Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file link_varyings.cpp
     26  *
     27  * Linker functions related specifically to linking varyings between shader
     28  * stages.
     29  */
     30 
     31 
     32 #include "main/mtypes.h"
     33 #include "glsl_symbol_table.h"
     34 #include "glsl_parser_extras.h"
     35 #include "ir_optimization.h"
     36 #include "linker.h"
     37 #include "link_varyings.h"
     38 #include "main/macros.h"
     39 #include "util/hash_table.h"
     40 #include "program.h"
     41 
     42 
     43 /**
     44  * Get the varying type stripped of the outermost array if we're processing
     45  * a stage whose varyings are arrays indexed by a vertex number (such as
     46  * geometry shader inputs).
     47  */
     48 static const glsl_type *
     49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
     50 {
     51    const glsl_type *type = var->type;
     52 
     53    if (!var->data.patch &&
     54        ((var->data.mode == ir_var_shader_out &&
     55          stage == MESA_SHADER_TESS_CTRL) ||
     56         (var->data.mode == ir_var_shader_in &&
     57          (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
     58           stage == MESA_SHADER_GEOMETRY)))) {
     59       assert(type->is_array());
     60       type = type->fields.array;
     61    }
     62 
     63    return type;
     64 }
     65 
     66 static void
     67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
     68                          size_t name_length, unsigned *count,
     69                          const char *ifc_member_name,
     70                          const glsl_type *ifc_member_t, char ***varying_names)
     71 {
     72    if (t->is_interface()) {
     73       size_t new_length = name_length;
     74 
     75       assert(ifc_member_name && ifc_member_t);
     76       ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
     77 
     78       create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
     79                                NULL, NULL, varying_names);
     80    } else if (t->is_record()) {
     81       for (unsigned i = 0; i < t->length; i++) {
     82          const char *field = t->fields.structure[i].name;
     83          size_t new_length = name_length;
     84 
     85          ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
     86 
     87          create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
     88                                   new_length, count, NULL, NULL,
     89                                   varying_names);
     90       }
     91    } else if (t->without_array()->is_record() ||
     92               t->without_array()->is_interface() ||
     93               (t->is_array() && t->fields.array->is_array())) {
     94       for (unsigned i = 0; i < t->length; i++) {
     95          size_t new_length = name_length;
     96 
     97          /* Append the subscript to the current variable name */
     98          ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
     99 
    100          create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
    101                                   count, ifc_member_name, ifc_member_t,
    102                                   varying_names);
    103       }
    104    } else {
    105       (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
    106    }
    107 }
    108 
    109 static bool
    110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
    111                               struct gl_shader_program *prog,
    112                               unsigned *num_tfeedback_decls,
    113                               char ***varying_names)
    114 {
    115    bool has_xfb_qualifiers = false;
    116 
    117    /* We still need to enable transform feedback mode even if xfb_stride is
    118     * only applied to a global out. Also we don't bother to propagate
    119     * xfb_stride to interface block members so this will catch that case also.
    120     */
    121    for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
    122       if (prog->TransformFeedback.BufferStride[j]) {
    123          has_xfb_qualifiers = true;
    124          break;
    125       }
    126    }
    127 
    128    foreach_in_list(ir_instruction, node, sh->ir) {
    129       ir_variable *var = node->as_variable();
    130       if (!var || var->data.mode != ir_var_shader_out)
    131          continue;
    132 
    133       /* From the ARB_enhanced_layouts spec:
    134        *
    135        *    "Any shader making any static use (after preprocessing) of any of
    136        *     these *xfb_* qualifiers will cause the shader to be in a
    137        *     transform feedback capturing mode and hence responsible for
    138        *     describing the transform feedback setup.  This mode will capture
    139        *     any output selected by *xfb_offset*, directly or indirectly, to
    140        *     a transform feedback buffer."
    141        */
    142       if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
    143          has_xfb_qualifiers = true;
    144       }
    145 
    146       if (var->data.explicit_xfb_offset) {
    147          *num_tfeedback_decls += var->type->varying_count();
    148          has_xfb_qualifiers = true;
    149       }
    150    }
    151 
    152    if (*num_tfeedback_decls == 0)
    153       return has_xfb_qualifiers;
    154 
    155    unsigned i = 0;
    156    *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
    157    foreach_in_list(ir_instruction, node, sh->ir) {
    158       ir_variable *var = node->as_variable();
    159       if (!var || var->data.mode != ir_var_shader_out)
    160          continue;
    161 
    162       if (var->data.explicit_xfb_offset) {
    163          char *name;
    164          const glsl_type *type, *member_type;
    165 
    166          if (var->data.from_named_ifc_block) {
    167             type = var->get_interface_type();
    168 
    169             /* Find the member type before it was altered by lowering */
    170             const glsl_type *type_wa = type->without_array();
    171             member_type =
    172                type_wa->fields.structure[type_wa->field_index(var->name)].type;
    173             name = ralloc_strdup(NULL, type_wa->name);
    174          } else {
    175             type = var->type;
    176             member_type = NULL;
    177             name = ralloc_strdup(NULL, var->name);
    178          }
    179          create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
    180                                   var->name, member_type, varying_names);
    181          ralloc_free(name);
    182       }
    183    }
    184 
    185    assert(i == *num_tfeedback_decls);
    186    return has_xfb_qualifiers;
    187 }
    188 
    189 /**
    190  * Validate the types and qualifiers of an output from one stage against the
    191  * matching input to another stage.
    192  */
    193 static void
    194 cross_validate_types_and_qualifiers(struct gl_context *ctx,
    195                                     struct gl_shader_program *prog,
    196                                     const ir_variable *input,
    197                                     const ir_variable *output,
    198                                     gl_shader_stage consumer_stage,
    199                                     gl_shader_stage producer_stage)
    200 {
    201    /* Check that the types match between stages.
    202     */
    203    const glsl_type *type_to_match = input->type;
    204 
    205    /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
    206    const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
    207                                    consumer_stage != MESA_SHADER_FRAGMENT) ||
    208                                   consumer_stage == MESA_SHADER_GEOMETRY;
    209    if (extra_array_level) {
    210       assert(type_to_match->is_array());
    211       type_to_match = type_to_match->fields.array;
    212    }
    213 
    214    if (type_to_match != output->type) {
    215       /* There is a bit of a special case for gl_TexCoord.  This
    216        * built-in is unsized by default.  Applications that variable
    217        * access it must redeclare it with a size.  There is some
    218        * language in the GLSL spec that implies the fragment shader
    219        * and vertex shader do not have to agree on this size.  Other
    220        * driver behave this way, and one or two applications seem to
    221        * rely on it.
    222        *
    223        * Neither declaration needs to be modified here because the array
    224        * sizes are fixed later when update_array_sizes is called.
    225        *
    226        * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
    227        *
    228        *     "Unlike user-defined varying variables, the built-in
    229        *     varying variables don't have a strict one-to-one
    230        *     correspondence between the vertex language and the
    231        *     fragment language."
    232        */
    233       if (!output->type->is_array() || !is_gl_identifier(output->name)) {
    234          linker_error(prog,
    235                       "%s shader output `%s' declared as type `%s', "
    236                       "but %s shader input declared as type `%s'\n",
    237                       _mesa_shader_stage_to_string(producer_stage),
    238                       output->name,
    239                       output->type->name,
    240                       _mesa_shader_stage_to_string(consumer_stage),
    241                       input->type->name);
    242          return;
    243       }
    244    }
    245 
    246    /* Check that all of the qualifiers match between stages.
    247     */
    248 
    249    /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
    250     * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
    251     * conformance test suite does not verify that the qualifiers must match.
    252     * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
    253     * OpenGLES 3.0 drivers, so we relax the checking in all cases.
    254     */
    255    if (false /* always skip the centroid check */ &&
    256        prog->data->Version < (prog->IsES ? 310 : 430) &&
    257        input->data.centroid != output->data.centroid) {
    258       linker_error(prog,
    259                    "%s shader output `%s' %s centroid qualifier, "
    260                    "but %s shader input %s centroid qualifier\n",
    261                    _mesa_shader_stage_to_string(producer_stage),
    262                    output->name,
    263                    (output->data.centroid) ? "has" : "lacks",
    264                    _mesa_shader_stage_to_string(consumer_stage),
    265                    (input->data.centroid) ? "has" : "lacks");
    266       return;
    267    }
    268 
    269    if (input->data.sample != output->data.sample) {
    270       linker_error(prog,
    271                    "%s shader output `%s' %s sample qualifier, "
    272                    "but %s shader input %s sample qualifier\n",
    273                    _mesa_shader_stage_to_string(producer_stage),
    274                    output->name,
    275                    (output->data.sample) ? "has" : "lacks",
    276                    _mesa_shader_stage_to_string(consumer_stage),
    277                    (input->data.sample) ? "has" : "lacks");
    278       return;
    279    }
    280 
    281    if (input->data.patch != output->data.patch) {
    282       linker_error(prog,
    283                    "%s shader output `%s' %s patch qualifier, "
    284                    "but %s shader input %s patch qualifier\n",
    285                    _mesa_shader_stage_to_string(producer_stage),
    286                    output->name,
    287                    (output->data.patch) ? "has" : "lacks",
    288                    _mesa_shader_stage_to_string(consumer_stage),
    289                    (input->data.patch) ? "has" : "lacks");
    290       return;
    291    }
    292 
    293    /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
    294     *
    295     *    "As only outputs need be declared with invariant, an output from
    296     *     one shader stage will still match an input of a subsequent stage
    297     *     without the input being declared as invariant."
    298     *
    299     * while GLSL 4.20 says:
    300     *
    301     *    "For variables leaving one shader and coming into another shader,
    302     *     the invariant keyword has to be used in both shaders, or a link
    303     *     error will result."
    304     *
    305     * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
    306     *
    307     *    "The invariance of varyings that are declared in both the vertex
    308     *     and fragment shaders must match."
    309     */
    310    if (input->data.invariant != output->data.invariant &&
    311        prog->data->Version < (prog->IsES ? 300 : 430)) {
    312       linker_error(prog,
    313                    "%s shader output `%s' %s invariant qualifier, "
    314                    "but %s shader input %s invariant qualifier\n",
    315                    _mesa_shader_stage_to_string(producer_stage),
    316                    output->name,
    317                    (output->data.invariant) ? "has" : "lacks",
    318                    _mesa_shader_stage_to_string(consumer_stage),
    319                    (input->data.invariant) ? "has" : "lacks");
    320       return;
    321    }
    322 
    323    /* GLSL >= 4.40 removes text requiring interpolation qualifiers
    324     * to match cross stage, they must only match within the same stage.
    325     *
    326     * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
    327     *
    328     *     "It is a link-time error if, within the same stage, the interpolation
    329     *     qualifiers of variables of the same name do not match.
    330     *
    331     * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
    332     *
    333     *    "When no interpolation qualifier is present, smooth interpolation
    334     *    is used."
    335     *
    336     * So we match variables where one is smooth and the other has no explicit
    337     * qualifier.
