1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines routines for folding instructions into constants. 11 // 12 // Also, to supplement the basic IR ConstantExpr simplifications, 13 // this file defines some additional folding routines that can make use of 14 // DataLayout information. These functions cannot go in IR due to library 15 // dependency issues. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Config/config.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/KnownBits.h" 46 #include "llvm/Support/MathExtras.h" 47 #include <cassert> 48 #include <cerrno> 49 #include <cfenv> 50 #include <cmath> 51 #include <cstddef> 52 #include <cstdint> 53 54 using namespace llvm; 55 56 namespace { 57 58 //===----------------------------------------------------------------------===// 59 // Constant Folding internal helper functions 60 //===----------------------------------------------------------------------===// 61 62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 63 Constant *C, Type *SrcEltTy, 64 unsigned NumSrcElts, 65 const DataLayout &DL) { 66 // Now that we know that the input value is a vector of integers, just shift 67 // and insert them into our result. 68 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 69 for (unsigned i = 0; i != NumSrcElts; ++i) { 70 Constant *Element; 71 if (DL.isLittleEndian()) 72 Element = C->getAggregateElement(NumSrcElts - i - 1); 73 else 74 Element = C->getAggregateElement(i); 75 76 if (Element && isa<UndefValue>(Element)) { 77 Result <<= BitShift; 78 continue; 79 } 80 81 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 82 if (!ElementCI) 83 return ConstantExpr::getBitCast(C, DestTy); 84 85 Result <<= BitShift; 86 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 87 } 88 89 return nullptr; 90 } 91 92 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 93 /// This always returns a non-null constant, but it may be a 94 /// ConstantExpr if unfoldable. 95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 96 // Catch the obvious splat cases. 97 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 98 return Constant::getNullValue(DestTy); 99 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && 100 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 101 return Constant::getAllOnesValue(DestTy); 102 103 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 104 // Handle a vector->scalar integer/fp cast. 105 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 106 unsigned NumSrcElts = VTy->getNumElements(); 107 Type *SrcEltTy = VTy->getElementType(); 108 109 // If the vector is a vector of floating point, convert it to vector of int 110 // to simplify things. 111 if (SrcEltTy->isFloatingPointTy()) { 112 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 113 Type *SrcIVTy = 114 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 115 // Ask IR to do the conversion now that #elts line up. 116 C = ConstantExpr::getBitCast(C, SrcIVTy); 117 } 118 119 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 120 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 121 SrcEltTy, NumSrcElts, DL)) 122 return CE; 123 124 if (isa<IntegerType>(DestTy)) 125 return ConstantInt::get(DestTy, Result); 126 127 APFloat FP(DestTy->getFltSemantics(), Result); 128 return ConstantFP::get(DestTy->getContext(), FP); 129 } 130 } 131 132 // The code below only handles casts to vectors currently. 133 auto *DestVTy = dyn_cast<VectorType>(DestTy); 134 if (!DestVTy) 135 return ConstantExpr::getBitCast(C, DestTy); 136 137 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 138 // vector so the code below can handle it uniformly. 139 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 140 Constant *Ops = C; // don't take the address of C! 141 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 142 } 143 144 // If this is a bitcast from constant vector -> vector, fold it. 145 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 146 return ConstantExpr::getBitCast(C, DestTy); 147 148 // If the element types match, IR can fold it. 149 unsigned NumDstElt = DestVTy->getNumElements(); 150 unsigned NumSrcElt = C->getType()->getVectorNumElements(); 151 if (NumDstElt == NumSrcElt) 152 return ConstantExpr::getBitCast(C, DestTy); 153 154 Type *SrcEltTy = C->getType()->getVectorElementType(); 155 Type *DstEltTy = DestVTy->getElementType(); 156 157 // Otherwise, we're changing the number of elements in a vector, which 158 // requires endianness information to do the right thing. For example, 159 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 160 // folds to (little endian): 161 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 162 // and to (big endian): 163 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 164 165 // First thing is first. We only want to think about integer here, so if 166 // we have something in FP form, recast it as integer. 167 if (DstEltTy->isFloatingPointTy()) { 168 // Fold to an vector of integers with same size as our FP type. 169 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 170 Type *DestIVTy = 171 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); 172 // Recursively handle this integer conversion, if possible. 173 C = FoldBitCast(C, DestIVTy, DL); 174 175 // Finally, IR can handle this now that #elts line up. 176 return ConstantExpr::getBitCast(C, DestTy); 177 } 178 179 // Okay, we know the destination is integer, if the input is FP, convert 180 // it to integer first. 181 if (SrcEltTy->isFloatingPointTy()) { 182 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 183 Type *SrcIVTy = 184 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 185 // Ask IR to do the conversion now that #elts line up. 186 C = ConstantExpr::getBitCast(C, SrcIVTy); 187 // If IR wasn't able to fold it, bail out. 188 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 189 !isa<ConstantDataVector>(C)) 190 return C; 191 } 192 193 // Now we know that the input and output vectors are both integer vectors 194 // of the same size, and that their #elements is not the same. Do the 195 // conversion here, which depends on whether the input or output has 196 // more elements. 197 bool isLittleEndian = DL.isLittleEndian(); 198 199 SmallVector<Constant*, 32> Result; 200 if (NumDstElt < NumSrcElt) { 201 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 202 Constant *Zero = Constant::getNullValue(DstEltTy); 203 unsigned Ratio = NumSrcElt/NumDstElt; 204 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 205 unsigned SrcElt = 0; 206 for (unsigned i = 0; i != NumDstElt; ++i) { 207 // Build each element of the result. 208 Constant *Elt = Zero; 209 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 210 for (unsigned j = 0; j != Ratio; ++j) { 211 Constant *Src = C->getAggregateElement(SrcElt++); 212 if (Src && isa<UndefValue>(Src)) 213 Src = Constant::getNullValue(C->getType()->getVectorElementType()); 214 else 215 Src = dyn_cast_or_null<ConstantInt>(Src); 216 if (!Src) // Reject constantexpr elements. 217 return ConstantExpr::getBitCast(C, DestTy); 218 219 // Zero extend the element to the right size. 220 Src = ConstantExpr::getZExt(Src, Elt->getType()); 221 222 // Shift it to the right place, depending on endianness. 223 Src = ConstantExpr::getShl(Src, 224 ConstantInt::get(Src->getType(), ShiftAmt)); 225 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 226 227 // Mix it in. 228 Elt = ConstantExpr::getOr(Elt, Src); 229 } 230 Result.push_back(Elt); 231 } 232 return ConstantVector::get(Result); 233 } 234 235 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 236 unsigned Ratio = NumDstElt/NumSrcElt; 237 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 238 239 // Loop over each source value, expanding into multiple results. 240 for (unsigned i = 0; i != NumSrcElt; ++i) { 241 auto *Element = C->getAggregateElement(i); 242 243 if (!Element) // Reject constantexpr elements. 244 return ConstantExpr::getBitCast(C, DestTy); 245 246 if (isa<UndefValue>(Element)) { 247 // Correctly Propagate undef values. 248 Result.append(Ratio, UndefValue::get(DstEltTy)); 249 continue; 250 } 251 252 auto *Src = dyn_cast<ConstantInt>(Element); 253 if (!Src) 254 return ConstantExpr::getBitCast(C, DestTy); 255 256 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 257 for (unsigned j = 0; j != Ratio; ++j) { 258 // Shift the piece of the value into the right place, depending on 259 // endianness. 260 Constant *Elt = ConstantExpr::getLShr(Src, 261 ConstantInt::get(Src->getType(), ShiftAmt)); 262 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 263 264 // Truncate the element to an integer with the same pointer size and 265 // convert the element back to a pointer using a inttoptr. 266 if (DstEltTy->isPointerTy()) { 267 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 268 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 269 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 270 continue; 271 } 272 273 // Truncate and remember this piece. 274 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 275 } 276 } 277 278 return ConstantVector::get(Result); 279 } 280 281 } // end anonymous namespace 282 283 /// If this constant is a constant offset from a global, return the global and 284 /// the constant. Because of constantexprs, this function is recursive. 285 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 286 APInt &Offset, const DataLayout &DL) { 287 // Trivial case, constant is the global. 288 if ((GV = dyn_cast<GlobalValue>(C))) { 289 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 290 Offset = APInt(BitWidth, 0); 291 return true; 292 } 293 294 // Otherwise, if this isn't a constant expr, bail out. 295 auto *CE = dyn_cast<ConstantExpr>(C); 296 if (!CE) return false; 297 298 // Look through ptr->int and ptr->ptr casts. 