, target_if_cleared);
   1828 
   1829   and_(out, in, Operand(~kWeakHeapObjectMask));
   1830 }
   1831 
   1832 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
   1833                                       Register scratch1, Register scratch2) {
   1834   DCHECK_GT(value, 0);
   1835   if (FLAG_native_code_counters && counter->Enabled()) {
   1836     Move(scratch2, ExternalReference::Create(counter));
   1837     ldr(scratch1, MemOperand(scratch2));
   1838     add(scratch1, scratch1, Operand(value));
   1839     str(scratch1, MemOperand(scratch2));
   1840   }
   1841 }
   1842 
   1843 
   1844 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
   1845                                       Register scratch1, Register scratch2) {
   1846   DCHECK_GT(value, 0);
   1847   if (FLAG_native_code_counters && counter->Enabled()) {
   1848     Move(scratch2, ExternalReference::Create(counter));
   1849     ldr(scratch1, MemOperand(scratch2));
   1850     sub(scratch1, scratch1, Operand(value));
   1851     str(scratch1, MemOperand(scratch2));
   1852   }
   1853 }
   1854 
   1855 void TurboAssembler::Assert(Condition cond, AbortReason reason) {
   1856   if (emit_debug_code())
   1857     Check(cond, reason);
   1858 }
   1859 
   1860 void TurboAssembler::Check(Condition cond, AbortReason reason) {
   1861   Label L;
   1862   b(cond, &L);
   1863   Abort(reason);
   1864   // will not return here
   1865   bind(&L);
   1866 }
   1867 
   1868 void TurboAssembler::Abort(AbortReason reason) {
   1869   Label abort_start;
   1870   bind(&abort_start);
   1871   const char* msg = GetAbortReason(reason);
   1872 #ifdef DEBUG
   1873   RecordComment("Abort message: ");
   1874   RecordComment(msg);
   1875 #endif
   1876 
   1877   // Avoid emitting call to builtin if requested.
   1878   if (trap_on_abort()) {
   1879     stop(msg);
   1880     return;
   1881   }
   1882 
   1883   if (should_abort_hard()) {
   1884     // We don't care if we constructed a frame. Just pretend we did.
   1885     FrameScope assume_frame(this, StackFrame::NONE);
   1886     Move32BitImmediate(r0, Operand(static_cast<int>(reason)));
   1887     PrepareCallCFunction(1, 0, r1);
   1888     Move(r1, ExternalReference::abort_with_reason());
   1889     // Use Call directly to avoid any unneeded overhead. The function won't
   1890     // return anyway.
   1891     Call(r1);
   1892     return;
   1893   }
   1894 
   1895   Move(r1, Smi::FromInt(static_cast<int>(reason)));
   1896 
   1897   // Disable stub call restrictions to always allow calls to abort.
   1898   if (!has_frame()) {
   1899     // We don't actually want to generate a pile of code for this, so just
   1900     // claim there is a stack frame, without generating one.
   1901     FrameScope scope(this, StackFrame::NONE);
   1902     Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
   1903   } else {
   1904     Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
   1905   }
   1906   // will not return here
   1907 }
   1908 
   1909 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
   1910   ldr(dst, NativeContextMemOperand());
   1911   ldr(dst, ContextMemOperand(dst, index));
   1912 }
   1913 
   1914 
   1915 void TurboAssembler::InitializeRootRegister() {
   1916   ExternalReference roots_array_start =
   1917       ExternalReference::roots_array_start(isolate());
   1918   mov(kRootRegister, Operand(roots_array_start));
   1919   add(kRootRegister, kRootRegister, Operand(kRootRegisterBias));
   1920 }
   1921 
   1922 void MacroAssembler::SmiTag(Register reg, SBit s) {
   1923   add(reg, reg, Operand(reg), s);
   1924 }
   1925 
   1926 void MacroAssembler::SmiTag(Register dst, Register src, SBit s) {
   1927   add(dst, src, Operand(src), s);
   1928 }
   1929 
   1930 void MacroAssembler::UntagAndJumpIfSmi(
   1931     Register dst, Register src, Label* smi_case) {
   1932   STATIC_ASSERT(kSmiTag == 0);
   1933   SmiUntag(dst, src, SetCC);
   1934   b(cc, smi_case);  // Shifter carry is not set for a smi.