    338     */
    339    unsigned input_interpolation = input->data.interpolation;
    340    unsigned output_interpolation = output->data.interpolation;
    341    if (prog->IsES) {
    342       if (input_interpolation == INTERP_MODE_NONE)
    343          input_interpolation = INTERP_MODE_SMOOTH;
    344       if (output_interpolation == INTERP_MODE_NONE)
    345          output_interpolation = INTERP_MODE_SMOOTH;
    346    }
    347    if (input_interpolation != output_interpolation &&
    348        prog->data->Version < 440) {
    349       if (!ctx->Const.AllowGLSLCrossStageInterpolationMismatch) {
    350          linker_error(prog,
    351                       "%s shader output `%s' specifies %s "
    352                       "interpolation qualifier, "
    353                       "but %s shader input specifies %s "
    354                       "interpolation qualifier\n",
    355                       _mesa_shader_stage_to_string(producer_stage),
    356                       output->name,
    357                       interpolation_string(output->data.interpolation),
    358                       _mesa_shader_stage_to_string(consumer_stage),
    359                       interpolation_string(input->data.interpolation));
    360          return;
    361       } else {
    362          linker_warning(prog,
    363                         "%s shader output `%s' specifies %s "
    364                         "interpolation qualifier, "
    365                         "but %s shader input specifies %s "
    366                         "interpolation qualifier\n",
    367                         _mesa_shader_stage_to_string(producer_stage),
    368                         output->name,
    369                         interpolation_string(output->data.interpolation),
    370                         _mesa_shader_stage_to_string(consumer_stage),
    371                         interpolation_string(input->data.interpolation));
    372       }
    373    }
    374 }
    375 
    376 /**
    377  * Validate front and back color outputs against single color input
    378  */
    379 static void
    380 cross_validate_front_and_back_color(struct gl_context *ctx,
    381                                     struct gl_shader_program *prog,
    382                                     const ir_variable *input,
    383                                     const ir_variable *front_color,
    384                                     const ir_variable *back_color,
    385                                     gl_shader_stage consumer_stage,
    386                                     gl_shader_stage producer_stage)
    387 {
    388    if (front_color != NULL && front_color->data.assigned)
    389       cross_validate_types_and_qualifiers(ctx, prog, input, front_color,
    390                                           consumer_stage, producer_stage);
    391 
    392    if (back_color != NULL && back_color->data.assigned)
    393       cross_validate_types_and_qualifiers(ctx, prog, input, back_color,
    394                                           consumer_stage, producer_stage);
    395 }
    396 
    397 static unsigned
    398 compute_variable_location_slot(ir_variable *var, gl_shader_stage stage)
    399 {
    400    unsigned location_start = VARYING_SLOT_VAR0;
    401 
    402    switch (stage) {
    403       case MESA_SHADER_VERTEX:
    404          if (var->data.mode == ir_var_shader_in)
    405             location_start = VERT_ATTRIB_GENERIC0;
    406          break;
    407       case MESA_SHADER_TESS_CTRL:
    408       case MESA_SHADER_TESS_EVAL:
    409          if (var->data.patch)
    410             location_start = VARYING_SLOT_PATCH0;
    411          break;
    412       case MESA_SHADER_FRAGMENT:
    413          if (var->data.mode == ir_var_shader_out)
    414             location_start = FRAG_RESULT_DATA0;
    415          break;
    416       default:
    417          break;
    418    }
    419 
    420    return var->data.location - location_start;
    421 }
    422 
    423 struct explicit_location_info {
    424    ir_variable *var;
    425    unsigned numerical_type;
    426    unsigned interpolation;
    427    bool centroid;
    428    bool sample;
    429    bool patch;
    430 };
    431 
    432 static inline unsigned
    433 get_numerical_type(const glsl_type *type)
    434 {
    435    /* From the OpenGL 4.6 spec, section 4.4.1 Input Layout Qualifiers, Page 68,
    436     * (Location aliasing):
    437     *
    438     *    "Further, when location aliasing, the aliases sharing the location
    439     *     must have the same underlying numerical type  (floating-point or
    440     *     integer)
    441     */
    442    if (type->is_float() || type->is_double())
    443       return GLSL_TYPE_FLOAT;
    444    return GLSL_TYPE_INT;
    445 }
    446 
    447 static bool
    448 check_location_aliasing(struct explicit_location_info explicit_locations[][4],
    449                         ir_variable *var,
    450                         unsigned location,
    451                         unsigned component,
    452                         unsigned location_limit,
    453                         const glsl_type *type,
    454                         unsigned interpolation,
    455                         bool centroid,
    456                         bool sample,
    457                         bool patch,
    458                         gl_shader_program *prog,
    459                         gl_shader_stage stage)
    460 {
    461    unsigned last_comp;
    462    if (type->without_array()->is_record()) {
    463       /* The component qualifier can't be used on structs so just treat
    464        * all component slots as used.
    465        */
    466       last_comp = 4;
    467    } else {
    468       unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
    469       last_comp = component + type->without_array()->vector_elements * dmul;
    470    }
    471 
    472    while (location < location_limit) {
    473       unsigned comp = 0;
    474       while (comp < 4) {
    475          struct explicit_location_info *info =
    476             &explicit_locations[location][comp];
    477 
    478          if (info->var) {
    479             /* Component aliasing is not alloed */
    480             if (comp >= component && comp < last_comp) {
    481                linker_error(prog,
    482                             "%s shader has multiple outputs explicitly "
    483                             "assigned to location %d and component %d\n",
    484                             _mesa_shader_stage_to_string(stage),
    485                             location, comp);
    486                return false;
    487             } else {
    488                /* For all other used components we need to have matching
    489                 * types, interpolation and auxiliary storage
    490                 */
    491                if (info->numerical_type !=
    492                    get_numerical_type(type->without_array())) {
    493                   linker_error(prog,
    494                                "Varyings sharing the same location must "
    495                                "have the same underlying numerical type. "
    496                                "Location %u component %u\n",
    497                                location, comp);
    498                   return false;
    499                }
    500 
    501                if (info->interpolation != interpolation) {
    502                   linker_error(prog,
    503                                "%s shader has multiple outputs at explicit "
    504                                "location %u with different interpolation "
    505                                "settings\n",
    506                                _mesa_shader_stage_to_string(stage), location);
    507                   return false;
    508                }
    509 
    510                if (info->centroid != centroid ||
    511                    info->sample != sample ||
    512                    info->patch != patch) {
    513                   linker_error(prog,
    514                                "%s shader has multiple outputs at explicit "
    515                                "location %u with different aux storage\n",
    516                                _mesa_shader_stage_to_string(stage), location);
    517                   return false;
    518                }
    519             }
    520          } else if (comp >= component && comp < last_comp) {
    521             info->var = var;
    522             info->numerical_type = get_numerical_type(type->without_array());
    523             info->interpolation = interpolation;
    524             info->centroid = centroid;
    525             info->sample = sample;
    526             info->patch = patch;
    527          }
    528 
    529          comp++;
    530 
    531          /* We need to do some special handling for doubles as dvec3 and
    532           * dvec4 consume two consecutive locations. We don't need to
    533           * worry about components beginning at anything other than 0 as
    534           * the spec does not allow this for dvec3 and dvec4.
    535           */
    536          if (comp == 4 && last_comp > 4) {
    537             last_comp = last_comp - 4;
    538             /* Bump location index and reset the component index */
    539             location++;
    540             comp = 0;
    541             component = 0;
    542          }
    543       }
    544 
    545       location++;
    546    }
    547 
    548    return true;
    549 }
    550 
    551 static bool
    552 validate_explicit_variable_location(struct gl_context *ctx,
    553                                     struct explicit_location_info explicit_locations[][4],
    554                                     ir_variable *var,
    555                                     gl_shader_program *prog,
    556                                     gl_linked_shader *sh)
    557 {
    558    const glsl_type *type = get_varying_type(var, sh->Stage);
    559    unsigned num_elements = type->count_attribute_slots(false);
    560    unsigned idx = compute_variable_location_slot(var, sh->Stage);
    561    unsigned slot_limit = idx + num_elements;
    562 
    563    /* Vertex shader inputs and fragment shader outputs are validated in
    564     * assign_attribute_or_color_locations() so we should not attempt to
    565     * validate them again here.
    566     */
    567    unsigned slot_max;
    568    if (var->data.mode == ir_var_shader_out) {
    569       assert(sh->Stage != MESA_SHADER_FRAGMENT);
    570       slot_max =
    571          ctx->Const.Program[sh->Stage].MaxOutputComponents / 4;
    572    } else {
    573       assert(var->data.mode == ir_var_shader_in);
    574       assert(sh->Stage != MESA_SHADER_VERTEX);
    575       slot_max =
    576          ctx->Const.Program[sh->Stage].MaxInputComponents / 4;
    577    }
    578 
    579    if (slot_limit > slot_max) {
    580       linker_error(prog,
    581                    "Invalid location %u in %s shader\n",
    582                    idx, _mesa_shader_stage_to_string(sh->Stage));
    583       return false;
    584    }
    585 
    586    const glsl_type *type_without_array = type->without_array();
    587    if (type_without_array->is_interface()) {
    588       for (unsigned i = 0; i < type_without_array->length; i++) {
    589          glsl_struct_field *field = &type_without_array->fields.structure[i];
    590          unsigned field_location = field->location -
    591             (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
    592          if (!check_location_aliasing(explicit_locations, var,
    593                                       field_location,
    594                                       0, field_location + 1,
    595                                       field->type,
    596                                       field->interpolation,
    597                                       field->centroid,
    598                                       field->sample,
    599                                       field->patch,
    600                                       prog, sh->Stage)) {
    601             return false;
    602          }
    603       }
    604    } else if (!check_location_aliasing(explicit_locations, var,
    605                                        idx, var->data.location_frac,
    606                                        slot_limit, type,
    607                                        var->data.interpolation,
    608                                        var->data.centroid,
    609                                        var->data.sample,
    610                                        var->data.patch,
    611                                        prog, sh->Stage)) {
    612       return false;
    613    }
    614 
    615    return true;
    616 }
    617 
    618 /**
    619  * Validate explicit locations for the inputs to the first stage and the
    620  * outputs of the last stage in an SSO program (everything in between is
    621  * validated in cross_validate_outputs_to_inputs).
    622  */
    623 void
    624 validate_sso_explicit_locations(struct gl_context *ctx,
    625                                 struct gl_shader_program *prog,
    626                                 gl_shader_stage first_stage,
    627                                 gl_shader_stage last_stage)
    628 {
    629    assert(prog->SeparateShader);
    630 
    631    /* VS inputs and FS outputs are validated in
    632     * assign_attribute_or_color_locations()
    633     */
    634    bool validate_first_stage = first_stage != MESA_SHADER_VERTEX;
    635    bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT;
    636    if (!validate_first_stage && !validate_last_stage)
    637       return;
    638 
    639    struct explicit_location_info explicit_locations[MAX_VARYING][4];
    640 
    641    gl_shader_stage stages[2] = { first_stage, last_stage };
    642    bool validate_stage[2] = { validate_first_stage, validate_last_stage };
    643    ir_variable_mode var_direction[2] = { ir_var_shader_in, ir_var_shader_out };
    644 
    645    for (unsigned i = 0; i < 2; i++) {
    646       if (!validate_stage[i])
    647          continue;
    648 
    649       gl_shader_stage stage = stages[i];
    650 
    651       gl_linked_shader *sh = prog->_LinkedShaders[stage];
    652       assert(sh);
    653 
    654       memset(explicit_locations, 0, sizeof(explicit_locations));
    655 
    656       foreach_in_list(ir_instruction, node, sh->ir) {
    657          ir_variable *const var = node->as_variable();
    658 
    659          if (var == NULL ||
    660              !var->data.explicit_location ||
    661              var->data.location < VARYING_SLOT_VAR0 ||
    662              var->data.mode != var_direction[i])
    663             continue;
    664 
    665          if (!validate_explicit_variable_location(
    666                ctx, explicit_locations, var, prog, sh)) {
    667             return;
    668          }
    669       }
    670    }
    671 }
    672 
    673 /**
    674  * Validate that outputs from one stage match inputs of another
    675  */
    676 void
    677 cross_validate_outputs_to_inputs(struct gl_context *ctx,
    678                                  struct gl_shader_program *prog,
    679                                  gl_linked_shader *producer,
    680                                  gl_linked_shader *consumer)
    681 {
    682    glsl_symbol_table parameters;
    683    struct explicit_location_info explicit_locations[MAX_VARYING][4] = { 0 };
    684 
    685    /* Find all shader outputs in the "producer" stage.
    686     */
    687    foreach_in_list(ir_instruction, node, producer->ir) {
    688       ir_variable *const var = node->as_variable();
    689 
    690       if (var == NULL || var->data.mode != ir_var_shader_out)
    691          continue;
    692 
    693       if (!var->data.explicit_location
    694           || var->data.location < VARYING_SLOT_VAR0)
    695          parameters.add_variable(var);
    696       else {
    697          /* User-defined varyings with explicit locations are handled
    698           * differently because they do not need to have matching names.
    699           */
    700          if (!validate_explicit_variable_location(ctx,
    701                                                   explicit_locations,
    702                                                   var, prog, producer)) {
    703             return;
    704          }
    705       }
    706    }
    707 
    708 
    709    /* Find all shader inputs in the "consumer" stage.  Any variables that have
    710     * matching outputs already in the symbol table must have the same type and
    711     * qualifiers.
    712     *
    713     * Exception: if the consumer is the geometry shader, then the inputs
    714     * should be arrays and the type of the array element should match the type
    715     * of the corresponding producer output.
    716     */
    717    foreach_in_list(ir_instruction, node, consumer->ir) {
    718       ir_variable *const input = node->as_variable();
    719 
    720       if (input == NULL || input->data.mode != ir_var_shader_in)
    721          continue;
    722 
    723       if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
    724          const ir_variable *const front_color =
    725             parameters.get_variable("gl_FrontColor");
    726 
    727          const ir_variable *const back_color =
    728             parameters.get_variable("gl_BackColor");
    729 
    730          cross_validate_front_and_back_color(ctx, prog, input,
    731                                              front_color, back_color,
    732                                              consumer->Stage, producer->Stage);
    733       } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
    734          const ir_variable *const front_color =
    735             parameters.get_variable("gl_FrontSecondaryColor");
    736 
    737          const ir_variable *const back_color =
    738             parameters.get_variable("gl_BackSecondaryColor");
    739 
    740          cross_validate_front_and_back_color(ctx, prog, input,
    741                                              front_color, back_color,
    742                                              consumer->Stage, producer->Stage);
    743       } else {
    744          /* The rules for connecting inputs and outputs change in the presence
    745           * of explicit locations.  In this case, we no longer care about the
    746           * names of the variables.  Instead, we care only about the
    747           * explicitly assigned location.
    748           */
    749          ir_variable *output = NULL;
    750          if (input->data.explicit_location
    751              && input->data.location >= VARYING_SLOT_VAR0) {
    752 
    753             const glsl_type *type = get_varying_type(input, consumer->Stage);
    754             unsigned num_elements = type->count_attribute_slots(false);
    755             unsigned idx =
    756                compute_variable_location_slot(input, consumer->Stage);
    757             unsigned slot_limit = idx + num_elements;
    758 
    759             while (idx < slot_limit) {
    760                if (idx >= MAX_VARYING) {
    761                   linker_error(prog,
    762                                "Invalid location %u in %s shader\n", idx,
    763                                _mesa_shader_stage_to_string(consumer->Stage));
    764                   return;
    765                }
    766 
    767                output = explicit_locations[idx][input->data.location_frac].var;
    768 
    769                if (output == NULL ||
    770                    input->data.location != output->data.location) {
    771                   linker_error(prog,
    772                                "%s shader input `%s' with explicit location "
    773                                "has no matching output\n",
    774                                _mesa_shader_stage_to_string(consumer->Stage),
    775                                input->name);
    776                   break;
    777                }
    778                idx++;
    779             }
    780          } else {
    781             output = parameters.get_variable(input->name);
    782          }
    783 
    784          if (output != NULL) {
    785             /* Interface blocks have their own validation elsewhere so don't
    786              * try validating them here.