299 if (CE->getOpcode() == Instruction::PtrToInt || 300 CE->getOpcode() == Instruction::BitCast) 301 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); 302 303 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 304 auto *GEP = dyn_cast<GEPOperator>(CE); 305 if (!GEP) 306 return false; 307 308 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 309 APInt TmpOffset(BitWidth, 0); 310 311 // If the base isn't a global+constant, we aren't either. 312 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) 313 return false; 314 315 // Otherwise, add any offset that our operands provide. 316 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 317 return false; 318 319 Offset = TmpOffset; 320 return true; 321 } 322 323 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 324 const DataLayout &DL) { 325 do { 326 Type *SrcTy = C->getType(); 327 328 // If the type sizes are the same and a cast is legal, just directly 329 // cast the constant. 330 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { 331 Instruction::CastOps Cast = Instruction::BitCast; 332 // If we are going from a pointer to int or vice versa, we spell the cast 333 // differently. 334 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 335 Cast = Instruction::IntToPtr; 336 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 337 Cast = Instruction::PtrToInt; 338 339 if (CastInst::castIsValid(Cast, C, DestTy)) 340 return ConstantExpr::getCast(Cast, C, DestTy); 341 } 342 343 // If this isn't an aggregate type, there is nothing we can do to drill down 344 // and find a bitcastable constant. 345 if (!SrcTy->isAggregateType()) 346 return nullptr; 347 348 // We're simulating a load through a pointer that was bitcast to point to 349 // a different type, so we can try to walk down through the initial 350 // elements of an aggregate to see if some part of th e aggregate is 351 // castable to implement the "load" semantic model. 352 C = C->getAggregateElement(0u); 353 } while (C); 354 355 return nullptr; 356 } 357 358 namespace { 359 360 /// Recursive helper to read bits out of global. C is the constant being copied 361 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 362 /// results into and BytesLeft is the number of bytes left in 363 /// the CurPtr buffer. DL is the DataLayout. 364 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 365 unsigned BytesLeft, const DataLayout &DL) { 366 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 367 "Out of range access"); 368 369 // If this element is zero or undefined, we can just return since *CurPtr is 370 // zero initialized. 371 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 372 return true; 373 374 if (auto *CI = dyn_cast<ConstantInt>(C)) { 375 if (CI->getBitWidth() > 64 || 376 (CI->getBitWidth() & 7) != 0) 377 return false; 378 379 uint64_t Val = CI->getZExtValue(); 380 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 381 382 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 383 int n = ByteOffset; 384 if (!DL.isLittleEndian()) 385 n = IntBytes - n - 1; 386 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 387 ++ByteOffset; 388 } 389 return true; 390 } 391 392 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 393 if (CFP->getType()->isDoubleTy()) { 394 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 395 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 396 } 397 if (CFP->getType()->isFloatTy()){ 398 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 399 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 400 } 401 if (CFP->getType()->isHalfTy()){ 402 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 403 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 404 } 405 return false; 406 } 407 408 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 409 const StructLayout *SL = DL.getStructLayout(CS->getType()); 410 unsigned Index = SL->getElementContainingOffset(ByteOffset); 411 uint64_t CurEltOffset = SL->getElementOffset(Index); 412 ByteOffset -= CurEltOffset; 413 414 while (true) { 415 // If the element access is to the element itself and not to tail padding, 416 // read the bytes from the element. 417 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 418 419 if (ByteOffset < EltSize && 420 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 421 BytesLeft, DL)) 422 return false; 423 424 ++Index; 425 426 // Check to see if we read from the last struct element, if so we're done. 427 if (Index == CS->getType()->getNumElements()) 428 return true; 429 430 // If we read all of the bytes we needed from this element we're done. 431 uint64_t NextEltOffset = SL->getElementOffset(Index); 432 433 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 434 return true; 435 436 // Move to the next element of the struct. 437 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 438 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 439 ByteOffset = 0; 440 CurEltOffset = NextEltOffset; 441 } 442 // not reached. 443 } 444 445 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 446 isa<ConstantDataSequential>(C)) { 447 Type *EltTy = C->getType()->getSequentialElementType(); 448 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 449 uint64_t Index = ByteOffset / EltSize; 450 uint64_t Offset = ByteOffset - Index * EltSize; 451 uint64_t NumElts; 452 if (auto *AT = dyn_cast<ArrayType>(C->getType())) 453 NumElts = AT->getNumElements(); 454 else 455 NumElts = C->getType()->getVectorNumElements(); 456 457 for (; Index != NumElts; ++Index) { 458 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 459 BytesLeft, DL)) 460 return false; 461 462 uint64_t BytesWritten = EltSize - Offset; 463 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 464 if (BytesWritten >= BytesLeft) 465 return true; 466 467 Offset = 0; 468 BytesLeft -= BytesWritten; 469 CurPtr += BytesWritten; 470 } 471 return true; 472 } 473 474 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 475 if (CE->getOpcode() == Instruction::IntToPtr && 476 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 477 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 478 BytesLeft, DL); 479 } 480 } 481 482 // Otherwise, unknown initializer type. 483 return false; 484 } 485 486 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 487 const DataLayout &DL) { 488 auto *PTy = cast<PointerType>(C->getType()); 489 auto *IntType = dyn_cast<IntegerType>(LoadTy); 490 491 // If this isn't an integer load we can't fold it directly. 492 if (!IntType) { 493 unsigned AS = PTy->getAddressSpace(); 494 495 // If this is a float/double load, we can try folding it as an int32/64 load 496 // and then bitcast the result. This can be useful for union cases. Note 497 // that address spaces don't matter here since we're not going to result in 498 // an actual new load. 499 Type *MapTy; 500 if (LoadTy->isHalfTy()) 501 MapTy = Type::getInt16Ty(C->getContext()); 502 else if (LoadTy->isFloatTy()) 503 MapTy = Type::getInt32Ty(C->getContext()); 504 else if (LoadTy->isDoubleTy()) 505 MapTy = Type::getInt64Ty(C->getContext()); 506 else if (LoadTy->isVectorTy()) { 507 MapTy = PointerType::getIntNTy(C->getContext(), 508 DL.getTypeAllocSizeInBits(LoadTy)); 509 } else 510 return nullptr; 511 512 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 513 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) 514 return FoldBitCast(Res, LoadTy, DL); 515 return nullptr; 516 } 517 518 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 519 if (BytesLoaded > 32 || BytesLoaded == 0) 520 return nullptr; 521 522 GlobalValue *GVal; 523 APInt OffsetAI; 524 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 525 return nullptr; 526 527 auto *GV = dyn_cast<GlobalVariable>(GVal); 528 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 529 !GV->getInitializer()->getType()->isSized()) 530 return nullptr; 531 532 int64_t Offset = OffsetAI.getSExtValue(); 533 int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); 534 535 // If we're not accessing anything in this constant, the result is undefined. 536 if (Offset + BytesLoaded <= 0) 537 return UndefValue::get(IntType); 538 539 // If we're not accessing anything in this constant, the result is undefined. 540 if (Offset >= InitializerSize) 541 return UndefValue::get(IntType); 542 543 unsigned char RawBytes[32] = {0}; 544 unsigned char *CurPtr = RawBytes; 545 unsigned BytesLeft = BytesLoaded; 546 547 // If we're loading off the beginning of the global, some bytes may be valid. 548 if (Offset < 0) { 549 CurPtr += -Offset; 550 BytesLeft += Offset; 551 Offset = 0; 552 } 553 554 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 555 return nullptr; 556 557 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 558 if (DL.isLittleEndian()) { 559 ResultVal = RawBytes[BytesLoaded - 1]; 560 for (unsigned i = 1; i != BytesLoaded; ++i) { 561 ResultVal <<= 8; 562 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 563 } 564 } else { 565 ResultVal = RawBytes[0]; 566 for (unsigned i = 1; i != BytesLoaded; ++i) { 567 ResultVal <<= 8; 568 ResultVal |= RawBytes[i]; 569 } 570 } 571 572 return ConstantInt::get(IntType->getContext(), ResultVal); 573 } 574 575 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 576 const DataLayout &DL) { 577 auto *SrcPtr = CE->getOperand(0); 578 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 579 if (!SrcPtrTy) 580 return nullptr; 581 Type *SrcTy = SrcPtrTy->getPointerElementType(); 582 583 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 584 if (!C) 585 return nullptr; 586 587 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 588 } 589 590 } // end anonymous namespace 591 592 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 593 const DataLayout &DL) { 594 // First, try the easy cases: 595 if (auto *GV = dyn_cast<GlobalVariable>(C)) 596 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 597 return GV->getInitializer(); 598 599 if (auto *GA = dyn_cast<GlobalAlias>(C)) 600 if (GA->getAliasee() && !GA->isInterposable()) 601 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 602 603 // If the loaded value isn't a constant expr, we can't handle it. 604 auto *CE = dyn_cast<ConstantExpr>(C); 605 if (!CE) 606 return nullptr; 607 608 if (CE->getOpcode() == Instruction::GetElementPtr) { 609 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 610 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 611 if (Constant *V = 612 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 613 return V; 614 } 615 } 616 } 617 618 if (CE->getOpcode() == Instruction::BitCast) 619 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 620 return LoadedC; 621 622 // Instead of loading constant c string, use corresponding integer value 623 // directly if string length is small enough. 