   1935 }
   1936 
   1937 void MacroAssembler::SmiTst(Register value) {
   1938   tst(value, Operand(kSmiTagMask));
   1939 }
   1940 
   1941 void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) {
   1942   tst(value, Operand(kSmiTagMask));
   1943   b(eq, smi_label);
   1944 }
   1945 
   1946 void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) {
   1947   cmp(x, Operand(y));
   1948   b(eq, dest);
   1949 }
   1950 
   1951 void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) {
   1952   cmp(x, Operand(y));
   1953   b(lt, dest);
   1954 }
   1955 
   1956 void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) {
   1957   tst(value, Operand(kSmiTagMask));
   1958   b(ne, not_smi_label);
   1959 }
   1960 
   1961 void MacroAssembler::JumpIfEitherSmi(Register reg1,
   1962                                      Register reg2,
   1963                                      Label* on_either_smi) {
   1964   STATIC_ASSERT(kSmiTag == 0);
   1965   tst(reg1, Operand(kSmiTagMask));
   1966   tst(reg2, Operand(kSmiTagMask), ne);
   1967   b(eq, on_either_smi);
   1968 }
   1969 
   1970 void MacroAssembler::AssertNotSmi(Register object) {
   1971   if (emit_debug_code()) {
   1972     STATIC_ASSERT(kSmiTag == 0);
   1973     tst(object, Operand(kSmiTagMask));
   1974     Check(ne, AbortReason::kOperandIsASmi);
   1975   }
   1976 }
   1977 
   1978 
   1979 void MacroAssembler::AssertSmi(Register object) {
   1980   if (emit_debug_code()) {
   1981     STATIC_ASSERT(kSmiTag == 0);
   1982     tst(object, Operand(kSmiTagMask));
   1983     Check(eq, AbortReason::kOperandIsNotASmi);
   1984   }
   1985 }
   1986 
   1987 void MacroAssembler::AssertConstructor(Register object) {
   1988   if (emit_debug_code()) {
   1989     STATIC_ASSERT(kSmiTag == 0);
   1990     tst(object, Operand(kSmiTagMask));
   1991     Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor);
   1992     push(object);
   1993     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   1994     ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset));
   1995     tst(object, Operand(Map::IsConstructorBit::kMask));
   1996     pop(object);
   1997     Check(ne, AbortReason::kOperandIsNotAConstructor);
   1998   }
   1999 }
   2000 
   2001 void MacroAssembler::AssertFunction(Register object) {
   2002   if (emit_debug_code()) {
   2003     STATIC_ASSERT(kSmiTag == 0);
   2004     tst(object, Operand(kSmiTagMask));
   2005     Check(ne, AbortReason::kOperandIsASmiAndNotAFunction);
   2006     push(object);
   2007     CompareObjectType(object, object, object, JS_FUNCTION_TYPE);
   2008     pop(object);
   2009     Check(eq, AbortReason::kOperandIsNotAFunction);
   2010   }
   2011 }
   2012 
   2013 
   2014 void MacroAssembler::AssertBoundFunction(Register object) {
   2015   if (emit_debug_code()) {
   2016     STATIC_ASSERT(kSmiTag == 0);
   2017     tst(object, Operand(kSmiTagMask));
   2018     Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction);
   2019     push(object);
   2020     CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE);
   2021     pop(object);
   2022     Check(eq, AbortReason::kOperandIsNotABoundFunction);
   2023   }
   2024 }
   2025 
   2026 void MacroAssembler::AssertGeneratorObject(Register object) {
   2027   if (!emit_debug_code()) return;
   2028   tst(object, Operand(kSmiTagMask));
   2029   Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject);
   2030 
   2031   // Load map
   2032   Register map = object;
   2033   push(object);
   2034   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   2035 
   2036   // Check if JSGeneratorObject
   2037   Label do_check;
   2038   Register instance_type = object;
   2039   CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE);
   2040   b(eq, &do_check);
   2041 
   2042   // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType)
   2043   cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
   2044 
   2045   bind(&do_check);
   2046   // Restore generator object to register and perform assertion
   2047   pop(object);
   2048   Check(eq, AbortReason::kOperandIsNotAGeneratorObject);
   2049 }
   2050 
   2051 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
   2052                                                      Register scratch) {
   2053   if (emit_debug_code()) {
   2054     Label done_checking;
   2055     AssertNotSmi(object);
   2056     CompareRoot(object, Heap::kUndefinedValueRootIndex);
   2057     b(eq, &done_checking);
   2058     ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   2059     CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE);
   2060     Assert(eq, AbortReason::kExpectedUndefinedOrCell);
   2061     bind(&done_checking);
   2062   }
   2063 }
   2064 
   2065 
   2066 void TurboAssembler::CheckFor32DRegs(Register scratch) {
   2067   Move(scratch, ExternalReference::cpu_features());
   2068   ldr(scratch, MemOperand(scratch));
   2069   tst(scratch, Operand(1u << VFP32DREGS));
   2070 }
   2071 
   2072 void TurboAssembler::SaveFPRegs(Register location, Register scratch) {
   2073   CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported);
   2074   CheckFor32DRegs(scratch);
   2075   vstm(db_w, location, d16, d31, ne);
   2076   sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
   2077   vstm(db_w, location, d0, d15);
   2078 }
   2079 
   2080 void TurboAssembler::RestoreFPRegs(Register location, Register scratch) {
   2081   CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported);
   2082   CheckFor32DRegs(scratch);
   2083   vldm(ia_w, location, d0, d15);
   2084   vldm(ia_w, location, d16, d31, ne);
   2085   add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
   2086 }
   2087 
   2088 template <typename T>
   2089 void TurboAssembler::FloatMaxHelper(T result, T left, T right,
   2090                                     Label* out_of_line) {
   2091   // This trivial case is caught sooner, so that the out-of-line code can be
   2092   // completely avoided.
