Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic IR ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // DataLayout information. These functions cannot go in IR due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/ADT/APFloat.h"
     21 #include "llvm/ADT/APInt.h"
     22 #include "llvm/ADT/ArrayRef.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringRef.h"
     27 #include "llvm/Analysis/TargetLibraryInfo.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/Config/config.h"
     30 #include "llvm/IR/Constant.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/GlobalValue.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/InstrTypes.h"
     38 #include "llvm/IR/Instruction.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/IR/Type.h"
     42 #include "llvm/IR/Value.h"
     43 #include "llvm/Support/Casting.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/KnownBits.h"
     46 #include "llvm/Support/MathExtras.h"
     47 #include <cassert>
     48 #include <cerrno>
     49 #include <cfenv>
     50 #include <cmath>
     51 #include <cstddef>
     52 #include <cstdint>
     53 
     54 using namespace llvm;
     55 
     56 namespace {
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Constant Folding internal helper functions
     60 //===----------------------------------------------------------------------===//
     61 
     62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
     63                                         Constant *C, Type *SrcEltTy,
     64                                         unsigned NumSrcElts,
     65                                         const DataLayout &DL) {
     66   // Now that we know that the input value is a vector of integers, just shift
     67   // and insert them into our result.
     68   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
     69   for (unsigned i = 0; i != NumSrcElts; ++i) {
     70     Constant *Element;
     71     if (DL.isLittleEndian())
     72       Element = C->getAggregateElement(NumSrcElts - i - 1);
     73     else
     74       Element = C->getAggregateElement(i);
     75 
     76     if (Element && isa<UndefValue>(Element)) {
     77       Result <<= BitShift;
     78       continue;
     79     }
     80 
     81     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
     82     if (!ElementCI)
     83       return ConstantExpr::getBitCast(C, DestTy);
     84 
     85     Result <<= BitShift;
     86     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
     87   }
     88 
     89   return nullptr;
     90 }
     91 
     92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
     93 /// This always returns a non-null constant, but it may be a
     94 /// ConstantExpr if unfoldable.
     95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
     96   // Catch the obvious splat cases.
     97   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     98     return Constant::getNullValue(DestTy);
     99   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
    100       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
    101     return Constant::getAllOnesValue(DestTy);
    102 
    103   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
    104     // Handle a vector->scalar integer/fp cast.
    105     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
    106       unsigned NumSrcElts = VTy->getNumElements();
    107       Type *SrcEltTy = VTy->getElementType();
    108 
    109       // If the vector is a vector of floating point, convert it to vector of int
    110       // to simplify things.
    111       if (SrcEltTy->isFloatingPointTy()) {
    112         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    113         Type *SrcIVTy =
    114           VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
    115         // Ask IR to do the conversion now that #elts line up.
    116         C = ConstantExpr::getBitCast(C, SrcIVTy);
    117       }
    118 
    119       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
    120       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
    121                                                 SrcEltTy, NumSrcElts, DL))
    122         return CE;
    123 
    124       if (isa<IntegerType>(DestTy))
    125         return ConstantInt::get(DestTy, Result);
    126 
    127       APFloat FP(DestTy->getFltSemantics(), Result);
    128       return ConstantFP::get(DestTy->getContext(), FP);
    129     }
    130   }
    131 
    132   // The code below only handles casts to vectors currently.
    133   auto *DestVTy = dyn_cast<VectorType>(DestTy);
    134   if (!DestVTy)
    135     return ConstantExpr::getBitCast(C, DestTy);
    136 
    137   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
    138   // vector so the code below can handle it uniformly.
    139   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    140     Constant *Ops = C; // don't take the address of C!
    141     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
    142   }
    143 
    144   // If this is a bitcast from constant vector -> vector, fold it.
    145   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    146     return ConstantExpr::getBitCast(C, DestTy);
    147 
    148   // If the element types match, IR can fold it.
    149   unsigned NumDstElt = DestVTy->getNumElements();
    150   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    151   if (NumDstElt == NumSrcElt)
    152     return ConstantExpr::getBitCast(C, DestTy);
    153 
    154   Type *SrcEltTy = C->getType()->getVectorElementType();
    155   Type *DstEltTy = DestVTy->getElementType();
    156 
    157   // Otherwise, we're changing the number of elements in a vector, which
    158   // requires endianness information to do the right thing.  For example,
    159   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    160   // folds to (little endian):
    161   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    162   // and to (big endian):
    163   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    164 
    165   // First thing is first.  We only want to think about integer here, so if
    166   // we have something in FP form, recast it as integer.
    167   if (DstEltTy->isFloatingPointTy()) {
    168     // Fold to an vector of integers with same size as our FP type.
    169     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    170     Type *DestIVTy =
    171       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    172     // Recursively handle this integer conversion, if possible.