624 StringRef Str; 625 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 626 size_t StrLen = Str.size(); 627 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 628 // Replace load with immediate integer if the result is an integer or fp 629 // value. 630 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 631 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 632 APInt StrVal(NumBits, 0); 633 APInt SingleChar(NumBits, 0); 634 if (DL.isLittleEndian()) { 635 for (unsigned char C : reverse(Str.bytes())) { 636 SingleChar = static_cast<uint64_t>(C); 637 StrVal = (StrVal << 8) | SingleChar; 638 } 639 } else { 640 for (unsigned char C : Str.bytes()) { 641 SingleChar = static_cast<uint64_t>(C); 642 StrVal = (StrVal << 8) | SingleChar; 643 } 644 // Append NULL at the end. 645 SingleChar = 0; 646 StrVal = (StrVal << 8) | SingleChar; 647 } 648 649 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 650 if (Ty->isFloatingPointTy()) 651 Res = ConstantExpr::getBitCast(Res, Ty); 652 return Res; 653 } 654 } 655 656 // If this load comes from anywhere in a constant global, and if the global 657 // is all undef or zero, we know what it loads. 658 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { 659 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 660 if (GV->getInitializer()->isNullValue()) 661 return Constant::getNullValue(Ty); 662 if (isa<UndefValue>(GV->getInitializer())) 663 return UndefValue::get(Ty); 664 } 665 } 666 667 // Try hard to fold loads from bitcasted strange and non-type-safe things. 668 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 669 } 670 671 namespace { 672 673 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 674 if (LI->isVolatile()) return nullptr; 675 676 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 677 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 678 679 return nullptr; 680 } 681 682 /// One of Op0/Op1 is a constant expression. 683 /// Attempt to symbolically evaluate the result of a binary operator merging 684 /// these together. If target data info is available, it is provided as DL, 685 /// otherwise DL is null. 686 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 687 const DataLayout &DL) { 688 // SROA 689 690 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 691 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 692 // bits. 693 694 if (Opc == Instruction::And) { 695 KnownBits Known0 = computeKnownBits(Op0, DL); 696 KnownBits Known1 = computeKnownBits(Op1, DL); 697 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 698 // All the bits of Op0 that the 'and' could be masking are already zero. 699 return Op0; 700 } 701 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 702 // All the bits of Op1 that the 'and' could be masking are already zero. 703 return Op1; 704 } 705 706 Known0.Zero |= Known1.Zero; 707 Known0.One &= Known1.One; 708 if (Known0.isConstant()) 709 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 710 } 711 712 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 713 // constant. This happens frequently when iterating over a global array. 714 if (Opc == Instruction::Sub) { 715 GlobalValue *GV1, *GV2; 716 APInt Offs1, Offs2; 717 718 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 719 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 720 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 721 722 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 723 // PtrToInt may change the bitwidth so we have convert to the right size 724 // first. 725 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 726 Offs2.zextOrTrunc(OpSize)); 727 } 728 } 729 730 return nullptr; 731 } 732 733 /// If array indices are not pointer-sized integers, explicitly cast them so 734 /// that they aren't implicitly casted by the getelementptr. 735 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 736 Type *ResultTy, Optional<unsigned> InRangeIndex, 737 const DataLayout &DL, const TargetLibraryInfo *TLI) { 738 Type *IntPtrTy = DL.getIntPtrType(ResultTy); 739 Type *IntPtrScalarTy = IntPtrTy->getScalarType(); 740 741 bool Any = false; 742 SmallVector<Constant*, 32> NewIdxs; 743 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 744 if ((i == 1 || 745 !isa<StructType>(GetElementPtrInst::getIndexedType( 746 SrcElemTy, Ops.slice(1, i - 1)))) && 747 Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { 748 Any = true; 749 Type *NewType = Ops[i]->getType()->isVectorTy() 750 ? IntPtrTy 751 : IntPtrTy->getScalarType(); 752 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 753 true, 754 NewType, 755 true), 756 Ops[i], NewType)); 757 } else 758 NewIdxs.push_back(Ops[i]); 759 } 760 761 if (!Any) 762 return nullptr; 763 764 Constant *C = ConstantExpr::getGetElementPtr( 765 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 766 if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) 767 C = Folded; 768 769 return C; 770 } 771 772 /// Strip the pointer casts, but preserve the address space information. 773 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { 774 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 775 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 776 Ptr = Ptr->stripPointerCasts(); 777 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 778 779 ElemTy = NewPtrTy->getPointerElementType(); 780 781 // Preserve the address space number of the pointer. 782 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 783 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 784 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 785 } 786 return Ptr; 787 } 788 789 /// If we can symbolically evaluate the GEP constant expression, do so. 790 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 791 ArrayRef<Constant *> Ops, 792 const DataLayout &DL, 793 const TargetLibraryInfo *TLI) { 794 const GEPOperator *InnermostGEP = GEP; 795 bool InBounds = GEP->isInBounds(); 796 797 Type *SrcElemTy = GEP->getSourceElementType(); 798 Type *ResElemTy = GEP->getResultElementType(); 799 Type *ResTy = GEP->getType(); 800 if (!SrcElemTy->isSized()) 801 return nullptr; 802 803 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 804 GEP->getInRangeIndex(), DL, TLI)) 805 return C; 806 807 Constant *Ptr = Ops[0]; 808 if (!Ptr->getType()->isPointerTy()) 809 return nullptr; 810 811 Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); 812 813 // If this is a constant expr gep that is effectively computing an 814 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 815 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 816 if (!isa<ConstantInt>(Ops[i])) { 817 818 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 819 // "inttoptr (sub (ptrtoint Ptr), V)" 820 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 821 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 822 assert((!CE || CE->getType() == IntPtrTy) && 823 "CastGEPIndices didn't canonicalize index types!"); 824 if (CE && CE->getOpcode() == Instruction::Sub && 825 CE->getOperand(0)->isNullValue()) { 826 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 827 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 828 Res = ConstantExpr::getIntToPtr(Res, ResTy); 829 if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) 830 Res = FoldedRes; 831 return Res; 832 } 833 } 834 return nullptr; 835 } 836 837 unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); 838 APInt Offset = 839 APInt(BitWidth, 840 DL.getIndexedOffsetInType( 841 SrcElemTy, 842 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 843 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 844 845 // If this is a GEP of a GEP, fold it all into a single GEP. 846 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 847 InnermostGEP = GEP; 848 InBounds &= GEP->isInBounds(); 849 850 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 851 852 // Do not try the incorporate the sub-GEP if some index is not a number. 853 bool AllConstantInt = true; 854 for (Value *NestedOp : NestedOps) 855 if (!isa<ConstantInt>(NestedOp)) { 856 AllConstantInt = false; 857 break; 858 } 859 if (!AllConstantInt) 860 break; 861 862 Ptr = cast<Constant>(GEP->getOperand(0)); 863 SrcElemTy = GEP->getSourceElementType(); 864 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 865 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 866 } 867 868 // If the base value for this address is a literal integer value, fold the 869 // getelementptr to the resulting integer value casted to the pointer type. 870 APInt BasePtr(BitWidth, 0); 871 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 872 if (CE->getOpcode() == Instruction::IntToPtr) { 873 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 874 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 875 } 876 } 877 878 auto *PTy = cast<PointerType>(Ptr->getType()); 879 if ((Ptr->isNullValue() || BasePtr != 0) && 880 !DL.isNonIntegralPointerType(PTy)) { 881 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 882 return ConstantExpr::getIntToPtr(C, ResTy); 883 } 884 885 // Otherwise form a regular getelementptr. Recompute the indices so that 886 // we eliminate over-indexing of the notional static type array bounds. 