   2093   DCHECK(left != right);
   2094 
   2095   if (CpuFeatures::IsSupported(ARMv8)) {
   2096     CpuFeatureScope scope(this, ARMv8);
   2097     VFPCompareAndSetFlags(left, right);
   2098     b(vs, out_of_line);
   2099     vmaxnm(result, left, right);
   2100   } else {
   2101     Label done;
   2102     VFPCompareAndSetFlags(left, right);
   2103     b(vs, out_of_line);
   2104     // Avoid a conditional instruction if the result register is unique.
   2105     bool aliased_result_reg = result == left || result == right;
   2106     Move(result, right, aliased_result_reg ? mi : al);
   2107     Move(result, left, gt);
   2108     b(ne, &done);
   2109     // Left and right are equal, but check for +/-0.
   2110     VFPCompareAndSetFlags(left, 0.0);
   2111     b(eq, out_of_line);
   2112     // The arguments are equal and not zero, so it doesn't matter which input we
   2113     // pick. We have already moved one input into the result (if it didn't
   2114     // already alias) so there's nothing more to do.
   2115     bind(&done);
   2116   }
   2117 }
   2118 
   2119 template <typename T>
   2120 void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) {
   2121   DCHECK(left != right);
   2122 
   2123   // ARMv8: At least one of left and right is a NaN.
   2124   // Anything else: At least one of left and right is a NaN, or both left and
   2125   // right are zeroes with unknown sign.
   2126 
   2127   // If left and right are +/-0, select the one with the most positive sign.
   2128   // If left or right are NaN, vadd propagates the appropriate one.
   2129   vadd(result, left, right);
   2130 }
   2131 
   2132 template <typename T>
   2133 void TurboAssembler::FloatMinHelper(T result, T left, T right,
   2134                                     Label* out_of_line) {
   2135   // This trivial case is caught sooner, so that the out-of-line code can be
   2136   // completely avoided.
   2137   DCHECK(left != right);
   2138 
   2139   if (CpuFeatures::IsSupported(ARMv8)) {
   2140     CpuFeatureScope scope(this, ARMv8);
   2141     VFPCompareAndSetFlags(left, right);
   2142     b(vs, out_of_line);
   2143     vminnm(result, left, right);
   2144   } else {
   2145     Label done;
   2146     VFPCompareAndSetFlags(left, right);
   2147     b(vs, out_of_line);
   2148     // Avoid a conditional instruction if the result register is unique.
   2149     bool aliased_result_reg = result == left || result == right;
   2150     Move(result, left, aliased_result_reg ? mi : al);
   2151     Move(result, right, gt);
   2152     b(ne, &done);
   2153     // Left and right are equal, but check for +/-0.
   2154     VFPCompareAndSetFlags(left, 0.0);
   2155     // If the arguments are equal and not zero, it doesn't matter which input we
   2156     // pick. We have already moved one input into the result (if it didn't
   2157     // already alias) so there's nothing more to do.
   2158     b(ne, &done);
   2159     // At this point, both left and right are either 0 or -0.
   2160     // We could use a single 'vorr' instruction here if we had NEON support.
   2161     // The algorithm used is -((-L) + (-R)), which is most efficiently expressed
   2162     // as -((-L) - R).