    787              */
    788             if (!(input->get_interface_type() &&
    789                   output->get_interface_type()))
    790                cross_validate_types_and_qualifiers(ctx, prog, input, output,
    791                                                    consumer->Stage,
    792                                                    producer->Stage);
    793          } else {
    794             /* Check for input vars with unmatched output vars in prev stage
    795              * taking into account that interface blocks could have a matching
    796              * output but with different name, so we ignore them.
    797              */
    798             assert(!input->data.assigned);
    799             if (input->data.used && !input->get_interface_type() &&
    800                 !input->data.explicit_location && !prog->SeparateShader)
    801                linker_error(prog,
    802                             "%s shader input `%s' "
    803                             "has no matching output in the previous stage\n",
    804                             _mesa_shader_stage_to_string(consumer->Stage),
    805                             input->name);
    806          }
    807       }
    808    }
    809 }
    810 
    811 /**
    812  * Demote shader inputs and outputs that are not used in other stages, and
    813  * remove them via dead code elimination.
    814  */
    815 static void
    816 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
    817                                         gl_linked_shader *sh,
    818                                         enum ir_variable_mode mode)
    819 {
    820    if (is_separate_shader_object)
    821       return;
    822 
    823    foreach_in_list(ir_instruction, node, sh->ir) {
    824       ir_variable *const var = node->as_variable();
    825 
    826       if (var == NULL || var->data.mode != int(mode))
    827          continue;
    828 
    829       /* A shader 'in' or 'out' variable is only really an input or output if
    830        * its value is used by other shader stages. This will cause the
    831        * variable to have a location assigned.
    832        */
    833       if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
    834          assert(var->data.mode != ir_var_temporary);
    835 
    836          /* Assign zeros to demoted inputs to allow more optimizations. */
    837          if (var->data.mode == ir_var_shader_in && !var->constant_value)
    838             var->constant_value = ir_constant::zero(var, var->type);
    839 
    840          var->data.mode = ir_var_auto;
    841       }
    842    }
    843 
    844    /* Eliminate code that is now dead due to unused inputs/outputs being
    845     * demoted.
    846     */
    847    while (do_dead_code(sh->ir, false))
    848       ;
    849 
    850 }
    851 
    852 /**
    853  * Initialize this object based on a string that was passed to
    854  * glTransformFeedbackVaryings.
    855  *
    856  * If the input is mal-formed, this call still succeeds, but it sets
    857  * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
    858  * will fail to find any matching variable.
    859  */
    860 void
    861 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
    862                      const char *input)
    863 {
    864    /* We don't have to be pedantic about what is a valid GLSL variable name,
    865     * because any variable with an invalid name can't exist in the IR anyway.
    866     */
    867 
    868    this->location = -1;
    869    this->orig_name = input;
    870    this->lowered_builtin_array_variable = none;
    871    this->skip_components = 0;
    872    this->next_buffer_separator = false;
    873    this->matched_candidate = NULL;
    874    this->stream_id = 0;
    875    this->buffer = 0;
    876    this->offset = 0;
    877 
    878    if (ctx->Extensions.ARB_transform_feedback3) {
    879       /* Parse gl_NextBuffer. */
    880       if (strcmp(input, "gl_NextBuffer") == 0) {
    881          this->next_buffer_separator = true;
    882          return;
    883       }
    884 
    885       /* Parse gl_SkipComponents. */
    886       if (strcmp(input, "gl_SkipComponents1") == 0)
    887          this->skip_components = 1;
    888       else if (strcmp(input, "gl_SkipComponents2") == 0)
    889          this->skip_components = 2;
    890       else if (strcmp(input, "gl_SkipComponents3") == 0)
    891          this->skip_components = 3;
    892       else if (strcmp(input, "gl_SkipComponents4") == 0)
    893          this->skip_components = 4;
    894 
    895       if (this->skip_components)
    896          return;
    897    }
    898 
    899    /* Parse a declaration. */
    900    const char *base_name_end;
    901    long subscript = parse_program_resource_name(input, &base_name_end);
    902    this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
    903    if (this->var_name == NULL) {
    904       _mesa_error_no_memory(__func__);
    905       return;
    906    }
    907 
    908    if (subscript >= 0) {
    909       this->array_subscript = subscript;
    910       this->is_subscripted = true;
    911    } else {
    912       this->is_subscripted = false;
    913    }
    914 
    915    /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
    916     * class must behave specially to account for the fact that gl_ClipDistance
    917     * is converted from a float[8] to a vec4[2].
    918     */
    919    if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
    920        strcmp(this->var_name, "gl_ClipDistance") == 0) {
    921       this->lowered_builtin_array_variable = clip_distance;
    922    }
    923    if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
    924        strcmp(this->var_name, "gl_CullDistance") == 0) {
    925       this->lowered_builtin_array_variable = cull_distance;
    926    }
    927 
    928    if (ctx->Const.LowerTessLevel &&
    929        (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
    930       this->lowered_builtin_array_variable = tess_level_outer;
    931    if (ctx->Const.LowerTessLevel &&
    932        (strcmp(this->var_name, "gl_TessLevelInner") == 0))
    933       this->lowered_builtin_array_variable = tess_level_inner;
    934 }
    935 
    936 
    937 /**
    938  * Determine whether two tfeedback_decl objects refer to the same variable and
    939  * array index (if applicable).
    940  */
    941 bool
    942 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
    943 {
    944    assert(x.is_varying() && y.is_varying());
    945 
    946    if (strcmp(x.var_name, y.var_name) != 0)
    947       return false;
    948    if (x.is_subscripted != y.is_subscripted)
    949       return false;
    950    if (x.is_subscripted && x.array_subscript != y.array_subscript)
    951       return false;
    952    return true;
    953 }
    954 
    955 
    956 /**
    957  * Assign a location and stream ID for this tfeedback_decl object based on the
    958  * transform feedback candidate found by find_candidate.
    959  *
    960  * If an error occurs, the error is reported through linker_error() and false
    961  * is returned.
    962  */
    963 bool
    964 tfeedback_decl::assign_location(struct gl_context *ctx,
    965                                 struct gl_shader_program *prog)
    966 {
    967    assert(this->is_varying());
    968 
    969    unsigned fine_location
    970       = this->matched_candidate->toplevel_var->data.location * 4
    971       + this->matched_candidate->toplevel_var->data.location_frac
    972       + this->matched_candidate->offset;
    973    const unsigned dmul =
    974       this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
    975 
    976    if (this->matched_candidate->type->is_array()) {
    977       /* Array variable */
    978       const unsigned matrix_cols =
    979          this->matched_candidate->type->fields.array->matrix_columns;
    980       const unsigned vector_elements =
    981          this->matched_candidate->type->fields.array->vector_elements;
    982       unsigned actual_array_size;
    983       switch (this->lowered_builtin_array_variable) {
    984       case clip_distance:
    985          actual_array_size = prog->last_vert_prog ?
    986             prog->last_vert_prog->info.clip_distance_array_size : 0;
    987          break;
    988       case cull_distance:
    989          actual_array_size = prog->last_vert_prog ?
    990             prog->last_vert_prog->info.cull_distance_array_size : 0;
    991          break;
    992       case tess_level_outer:
    993          actual_array_size = 4;
    994          break;
    995       case tess_level_inner:
    996          actual_array_size = 2;
    997          break;
    998       case none:
    999       default:
   1000          actual_array_size = this->matched_candidate->type->array_size();
   1001          break;
   1002       }
   1003 
   1004       if (this->is_subscripted) {
   1005          /* Check array bounds. */
   1006          if (this->array_subscript >= actual_array_size) {
   1007             linker_error(prog, "Transform feedback varying %s has index "
   1008                          "%i, but the array size is %u.",
   1009                          this->orig_name, this->array_subscript,
   1010                          actual_array_size);
   1011             return false;
   1012          }
   1013          unsigned array_elem_size = this->lowered_builtin_array_variable ?
   1014             1 : vector_elements * matrix_cols * dmul;
   1015          fine_location += array_elem_size * this->array_subscript;
   1016          this->size = 1;
   1017       } else {
   1018          this->size = actual_array_size;
   1019       }
   1020       this->vector_elements = vector_elements;
   1021       this->matrix_columns = matrix_cols;
   1022       if (this->lowered_builtin_array_variable)
   1023          this->type = GL_FLOAT;
   1024       else
   1025          this->type = this->matched_candidate->type->fields.array->gl_type;
   1026    } else {
   1027       /* Regular variable (scalar, vector, or matrix) */
   1028       if (this->is_subscripted) {
   1029          linker_error(prog, "Transform feedback varying %s requested, "
   1030                       "but %s is not an array.",
   1031                       this->orig_name, this->var_name);
   1032          return false;
   1033       }
   1034       this->size = 1;
   1035       this->vector_elements = this->matched_candidate->type->vector_elements;
   1036       this->matrix_columns = this->matched_candidate->type->matrix_columns;
   1037       this->type = this->matched_candidate->type->gl_type;
   1038    }
   1039    this->location = fine_location / 4;
   1040    this->location_frac = fine_location % 4;
   1041 
   1042    /* From GL_EXT_transform_feedback:
   1043     *   A program will fail to link if:
   1044     *
   1045     *   * the total number of components to capture in any varying
   1046     *     variable in <varyings> is greater than the constant
   1047     *     MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
   1048     *     buffer mode is SEPARATE_ATTRIBS_EXT;
   1049     */
   1050    if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
   1051        this->num_components() >
   1052        ctx->Const.MaxTransformFeedbackSeparateComponents) {
   1053       linker_error(prog, "Transform feedback varying %s exceeds "
   1054                    "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
   1055                    this->orig_name);
   1056       return false;
   1057    }
   1058 
   1059    /* Only transform feedback varyings can be assigned to non-zero streams,
   1060     * so assign the stream id here.
   1061     */
   1062    this->stream_id = this->matched_candidate->toplevel_var->data.stream;
   1063 
   1064    unsigned array_offset = this->array_subscript * 4 * dmul;
   1065    unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
   1066    this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
   1067    this->offset = this->matched_candidate->toplevel_var->data.offset +
   1068       array_offset + struct_offset;
   1069 
   1070    return true;
   1071 }
   1072 
   1073 
   1074 unsigned
   1075 tfeedback_decl::get_num_outputs() const
   1076 {
   1077    if (!this->is_varying()) {
   1078       return 0;
   1079    }
   1080    return (this->num_components() + this->location_frac + 3)/4;
   1081 }
   1082 
   1083 
   1084 /**
   1085  * Update gl_transform_feedback_info to reflect this tfeedback_decl.
   1086  *
   1087  * If an error occurs, the error is reported through linker_error() and false
   1088  * is returned.
   1089  */
   1090 bool
   1091 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
   1092                       struct gl_transform_feedback_info *info,
   1093                       unsigned buffer, unsigned buffer_index,
   1094                       const unsigned max_outputs, bool *explicit_stride,
   1095                       bool has_xfb_qualifiers) const
   1096 {
   1097    unsigned xfb_offset = 0;
   1098    unsigned size = this->size;
   1099    /* Handle gl_SkipComponents. */
   1100    if (this->skip_components) {
   1101       info->Buffers[buffer].Stride += this->skip_components;
   1102       size = this->skip_components;
   1103       goto store_varying;
   1104    }
   1105 
   1106    if (this->next_buffer_separator) {
   1107       size = 0;
   1108       goto store_varying;
   1109    }
   1110 
   1111    if (has_xfb_qualifiers) {
   1112       xfb_offset = this->offset / 4;
   1113    } else {
   1114       xfb_offset = info->Buffers[buffer].Stride;
   1115    }
   1116    info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
   1117 
   1118    {
   1119       unsigned location = this->location;
   1120       unsigned location_frac = this->location_frac;
   1121       unsigned num_components = this->num_components();
   1122       while (num_components > 0) {
   1123          unsigned output_size = MIN2(num_components, 4 - location_frac);
   1124          assert((info->NumOutputs == 0 && max_outputs == 0) ||
   1125                 info->NumOutputs < max_outputs);
   1126 
   1127          /* From the ARB_enhanced_layouts spec:
   1128           *
   1129           *    "If such a block member or variable is not written during a shader
   1130           *    invocation, the buffer contents at the assigned offset will be
   1131           *    undefined.  Even if there are no static writes to a variable or
   1132           *    member that is assigned a transform feedback offset, the space is
   1133           *    still allocated in the buffer and still affects the stride."