887 // This makes it easy to determine if the getelementptr is "inbounds". 888 // Also, this helps GlobalOpt do SROA on GlobalVariables. 889 Type *Ty = PTy; 890 SmallVector<Constant *, 32> NewIdxs; 891 892 do { 893 if (!Ty->isStructTy()) { 894 if (Ty->isPointerTy()) { 895 // The only pointer indexing we'll do is on the first index of the GEP. 896 if (!NewIdxs.empty()) 897 break; 898 899 Ty = SrcElemTy; 900 901 // Only handle pointers to sized types, not pointers to functions. 902 if (!Ty->isSized()) 903 return nullptr; 904 } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { 905 Ty = ATy->getElementType(); 906 } else { 907 // We've reached some non-indexable type. 908 break; 909 } 910 911 // Determine which element of the array the offset points into. 912 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 913 if (ElemSize == 0) { 914 // The element size is 0. This may be [0 x Ty]*, so just use a zero 915 // index for this level and proceed to the next level to see if it can 916 // accommodate the offset. 917 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); 918 } else { 919 // The element size is non-zero divide the offset by the element 920 // size (rounding down), to compute the index at this level. 921 bool Overflow; 922 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 923 if (Overflow) 924 break; 925 Offset -= NewIdx * ElemSize; 926 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); 927 } 928 } else { 929 auto *STy = cast<StructType>(Ty); 930 // If we end up with an offset that isn't valid for this struct type, we 931 // can't re-form this GEP in a regular form, so bail out. The pointer 932 // operand likely went through casts that are necessary to make the GEP 933 // sensible. 934 const StructLayout &SL = *DL.getStructLayout(STy); 935 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 936 break; 937 938 // Determine which field of the struct the offset points into. The 939 // getZExtValue is fine as we've already ensured that the offset is 940 // within the range representable by the StructLayout API. 941 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 942 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 943 ElIdx)); 944 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 945 Ty = STy->getTypeAtIndex(ElIdx); 946 } 947 } while (Ty != ResElemTy); 948 949 // If we haven't used up the entire offset by descending the static 950 // type, then the offset is pointing into the middle of an indivisible 951 // member, so we can't simplify it. 952 if (Offset != 0) 953 return nullptr; 954 955 // Preserve the inrange index from the innermost GEP if possible. We must 956 // have calculated the same indices up to and including the inrange index. 957 Optional<unsigned> InRangeIndex; 958 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 959 if (SrcElemTy == InnermostGEP->getSourceElementType() && 960 NewIdxs.size() > *LastIRIndex) { 961 InRangeIndex = LastIRIndex; 962 for (unsigned I = 0; I <= *LastIRIndex; ++I) 963 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) { 964 InRangeIndex = None; 965 break; 966 } 967 } 968 969 // Create a GEP. 970 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 971 InBounds, InRangeIndex); 972 assert(C->getType()->getPointerElementType() == Ty && 973 "Computed GetElementPtr has unexpected type!"); 974 975 // If we ended up indexing a member with a type that doesn't match 976 // the type of what the original indices indexed, add a cast. 977 if (Ty != ResElemTy) 978 C = FoldBitCast(C, ResTy, DL); 979 980 return C; 981 } 982 983 /// Attempt to constant fold an instruction with the 984 /// specified opcode and operands. If successful, the constant result is 985 /// returned, if not, null is returned. Note that this function can fail when 986 /// attempting to fold instructions like loads and stores, which have no 987 /// constant expression form. 988 /// 989 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/inrange 990 /// etc information, due to only being passed an opcode and operands. Constant 991 /// folding using this function strips this information. 992 /// 993 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 994 ArrayRef<Constant *> Ops, 995 const DataLayout &DL, 996 const TargetLibraryInfo *TLI) { 997 Type *DestTy = InstOrCE->getType(); 998 999 // Handle easy binops first. 1000 if (Instruction::isBinaryOp(Opcode)) 1001 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1002 1003 if (Instruction::isCast(Opcode)) 1004 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1005 1006 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1007 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1008 return C; 1009 1010 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1011 Ops.slice(1), GEP->isInBounds(), 1012 GEP->getInRangeIndex()); 1013 } 1014 1015 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1016 return CE->getWithOperands(Ops); 1017 1018 switch (Opcode) { 1019 default: return nullptr; 1020 case Instruction::ICmp: 1021 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1022 case Instruction::Call: 1023 if (auto *F = dyn_cast<Function>(Ops.back())) { 1024 ImmutableCallSite CS(cast<CallInst>(InstOrCE)); 1025 if (canConstantFoldCallTo(CS, F)) 1026 return ConstantFoldCall(CS, F, Ops.slice(0, Ops.size() - 1), TLI); 1027 } 1028 return nullptr; 1029 case Instruction::Select: 1030 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1031 case Instruction::ExtractElement: 1032 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1033 case Instruction::InsertElement: 1034 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1035 case Instruction::ShuffleVector: 1036 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); 1037 } 1038 } 1039 1040 } // end anonymous namespace 1041 1042 //===----------------------------------------------------------------------===// 1043 // Constant Folding public APIs 1044 //===----------------------------------------------------------------------===// 1045 1046 namespace { 1047 1048 Constant * 1049 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1050 const TargetLibraryInfo *TLI, 1051 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1052 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1053 return nullptr; 1054 1055 SmallVector<Constant *, 8> Ops; 1056 for (const Use &NewU : C->operands()) { 1057 auto *NewC = cast<Constant>(&NewU); 1058 // Recursively fold the ConstantExpr's operands. If we have already folded 1059 // a ConstantExpr, we don't have to process it again. 1060 if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { 1061 auto It = FoldedOps.find(NewC); 1062 if (It == FoldedOps.end()) { 1063 if (auto *FoldedC = 1064 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { 1065 FoldedOps.insert({NewC, FoldedC}); 1066 NewC = FoldedC; 1067 } else { 1068 FoldedOps.insert({NewC, NewC}); 1069 } 1070 } else { 1071 NewC = It->second; 1072 } 1073 } 1074 Ops.push_back(NewC); 1075 } 1076 1077 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1078 if (CE->isCompare()) 1079 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1080 DL, TLI); 1081 1082 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1083 } 1084 1085 assert(isa<ConstantVector>(C)); 1086 return ConstantVector::get(Ops); 1087 } 1088 1089 } // end anonymous namespace 1090 1091 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1092 const TargetLibraryInfo *TLI) { 1093 // Handle PHI nodes quickly here... 1094 if (auto *PN = dyn_cast<PHINode>(I)) { 1095 Constant *CommonValue = nullptr; 1096 1097 SmallDenseMap<Constant *, Constant *> FoldedOps; 1098 for (Value *Incoming : PN->incoming_values()) { 1099 // If the incoming value is undef then skip it. Note that while we could 1100 // skip the value if it is equal to the phi node itself we choose not to 1101 // because that would break the rule that constant folding only applies if 1102 // all operands are constants. 1103 if (isa<UndefValue>(Incoming)) 1104 continue; 1105 // If the incoming value is not a constant, then give up. 1106 auto *C = dyn_cast<Constant>(Incoming); 1107 if (!C) 1108 return nullptr; 1109 // Fold the PHI's operands. 1110 if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) 1111 C = FoldedC; 1112 // If the incoming value is a different constant to 1113 // the one we saw previously, then give up. 1114 if (CommonValue && C != CommonValue) 1115 return nullptr; 1116 CommonValue = C; 1117 } 1118 1119 // If we reach here, all incoming values are the same constant or undef. 1120 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1121 } 1122 1123 // Scan the operand list, checking to see if they are all constants, if so, 1124 // hand off to ConstantFoldInstOperandsImpl. 1125 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1126 return nullptr; 1127 1128 SmallDenseMap<Constant *, Constant *> FoldedOps; 1129 SmallVector<Constant *, 8> Ops; 1130 for (const Use &OpU : I->operands()) { 1131 auto *Op = cast<Constant>(&OpU); 1132 // Fold the Instruction's operands. 