   2163     if (left == result) {
   2164       DCHECK(right != result);
   2165       vneg(result, left);
   2166       vsub(result, result, right);
   2167       vneg(result, result);
   2168     } else {
   2169       DCHECK(left != result);
   2170       vneg(result, right);
   2171       vsub(result, result, left);
   2172       vneg(result, result);
   2173     }
   2174     bind(&done);
   2175   }
   2176 }
   2177 
   2178 template <typename T>
   2179 void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) {
   2180   DCHECK(left != right);
   2181 
   2182   // At least one of left and right is a NaN. Use vadd to propagate the NaN
   2183   // appropriately. +/-0 is handled inline.
   2184   vadd(result, left, right);
   2185 }
   2186 
   2187 void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left,
   2188                               SwVfpRegister right, Label* out_of_line) {
   2189   FloatMaxHelper(result, left, right, out_of_line);
   2190 }
   2191 
   2192 void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left,
   2193                               SwVfpRegister right, Label* out_of_line) {
   2194   FloatMinHelper(result, left, right, out_of_line);
   2195 }
   2196 
   2197 void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left,
   2198                               DwVfpRegister right, Label* out_of_line) {
   2199   FloatMaxHelper(result, left, right, out_of_line);
   2200 }
   2201 
   2202 void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left,
   2203                               DwVfpRegister right, Label* out_of_line) {
   2204   FloatMinHelper(result, left, right, out_of_line);
   2205 }
   2206 
   2207 void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
   2208                                        SwVfpRegister right) {
   2209   FloatMaxOutOfLineHelper(result, left, right);
   2210 }
   2211 
   2212 void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
   2213                                        SwVfpRegister right) {
   2214   FloatMinOutOfLineHelper(result, left, right);
   2215 }
   2216 
   2217 void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
   2218                                        DwVfpRegister right) {
   2219   FloatMaxOutOfLineHelper(result, left, right);
   2220 }
   2221 
   2222 void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
   2223                                        DwVfpRegister right) {
   2224   FloatMinOutOfLineHelper(result, left, right);
   2225 }
   2226 
   2227 static const int kRegisterPassedArguments = 4;
   2228 
   2229 int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
   2230                                               int num_double_arguments) {
   2231   int stack_passed_words = 0;
   2232   if (use_eabi_hardfloat()) {
   2233     // In the hard floating point calling convention, we can use
   2234     // all double registers to pass doubles.
   2235     if (num_double_arguments > DoubleRegister::NumRegisters()) {
   2236       stack_passed_words +=
   2237           2 * (num_double_arguments - DoubleRegister::NumRegisters());
   2238     }
   2239   } else {
   2240     // In the soft floating point calling convention, every double
   2241     // argument is passed using two registers.
   2242     num_reg_arguments += 2 * num_double_arguments;
   2243   }
   2244   // Up to four simple arguments are passed in registers r0..r3.
   2245   if (num_reg_arguments > kRegisterPassedArguments) {
   2246     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
   2247   }
   2248   return stack_passed_words;
   2249 }
   2250 
   2251 void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
   2252                                           int num_double_arguments,
   2253                                           Register scratch) {
   2254   int frame_alignment = ActivationFrameAlignment();
   2255   int stack_passed_arguments = CalculateStackPassedWords(
   2256       num_reg_arguments, num_double_arguments);
   2257   if (frame_alignment > kPointerSize) {
   2258     UseScratchRegisterScope temps(this);
   2259     if (!scratch.is_valid()) scratch = temps.Acquire();
   2260     // Make stack end at alignment and make room for num_arguments - 4 words
   2261     // and the original value of sp.
   2262     mov(scratch, sp);
   2263     sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
   2264     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
   2265     and_(sp, sp, Operand(-frame_alignment));
   2266     str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   2267   } else if (stack_passed_arguments > 0) {
   2268     sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   2269   }
   2270 }
   2271 
   2272 void TurboAssembler::MovToFloatParameter(DwVfpRegister src) {
   2273   DCHECK(src == d0);
   2274   if (!use_eabi_hardfloat()) {
   2275     vmov(r0, r1, src);
   2276   }
   2277 }
   2278 
   2279 
   2280 // On ARM this is just a synonym to make the purpose clear.