   1134           */
   1135          if (this->is_varying_written()) {
   1136             info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
   1137             info->Outputs[info->NumOutputs].OutputRegister = location;
   1138             info->Outputs[info->NumOutputs].NumComponents = output_size;
   1139             info->Outputs[info->NumOutputs].StreamId = stream_id;
   1140             info->Outputs[info->NumOutputs].OutputBuffer = buffer;
   1141             info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
   1142             ++info->NumOutputs;
   1143          }
   1144          info->Buffers[buffer].Stream = this->stream_id;
   1145          xfb_offset += output_size;
   1146 
   1147          num_components -= output_size;
   1148          location++;
   1149          location_frac = 0;
   1150       }
   1151    }
   1152 
   1153    if (explicit_stride && explicit_stride[buffer]) {
   1154       if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
   1155          linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
   1156                       "multiple of 8 as its applied to a type that is or "
   1157                       "contains a double.",
   1158                       info->Buffers[buffer].Stride * 4);
   1159          return false;
   1160       }
   1161 
   1162       if ((this->offset / 4) / info->Buffers[buffer].Stride !=
   1163           (xfb_offset - 1) / info->Buffers[buffer].Stride) {
   1164          linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
   1165                       "buffer (%d)", xfb_offset * 4,
   1166                       info->Buffers[buffer].Stride * 4, buffer);
   1167          return false;
   1168       }
   1169    } else {
   1170       info->Buffers[buffer].Stride = xfb_offset;
   1171    }
   1172 
   1173    /* From GL_EXT_transform_feedback:
   1174     *   A program will fail to link if:
   1175     *
   1176     *     * the total number of components to capture is greater than
   1177     *       the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
   1178     *       and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
   1179     *
   1180     * From GL_ARB_enhanced_layouts:
   1181     *
   1182     *   "The resulting stride (implicit or explicit) must be less than or
   1183     *   equal to the implementation-dependent constant
   1184     *   gl_MaxTransformFeedbackInterleavedComponents."
   1185     */
   1186    if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
   1187         has_xfb_qualifiers) &&
   1188        info->Buffers[buffer].Stride >
   1189        ctx->Const.MaxTransformFeedbackInterleavedComponents) {
   1190       linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
   1191                    "limit has been exceeded.");
   1192       return false;
   1193    }
   1194 
   1195  store_varying:
   1196    info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
   1197                                                          this->orig_name);
   1198    info->Varyings[info->NumVarying].Type = this->type;
   1199    info->Varyings[info->NumVarying].Size = size;
   1200    info->Varyings[info->NumVarying].BufferIndex = buffer_index;
   1201    info->NumVarying++;
   1202    info->Buffers[buffer].NumVaryings++;
   1203 
   1204    return true;
   1205 }
   1206 
   1207 
   1208 const tfeedback_candidate *
   1209 tfeedback_decl::find_candidate(gl_shader_program *prog,
   1210                                hash_table *tfeedback_candidates)
   1211 {
   1212    const char *name = this->var_name;
   1213    switch (this->lowered_builtin_array_variable) {
   1214    case none:
   1215       name = this->var_name;
   1216       break;
   1217    case clip_distance:
   1218       name = "gl_ClipDistanceMESA";
   1219       break;
   1220    case cull_distance:
   1221       name = "gl_CullDistanceMESA";
   1222       break;
   1223    case tess_level_outer:
   1224       name = "gl_TessLevelOuterMESA";
   1225       break;
   1226    case tess_level_inner:
   1227       name = "gl_TessLevelInnerMESA";
   1228       break;
   1229    }
   1230    hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
   1231 
   1232    this->matched_candidate = entry ?
   1233          (const tfeedback_candidate *) entry->data : NULL;
   1234 
   1235    if (!this->matched_candidate) {
   1236       /* From GL_EXT_transform_feedback:
   1237        *   A program will fail to link if:
   1238        *
   1239        *   * any variable name specified in the <varyings> array is not
   1240        *     declared as an output in the geometry shader (if present) or
   1241        *     the vertex shader (if no geometry shader is present);
   1242        */
   1243       linker_error(prog, "Transform feedback varying %s undeclared.",
   1244                    this->orig_name);
   1245    }
   1246 
   1247    return this->matched_candidate;
   1248 }
   1249 
   1250 
   1251 /**
   1252  * Parse all the transform feedback declarations that were passed to
   1253  * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
   1254  *
   1255  * If an error occurs, the error is reported through linker_error() and false
   1256  * is returned.
   1257  */
   1258 static bool
   1259 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
   1260                       const void *mem_ctx, unsigned num_names,
   1261                       char **varying_names, tfeedback_decl *decls)
   1262 {
   1263    for (unsigned i = 0; i < num_names; ++i) {
   1264       decls[i].init(ctx, mem_ctx, varying_names[i]);
   1265 
   1266       if (!decls[i].is_varying())
   1267          continue;
   1268 
   1269       /* From GL_EXT_transform_feedback:
   1270        *   A program will fail to link if:
   1271        *
   1272        *   * any two entries in the <varyings> array specify the same varying
   1273        *     variable;
   1274        *
   1275        * We interpret this to mean "any two entries in the <varyings> array
   1276        * specify the same varying variable and array index", since transform
   1277        * feedback of arrays would be useless otherwise.
   1278        */
   1279       for (unsigned j = 0; j < i; ++j) {
   1280          if (decls[j].is_varying()) {
   1281             if (tfeedback_decl::is_same(decls[i], decls[j])) {
   1282                linker_error(prog, "Transform feedback varying %s specified "
   1283                             "more than once.", varying_names[i]);
   1284                return false;
   1285             }
   1286          }
   1287       }
   1288    }
   1289    return true;
   1290 }
   1291 
   1292 
   1293 static int
   1294 cmp_xfb_offset(const void * x_generic, const void * y_generic)
   1295 {
   1296    tfeedback_decl *x = (tfeedback_decl *) x_generic;
   1297    tfeedback_decl *y = (tfeedback_decl *) y_generic;
   1298 
   1299    if (x->get_buffer() != y->get_buffer())
   1300       return x->get_buffer() - y->get_buffer();
   1301    return x->get_offset() - y->get_offset();
   1302 }
   1303 
   1304 /**
   1305  * Store transform feedback location assignments into
   1306  * prog->sh.LinkedTransformFeedback based on the data stored in
   1307  * tfeedback_decls.
   1308  *
   1309  * If an error occurs, the error is reported through linker_error() and false
   1310  * is returned.
   1311  */
   1312 static bool
   1313 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
   1314                      unsigned num_tfeedback_decls,
   1315                      tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
   1316 {
   1317    if (!prog->last_vert_prog)
   1318       return true;
   1319 
   1320    /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
   1321     * tracking the number of buffers doesn't overflow.
   1322     */
   1323    assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
   1324 
   1325    bool separate_attribs_mode =
   1326       prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
   1327 
   1328    struct gl_program *xfb_prog = prog->last_vert_prog;
   1329    xfb_prog->sh.LinkedTransformFeedback =
   1330       rzalloc(xfb_prog, struct gl_transform_feedback_info);
   1331 
   1332    /* The xfb_offset qualifier does not have to be used in increasing order
   1333     * however some drivers expect to receive the list of transform feedback
   1334     * declarations in order so sort it now for convenience.
   1335     */
   1336    if (has_xfb_qualifiers) {
   1337       qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
   1338             cmp_xfb_offset);
   1339    } else {
   1340       xfb_prog->sh.LinkedTransformFeedback->api_enabled = true;
   1341    }
   1342 
   1343    xfb_prog->sh.LinkedTransformFeedback->Varyings =
   1344       rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
   1345                     num_tfeedback_decls);
   1346 
   1347    unsigned num_outputs = 0;
   1348    for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
   1349       if (tfeedback_decls[i].is_varying_written())
   1350          num_outputs += tfeedback_decls[i].get_num_outputs();
   1351    }
   1352 
   1353    xfb_prog->sh.LinkedTransformFeedback->Outputs =
   1354       rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
   1355                     num_outputs);
   1356 
   1357    unsigned num_buffers = 0;
   1358    unsigned buffers = 0;
   1359 
   1360    if (!has_xfb_qualifiers && separate_attribs_mode) {
   1361       /* GL_SEPARATE_ATTRIBS */
   1362       for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
   1363          if (!tfeedback_decls[i].store(ctx, prog,
   1364                                        xfb_prog->sh.LinkedTransformFeedback,
   1365                                        num_buffers, num_buffers, num_outputs,
   1366                                        NULL, has_xfb_qualifiers))
   1367             return false;
   1368 
   1369          buffers |= 1 << num_buffers;
   1370          num_buffers++;
   1371       }
   1372    }
   1373    else {
   1374       /* GL_INVERLEAVED_ATTRIBS */
   1375       int buffer_stream_id = -1;
   1376       unsigned buffer =
   1377          num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
   1378       bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
   1379 
   1380       /* Apply any xfb_stride global qualifiers */
   1381       if (has_xfb_qualifiers) {
   1382          for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
   1383             if (prog->TransformFeedback.BufferStride[j]) {
   1384                explicit_stride[j] = true;
   1385                xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
   1386                   prog->TransformFeedback.BufferStride[j] / 4;
   1387             }
   1388          }
   1389       }
   1390 
   1391       for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
   1392          if (has_xfb_qualifiers &&
   1393              buffer != tfeedback_decls[i].get_buffer()) {
   1394             /* we have moved to the next buffer so reset stream id */
   1395             buffer_stream_id = -1;
   1396             num_buffers++;
   1397          }
   1398 
   1399          if (tfeedback_decls[i].is_next_buffer_separator()) {
   1400             if (!tfeedback_decls[i].store(ctx, prog,
   1401                                           xfb_prog->sh.LinkedTransformFeedback,
   1402                                           buffer, num_buffers, num_outputs,
   1403                                           explicit_stride, has_xfb_qualifiers))
   1404                return false;
   1405             num_buffers++;
   1406             buffer_stream_id = -1;
   1407             continue;
   1408          }
   1409 
   1410          if (has_xfb_qualifiers) {
   1411             buffer = tfeedback_decls[i].get_buffer();
   1412          } else {
   1413             buffer = num_buffers;
   1414          }
   1415 
   1416          if (tfeedback_decls[i].is_varying()) {
   1417             if (buffer_stream_id == -1)  {
   1418                /* First varying writing to this buffer: remember its stream */
   1419                buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
   1420 
   1421                /* Only mark a buffer as active when there is a varying
   1422                 * attached to it. This behaviour is based on a revised version
   1423                 * of section 13.2.2 of the GL 4.6 spec.
   1424                 */
   1425                buffers |= 1 << buffer;
   1426             } else if (buffer_stream_id !=
   1427                        (int) tfeedback_decls[i].get_stream_id()) {
   1428                /* Varying writes to the same buffer from a different stream */
   1429                linker_error(prog,
   1430                             "Transform feedback can't capture varyings belonging "
   1431                             "to different vertex streams in a single buffer. "
   1432                             "Varying %s writes to buffer from stream %u, other "
   1433                             "varyings in the same buffer write from stream %u.",
   1434                             tfeedback_decls[i].name(),
   1435                             tfeedback_decls[i].get_stream_id(),
   1436                             buffer_stream_id);
   1437                return false;
   1438             }
   1439          }
   1440 
   1441          if (!tfeedback_decls[i].store(ctx, prog,
   1442                                        xfb_prog->sh.LinkedTransformFeedback,
   1443                                        buffer, num_buffers, num_outputs,
   1444                                        explicit_stride, has_xfb_qualifiers))
   1445             return false;
   1446       }
   1447    }
   1448 
   1449    assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
   1450 
   1451    xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
   1452    return true;
   1453 }
   1454 
   1455 namespace {
   1456 
   1457 /**
   1458  * Data structure recording the relationship between outputs of one shader
   1459  * stage (the "producer") and inputs of another (the "consumer").
   1460  */
   1461 class varying_matches
   1462 {
   1463 public:
   1464    varying_matches(bool disable_varying_packing, bool xfb_enabled,
   1465                    bool enhanced_layouts_enabled,
   1466                    gl_shader_stage producer_stage,
   1467                    gl_shader_stage consumer_stage);
   1468    ~varying_matches();
   1469    void record(ir_variable *producer_var, ir_variable *consumer_var);
   1470    unsigned assign_locations(struct gl_shader_program *prog,
   1471                              uint8_t components[],
   1472                              uint64_t reserved_slots);
   1473    void store_locations() const;
   1474 
   1475 private:
   1476    bool is_varying_packing_safe(const glsl_type *type,
   1477                                 const ir_variable *var) const;
   1478 
   1479    /**
   1480     * If true, this driver disables varying packing, so all varyings need to
   1481     * be aligned on slot boundaries, and take up a number of slots equal to
   1482     * their number of matrix columns times their array size.
   1483     *
   1484     * Packing may also be disabled because our current packing method is not
   1485     * safe in SSO or versions of OpenGL where interpolation qualifiers are not
   1486     * guaranteed to match across stages.
   1487     */
   1488    const bool disable_varying_packing;
   1489 
   1490    /**
   1491     * If true, this driver has transform feedback enabled. The transform
   1492     * feedback code requires at least some packing be done even when varying
   1493     * packing is disabled, fortunately where transform feedback requires
   1494     * packing it's safe to override the disabled setting. See
   1495     * is_varying_packing_safe().
   1496     */
   1497    const bool xfb_enabled;
   1498 
   1499    const bool enhanced_layouts_enabled;
   1500 
   1501    /**
   1502     * Enum representing the order in which varyings are packed within a
   1503     * packing class.