1133 if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) 1134 Op = FoldedOp; 1135 1136 Ops.push_back(Op); 1137 } 1138 1139 if (const auto *CI = dyn_cast<CmpInst>(I)) 1140 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1141 DL, TLI); 1142 1143 if (const auto *LI = dyn_cast<LoadInst>(I)) 1144 return ConstantFoldLoadInst(LI, DL); 1145 1146 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1147 return ConstantExpr::getInsertValue( 1148 cast<Constant>(IVI->getAggregateOperand()), 1149 cast<Constant>(IVI->getInsertedValueOperand()), 1150 IVI->getIndices()); 1151 } 1152 1153 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1154 return ConstantExpr::getExtractValue( 1155 cast<Constant>(EVI->getAggregateOperand()), 1156 EVI->getIndices()); 1157 } 1158 1159 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1160 } 1161 1162 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1163 const TargetLibraryInfo *TLI) { 1164 SmallDenseMap<Constant *, Constant *> FoldedOps; 1165 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1166 } 1167 1168 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1169 ArrayRef<Constant *> Ops, 1170 const DataLayout &DL, 1171 const TargetLibraryInfo *TLI) { 1172 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1173 } 1174 1175 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1176 Constant *Ops0, Constant *Ops1, 1177 const DataLayout &DL, 1178 const TargetLibraryInfo *TLI) { 1179 // fold: icmp (inttoptr x), null -> icmp x, 0 1180 // fold: icmp null, (inttoptr x) -> icmp 0, x 1181 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1182 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1183 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1184 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1185 // 1186 // FIXME: The following comment is out of data and the DataLayout is here now. 1187 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1188 // around to know if bit truncation is happening. 1189 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1190 if (Ops1->isNullValue()) { 1191 if (CE0->getOpcode() == Instruction::IntToPtr) { 1192 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1193 // Convert the integer value to the right size to ensure we get the 1194 // proper extension or truncation. 1195 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1196 IntPtrTy, false); 1197 Constant *Null = Constant::getNullValue(C->getType()); 1198 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1199 } 1200 1201 // Only do this transformation if the int is intptrty in size, otherwise 1202 // there is a truncation or extension that we aren't modeling. 1203 if (CE0->getOpcode() == Instruction::PtrToInt) { 1204 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1205 if (CE0->getType() == IntPtrTy) { 1206 Constant *C = CE0->getOperand(0); 1207 Constant *Null = Constant::getNullValue(C->getType()); 1208 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1209 } 1210 } 1211 } 1212 1213 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1214 if (CE0->getOpcode() == CE1->getOpcode()) { 1215 if (CE0->getOpcode() == Instruction::IntToPtr) { 1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1217 1218 // Convert the integer value to the right size to ensure we get the 1219 // proper extension or truncation. 1220 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1221 IntPtrTy, false); 1222 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1223 IntPtrTy, false); 1224 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1225 } 1226 1227 // Only do this transformation if the int is intptrty in size, otherwise 1228 // there is a truncation or extension that we aren't modeling. 1229 if (CE0->getOpcode() == Instruction::PtrToInt) { 1230 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1231 if (CE0->getType() == IntPtrTy && 1232 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1233 return ConstantFoldCompareInstOperands( 1234 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1235 } 1236 } 1237 } 1238 } 1239 1240 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1241 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1242 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1243 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1244 Constant *LHS = ConstantFoldCompareInstOperands( 1245 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1246 Constant *RHS = ConstantFoldCompareInstOperands( 1247 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1248 unsigned OpC = 1249 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1250 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1251 } 1252 } else if (isa<ConstantExpr>(Ops1)) { 1253 // If RHS is a constant expression, but the left side isn't, swap the 1254 // operands and try again. 1255 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1256 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1257 } 1258 1259 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1260 } 1261 1262 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1263 Constant *RHS, 1264 const DataLayout &DL) { 1265 assert(Instruction::isBinaryOp(Opcode)); 1266 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1267 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1268 return C; 1269 1270 return ConstantExpr::get(Opcode, LHS, RHS); 1271 } 1272 1273 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1274 Type *DestTy, const DataLayout &DL) { 1275 assert(Instruction::isCast(Opcode)); 1276 switch (Opcode) { 1277 default: 1278 llvm_unreachable("Missing case"); 1279 case Instruction::PtrToInt: 1280 // If the input is a inttoptr, eliminate the pair. This requires knowing 1281 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1282 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1283 if (CE->getOpcode() == Instruction::IntToPtr) { 1284 Constant *Input = CE->getOperand(0); 1285 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1286 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1287 if (PtrWidth < InWidth) { 1288 Constant *Mask = 1289 ConstantInt::get(CE->getContext(), 1290 APInt::getLowBitsSet(InWidth, PtrWidth)); 1291 Input = ConstantExpr::getAnd(Input, Mask); 1292 } 1293 // Do a zext or trunc to get to the dest size. 1294 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1295 } 1296 } 1297 return ConstantExpr::getCast(Opcode, C, DestTy); 1298 case Instruction::IntToPtr: 1299 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1300 // the int size is >= the ptr size and the address spaces are the same. 1301 // This requires knowing the width of a pointer, so it can't be done in 1302 // ConstantExpr::getCast. 1303 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1304 if (CE->getOpcode() == Instruction::PtrToInt) { 1305 Constant *SrcPtr = CE->getOperand(0); 1306 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1307 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1308 1309 if (MidIntSize >= SrcPtrSize) { 1310 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1311 if (SrcAS == DestTy->getPointerAddressSpace()) 1312 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1313 } 1314 } 1315 } 1316 1317 return ConstantExpr::getCast(Opcode, C, DestTy); 1318 case Instruction::Trunc: 1319 case Instruction::ZExt: 1320 case Instruction::SExt: 1321 case Instruction::FPTrunc: 1322 case Instruction::FPExt: 1323 case Instruction::UIToFP: 1324 case Instruction::SIToFP: 1325 case Instruction::FPToUI: 1326 case Instruction::FPToSI: 1327 case Instruction::AddrSpaceCast: 1328 return ConstantExpr::getCast(Opcode, C, DestTy); 1329 case Instruction::BitCast: 1330 return FoldBitCast(C, DestTy, DL); 1331 } 1332 } 1333 1334 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1335 ConstantExpr *CE) { 1336 if (!CE->getOperand(1)->isNullValue()) 1337 return nullptr; // Do not allow stepping over the value! 1338 1339 // Loop over all of the operands, tracking down which value we are 1340 // addressing. 1341 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1342 C = C->getAggregateElement(CE->getOperand(i)); 1343 if (!C) 1344 return nullptr; 1345 } 1346 return C; 1347 } 1348 1349 Constant * 1350 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1351 ArrayRef<Constant *> Indices) { 1352 // Loop over all of the operands, tracking down which value we are 1353 // addressing. 1354 for (Constant *Index : Indices) { 1355 C = C->getAggregateElement(Index); 1356 if (!C) 1357 return nullptr; 1358 } 1359 return C; 1360 } 1361 1362 //===----------------------------------------------------------------------===// 1363 // Constant Folding for Calls 1364 // 1365 1366 bool llvm::canConstantFoldCallTo(ImmutableCallSite CS, const Function *F) { 1367 if (CS.isNoBuiltin() || CS.isStrictFP()) 1368 return false; 1369 switch (F->getIntrinsicID()) { 1370 case Intrinsic::fabs: 1371 case Intrinsic::minnum: 1372 case Intrinsic::maxnum: 1373 case Intrinsic::log: 1374 case Intrinsic::log2: 1375 case Intrinsic::log10: 1376 case Intrinsic::exp: 1377 case Intrinsic::exp2: 1378 case Intrinsic::floor: 1379 case Intrinsic::ceil: 1380 case Intrinsic::sqrt: 1381 case Intrinsic::sin: 1382 case Intrinsic::cos: 1383 case Intrinsic::trunc: 1384 case Intrinsic::rint: 1385 case Intrinsic::nearbyint: 1386 case Intrinsic::pow: 1387 case Intrinsic::powi: 1388 case Intrinsic::bswap: 1389 case Intrinsic::ctpop: 1390 case Intrinsic::ctlz: 1391 case Intrinsic::cttz: 1392 case Intrinsic::fma: 1393 case Intrinsic::fmuladd: 1394 case Intrinsic::copysign: 1395 case Intrinsic::launder_invariant_group: 1396 case Intrinsic::strip_invariant_group: 1397 case Intrinsic::round: 1398 case Intrinsic::masked_load: 1399 case Intrinsic::sadd_with_overflow: 1400 case Intrinsic::uadd_with_overflow: 1401 case Intrinsic::ssub_with_overflow: 1402 case Intrinsic::usub_with_overflow: 1403 case Intrinsic::smul_with_overflow: 1404 case Intrinsic::umul_with_overflow: 1405 case Intrinsic::convert_from_fp16: 1406 case Intrinsic::convert_to_fp16: 1407 case Intrinsic::bitreverse: 1408 case Intrinsic::x86_sse_cvtss2si: 1409 case Intrinsic::x86_sse_cvtss2si64: 1410 case Intrinsic::x86_sse_cvttss2si: 1411 case Intrinsic::x86_sse_cvttss2si64: 1412 case Intrinsic::x86_sse2_cvtsd2si: 1413 case Intrinsic::x86_sse2_cvtsd2si64: 1414 case Intrinsic::x86_sse2_cvttsd2si: 1415 case Intrinsic::x86_sse2_cvttsd2si64: 1416 return true; 1417 default: 1418 return false; 1419 case Intrinsic::not_intrinsic: break; 1420 } 1421 1422 if (!F->hasName()) 1423 return false; 1424 StringRef Name = F->getName(); 1425 1426 // In these cases, the check of the length is required. We don't want to 1427 // return true for a name like "cos\0blah" which strcmp would return equal to 1428 // "cos", but has length 8. 