    173     C = FoldBitCast(C, DestIVTy, DL);
    174 
    175     // Finally, IR can handle this now that #elts line up.
    176     return ConstantExpr::getBitCast(C, DestTy);
    177   }
    178 
    179   // Okay, we know the destination is integer, if the input is FP, convert
    180   // it to integer first.
    181   if (SrcEltTy->isFloatingPointTy()) {
    182     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    183     Type *SrcIVTy =
    184       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    185     // Ask IR to do the conversion now that #elts line up.
    186     C = ConstantExpr::getBitCast(C, SrcIVTy);
    187     // If IR wasn't able to fold it, bail out.
    188     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    189         !isa<ConstantDataVector>(C))
    190       return C;
    191   }
    192 
    193   // Now we know that the input and output vectors are both integer vectors
    194   // of the same size, and that their #elements is not the same.  Do the
    195   // conversion here, which depends on whether the input or output has
    196   // more elements.
    197   bool isLittleEndian = DL.isLittleEndian();
    198 
    199   SmallVector<Constant*, 32> Result;
    200   if (NumDstElt < NumSrcElt) {
    201     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    202     Constant *Zero = Constant::getNullValue(DstEltTy);
    203     unsigned Ratio = NumSrcElt/NumDstElt;
    204     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    205     unsigned SrcElt = 0;
    206     for (unsigned i = 0; i != NumDstElt; ++i) {
    207       // Build each element of the result.
    208       Constant *Elt = Zero;
    209       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    210       for (unsigned j = 0; j != Ratio; ++j) {
    211         Constant *Src = C->getAggregateElement(SrcElt++);
    212         if (Src && isa<UndefValue>(Src))
    213           Src = Constant::getNullValue(C->getType()->getVectorElementType());
    214         else
    215           Src = dyn_cast_or_null<ConstantInt>(Src);
    216         if (!Src)  // Reject constantexpr elements.
    217           return ConstantExpr::getBitCast(C, DestTy);
    218 
    219         // Zero extend the element to the right size.
    220         Src = ConstantExpr::getZExt(Src, Elt->getType());
    221 
    222         // Shift it to the right place, depending on endianness.
    223         Src = ConstantExpr::getShl(Src,
    224                                    ConstantInt::get(Src->getType(), ShiftAmt));
    225         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    226 
    227         // Mix it in.
    228         Elt = ConstantExpr::getOr(Elt, Src);
    229       }
    230       Result.push_back(Elt);
    231     }
    232     return ConstantVector::get(Result);
    233   }
    234 
    235   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    236   unsigned Ratio = NumDstElt/NumSrcElt;
    237   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
    238 
    239   // Loop over each source value, expanding into multiple results.
    240   for (unsigned i = 0; i != NumSrcElt; ++i) {
    241     auto *Element = C->getAggregateElement(i);
    242 
    243     if (!Element) // Reject constantexpr elements.
    244       return ConstantExpr::getBitCast(C, DestTy);
    245 
    246     if (isa<UndefValue>(Element)) {
    247       // Correctly Propagate undef values.
    248       Result.append(Ratio, UndefValue::get(DstEltTy));
    249       continue;
    250     }
    251 
    252     auto *Src = dyn_cast<ConstantInt>(Element);
    253     if (!Src)
    254       return ConstantExpr::getBitCast(C, DestTy);
    255 
    256     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    257     for (unsigned j = 0; j != Ratio; ++j) {
    258       // Shift the piece of the value into the right place, depending on
    259       // endianness.
    260       Constant *Elt = ConstantExpr::getLShr(Src,
    261                                   ConstantInt::get(Src->getType(), ShiftAmt));
    262       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    263 
    264       // Truncate the element to an integer with the same pointer size and
    265       // convert the element back to a pointer using a inttoptr.
    266       if (DstEltTy->isPointerTy()) {
    267         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
    268         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
    269         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
    270         continue;
    271       }
    272 
    273       // Truncate and remember this piece.
    274       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    275     }
    276   }
    277 
    278   return ConstantVector::get(Result);
    279 }
    280 
    281 } // end anonymous namespace
    282 
    283 /// If this constant is a constant offset from a global, return the global and
    284 /// the constant. Because of constantexprs, this function is recursive.
    285 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    286                                       APInt &Offset, const DataLayout &DL) {
    287   // Trivial case, constant is the global.
    288   if ((GV = dyn_cast<GlobalValue>(C))) {
    289     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
    290     Offset = APInt(BitWidth, 0);
    291     return true;
    292   }
    293 
    294   // Otherwise, if this isn't a constant expr, bail out.
    295   auto *CE = dyn_cast<ConstantExpr>(C);
    296   if (!CE) return false;
    297 
    298   // Look through ptr->int and ptr->ptr casts.