   1504     *
   1505     * Currently we pack vec4's first, then vec2's, then scalar values, then
   1506     * vec3's.  This order ensures that the only vectors that are at risk of
   1507     * having to be "double parked" (split between two adjacent varying slots)
   1508     * are the vec3's.
   1509     */
   1510    enum packing_order_enum {
   1511       PACKING_ORDER_VEC4,
   1512       PACKING_ORDER_VEC2,
   1513       PACKING_ORDER_SCALAR,
   1514       PACKING_ORDER_VEC3,
   1515    };
   1516 
   1517    static unsigned compute_packing_class(const ir_variable *var);
   1518    static packing_order_enum compute_packing_order(const ir_variable *var);
   1519    static int match_comparator(const void *x_generic, const void *y_generic);
   1520    static int xfb_comparator(const void *x_generic, const void *y_generic);
   1521 
   1522    /**
   1523     * Structure recording the relationship between a single producer output
   1524     * and a single consumer input.
   1525     */
   1526    struct match {
   1527       /**
   1528        * Packing class for this varying, computed by compute_packing_class().
   1529        */
   1530       unsigned packing_class;
   1531 
   1532       /**
   1533        * Packing order for this varying, computed by compute_packing_order().
   1534        */
   1535       packing_order_enum packing_order;
   1536       unsigned num_components;
   1537 
   1538       /**
   1539        * The output variable in the producer stage.
   1540        */
   1541       ir_variable *producer_var;
   1542 
   1543       /**
   1544        * The input variable in the consumer stage.
   1545        */
   1546       ir_variable *consumer_var;
   1547 
   1548       /**
   1549        * The location which has been assigned for this varying.  This is
   1550        * expressed in multiples of a float, with the first generic varying
   1551        * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
   1552        * value 0.
   1553        */
   1554       unsigned generic_location;
   1555    } *matches;
   1556 
   1557    /**
   1558     * The number of elements in the \c matches array that are currently in
   1559     * use.
   1560     */
   1561    unsigned num_matches;
   1562 
   1563    /**
   1564     * The number of elements that were set aside for the \c matches array when
   1565     * it was allocated.
   1566     */
   1567    unsigned matches_capacity;
   1568 
   1569    gl_shader_stage producer_stage;
   1570    gl_shader_stage consumer_stage;
   1571 };
   1572 
   1573 } /* anonymous namespace */
   1574 
   1575 varying_matches::varying_matches(bool disable_varying_packing,
   1576                                  bool xfb_enabled,
   1577                                  bool enhanced_layouts_enabled,
   1578                                  gl_shader_stage producer_stage,
   1579                                  gl_shader_stage consumer_stage)
   1580    : disable_varying_packing(disable_varying_packing),
   1581      xfb_enabled(xfb_enabled),
   1582      enhanced_layouts_enabled(enhanced_layouts_enabled),
   1583      producer_stage(producer_stage),
   1584      consumer_stage(consumer_stage)
   1585 {
   1586    /* Note: this initial capacity is rather arbitrarily chosen to be large
   1587     * enough for many cases without wasting an unreasonable amount of space.
   1588     * varying_matches::record() will resize the array if there are more than
   1589     * this number of varyings.
   1590     */
   1591    this->matches_capacity = 8;
   1592    this->matches = (match *)
   1593       malloc(sizeof(*this->matches) * this->matches_capacity);
   1594    this->num_matches = 0;
   1595 }
   1596 
   1597 
   1598 varying_matches::~varying_matches()
   1599 {
   1600    free(this->matches);
   1601 }
   1602 
   1603 
   1604 /**
   1605  * Packing is always safe on individual arrays, structures, and matrices. It
   1606  * is also safe if the varying is only used for transform feedback.
   1607  */
   1608 bool
   1609 varying_matches::is_varying_packing_safe(const glsl_type *type,
   1610                                          const ir_variable *var) const
   1611 {
   1612    if (consumer_stage == MESA_SHADER_TESS_EVAL ||
   1613        consumer_stage == MESA_SHADER_TESS_CTRL ||
   1614        producer_stage == MESA_SHADER_TESS_CTRL)
   1615       return false;
   1616 
   1617    return xfb_enabled && (type->is_array() || type->is_record() ||
   1618                           type->is_matrix() || var->data.is_xfb_only);
   1619 }
   1620 
   1621 
   1622 /**
   1623  * Record the given producer/consumer variable pair in the list of variables
   1624  * that should later be assigned locations.
   1625  *
   1626  * It is permissible for \c consumer_var to be NULL (this happens if a
   1627  * variable is output by the producer and consumed by transform feedback, but
   1628  * not consumed by the consumer).
   1629  *
   1630  * If \c producer_var has already been paired up with a consumer_var, or
   1631  * producer_var is part of fixed pipeline functionality (and hence already has
   1632  * a location assigned), this function has no effect.
   1633  *
   1634  * Note: as a side effect this function may change the interpolation type of
   1635  * \c producer_var, but only when the change couldn't possibly affect
   1636  * rendering.
   1637  */
   1638 void
   1639 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
   1640 {
   1641    assert(producer_var != NULL || consumer_var != NULL);
   1642 
   1643    if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
   1644        producer_var->data.explicit_location)) ||
   1645        (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
   1646        consumer_var->data.explicit_location))) {
   1647       /* Either a location already exists for this variable (since it is part
   1648        * of fixed functionality), or it has already been recorded as part of a
   1649        * previous match.
   1650        */
   1651       return;
   1652    }
   1653 
   1654    bool needs_flat_qualifier = consumer_var == NULL &&
   1655       (producer_var->type->contains_integer() ||
   1656        producer_var->type->contains_double());
   1657 
   1658    if (!disable_varying_packing &&
   1659        (needs_flat_qualifier ||
   1660         (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) {
   1661       /* Since this varying is not being consumed by the fragment shader, its
   1662        * interpolation type varying cannot possibly affect rendering.
   1663        * Also, this variable is non-flat and is (or contains) an integer
   1664        * or a double.
   1665        * If the consumer stage is unknown, don't modify the interpolation
   1666        * type as it could affect rendering later with separate shaders.
   1667        *
   1668        * lower_packed_varyings requires all integer varyings to flat,
   1669        * regardless of where they appear.  We can trivially satisfy that
   1670        * requirement by changing the interpolation type to flat here.
   1671        */
   1672       if (producer_var) {
   1673          producer_var->data.centroid = false;
   1674          producer_var->data.sample = false;
   1675          producer_var->data.interpolation = INTERP_MODE_FLAT;
   1676       }
   1677 
   1678       if (consumer_var) {
   1679          consumer_var->data.centroid = false;
   1680          consumer_var->data.sample = false;
   1681          consumer_var->data.interpolation = INTERP_MODE_FLAT;
   1682       }
   1683    }
   1684 
   1685    if (this->num_matches == this->matches_capacity) {
   1686       this->matches_capacity *= 2;
   1687       this->matches = (match *)
   1688          realloc(this->matches,
   1689                  sizeof(*this->matches) * this->matches_capacity);
   1690    }
   1691 
   1692    /* We must use the consumer to compute the packing class because in GL4.4+
   1693     * there is no guarantee interpolation qualifiers will match across stages.
   1694     *
   1695     * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
   1696     *
   1697     *    "The type and presence of interpolation qualifiers of variables with
   1698     *    the same name declared in all linked shaders for the same cross-stage
   1699     *    interface must match, otherwise the link command will fail.
   1700     *
   1701     *    When comparing an output from one stage to an input of a subsequent
   1702     *    stage, the input and output don't match if their interpolation
   1703     *    qualifiers (or lack thereof) are not the same."
   1704     *
   1705     * This text was also in at least revison 7 of the 4.40 spec but is no
   1706     * longer in revision 9 and not in the 4.50 spec.
   1707     */
   1708    const ir_variable *const var = (consumer_var != NULL)
   1709       ? consumer_var : producer_var;
   1710    const gl_shader_stage stage = (consumer_var != NULL)
   1711       ? consumer_stage : producer_stage;
   1712    const glsl_type *type = get_varying_type(var, stage);
   1713 
   1714    if (producer_var && consumer_var &&
   1715        consumer_var->data.must_be_shader_input) {
   1716       producer_var->data.must_be_shader_input = 1;
   1717    }
   1718 
   1719    this->matches[this->num_matches].packing_class
   1720       = this->compute_packing_class(var);
   1721    this->matches[this->num_matches].packing_order
   1722       = this->compute_packing_order(var);
   1723    if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) ||
   1724        var->data.must_be_shader_input) {
   1725       unsigned slots = type->count_attribute_slots(false);
   1726       this->matches[this->num_matches].num_components = slots * 4;
   1727    } else {
   1728       this->matches[this->num_matches].num_components
   1729          = type->component_slots();
   1730    }
   1731 
   1732    this->matches[this->num_matches].producer_var = producer_var;
   1733    this->matches[this->num_matches].consumer_var = consumer_var;
   1734    this->num_matches++;
   1735    if (producer_var)
   1736       producer_var->data.is_unmatched_generic_inout = 0;
   1737    if (consumer_var)
   1738       consumer_var->data.is_unmatched_generic_inout = 0;
   1739 }
   1740 
   1741 
   1742 /**
   1743  * Choose locations for all of the variable matches that were previously
   1744  * passed to varying_matches::record().
   1745  * \param components  returns array[slot] of number of components used
   1746  *                    per slot (1, 2, 3 or 4)
   1747  * \param reserved_slots  bitmask indicating which varying slots are already
   1748  *                        allocated
   1749  * \return number of slots (4-element vectors) allocated
   1750  */
   1751 unsigned
   1752 varying_matches::assign_locations(struct gl_shader_program *prog,
   1753                                   uint8_t components[],
   1754                                   uint64_t reserved_slots)
   1755 {
   1756    /* If packing has been disabled then we cannot safely sort the varyings by
   1757     * class as it may mean we are using a version of OpenGL where
   1758     * interpolation qualifiers are not guaranteed to be matching across
   1759     * shaders, sorting in this case could result in mismatching shader
   1760     * interfaces.
   1761     * When packing is disabled the sort orders varyings used by transform
   1762     * feedback first, but also depends on *undefined behaviour* of qsort to
   1763     * reverse the order of the varyings. See: xfb_comparator().
   1764     */
   1765    if (!this->disable_varying_packing) {
   1766       /* Sort varying matches into an order that makes them easy to pack. */
   1767       qsort(this->matches, this->num_matches, sizeof(*this->matches),
   1768             &varying_matches::match_comparator);
   1769    } else {
   1770       /* Only sort varyings that are only used by transform feedback. */
   1771       qsort(this->matches, this->num_matches, sizeof(*this->matches),
   1772             &varying_matches::xfb_comparator);
   1773    }
   1774 
   1775    unsigned generic_location = 0;
   1776    unsigned generic_patch_location = MAX_VARYING*4;
   1777    bool previous_var_xfb_only = false;
   1778    unsigned previous_packing_class = ~0u;
   1779 
   1780    /* For tranform feedback separate mode, we know the number of attributes
   1781     * is <= the number of buffers.  So packing isn't critical.  In fact,
   1782     * packing vec3 attributes can cause trouble because splitting a vec3
   1783     * effectively creates an additional transform feedback output.  The
   1784     * extra TFB output may exceed device driver limits.
   1785     */
   1786    const bool dont_pack_vec3 =
   1787       (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
   1788        prog->TransformFeedback.NumVarying > 0);
   1789 
   1790    for (unsigned i = 0; i < this->num_matches; i++) {
   1791       unsigned *location = &generic_location;
   1792       const ir_variable *var;
   1793       const glsl_type *type;
   1794       bool is_vertex_input = false;
   1795 
   1796       if (matches[i].consumer_var) {
   1797          var = matches[i].consumer_var;
   1798          type = get_varying_type(var, consumer_stage);
   1799          if (consumer_stage == MESA_SHADER_VERTEX)
   1800             is_vertex_input = true;
   1801       } else {
   1802          var = matches[i].producer_var;
   1803          type = get_varying_type(var, producer_stage);
   1804       }
   1805 
   1806       if (var->data.patch)
   1807          location = &generic_patch_location;
   1808 
   1809       /* Advance to the next slot if this varying has a different packing
   1810        * class than the previous one, and we're not already on a slot
   1811        * boundary.
   1812        *
   1813        * Also advance to the next slot if packing is disabled. This makes sure
   1814        * we don't assign varyings the same locations which is possible
   1815        * because we still pack individual arrays, records and matrices even
   1816        * when packing is disabled. Note we don't advance to the next slot if
   1817        * we can pack varyings together that are only used for transform
   1818        * feedback.
   1819        */
   1820       if (var->data.must_be_shader_input ||
   1821           (this->disable_varying_packing &&
   1822            !(previous_var_xfb_only && var->data.is_xfb_only)) ||
   1823           (previous_packing_class != this->matches[i].packing_class) ||
   1824           (this->matches[i].packing_order == PACKING_ORDER_VEC3 &&
   1825            dont_pack_vec3)) {
   1826          *location = ALIGN(*location, 4);
   1827       }
   1828 
   1829       previous_var_xfb_only = var->data.is_xfb_only;
   1830       previous_packing_class = this->matches[i].packing_class;
   1831 
   1832       /* The number of components taken up by this variable. For vertex shader
   1833        * inputs, we use the number of slots * 4, as they have different
   1834        * counting rules.