1429 switch (Name[0]) { 1430 default: 1431 return false; 1432 case 'a': 1433 return Name == "acos" || Name == "asin" || Name == "atan" || 1434 Name == "atan2" || Name == "acosf" || Name == "asinf" || 1435 Name == "atanf" || Name == "atan2f"; 1436 case 'c': 1437 return Name == "ceil" || Name == "cos" || Name == "cosh" || 1438 Name == "ceilf" || Name == "cosf" || Name == "coshf"; 1439 case 'e': 1440 return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; 1441 case 'f': 1442 return Name == "fabs" || Name == "floor" || Name == "fmod" || 1443 Name == "fabsf" || Name == "floorf" || Name == "fmodf"; 1444 case 'l': 1445 return Name == "log" || Name == "log10" || Name == "logf" || 1446 Name == "log10f"; 1447 case 'p': 1448 return Name == "pow" || Name == "powf"; 1449 case 'r': 1450 return Name == "round" || Name == "roundf"; 1451 case 's': 1452 return Name == "sin" || Name == "sinh" || Name == "sqrt" || 1453 Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; 1454 case 't': 1455 return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; 1456 case '_': 1457 1458 // Check for various function names that get used for the math functions 1459 // when the header files are preprocessed with the macro 1460 // __FINITE_MATH_ONLY__ enabled. 1461 // The '12' here is the length of the shortest name that can match. 1462 // We need to check the size before looking at Name[1] and Name[2] 1463 // so we may as well check a limit that will eliminate mismatches. 1464 if (Name.size() < 12 || Name[1] != '_') 1465 return false; 1466 switch (Name[2]) { 1467 default: 1468 return false; 1469 case 'a': 1470 return Name == "__acos_finite" || Name == "__acosf_finite" || 1471 Name == "__asin_finite" || Name == "__asinf_finite" || 1472 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1473 case 'c': 1474 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1475 case 'e': 1476 return Name == "__exp_finite" || Name == "__expf_finite" || 1477 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1478 case 'l': 1479 return Name == "__log_finite" || Name == "__logf_finite" || 1480 Name == "__log10_finite" || Name == "__log10f_finite"; 1481 case 'p': 1482 return Name == "__pow_finite" || Name == "__powf_finite"; 1483 case 's': 1484 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1485 } 1486 } 1487 } 1488 1489 namespace { 1490 1491 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1492 if (Ty->isHalfTy()) { 1493 APFloat APF(V); 1494 bool unused; 1495 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &unused); 1496 return ConstantFP::get(Ty->getContext(), APF); 1497 } 1498 if (Ty->isFloatTy()) 1499 return ConstantFP::get(Ty->getContext(), APFloat((float)V)); 1500 if (Ty->isDoubleTy()) 1501 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1502 llvm_unreachable("Can only constant fold half/float/double"); 1503 } 1504 1505 /// Clear the floating-point exception state. 1506 inline void llvm_fenv_clearexcept() { 1507 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1508 feclearexcept(FE_ALL_EXCEPT); 1509 #endif 1510 errno = 0; 1511 } 1512 1513 /// Test if a floating-point exception was raised. 1514 inline bool llvm_fenv_testexcept() { 1515 int errno_val = errno; 1516 if (errno_val == ERANGE || errno_val == EDOM) 1517 return true; 1518 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1519 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1520 return true; 1521 #endif 1522 return false; 1523 } 1524 1525 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1526 llvm_fenv_clearexcept(); 1527 V = NativeFP(V); 1528 if (llvm_fenv_testexcept()) { 1529 llvm_fenv_clearexcept(); 1530 return nullptr; 1531 } 1532 1533 return GetConstantFoldFPValue(V, Ty); 1534 } 1535 1536 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1537 double W, Type *Ty) { 1538 llvm_fenv_clearexcept(); 1539 V = NativeFP(V, W); 1540 if (llvm_fenv_testexcept()) { 1541 llvm_fenv_clearexcept(); 1542 return nullptr; 1543 } 1544 1545 return GetConstantFoldFPValue(V, Ty); 1546 } 1547 1548 /// Attempt to fold an SSE floating point to integer conversion of a constant 1549 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1550 /// used (toward nearest, ties to even). This matches the behavior of the 1551 /// non-truncating SSE instructions in the default rounding mode. The desired 1552 /// integer type Ty is used to select how many bits are available for the 1553 /// result. Returns null if the conversion cannot be performed, otherwise 1554 /// returns the Constant value resulting from the conversion. 1555 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1556 Type *Ty) { 1557 // All of these conversion intrinsics form an integer of at most 64bits. 1558 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1559 assert(ResultWidth <= 64 && 1560 "Can only constant fold conversions to 64 and 32 bit ints"); 1561 1562 uint64_t UIntVal; 1563 bool isExact = false; 1564 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1565 : APFloat::rmNearestTiesToEven; 1566 APFloat::opStatus status = 1567 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1568 /*isSigned=*/true, mode, &isExact); 1569 if (status != APFloat::opOK && 1570 (!roundTowardZero || status != APFloat::opInexact)) 1571 return nullptr; 1572 return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true); 1573 } 1574 1575 double getValueAsDouble(ConstantFP *Op) { 1576 Type *Ty = Op->getType(); 1577 1578 if (Ty->isFloatTy()) 1579 return Op->getValueAPF().convertToFloat(); 1580 1581 if (Ty->isDoubleTy()) 1582 return Op->getValueAPF().convertToDouble(); 1583 1584 bool unused; 1585 APFloat APF = Op->getValueAPF(); 1586 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1587 return APF.convertToDouble(); 1588 } 1589 1590 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty, 1591 ArrayRef<Constant *> Operands, 1592 const TargetLibraryInfo *TLI, 1593 ImmutableCallSite CS) { 1594 if (Operands.size() == 1) { 1595 if (isa<UndefValue>(Operands[0])) { 1596 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN 1597 if (IntrinsicID == Intrinsic::cos) 1598 return Constant::getNullValue(Ty); 1599 if (IntrinsicID == Intrinsic::bswap || 1600 IntrinsicID == Intrinsic::bitreverse || 1601 IntrinsicID == Intrinsic::launder_invariant_group || 1602 IntrinsicID == Intrinsic::strip_invariant_group) 1603 return Operands[0]; 1604 } 1605 1606 if (isa<ConstantPointerNull>(Operands[0])) { 1607 // launder(null) == null == strip(null) iff in addrspace 0 1608 if (IntrinsicID == Intrinsic::launder_invariant_group || 1609 IntrinsicID == Intrinsic::strip_invariant_group) { 1610 // If instruction is not yet put in a basic block (e.g. when cloning 1611 // a function during inlining), CS caller may not be available. 1612 // So check CS's BB first before querying CS.getCaller. 1613 const Function *Caller = CS.getParent() ? CS.getCaller() : nullptr; 1614 if (Caller && 1615 !NullPointerIsDefined( 1616 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1617 return Operands[0]; 1618 } 1619 return nullptr; 1620 } 1621 } 1622 1623 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1624 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1625 APFloat Val(Op->getValueAPF()); 1626 1627 bool lost = false; 1628 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1629 1630 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1631 } 1632 1633 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1634 return nullptr; 1635 1636 if (IntrinsicID == Intrinsic::round) { 1637 APFloat V = Op->getValueAPF(); 1638 V.roundToIntegral(APFloat::rmNearestTiesToAway); 1639 return ConstantFP::get(Ty->getContext(), V); 1640 } 1641 1642 if (IntrinsicID == Intrinsic::floor) { 1643 APFloat V = Op->getValueAPF(); 1644 V.roundToIntegral(APFloat::rmTowardNegative); 1645 return ConstantFP::get(Ty->getContext(), V); 1646 } 1647 1648 if (IntrinsicID == Intrinsic::ceil) { 1649 APFloat V = Op->getValueAPF(); 1650 V.roundToIntegral(APFloat::rmTowardPositive); 1651 return ConstantFP::get(Ty->getContext(), V); 1652 } 1653 1654 if (IntrinsicID == Intrinsic::trunc) { 1655 APFloat V = Op->getValueAPF(); 1656 V.roundToIntegral(APFloat::rmTowardZero); 1657 return ConstantFP::get(Ty->getContext(), V); 1658 } 1659 1660 if (IntrinsicID == Intrinsic::rint) { 1661 APFloat V = Op->getValueAPF(); 1662 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1663 return ConstantFP::get(Ty->getContext(), V); 1664 } 1665 1666 if (IntrinsicID == Intrinsic::nearbyint) { 1667 APFloat V = Op->getValueAPF(); 1668 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1669 return ConstantFP::get(Ty->getContext(), V); 1670 } 1671 1672 /// We only fold functions with finite arguments. Folding NaN and inf is 1673 /// likely to be aborted with an exception anyway, and some host libms 1674 /// have known errors raising exceptions. 