   2281 void TurboAssembler::MovToFloatResult(DwVfpRegister src) {
   2282   MovToFloatParameter(src);
   2283 }
   2284 
   2285 void TurboAssembler::MovToFloatParameters(DwVfpRegister src1,
   2286                                           DwVfpRegister src2) {
   2287   DCHECK(src1 == d0);
   2288   DCHECK(src2 == d1);
   2289   if (!use_eabi_hardfloat()) {
   2290     vmov(r0, r1, src1);
   2291     vmov(r2, r3, src2);
   2292   }
   2293 }
   2294 
   2295 void TurboAssembler::CallCFunction(ExternalReference function,
   2296                                    int num_reg_arguments,
   2297                                    int num_double_arguments) {
   2298   UseScratchRegisterScope temps(this);
   2299   Register scratch = temps.Acquire();
   2300   Move(scratch, function);
   2301   CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments);
   2302 }
   2303 
   2304 void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
   2305                                    int num_double_arguments) {
   2306   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
   2307 }
   2308 
   2309 void TurboAssembler::CallCFunction(ExternalReference function,
   2310                                    int num_arguments) {
   2311   CallCFunction(function, num_arguments, 0);
   2312 }
   2313 
   2314 void TurboAssembler::CallCFunction(Register function, int num_arguments) {
   2315   CallCFunction(function, num_arguments, 0);
   2316 }
   2317 
   2318 void TurboAssembler::CallCFunctionHelper(Register function,
   2319                                          int num_reg_arguments,
   2320                                          int num_double_arguments) {
   2321   DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
   2322   DCHECK(has_frame());
   2323   // Make sure that the stack is aligned before calling a C function unless
   2324   // running in the simulator. The simulator has its own alignment check which
   2325   // provides more information.
   2326 #if V8_HOST_ARCH_ARM
   2327   if (emit_debug_code()) {
   2328     int frame_alignment = base::OS::ActivationFrameAlignment();
   2329     int frame_alignment_mask = frame_alignment - 1;
   2330     if (frame_alignment > kPointerSize) {
   2331       DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
   2332       Label alignment_as_expected;
   2333       tst(sp, Operand(frame_alignment_mask));
   2334       b(eq, &alignment_as_expected);
   2335       // Don't use Check here, as it will call Runtime_Abort possibly
   2336       // re-entering here.
   2337       stop("Unexpected alignment");
   2338       bind(&alignment_as_expected);
   2339     }
   2340   }
   2341 #endif
   2342 
   2343   // Just call directly. The function called cannot cause a GC, or
   2344   // allow preemption, so the return address in the link register
   2345   // stays correct.
   2346   Call(function);
   2347   int stack_passed_arguments = CalculateStackPassedWords(
   2348       num_reg_arguments, num_double_arguments);
   2349   if (ActivationFrameAlignment() > kPointerSize) {
   2350     ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
   2351   } else {
   2352     add(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   2353   }
   2354 }
   2355 
   2356 void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
   2357                                    Condition cc, Label* condition_met) {
   2358   DCHECK(cc == eq || cc == ne);
   2359   Bfc(scratch, object, 0, kPageSizeBits);
   2360   ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
   2361   tst(scratch, Operand(mask));
   2362   b(cc, condition_met);
   2363 }
   2364 
   2365 Register GetRegisterThatIsNotOneOf(Register reg1,
   2366                                    Register reg2,
   2367                                    Register reg3,
   2368                                    Register reg4,
   2369                                    Register reg5,
   2370                                    Register reg6) {
   2371   RegList regs = 0;
   2372   if (reg1.is_valid()) regs |= reg1.bit();
   2373   if (reg2.is_valid()) regs |= reg2.bit();
   2374   if (reg3.is_valid()) regs |= reg3.bit();
   2375   if (reg4.is_valid()) regs |= reg4.bit();
   2376   if (reg5.is_valid()) regs |= reg5.bit();
   2377   if (reg6.is_valid()) regs |= reg6.bit();
   2378 
   2379   const RegisterConfiguration* config = RegisterConfiguration::Default();
   2380   for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
   2381     int code = config->GetAllocatableGeneralCode(i);
   2382     Register candidate = Register::from_code(code);
   2383     if (regs & candidate.bit()) continue;
   2384     return candidate;
   2385   }
   2386   UNREACHABLE();
   2387 }
   2388 
   2389 void TurboAssembler::ComputeCodeStartAddress(Register dst) {
   2390   // We can use the register pc - 8 for the address of the current instruction.
   2391   sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta));
   2392 }
   2393 
   2394 void TurboAssembler::ResetSpeculationPoisonRegister() {
   2395   mov(kSpeculationPoisonRegister, Operand(-1));
   2396 }
   2397 
   2398 }  // namespace internal
   2399 }  // namespace v8
   2400 
   2401 #endif  // V8_TARGET_ARCH_ARM
   2402