   1835        */
   1836       unsigned num_components = is_vertex_input ?
   1837          type->count_attribute_slots(is_vertex_input) * 4 :
   1838          this->matches[i].num_components;
   1839 
   1840       /* The last slot for this variable, inclusive. */
   1841       unsigned slot_end = *location + num_components - 1;
   1842 
   1843       /* FIXME: We could be smarter in the below code and loop back over
   1844        * trying to fill any locations that we skipped because we couldn't pack
   1845        * the varying between an explicit location. For now just let the user
   1846        * hit the linking error if we run out of room and suggest they use
   1847        * explicit locations.
   1848        */
   1849       while (slot_end < MAX_VARYING * 4u) {
   1850          const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
   1851          const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
   1852 
   1853          assert(slots > 0);
   1854 
   1855          if ((reserved_slots & slot_mask) == 0) {
   1856             break;
   1857          }
   1858 
   1859          *location = ALIGN(*location + 1, 4);
   1860          slot_end = *location + num_components - 1;
   1861       }
   1862 
   1863       if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
   1864          linker_error(prog, "insufficient contiguous locations available for "
   1865                       "%s it is possible an array or struct could not be "
   1866                       "packed between varyings with explicit locations. Try "
   1867                       "using an explicit location for arrays and structs.",
   1868                       var->name);
   1869       }
   1870 
   1871       if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
   1872          for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
   1873             components[j] = 4;
   1874          components[slot_end / 4u] = (slot_end & 3) + 1;
   1875       }
   1876 
   1877       this->matches[i].generic_location = *location;
   1878 
   1879       *location = slot_end + 1;
   1880    }
   1881 
   1882    return (generic_location + 3) / 4;
   1883 }
   1884 
   1885 
   1886 /**
   1887  * Update the producer and consumer shaders to reflect the locations
   1888  * assignments that were made by varying_matches::assign_locations().
   1889  */
   1890 void
   1891 varying_matches::store_locations() const
   1892 {
   1893    /* Check is location needs to be packed with lower_packed_varyings() or if
   1894     * we can just use ARB_enhanced_layouts packing.
   1895     */
   1896    bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 };
   1897    const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
   1898 
   1899    for (unsigned i = 0; i < this->num_matches; i++) {
   1900       ir_variable *producer_var = this->matches[i].producer_var;
   1901       ir_variable *consumer_var = this->matches[i].consumer_var;
   1902       unsigned generic_location = this->matches[i].generic_location;
   1903       unsigned slot = generic_location / 4;
   1904       unsigned offset = generic_location % 4;
   1905 
   1906       if (producer_var) {
   1907          producer_var->data.location = VARYING_SLOT_VAR0 + slot;
   1908          producer_var->data.location_frac = offset;
   1909       }
   1910 
   1911       if (consumer_var) {
   1912          assert(consumer_var->data.location == -1);
   1913          consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
   1914          consumer_var->data.location_frac = offset;
   1915       }
   1916 
   1917       /* Find locations suitable for native packing via
   1918        * ARB_enhanced_layouts.
   1919        */
   1920       if (producer_var && consumer_var) {
   1921          if (enhanced_layouts_enabled) {
   1922             const glsl_type *type =
   1923                get_varying_type(producer_var, producer_stage);
   1924             if (type->is_array() || type->is_matrix() || type->is_record() ||
   1925                 type->is_double()) {
   1926                unsigned comp_slots = type->component_slots() + offset;
   1927                unsigned slots = comp_slots / 4;
   1928                if (comp_slots % 4)
   1929                   slots += 1;
   1930 
   1931                for (unsigned j = 0; j < slots; j++) {
   1932                   pack_loc[slot + j] = true;
   1933                }
   1934             } else if (offset + type->vector_elements > 4) {
   1935                pack_loc[slot] = true;
   1936                pack_loc[slot + 1] = true;
   1937             } else {
   1938                loc_type[slot][offset] = type;
   1939             }
   1940          }
   1941       }
   1942    }
   1943 
   1944    /* Attempt to use ARB_enhanced_layouts for more efficient packing if
   1945     * suitable.
   1946     */
   1947    if (enhanced_layouts_enabled) {
   1948       for (unsigned i = 0; i < this->num_matches; i++) {
   1949          ir_variable *producer_var = this->matches[i].producer_var;
   1950          ir_variable *consumer_var = this->matches[i].consumer_var;
   1951          unsigned generic_location = this->matches[i].generic_location;
   1952          unsigned slot = generic_location / 4;
   1953 
   1954          if (pack_loc[slot] || !producer_var || !consumer_var)
   1955             continue;
   1956 
   1957          const glsl_type *type =
   1958             get_varying_type(producer_var, producer_stage);
   1959          bool type_match = true;
   1960          for (unsigned j = 0; j < 4; j++) {
   1961             if (loc_type[slot][j]) {
   1962                if (type->base_type != loc_type[slot][j]->base_type)
   1963                   type_match = false;
   1964             }
   1965          }
   1966 
   1967          if (type_match) {
   1968             producer_var->data.explicit_location = 1;
   1969             consumer_var->data.explicit_location = 1;
   1970             producer_var->data.explicit_component = 1;
   1971             consumer_var->data.explicit_component = 1;
   1972          }
   1973       }
   1974    }
   1975 }
   1976 
   1977 
   1978 /**
   1979  * Compute the "packing class" of the given varying.  This is an unsigned
   1980  * integer with the property that two variables in the same packing class can
   1981  * be safely backed into the same vec4.
   1982  */
   1983 unsigned
   1984 varying_matches::compute_packing_class(const ir_variable *var)
   1985 {
   1986    /* Without help from the back-end, there is no way to pack together
   1987     * variables with different interpolation types, because
   1988     * lower_packed_varyings must choose exactly one interpolation type for
   1989     * each packed varying it creates.
   1990     *
   1991     * However, we can safely pack together floats, ints, and uints, because:
   1992     *
   1993     * - varyings of base type "int" and "uint" must use the "flat"
   1994     *   interpolation type, which can only occur in GLSL 1.30 and above.
   1995     *
   1996     * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
   1997     *   can store flat floats as ints without losing any information (using
   1998     *   the ir_unop_bitcast_* opcodes).
   1999     *
   2000     * Therefore, the packing class depends only on the interpolation type.
   2001     */
   2002    const unsigned interp = var->is_interpolation_flat()
   2003       ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
   2004 
   2005    assert(interp < (1 << 3));
   2006 
   2007    const unsigned packing_class = (interp << 0) |
   2008                                   (var->data.centroid << 3) |
   2009                                   (var->data.sample << 4) |
   2010                                   (var->data.patch << 5) |
   2011                                   (var->data.must_be_shader_input << 6);
   2012 
   2013    return packing_class;
   2014 }
   2015 
   2016 
   2017 /**
   2018  * Compute the "packing order" of the given varying.  This is a sort key we
   2019  * use to determine when to attempt to pack the given varying relative to
   2020  * other varyings in the same packing class.
   2021  */
   2022 varying_matches::packing_order_enum
   2023 varying_matches::compute_packing_order(const ir_variable *var)
   2024 {
   2025    const glsl_type *element_type = var->type;
   2026 
   2027    while (element_type->is_array()) {
   2028       element_type = element_type->fields.array;
   2029    }
   2030 
   2031    switch (element_type->component_slots() % 4) {
   2032    case 1: return PACKING_ORDER_SCALAR;
   2033    case 2: return PACKING_ORDER_VEC2;
   2034    case 3: return PACKING_ORDER_VEC3;
   2035    case 0: return PACKING_ORDER_VEC4;
   2036    default:
   2037       assert(!"Unexpected value of vector_elements");
   2038       return PACKING_ORDER_VEC4;
   2039    }
   2040 }
   2041 
   2042 
   2043 /**
   2044  * Comparison function passed to qsort() to sort varyings by packing_class and
   2045  * then by packing_order.
   2046  */
   2047 int
   2048 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
   2049 {
   2050    const match *x = (const match *) x_generic;
   2051    const match *y = (const match *) y_generic;
   2052 
   2053    if (x->packing_class != y->packing_class)
   2054       return x->packing_class - y->packing_class;
   2055    return x->packing_order - y->packing_order;
   2056 }
   2057 
   2058 
   2059 /**
   2060  * Comparison function passed to qsort() to sort varyings used only by
   2061  * transform feedback when packing of other varyings is disabled.
   2062  */
   2063 int
   2064 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
   2065 {
   2066    const match *x = (const match *) x_generic;
   2067 
   2068    if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
   2069       return match_comparator(x_generic, y_generic);
   2070 
   2071    /* FIXME: When the comparator returns 0 it means the elements being
   2072     * compared are equivalent. However the qsort documentation says:
   2073     *
   2074     *    "The order of equivalent elements is undefined."
   2075     *
   2076     * In practice the sort ends up reversing the order of the varyings which
   2077     * means locations are also assigned in this reversed order and happens to
   2078     * be what we want. This is also whats happening in
   2079     * varying_matches::match_comparator().
   2080     */
   2081    return 0;
   2082 }
   2083 
   2084 
   2085 /**
   2086  * Is the given variable a varying variable to be counted against the
   2087  * limit in ctx->Const.MaxVarying?
   2088  * This includes variables such as texcoords, colors and generic
   2089  * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
   2090  */
   2091 static bool
   2092 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
   2093 {
   2094    /* Only fragment shaders will take a varying variable as an input */
   2095    if (stage == MESA_SHADER_FRAGMENT &&
   2096        var->data.mode == ir_var_shader_in) {
   2097       switch (var->data.location) {
   2098       case VARYING_SLOT_POS:
   2099       case VARYING_SLOT_FACE:
   2100       case VARYING_SLOT_PNTC:
   2101          return false;
   2102       default:
   2103          return true;
   2104       }
   2105    }
   2106    return false;
   2107 }
   2108 
   2109 
   2110 /**
   2111  * Visitor class that generates tfeedback_candidate structs describing all
   2112  * possible targets of transform feedback.
   2113  *
   2114  * tfeedback_candidate structs are stored in the hash table
   2115  * tfeedback_candidates, which is passed to the constructor.  This hash table
   2116  * maps varying names to instances of the tfeedback_candidate struct.
   2117  */
   2118 class tfeedback_candidate_generator : public program_resource_visitor
   2119 {
   2120 public:
   2121    tfeedback_candidate_generator(void *mem_ctx,
   2122                                  hash_table *tfeedback_candidates)
   2123       : mem_ctx(mem_ctx),
   2124         tfeedback_candidates(tfeedback_candidates),
   2125         toplevel_var(NULL),
   2126         varying_floats(0)
   2127    {
   2128    }
   2129 
   2130    void process(ir_variable *var)
   2131    {
   2132       /* All named varying interface blocks should be flattened by now */
   2133       assert(!var->is_interface_instance());
   2134 
   2135       this->toplevel_var = var;
   2136       this->varying_floats = 0;
   2137       program_resource_visitor::process(var, false);
   2138    }
   2139 
   2140 private:
   2141    virtual void visit_field(const glsl_type *type, const char *name,
   2142                             bool /* row_major */,
   2143                             const glsl_type * /* record_type */,
   2144                             const enum glsl_interface_packing,
   2145                             bool /* last_field */)
   2146    {
   2147       assert(!type->without_array()->is_record());
   2148       assert(!type->without_array()->is_interface());
   2149 
   2150       tfeedback_candidate *candidate
   2151          = rzalloc(this->mem_ctx, tfeedback_candidate);
   2152       candidate->toplevel_var = this->toplevel_var;
   2153       candidate->type = type;
   2154       candidate->offset = this->varying_floats;
   2155       _mesa_hash_table_insert(this->tfeedback_candidates,
   2156                               ralloc_strdup(this->mem_ctx, name),
   2157                               candidate);
   2158       this->varying_floats += type->component_slots();
   2159    }
   2160 
   2161    /**
   2162     * Memory context used to allocate hash table keys and values.
   2163     */
   2164    void * const mem_ctx;
   2165 
   2166    /**
   2167     * Hash table in which tfeedback_candidate objects should be stored.
   2168     */
   2169    hash_table * const tfeedback_candidates;
   2170 
   2171    /**
   2172     * Pointer to the toplevel variable that is being traversed.
   2173     */
   2174    ir_variable *toplevel_var;
   2175 
   2176    /**
   2177     * Total number of varying floats that have been visited so far.  This is
   2178     * used to determine the offset to each varying within the toplevel
   2179     * variable.
   2180     */
   2181    unsigned varying_floats;
   2182 };
   2183 
   2184 
   2185 namespace linker {
   2186 
   2187 void
   2188 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
   2189                              hash_table *consumer_inputs,
   2190                              hash_table *consumer_interface_inputs,
   2191                              ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
   2192 {
   2193    memset(consumer_inputs_with_locations,
   2194           0,
   2195           sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
   2196 
   2197    foreach_in_list(ir_instruction, node, ir) {
   2198       ir_variable *const input_var = node->as_variable();
   2199 
   2200       if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
   2201          /* All interface blocks should have been lowered by this point */
   2202          assert(!input_var->type->is_interface());
   2203 
   2204          if (input_var->data.explicit_location) {
   2205             /* assign_varying_locations only cares about finding the
   2206              * ir_variable at the start of a contiguous location block.
   2207              *
   2208              *     - For !producer, consumer_inputs_with_locations isn't used.