1675 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) 1676 return nullptr; 1677 1678 /// Currently APFloat versions of these functions do not exist, so we use 1679 /// the host native double versions. Float versions are not called 1680 /// directly but for all these it is true (float)(f((double)arg)) == 1681 /// f(arg). Long double not supported yet. 1682 double V = getValueAsDouble(Op); 1683 1684 switch (IntrinsicID) { 1685 default: break; 1686 case Intrinsic::fabs: 1687 return ConstantFoldFP(fabs, V, Ty); 1688 case Intrinsic::log2: 1689 return ConstantFoldFP(Log2, V, Ty); 1690 case Intrinsic::log: 1691 return ConstantFoldFP(log, V, Ty); 1692 case Intrinsic::log10: 1693 return ConstantFoldFP(log10, V, Ty); 1694 case Intrinsic::exp: 1695 return ConstantFoldFP(exp, V, Ty); 1696 case Intrinsic::exp2: 1697 return ConstantFoldFP(exp2, V, Ty); 1698 case Intrinsic::sin: 1699 return ConstantFoldFP(sin, V, Ty); 1700 case Intrinsic::cos: 1701 return ConstantFoldFP(cos, V, Ty); 1702 case Intrinsic::sqrt: 1703 return ConstantFoldFP(sqrt, V, Ty); 1704 } 1705 1706 if (!TLI) 1707 return nullptr; 1708 1709 char NameKeyChar = Name[0]; 1710 if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') 1711 NameKeyChar = Name[2]; 1712 1713 switch (NameKeyChar) { 1714 case 'a': 1715 if ((Name == "acos" && TLI->has(LibFunc_acos)) || 1716 (Name == "acosf" && TLI->has(LibFunc_acosf)) || 1717 (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || 1718 (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) 1719 return ConstantFoldFP(acos, V, Ty); 1720 else if ((Name == "asin" && TLI->has(LibFunc_asin)) || 1721 (Name == "asinf" && TLI->has(LibFunc_asinf)) || 1722 (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || 1723 (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) 1724 return ConstantFoldFP(asin, V, Ty); 1725 else if ((Name == "atan" && TLI->has(LibFunc_atan)) || 1726 (Name == "atanf" && TLI->has(LibFunc_atanf))) 1727 return ConstantFoldFP(atan, V, Ty); 1728 break; 1729 case 'c': 1730 if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || 1731 (Name == "ceilf" && TLI->has(LibFunc_ceilf))) 1732 return ConstantFoldFP(ceil, V, Ty); 1733 else if ((Name == "cos" && TLI->has(LibFunc_cos)) || 1734 (Name == "cosf" && TLI->has(LibFunc_cosf))) 1735 return ConstantFoldFP(cos, V, Ty); 1736 else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || 1737 (Name == "coshf" && TLI->has(LibFunc_coshf)) || 1738 (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || 1739 (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) 1740 return ConstantFoldFP(cosh, V, Ty); 1741 break; 1742 case 'e': 1743 if ((Name == "exp" && TLI->has(LibFunc_exp)) || 1744 (Name == "expf" && TLI->has(LibFunc_expf)) || 1745 (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || 1746 (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) 1747 return ConstantFoldFP(exp, V, Ty); 1748 if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || 1749 (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || 1750 (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || 1751 (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) 1752 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a 1753 // C99 library. 1754 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 1755 break; 1756 case 'f': 1757 if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || 1758 (Name == "fabsf" && TLI->has(LibFunc_fabsf))) 1759 return ConstantFoldFP(fabs, V, Ty); 1760 else if ((Name == "floor" && TLI->has(LibFunc_floor)) || 1761 (Name == "floorf" && TLI->has(LibFunc_floorf))) 1762 return ConstantFoldFP(floor, V, Ty); 1763 break; 1764 case 'l': 1765 if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || 1766 (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || 1767 (Name == "__log_finite" && V > 0 && 1768 TLI->has(LibFunc_log_finite)) || 1769 (Name == "__logf_finite" && V > 0 && 1770 TLI->has(LibFunc_logf_finite))) 1771 return ConstantFoldFP(log, V, Ty); 1772 else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || 1773 (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || 1774 (Name == "__log10_finite" && V > 0 && 1775 TLI->has(LibFunc_log10_finite)) || 1776 (Name == "__log10f_finite" && V > 0 && 1777 TLI->has(LibFunc_log10f_finite))) 1778 return ConstantFoldFP(log10, V, Ty); 1779 break; 1780 case 'r': 1781 if ((Name == "round" && TLI->has(LibFunc_round)) || 1782 (Name == "roundf" && TLI->has(LibFunc_roundf))) 1783 return ConstantFoldFP(round, V, Ty); 1784 break; 1785 case 's': 1786 if ((Name == "sin" && TLI->has(LibFunc_sin)) || 1787 (Name == "sinf" && TLI->has(LibFunc_sinf))) 1788 return ConstantFoldFP(sin, V, Ty); 1789 else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || 1790 (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || 1791 (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || 1792 (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) 1793 return ConstantFoldFP(sinh, V, Ty); 1794 else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || 1795 (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) 1796 return ConstantFoldFP(sqrt, V, Ty); 1797 break; 1798 case 't': 1799 if ((Name == "tan" && TLI->has(LibFunc_tan)) || 1800 (Name == "tanf" && TLI->has(LibFunc_tanf))) 1801 return ConstantFoldFP(tan, V, Ty); 1802 else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || 1803 (Name == "tanhf" && TLI->has(LibFunc_tanhf))) 1804 return ConstantFoldFP(tanh, V, Ty); 1805 break; 1806 default: 1807 break; 1808 } 1809 return nullptr; 1810 } 1811 1812 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 1813 switch (IntrinsicID) { 1814 case Intrinsic::bswap: 1815 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 1816 case Intrinsic::ctpop: 1817 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 1818 case Intrinsic::bitreverse: 1819 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 1820 case Intrinsic::convert_from_fp16: { 1821 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 1822 1823 bool lost = false; 1824 APFloat::opStatus status = Val.convert( 1825 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 1826 1827 // Conversion is always precise. 1828 (void)status; 1829 assert(status == APFloat::opOK && !lost && 1830 "Precision lost during fp16 constfolding"); 1831 1832 return ConstantFP::get(Ty->getContext(), Val); 1833 } 1834 default: 1835 return nullptr; 1836 } 1837 } 1838 1839 // Support ConstantVector in case we have an Undef in the top. 1840 if (isa<ConstantVector>(Operands[0]) || 1841 isa<ConstantDataVector>(Operands[0])) { 1842 auto *Op = cast<Constant>(Operands[0]); 1843 switch (IntrinsicID) { 1844 default: break; 1845 case Intrinsic::x86_sse_cvtss2si: 1846 case Intrinsic::x86_sse_cvtss2si64: 1847 case Intrinsic::x86_sse2_cvtsd2si: 1848 case Intrinsic::x86_sse2_cvtsd2si64: 1849 if (ConstantFP *FPOp = 1850 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1851 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1852 /*roundTowardZero=*/false, Ty); 1853 break; 1854 case Intrinsic::x86_sse_cvttss2si: 1855 case Intrinsic::x86_sse_cvttss2si64: 1856 case Intrinsic::x86_sse2_cvttsd2si: 1857 case Intrinsic::x86_sse2_cvttsd2si64: 1858 if (ConstantFP *FPOp = 1859 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1860 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1861 /*roundTowardZero=*/true, Ty); 1862 break; 1863 } 1864 } 1865 1866 return nullptr; 1867 } 1868 1869 if (Operands.size() == 2) { 1870 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 1871 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1872 return nullptr; 1873 double Op1V = getValueAsDouble(Op1); 1874 1875 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 1876 if (Op2->getType() != Op1->getType()) 1877 return nullptr; 1878 1879 double Op2V = getValueAsDouble(Op2); 1880 if (IntrinsicID == Intrinsic::pow) { 1881 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 1882 } 1883 if (IntrinsicID == Intrinsic::copysign) { 1884 APFloat V1 = Op1->getValueAPF(); 1885 const APFloat &V2 = Op2->getValueAPF(); 1886 V1.copySign(V2); 1887 return ConstantFP::get(Ty->getContext(), V1); 1888 } 1889 1890 if (IntrinsicID == Intrinsic::minnum) { 1891 const APFloat &C1 = Op1->getValueAPF(); 1892 const APFloat &C2 = Op2->getValueAPF(); 1893 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 1894 } 1895 1896 if (IntrinsicID == Intrinsic::maxnum) { 1897 const APFloat &C1 = Op1->getValueAPF(); 1898 const APFloat &C2 = Op2->getValueAPF(); 1899 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 1900 } 1901 1902 if (!TLI) 1903 return nullptr; 1904 if ((Name == "pow" && TLI->has(LibFunc_pow)) || 1905 (Name == "powf" && TLI->has(LibFunc_powf)) || 1906 (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || 1907 (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) 1908 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 1909 if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || 1910 (Name == "fmodf" && TLI->has(LibFunc_fmodf))) 1911 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); 1912 if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || 1913 (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || 1914 (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || 1915 (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) 1916 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 1917 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 1918 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 1919 return ConstantFP::get(Ty->getContext(), 1920 APFloat((float)std::pow((float)Op1V, 1921 (int)Op2C->getZExtValue()))); 1922 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 1923 return ConstantFP::get(Ty->getContext(), 1924 APFloat((float)std::pow((float)Op1V, 1925 (int)Op2C->getZExtValue()))); 1926 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 1927 return ConstantFP::get(Ty->getContext(), 1928 APFloat((double)std::pow((double)Op1V, 1929 (int)Op2C->getZExtValue()))); 1930 } 1931 return nullptr; 1932 } 1933 1934 if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { 1935 if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { 1936 switch (IntrinsicID) { 1937 default: break; 1938 case Intrinsic::sadd_with_overflow: 1939 case Intrinsic::uadd_with_overflow: 1940 case Intrinsic::ssub_with_overflow: 1941 case Intrinsic::usub_with_overflow: 1942 case Intrinsic::smul_with_overflow: 