    299   if (CE->getOpcode() == Instruction::PtrToInt ||
    300       CE->getOpcode() == Instruction::BitCast)
    301     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
    302 
    303   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    304   auto *GEP = dyn_cast<GEPOperator>(CE);
    305   if (!GEP)
    306     return false;
    307 
    308   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
    309   APInt TmpOffset(BitWidth, 0);
    310 
    311   // If the base isn't a global+constant, we aren't either.
    312   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
    313     return false;
    314 
    315   // Otherwise, add any offset that our operands provide.
    316   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
    317     return false;
    318 
    319   Offset = TmpOffset;
    320   return true;
    321 }
    322 
    323 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
    324                                          const DataLayout &DL) {
    325   do {
    326     Type *SrcTy = C->getType();
    327 
    328     // If the type sizes are the same and a cast is legal, just directly
    329     // cast the constant.
    330     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
    331       Instruction::CastOps Cast = Instruction::BitCast;
    332       // If we are going from a pointer to int or vice versa, we spell the cast
    333       // differently.
    334       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    335         Cast = Instruction::IntToPtr;
    336       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    337         Cast = Instruction::PtrToInt;
    338 
    339       if (CastInst::castIsValid(Cast, C, DestTy))
    340         return ConstantExpr::getCast(Cast, C, DestTy);
    341     }
    342 
    343     // If this isn't an aggregate type, there is nothing we can do to drill down
    344     // and find a bitcastable constant.
    345     if (!SrcTy->isAggregateType())
    346       return nullptr;
    347 
    348     // We're simulating a load through a pointer that was bitcast to point to
    349     // a different type, so we can try to walk down through the initial
    350     // elements of an aggregate to see if some part of th e aggregate is
    351     // castable to implement the "load" semantic model.
    352     C = C->getAggregateElement(0u);
    353   } while (C);
    354 
    355   return nullptr;
    356 }
    357 
    358 namespace {
    359 
    360 /// Recursive helper to read bits out of global. C is the constant being copied
    361 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
    362 /// results into and BytesLeft is the number of bytes left in
    363 /// the CurPtr buffer. DL is the DataLayout.
    364 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
    365                         unsigned BytesLeft, const DataLayout &DL) {
    366   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
    367          "Out of range access");
    368 
    369   // If this element is zero or undefined, we can just return since *CurPtr is
    370   // zero initialized.
    371   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    372     return true;
    373 
    374   if (auto *CI = dyn_cast<ConstantInt>(C)) {
    375     if (CI->getBitWidth() > 64 ||
    376         (CI->getBitWidth() & 7) != 0)
    377       return false;
    378 
    379     uint64_t Val = CI->getZExtValue();
    380     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    381 
    382     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    383       int n = ByteOffset;
    384       if (!DL.isLittleEndian())
    385         n = IntBytes - n - 1;
    386       CurPtr[i] = (unsigned char)(Val >> (n * 8));
    387       ++ByteOffset;
    388     }
    389     return true;
    390   }
    391 
    392   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
    393     if (CFP->getType()->isDoubleTy()) {
    394       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
    395       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    396     }
    397     if (CFP->getType()->isFloatTy()){
    398       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
    399       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    400     }
    401     if (CFP->getType()->isHalfTy()){
    402       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
    403       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    404     }
    405     return false;
    406   }
    407 
    408   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
    409     const StructLayout *SL = DL.getStructLayout(CS->getType());
    410     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    411     uint64_t CurEltOffset = SL->getElementOffset(Index);
    412     ByteOffset -= CurEltOffset;
    413 
    414     while (true) {
    415       // If the element access is to the element itself and not to tail padding,
    416       // read the bytes from the element.
    417       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
    418 
    419       if (ByteOffset < EltSize &&
    420           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    421                               BytesLeft, DL))
    422         return false;
    423 
    424       ++Index;
    425 
    426       // Check to see if we read from the last struct element, if so we're done.
    427       if (Index == CS->getType()->getNumElements())
    428         return true;
    429 
    430       // If we read all of the bytes we needed from this element we're done.
    431       uint64_t NextEltOffset = SL->getElementOffset(Index);
    432 
    433       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
    434         return true;
    435 
    436       // Move to the next element of the struct.
    437       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
    438       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
    439       ByteOffset = 0;
    440       CurEltOffset = NextEltOffset;
    441     }
    442     // not reached.