   2209              *
   2210              *     - For !consumer, consumer_inputs_with_locations is empty.
   2211              *
   2212              * For consumer && producer, if you were trying to set some
   2213              * ir_variable to the middle of a location block on the other side
   2214              * of producer/consumer, cross_validate_outputs_to_inputs() should
   2215              * be link-erroring due to either type mismatch or location
   2216              * overlaps.  If the variables do match up, then they've got a
   2217              * matching data.location and you only looked at
   2218              * consumer_inputs_with_locations[var->data.location], not any
   2219              * following entries for the array/structure.
   2220              */
   2221             consumer_inputs_with_locations[input_var->data.location] =
   2222                input_var;
   2223          } else if (input_var->get_interface_type() != NULL) {
   2224             char *const iface_field_name =
   2225                ralloc_asprintf(mem_ctx, "%s.%s",
   2226                   input_var->get_interface_type()->without_array()->name,
   2227                   input_var->name);
   2228             _mesa_hash_table_insert(consumer_interface_inputs,
   2229                                     iface_field_name, input_var);
   2230          } else {
   2231             _mesa_hash_table_insert(consumer_inputs,
   2232                                     ralloc_strdup(mem_ctx, input_var->name),
   2233                                     input_var);
   2234          }
   2235       }
   2236    }
   2237 }
   2238 
   2239 /**
   2240  * Find a variable from the consumer that "matches" the specified variable
   2241  *
   2242  * This function only finds inputs with names that match.  There is no
   2243  * validation (here) that the types, etc. are compatible.
   2244  */
   2245 ir_variable *
   2246 get_matching_input(void *mem_ctx,
   2247                    const ir_variable *output_var,
   2248                    hash_table *consumer_inputs,
   2249                    hash_table *consumer_interface_inputs,
   2250                    ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
   2251 {
   2252    ir_variable *input_var;
   2253 
   2254    if (output_var->data.explicit_location) {
   2255       input_var = consumer_inputs_with_locations[output_var->data.location];
   2256    } else if (output_var->get_interface_type() != NULL) {
   2257       char *const iface_field_name =
   2258          ralloc_asprintf(mem_ctx, "%s.%s",
   2259             output_var->get_interface_type()->without_array()->name,
   2260             output_var->name);
   2261       hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
   2262       input_var = entry ? (ir_variable *) entry->data : NULL;
   2263    } else {
   2264       hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
   2265       input_var = entry ? (ir_variable *) entry->data : NULL;
   2266    }
   2267 
   2268    return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
   2269       ? NULL : input_var;
   2270 }
   2271 
   2272 }
   2273 
   2274 static int
   2275 io_variable_cmp(const void *_a, const void *_b)
   2276 {
   2277    const ir_variable *const a = *(const ir_variable **) _a;
   2278    const ir_variable *const b = *(const ir_variable **) _b;
   2279 
   2280    if (a->data.explicit_location && b->data.explicit_location)
   2281       return b->data.location - a->data.location;
   2282 
   2283    if (a->data.explicit_location && !b->data.explicit_location)
   2284       return 1;
   2285 
   2286    if (!a->data.explicit_location && b->data.explicit_location)
   2287       return -1;
   2288 
   2289    return -strcmp(a->name, b->name);
   2290 }
   2291 
   2292 /**
   2293  * Sort the shader IO variables into canonical order
   2294  */
   2295 static void
   2296 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
   2297 {
   2298    ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
   2299    unsigned num_variables = 0;
   2300 
   2301    foreach_in_list(ir_instruction, node, ir) {
   2302       ir_variable *const var = node->as_variable();
   2303 
   2304       if (var == NULL || var->data.mode != io_mode)
   2305          continue;
   2306 
   2307       /* If we have already encountered more I/O variables that could
   2308        * successfully link, bail.
   2309        */
   2310       if (num_variables == ARRAY_SIZE(var_table))
   2311          return;
   2312 
   2313       var_table[num_variables++] = var;
   2314    }
   2315 
   2316    if (num_variables == 0)
   2317       return;
   2318 
   2319    /* Sort the list in reverse order (io_variable_cmp handles this).  Later
   2320     * we're going to push the variables on to the IR list as a stack, so we
   2321     * want the last variable (in canonical order) to be first in the list.
   2322     */
   2323    qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
   2324 
   2325    /* Remove the variable from it's current location in the IR, and put it at
   2326     * the front.
   2327     */
   2328    for (unsigned i = 0; i < num_variables; i++) {
   2329       var_table[i]->remove();
   2330       ir->push_head(var_table[i]);
   2331    }
   2332 }
   2333 
   2334 /**
   2335  * Generate a bitfield map of the explicit locations for shader varyings.
   2336  *
   2337  * Note: For Tessellation shaders we are sitting right on the limits of the
   2338  * 64 bit map. Per-vertex and per-patch both have separate location domains
   2339  * with a max of MAX_VARYING.
   2340  */
   2341 static uint64_t
   2342 reserved_varying_slot(struct gl_linked_shader *stage,
   2343                       ir_variable_mode io_mode)
   2344 {
   2345    assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
   2346    /* Avoid an overflow of the returned value */
   2347    assert(MAX_VARYINGS_INCL_PATCH <= 64);
   2348 
   2349    uint64_t slots = 0;
   2350    int var_slot;
   2351 
   2352    if (!stage)
   2353       return slots;
   2354 
   2355    foreach_in_list(ir_instruction, node, stage->ir) {
   2356       ir_variable *const var = node->as_variable();
   2357 
   2358       if (var == NULL || var->data.mode != io_mode ||
   2359           !var->data.explicit_location ||
   2360           var->data.location < VARYING_SLOT_VAR0)
   2361          continue;
   2362 
   2363       var_slot = var->data.location - VARYING_SLOT_VAR0;
   2364 
   2365       unsigned num_elements = get_varying_type(var, stage->Stage)
   2366          ->count_attribute_slots(io_mode == ir_var_shader_in &&
   2367                                  stage->Stage == MESA_SHADER_VERTEX);
   2368       for (unsigned i = 0; i < num_elements; i++) {
   2369          if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
   2370             slots |= UINT64_C(1) << var_slot;
   2371          var_slot += 1;
   2372       }
   2373    }
   2374 
   2375    return slots;
   2376 }
   2377 
   2378 
   2379 /**
   2380  * Assign locations for all variables that are produced in one pipeline stage
   2381  * (the "producer") and consumed in the next stage (the "consumer").
   2382  *
   2383  * Variables produced by the producer may also be consumed by transform
   2384  * feedback.
   2385  *
   2386  * \param num_tfeedback_decls is the number of declarations indicating
   2387  *        variables that may be consumed by transform feedback.
   2388  *
   2389  * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
   2390  *        representing the result of parsing the strings passed to
   2391  *        glTransformFeedbackVaryings().  assign_location() will be called for
   2392  *        each of these objects that matches one of the outputs of the
   2393  *        producer.
   2394  *
   2395  * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
   2396  * be NULL.  In this case, varying locations are assigned solely based on the
   2397  * requirements of transform feedback.
   2398  */
   2399 static bool
   2400 assign_varying_locations(struct gl_context *ctx,
   2401                          void *mem_ctx,
   2402                          struct gl_shader_program *prog,
   2403                          gl_linked_shader *producer,
   2404                          gl_linked_shader *consumer,
   2405                          unsigned num_tfeedback_decls,
   2406                          tfeedback_decl *tfeedback_decls,
   2407                          const uint64_t reserved_slots)
   2408 {
   2409    /* Tessellation shaders treat inputs and outputs as shared memory and can
   2410     * access inputs and outputs of other invocations.
   2411     * Therefore, they can't be lowered to temps easily (and definitely not
   2412     * efficiently).
   2413     */
   2414    bool unpackable_tess =
   2415       (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
   2416       (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
   2417       (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
   2418 
   2419    /* Transform feedback code assumes varying arrays are packed, so if the
   2420     * driver has disabled varying packing, make sure to at least enable
   2421     * packing required by transform feedback.
   2422     */
   2423    bool xfb_enabled =
   2424       ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
   2425 
   2426    /* Disable packing on outward facing interfaces for SSO because in ES we
   2427     * need to retain the unpacked varying information for draw time
   2428     * validation.
   2429     *
   2430     * Packing is still enabled on individual arrays, structs, and matrices as
   2431     * these are required by the transform feedback code and it is still safe
   2432     * to do so. We also enable packing when a varying is only used for
   2433     * transform feedback and its not a SSO.
   2434     */
   2435    bool disable_varying_packing =
   2436       ctx->Const.DisableVaryingPacking || unpackable_tess;
   2437    if (prog->SeparateShader && (producer == NULL || consumer == NULL))
   2438       disable_varying_packing = true;
   2439 
   2440    varying_matches matches(disable_varying_packing, xfb_enabled,
   2441                            ctx->Extensions.ARB_enhanced_layouts,
   2442                            producer ? producer->Stage : MESA_SHADER_NONE,
   2443                            consumer ? consumer->Stage : MESA_SHADER_NONE);
   2444    hash_table *tfeedback_candidates =
   2445          _mesa_hash_table_create(NULL, _mesa_key_hash_string,
   2446                                  _mesa_key_string_equal);
   2447    hash_table *consumer_inputs =
   2448          _mesa_hash_table_create(NULL, _mesa_key_hash_string,
   2449                                  _mesa_key_string_equal);
   2450    hash_table *consumer_interface_inputs =
   2451          _mesa_hash_table_create(NULL, _mesa_key_hash_string,
   2452                                  _mesa_key_string_equal);
   2453    ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
   2454       NULL,
   2455    };
   2456 
   2457    unsigned consumer_vertices = 0;
   2458    if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
   2459       consumer_vertices = prog->Geom.VerticesIn;
   2460 
   2461    /* Operate in a total of four passes.
   2462     *
   2463     * 1. Sort inputs / outputs into a canonical order.  This is necessary so
   2464     *    that inputs / outputs of separable shaders will be assigned
   2465     *    predictable locations regardless of the order in which declarations
   2466     *    appeared in the shader source.
   2467     *
   2468     * 2. Assign locations for any matching inputs and outputs.
   2469     *
   2470     * 3. Mark output variables in the producer that do not have locations as
   2471     *    not being outputs.  This lets the optimizer eliminate them.
   2472     *
   2473     * 4. Mark input variables in the consumer that do not have locations as
   2474     *    not being inputs.  This lets the optimizer eliminate them.
   2475     */
   2476    if (consumer)
   2477       canonicalize_shader_io(consumer->ir, ir_var_shader_in);
   2478 
   2479    if (producer)
   2480       canonicalize_shader_io(producer->ir, ir_var_shader_out);
   2481 
   2482    if (consumer)
   2483       linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
   2484                                            consumer_inputs,
   2485                                            consumer_interface_inputs,
   2486                                            consumer_inputs_with_locations);
   2487 
   2488    if (producer) {
   2489       foreach_in_list(ir_instruction, node, producer->ir) {
   2490          ir_variable *const output_var = node->as_variable();
   2491 
   2492          if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
   2493             continue;
   2494 
   2495          /* Only geometry shaders can use non-zero streams */
   2496          assert(output_var->data.stream == 0 ||
   2497                 (output_var->data.stream < MAX_VERTEX_STREAMS &&
   2498                  producer->Stage == MESA_SHADER_GEOMETRY));
   2499 
   2500          if (num_tfeedback_decls > 0) {
   2501             tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
   2502             g.process(output_var);
   2503          }
   2504 
   2505          ir_variable *const input_var =
   2506             linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
   2507                                        consumer_interface_inputs,
   2508                                        consumer_inputs_with_locations);
   2509 
   2510          /* If a matching input variable was found, add this output (and the
   2511           * input) to the set.  If this is a separable program and there is no
   2512           * consumer stage, add the output.
   2513           *
   2514           * Always add TCS outputs. They are shared by all invocations
   2515           * within a patch and can be used as shared memory.
   2516           */
   2517          if (input_var || (prog->SeparateShader && consumer == NULL) ||
   2518              producer->Stage == MESA_SHADER_TESS_CTRL) {
   2519             matches.record(output_var, input_var);
   2520          }
   2521 
   2522          /* Only stream 0 outputs can be consumed in the next stage */
   2523          if (input_var && output_var->data.stream != 0) {
   2524             linker_error(prog, "output %s is assigned to stream=%d but "
   2525                          "is linked to an input, which requires stream=0",
   2526                          output_var->name, output_var->data.stream);
   2527             return false;
   2528          }
   2529       }
   2530    } else {
   2531       /* If there's no producer stage, then this must be a separable program.
   2532        * For example, we may have a program that has just a fragment shader.
   2533        * Later this program will be used with some arbitrary vertex (or
   2534        * geometry) shader program.  This means that locations must be assigned
   2535        * for all the inputs.
   2536        */
   2537       foreach_in_list(ir_instruction, node, consumer->ir) {
   2538          ir_variable *const input_var = node->as_variable();
   2539          if (input_var && input_var->data.mode == ir_var_shader_in) {
   2540             matches.record(NULL, input_var);
   2541          }
   2542       }
   2543    }
   2544 
   2545    for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
   2546       if (!tfeedback_decls[i].is_varying())
   2547          continue;
   2548 
   2549       const tfeedback_candidate *matched_candidate
   2550          = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
   2551 
   2552       if (matched_candidate == NULL) {
   2553          _mesa_hash_table_destroy(tfeedback_candidates, NULL);
   2554          return false;
   2555       }
   2556 
   2557       /* Mark xfb varyings as always active */
   2558       matched_candidate->toplevel_var->data.always_active_io = 1;
   2559 
   2560       /* Mark any corresponding inputs as always active also. We must do this
   2561        * because we have a NIR pass that lowers vectors to scalars and another
   2562        * that removes unused varyings.