1943 case Intrinsic::umul_with_overflow: { 1944 APInt Res; 1945 bool Overflow; 1946 switch (IntrinsicID) { 1947 default: llvm_unreachable("Invalid case"); 1948 case Intrinsic::sadd_with_overflow: 1949 Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow); 1950 break; 1951 case Intrinsic::uadd_with_overflow: 1952 Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow); 1953 break; 1954 case Intrinsic::ssub_with_overflow: 1955 Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow); 1956 break; 1957 case Intrinsic::usub_with_overflow: 1958 Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow); 1959 break; 1960 case Intrinsic::smul_with_overflow: 1961 Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow); 1962 break; 1963 case Intrinsic::umul_with_overflow: 1964 Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow); 1965 break; 1966 } 1967 Constant *Ops[] = { 1968 ConstantInt::get(Ty->getContext(), Res), 1969 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 1970 }; 1971 return ConstantStruct::get(cast<StructType>(Ty), Ops); 1972 } 1973 case Intrinsic::cttz: 1974 if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef. 1975 return UndefValue::get(Ty); 1976 return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros()); 1977 case Intrinsic::ctlz: 1978 if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef. 1979 return UndefValue::get(Ty); 1980 return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros()); 1981 } 1982 } 1983 1984 return nullptr; 1985 } 1986 return nullptr; 1987 } 1988 1989 if (Operands.size() != 3) 1990 return nullptr; 1991 1992 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 1993 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 1994 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 1995 switch (IntrinsicID) { 1996 default: break; 1997 case Intrinsic::fma: 1998 case Intrinsic::fmuladd: { 1999 APFloat V = Op1->getValueAPF(); 2000 APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), 2001 Op3->getValueAPF(), 2002 APFloat::rmNearestTiesToEven); 2003 if (s != APFloat::opInvalidOp) 2004 return ConstantFP::get(Ty->getContext(), V); 2005 2006 return nullptr; 2007 } 2008 } 2009 } 2010 } 2011 } 2012 2013 return nullptr; 2014 } 2015 2016 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, 2017 VectorType *VTy, ArrayRef<Constant *> Operands, 2018 const DataLayout &DL, 2019 const TargetLibraryInfo *TLI, 2020 ImmutableCallSite CS) { 2021 SmallVector<Constant *, 4> Result(VTy->getNumElements()); 2022 SmallVector<Constant *, 4> Lane(Operands.size()); 2023 Type *Ty = VTy->getElementType(); 2024 2025 if (IntrinsicID == Intrinsic::masked_load) { 2026 auto *SrcPtr = Operands[0]; 2027 auto *Mask = Operands[2]; 2028 auto *Passthru = Operands[3]; 2029 2030 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); 2031 2032 SmallVector<Constant *, 32> NewElements; 2033 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2034 auto *MaskElt = Mask->getAggregateElement(I); 2035 if (!MaskElt) 2036 break; 2037 auto *PassthruElt = Passthru->getAggregateElement(I); 2038 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2039 if (isa<UndefValue>(MaskElt)) { 2040 if (PassthruElt) 2041 NewElements.push_back(PassthruElt); 2042 else if (VecElt) 2043 NewElements.push_back(VecElt); 2044 else 2045 return nullptr; 2046 } 2047 if (MaskElt->isNullValue()) { 2048 if (!PassthruElt) 2049 return nullptr; 2050 NewElements.push_back(PassthruElt); 2051 } else if (MaskElt->isOneValue()) { 2052 if (!VecElt) 2053 return nullptr; 2054 NewElements.push_back(VecElt); 2055 } else { 2056 return nullptr; 2057 } 2058 } 2059 if (NewElements.size() != VTy->getNumElements()) 2060 return nullptr; 2061 return ConstantVector::get(NewElements); 2062 } 2063 2064 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2065 // Gather a column of constants. 2066 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2067 // These intrinsics use a scalar type for their second argument. 2068 if (J == 1 && 2069 (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz || 2070 IntrinsicID == Intrinsic::powi)) { 2071 Lane[J] = Operands[J]; 2072 continue; 2073 } 2074 2075 Constant *Agg = Operands[J]->getAggregateElement(I); 2076 if (!Agg) 2077 return nullptr; 2078 2079 Lane[J] = Agg; 2080 } 2081 2082 // Use the regular scalar folding to simplify this column. 2083 Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, CS); 2084 if (!Folded) 2085 return nullptr; 2086 Result[I] = Folded; 2087 } 2088 2089 return ConstantVector::get(Result); 2090 } 2091 2092 } // end anonymous namespace 2093 2094 Constant * 2095 llvm::ConstantFoldCall(ImmutableCallSite CS, Function *F, 2096 ArrayRef<Constant *> Operands, 2097 const TargetLibraryInfo *TLI) { 2098 if (CS.isNoBuiltin() || CS.isStrictFP()) 2099 return nullptr; 2100 if (!F->hasName()) 2101 return nullptr; 2102 StringRef Name = F->getName(); 2103 2104 Type *Ty = F->getReturnType(); 2105 2106 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2107 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2108 F->getParent()->getDataLayout(), TLI, CS); 2109 2110 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, CS); 2111 } 2112 2113 bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) { 2114 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 2115 // (and to some extent ConstantFoldScalarCall). 2116 if (CS.isNoBuiltin() || CS.isStrictFP()) 2117 return false; 2118 Function *F = CS.getCalledFunction(); 2119 if (!F) 2120 return false; 2121 2122 LibFunc Func; 2123 if (!TLI || !TLI->getLibFunc(*F, Func)) 2124 return false; 2125 2126 if (CS.getNumArgOperands() == 1) { 2127 if (ConstantFP *OpC = dyn_cast<ConstantFP>(CS.getArgOperand(0))) { 2128 const APFloat &Op = OpC->getValueAPF(); 2129 switch (Func) { 2130 case LibFunc_logl: 2131 case LibFunc_log: 2132 case LibFunc_logf: 2133 case LibFunc_log2l: 2134 case LibFunc_log2: 2135 case LibFunc_log2f: 2136 case LibFunc_log10l: 2137 case LibFunc_log10: 2138 case LibFunc_log10f: 2139 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 2140 2141 case LibFunc_expl: 2142 case LibFunc_exp: 2143 case LibFunc_expf: 2144 // FIXME: These boundaries are slightly conservative. 2145 if (OpC->getType()->isDoubleTy()) 2146 return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && 2147 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; 2148 if (OpC->getType()->isFloatTy()) 2149 return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && 2150 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; 2151 break; 2152 2153 case LibFunc_exp2l: 2154 case LibFunc_exp2: 2155 case LibFunc_exp2f: 2156 // FIXME: These boundaries are slightly conservative. 2157 if (OpC->getType()->isDoubleTy()) 2158 return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && 2159 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; 2160 if (OpC->getType()->isFloatTy()) 2161 return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && 2162 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; 2163 break; 2164 2165 case LibFunc_sinl: 2166 case LibFunc_sin: 2167 case LibFunc_sinf: 2168 case LibFunc_cosl: 2169 case LibFunc_cos: 2170 case LibFunc_cosf: 2171 return !Op.isInfinity(); 2172 2173 case LibFunc_tanl: 2174 case LibFunc_tan: 2175 case LibFunc_tanf: { 2176 // FIXME: Stop using the host math library. 2177 // FIXME: The computation isn't done in the right precision. 2178 Type *Ty = OpC->getType(); 2179 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2180 double OpV = getValueAsDouble(OpC); 2181 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 2182 } 2183 break; 2184 } 2185 2186 case LibFunc_asinl: 2187 case LibFunc_asin: 2188 case LibFunc_asinf: 2189 case LibFunc_acosl: 2190 case LibFunc_acos: 2191 case LibFunc_acosf: 2192 return Op.compare(APFloat(Op.getSemantics(), "-1")) != 2193 APFloat::cmpLessThan && 2194 Op.compare(APFloat(Op.getSemantics(), "1")) != 2195 APFloat::cmpGreaterThan; 2196 2197 case LibFunc_sinh: 2198 case LibFunc_cosh: 2199 case LibFunc_sinhf: 2200 case LibFunc_coshf: 2201 case LibFunc_sinhl: 2202 case LibFunc_coshl: 2203 // FIXME: These boundaries are slightly conservative. 2204 if (OpC->getType()->isDoubleTy()) 2205 return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && 2206 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; 2207 if (OpC->getType()->isFloatTy()) 2208 return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && 2209 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; 2210 break; 2211 2212 case LibFunc_sqrtl: 2213 case LibFunc_sqrt: 2214 case LibFunc_sqrtf: 2215 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 2216 2217 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 2218 // maybe others? 2219 default: 2220 break; 2221 } 2222 } 2223 } 2224 2225 if (CS.getNumArgOperands() == 2) { 2226 ConstantFP *Op0C = dyn_cast<ConstantFP>(CS.getArgOperand(0)); 2227 ConstantFP *Op1C = dyn_cast<ConstantFP>(CS.getArgOperand(1)); 2228 if (Op0C && Op1C) { 2229 const APFloat &Op0 = Op0C->getValueAPF(); 2230 const APFloat &Op1 = Op1C->getValueAPF(); 2231 2232 switch (Func) { 2233 case LibFunc_powl: 2234 case LibFunc_pow: 2235 case LibFunc_powf: { 2236 // FIXME: Stop using the host math library. 2237 // FIXME: The computation isn't done in the right precision. 2238 Type *Ty = Op0C->getType(); 2239 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2240 if (Ty == Op1C->getType()) { 2241 double Op0V = getValueAsDouble(Op0C); 2242 double Op1V = getValueAsDouble(Op1C); 2243 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 2244 } 2245 } 2246 break; 2247 } 2248 2249 case LibFunc_fmodl: 2250 case LibFunc_fmod: 2251 case LibFunc_fmodf: 2252 return Op0.isNaN() || Op1.isNaN() || 2253 (!Op0.isInfinity() && !Op1.isZero()); 2254 2255 default: 2256 break; 2257 } 2258 } 2259 } 2260 2261 return false; 2262 } 2263