   2563        * We don't split varyings marked as always active because there is no
   2564        * point in doing so. This means we need to mark both sides of the
   2565        * interface as always active otherwise we will have a mismatch and
   2566        * start removing things we shouldn't.
   2567        */
   2568       ir_variable *const input_var =
   2569          linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var,
   2570                                     consumer_inputs,
   2571                                     consumer_interface_inputs,
   2572                                     consumer_inputs_with_locations);
   2573       if (input_var)
   2574          input_var->data.always_active_io = 1;
   2575 
   2576       if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
   2577          matched_candidate->toplevel_var->data.is_xfb_only = 1;
   2578          matches.record(matched_candidate->toplevel_var, NULL);
   2579       }
   2580    }
   2581 
   2582    _mesa_hash_table_destroy(consumer_inputs, NULL);
   2583    _mesa_hash_table_destroy(consumer_interface_inputs, NULL);
   2584 
   2585    uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
   2586    const unsigned slots_used = matches.assign_locations(
   2587          prog, components, reserved_slots);
   2588    matches.store_locations();
   2589 
   2590    for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
   2591       if (tfeedback_decls[i].is_varying()) {
   2592          if (!tfeedback_decls[i].assign_location(ctx, prog)) {
   2593             _mesa_hash_table_destroy(tfeedback_candidates, NULL);
   2594             return false;
   2595          }
   2596       }
   2597    }
   2598    _mesa_hash_table_destroy(tfeedback_candidates, NULL);
   2599 
   2600    if (consumer && producer) {
   2601       foreach_in_list(ir_instruction, node, consumer->ir) {
   2602          ir_variable *const var = node->as_variable();
   2603 
   2604          if (var && var->data.mode == ir_var_shader_in &&
   2605              var->data.is_unmatched_generic_inout) {
   2606             if (!prog->IsES && prog->data->Version <= 120) {
   2607                /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
   2608                 *
   2609                 *     Only those varying variables used (i.e. read) in
   2610                 *     the fragment shader executable must be written to
   2611                 *     by the vertex shader executable; declaring
   2612                 *     superfluous varying variables in a vertex shader is
   2613                 *     permissible.
   2614                 *
   2615                 * We interpret this text as meaning that the VS must
   2616                 * write the variable for the FS to read it.  See
   2617                 * "glsl1-varying read but not written" in piglit.
   2618                 */
   2619                linker_error(prog, "%s shader varying %s not written "
   2620                             "by %s shader\n.",
   2621                             _mesa_shader_stage_to_string(consumer->Stage),
   2622                             var->name,
   2623                             _mesa_shader_stage_to_string(producer->Stage));
   2624             } else {
   2625                linker_warning(prog, "%s shader varying %s not written "
   2626                               "by %s shader\n.",
   2627                               _mesa_shader_stage_to_string(consumer->Stage),
   2628                               var->name,
   2629                               _mesa_shader_stage_to_string(producer->Stage));
   2630             }
   2631          }
   2632       }
   2633 
   2634       /* Now that validation is done its safe to remove unused varyings. As
   2635        * we have both a producer and consumer its safe to remove unused
   2636        * varyings even if the program is a SSO because the stages are being
   2637        * linked together i.e. we have a multi-stage SSO.
   2638        */
   2639       remove_unused_shader_inputs_and_outputs(false, producer,
   2640                                               ir_var_shader_out);
   2641       remove_unused_shader_inputs_and_outputs(false, consumer,
   2642                                               ir_var_shader_in);
   2643    }
   2644 
   2645    if (producer) {
   2646       lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
   2647                             0, producer, disable_varying_packing,
   2648                             xfb_enabled);
   2649    }
   2650 
   2651    if (consumer) {
   2652       lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
   2653                             consumer_vertices, consumer,
   2654                             disable_varying_packing, xfb_enabled);
   2655    }
   2656 
   2657    return true;
   2658 }
   2659 
   2660 static bool
   2661 check_against_output_limit(struct gl_context *ctx,
   2662                            struct gl_shader_program *prog,
   2663                            gl_linked_shader *producer,
   2664                            unsigned num_explicit_locations)
   2665 {
   2666    unsigned output_vectors = num_explicit_locations;
   2667 
   2668    foreach_in_list(ir_instruction, node, producer->ir) {
   2669       ir_variable *const var = node->as_variable();
   2670 
   2671       if (var && !var->data.explicit_location &&
   2672           var->data.mode == ir_var_shader_out &&
   2673           var_counts_against_varying_limit(producer->Stage, var)) {
   2674          /* outputs for fragment shader can't be doubles */
   2675          output_vectors += var->type->count_attribute_slots(false);
   2676       }
   2677    }
   2678 
   2679    assert(producer->Stage != MESA_SHADER_FRAGMENT);
   2680    unsigned max_output_components =
   2681       ctx->Const.Program[producer->Stage].MaxOutputComponents;
   2682 
   2683    const unsigned output_components = output_vectors * 4;
   2684    if (output_components > max_output_components) {
   2685       if (ctx->API == API_OPENGLES2 || prog->IsES)
   2686          linker_error(prog, "%s shader uses too many output vectors "
   2687                       "(%u > %u)\n",
   2688                       _mesa_shader_stage_to_string(producer->Stage),
   2689                       output_vectors,
   2690                       max_output_components / 4);
   2691       else
   2692          linker_error(prog, "%s shader uses too many output components "
   2693                       "(%u > %u)\n",
   2694                       _mesa_shader_stage_to_string(producer->Stage),
   2695                       output_components,
   2696                       max_output_components);
   2697 
   2698       return false;
   2699    }
   2700 
   2701    return true;
   2702 }
   2703 
   2704 static bool
   2705 check_against_input_limit(struct gl_context *ctx,
   2706                           struct gl_shader_program *prog,
   2707                           gl_linked_shader *consumer,
   2708                           unsigned num_explicit_locations)
   2709 {
   2710    unsigned input_vectors = num_explicit_locations;
   2711 
   2712    foreach_in_list(ir_instruction, node, consumer->ir) {
   2713       ir_variable *const var = node->as_variable();
   2714 
   2715       if (var && !var->data.explicit_location &&
   2716           var->data.mode == ir_var_shader_in &&
   2717           var_counts_against_varying_limit(consumer->Stage, var)) {
   2718          /* vertex inputs aren't varying counted */
   2719          input_vectors += var->type->count_attribute_slots(false);
   2720       }
   2721    }
   2722 
   2723    assert(consumer->Stage != MESA_SHADER_VERTEX);
   2724    unsigned max_input_components =
   2725       ctx->Const.Program[consumer->Stage].MaxInputComponents;
   2726 
   2727    const unsigned input_components = input_vectors * 4;
   2728    if (input_components > max_input_components) {
   2729       if (ctx->API == API_OPENGLES2 || prog->IsES)
   2730          linker_error(prog, "%s shader uses too many input vectors "
   2731                       "(%u > %u)\n",
   2732                       _mesa_shader_stage_to_string(consumer->Stage),
   2733                       input_vectors,
   2734                       max_input_components / 4);
   2735       else
   2736          linker_error(prog, "%s shader uses too many input components "
   2737                       "(%u > %u)\n",
   2738                       _mesa_shader_stage_to_string(consumer->Stage),
   2739                       input_components,
   2740                       max_input_components);
   2741 
   2742       return false;
   2743    }
   2744 
   2745    return true;
   2746 }
   2747 
   2748 bool
   2749 link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last,
   2750               struct gl_context *ctx, void *mem_ctx)
   2751 {
   2752    bool has_xfb_qualifiers = false;
   2753    unsigned num_tfeedback_decls = 0;
   2754    char **varying_names = NULL;
   2755    tfeedback_decl *tfeedback_decls = NULL;
   2756 
   2757    /* From the ARB_enhanced_layouts spec:
   2758     *
   2759     *    "If the shader used to record output variables for transform feedback
   2760     *    varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
   2761     *    qualifiers, the values specified by TransformFeedbackVaryings are
   2762     *    ignored, and the set of variables captured for transform feedback is
   2763     *    instead derived from the specified layout qualifiers."
   2764     */
   2765    for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
   2766       /* Find last stage before fragment shader */
   2767       if (prog->_LinkedShaders[i]) {
   2768          has_xfb_qualifiers =
   2769             process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
   2770                                           prog, &num_tfeedback_decls,
   2771                                           &varying_names);
   2772          break;
   2773       }
   2774    }
   2775 
   2776    if (!has_xfb_qualifiers) {
   2777       num_tfeedback_decls = prog->TransformFeedback.NumVarying;
   2778       varying_names = prog->TransformFeedback.VaryingNames;
   2779    }
   2780 
   2781    if (num_tfeedback_decls != 0) {
   2782       /* From GL_EXT_transform_feedback:
   2783        *   A program will fail to link if:
   2784        *
   2785        *   * the <count> specified by TransformFeedbackVaryingsEXT is
   2786        *     non-zero, but the program object has no vertex or geometry
   2787        *     shader;
   2788        */
   2789       if (first >= MESA_SHADER_FRAGMENT) {
   2790          linker_error(prog, "Transform feedback varyings specified, but "
   2791                       "no vertex, tessellation, or geometry shader is "
   2792                       "present.\n");
   2793          return false;
   2794       }
   2795 
   2796       tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
   2797                                       num_tfeedback_decls);
   2798       if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
   2799                                  varying_names, tfeedback_decls))
   2800          return false;
   2801    }
   2802 
   2803    /* If there is no fragment shader we need to set transform feedback.
   2804     *
   2805     * For SSO we also need to assign output locations.  We assign them here
   2806     * because we need to do it for both single stage programs and multi stage
   2807     * programs.
   2808     */
   2809    if (last < MESA_SHADER_FRAGMENT &&
   2810        (num_tfeedback_decls != 0 || prog->SeparateShader)) {
   2811       const uint64_t reserved_out_slots =
   2812          reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
   2813       if (!assign_varying_locations(ctx, mem_ctx, prog,
   2814                                     prog->_LinkedShaders[last], NULL,
   2815                                     num_tfeedback_decls, tfeedback_decls,
   2816                                     reserved_out_slots))
   2817          return false;
   2818    }
   2819 
   2820    if (last <= MESA_SHADER_FRAGMENT) {
   2821       /* Remove unused varyings from the first/last stage unless SSO */
   2822       remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
   2823                                               prog->_LinkedShaders[first],
   2824                                               ir_var_shader_in);
   2825       remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
   2826                                               prog->_LinkedShaders[last],
   2827                                               ir_var_shader_out);
   2828 
   2829       /* If the program is made up of only a single stage */
   2830       if (first == last) {
   2831          gl_linked_shader *const sh = prog->_LinkedShaders[last];
   2832 
   2833          do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
   2834          do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
   2835                                   tfeedback_decls);
   2836 
   2837          if (prog->SeparateShader) {
   2838             const uint64_t reserved_slots =
   2839                reserved_varying_slot(sh, ir_var_shader_in);
   2840 
   2841             /* Assign input locations for SSO, output locations are already
   2842              * assigned.
   2843              */
   2844             if (!assign_varying_locations(ctx, mem_ctx, prog,
   2845                                           NULL /* producer */,
   2846                                           sh /* consumer */,
   2847                                           0 /* num_tfeedback_decls */,
   2848                                           NULL /* tfeedback_decls */,
   2849                                           reserved_slots))
   2850                return false;
   2851          }
   2852       } else {
   2853          /* Linking the stages in the opposite order (from fragment to vertex)
   2854           * ensures that inter-shader outputs written to in an earlier stage
   2855           * are eliminated if they are (transitively) not used in a later
   2856           * stage.
   2857           */
   2858          int next = last;
   2859          for (int i = next - 1; i >= 0; i--) {
   2860             if (prog->_LinkedShaders[i] == NULL && i != 0)
   2861                continue;
   2862 
   2863             gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
   2864             gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
   2865 
   2866             const uint64_t reserved_out_slots =
   2867                reserved_varying_slot(sh_i, ir_var_shader_out);
   2868             const uint64_t reserved_in_slots =
   2869                reserved_varying_slot(sh_next, ir_var_shader_in);
   2870 
   2871             do_dead_builtin_varyings(ctx, sh_i, sh_next,
   2872                       next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
   2873                       tfeedback_decls);
   2874 
   2875             if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
   2876                       next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
   2877                       tfeedback_decls,
   2878                       reserved_out_slots | reserved_in_slots))
   2879                return false;
   2880 
   2881             /* This must be done after all dead varyings are eliminated. */
   2882             if (sh_i != NULL) {
   2883                unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
   2884                if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
   2885                   return false;
   2886                }
   2887             }
   2888 
   2889             unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
   2890             if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
   2891                return false;
   2892 
   2893             next = i;
   2894          }
   2895       }
   2896    }
   2897 
   2898    if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
   2899                              has_xfb_qualifiers))
   2900       return false;
   2901 
   2902    return true;
   2903 }
   2904