    443   }
    444 
    445   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    446       isa<ConstantDataSequential>(C)) {
    447     Type *EltTy = C->getType()->getSequentialElementType();
    448     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    449     uint64_t Index = ByteOffset / EltSize;
    450     uint64_t Offset = ByteOffset - Index * EltSize;
    451     uint64_t NumElts;
    452     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
    453       NumElts = AT->getNumElements();
    454     else
    455       NumElts = C->getType()->getVectorNumElements();
    456 
    457     for (; Index != NumElts; ++Index) {
    458       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    459                               BytesLeft, DL))
    460         return false;
    461 
    462       uint64_t BytesWritten = EltSize - Offset;
    463       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    464       if (BytesWritten >= BytesLeft)
    465         return true;
    466 
    467       Offset = 0;
    468       BytesLeft -= BytesWritten;
    469       CurPtr += BytesWritten;
    470     }
    471     return true;
    472   }
    473 
    474   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    475     if (CE->getOpcode() == Instruction::IntToPtr &&
    476         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
    477       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    478                                 BytesLeft, DL);
    479     }
    480   }
    481 
    482   // Otherwise, unknown initializer type.
    483   return false;
    484 }
    485 
    486 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
    487                                           const DataLayout &DL) {
    488   auto *PTy = cast<PointerType>(C->getType());
    489   auto *IntType = dyn_cast<IntegerType>(LoadTy);
    490 
    491   // If this isn't an integer load we can't fold it directly.
    492   if (!IntType) {
    493     unsigned AS = PTy->getAddressSpace();
    494 
    495     // If this is a float/double load, we can try folding it as an int32/64 load
    496     // and then bitcast the result.  This can be useful for union cases.  Note
    497     // that address spaces don't matter here since we're not going to result in
    498     // an actual new load.
    499     Type *MapTy;
    500     if (LoadTy->isHalfTy())
    501       MapTy = Type::getInt16Ty(C->getContext());
    502     else if (LoadTy->isFloatTy())
    503       MapTy = Type::getInt32Ty(C->getContext());
    504     else if (LoadTy->isDoubleTy())
    505       MapTy = Type::getInt64Ty(C->getContext());
    506     else if (LoadTy->isVectorTy()) {
    507       MapTy = PointerType::getIntNTy(C->getContext(),
    508                                      DL.getTypeAllocSizeInBits(LoadTy));
    509     } else
    510       return nullptr;
    511 
    512     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
    513     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
    514       return FoldBitCast(Res, LoadTy, DL);
    515     return nullptr;
    516   }
    517 
    518   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    519   if (BytesLoaded > 32 || BytesLoaded == 0)
    520     return nullptr;
    521 
    522   GlobalValue *GVal;
    523   APInt OffsetAI;
    524   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
    525     return nullptr;
    526 
    527   auto *GV = dyn_cast<GlobalVariable>(GVal);
    528   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    529       !GV->getInitializer()->getType()->isSized())
    530     return nullptr;
    531 
    532   int64_t Offset = OffsetAI.getSExtValue();
    533   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
    534 
    535   // If we're not accessing anything in this constant, the result is undefined.
    536   if (Offset + BytesLoaded <= 0)
    537     return UndefValue::get(IntType);
    538 
    539   // If we're not accessing anything in this constant, the result is undefined.
    540   if (Offset >= InitializerSize)
    541     return UndefValue::get(IntType);
    542 
    543   unsigned char RawBytes[32] = {0};
    544   unsigned char *CurPtr = RawBytes;
    545   unsigned BytesLeft = BytesLoaded;
    546 
    547   // If we're loading off the beginning of the global, some bytes may be valid.
    548   if (Offset < 0) {
    549     CurPtr += -Offset;
    550     BytesLeft += Offset;
    551     Offset = 0;
    552   }
    553 
    554   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
    555     return nullptr;
    556 
    557   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
    558   if (DL.isLittleEndian()) {
    559     ResultVal = RawBytes[BytesLoaded - 1];
    560     for (unsigned i = 1; i != BytesLoaded; ++i) {
    561       ResultVal <<= 8;
    562       ResultVal |= RawBytes[BytesLoaded - 1 - i];
    563     }
    564   } else {
    565     ResultVal = RawBytes[0];
    566     for (unsigned i = 1; i != BytesLoaded; ++i) {
    567       ResultVal <<= 8;
    568       ResultVal |= RawBytes[i];
    569     }
    570   }
    571 
    572   return ConstantInt::get(IntType->getContext(), ResultVal);
    573 }
    574 
    575 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
    576                                              const DataLayout &DL) {
    577   auto *SrcPtr = CE->getOperand(0);
    578   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
    579   if (!SrcPtrTy)
    580     return nullptr;
    581   Type *SrcTy = SrcPtrTy->getPointerElementType();
    582 
    583   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
    584   if (!C)
    585     return nullptr;
    586 
    587   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
    588 }
    589 
    590 } // end anonymous namespace
    591 
    592 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
    593                                              const DataLayout &DL) {
    594   // First, try the easy cases:
    595   if (auto *GV = dyn_cast<GlobalVariable>(C))
    596     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    597       return GV->getInitializer();
    598 
    599   if (auto *GA = dyn_cast<GlobalAlias>(C))
    600     if (GA->getAliasee() && !GA->isInterposable())
    601       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
    602 
    603   // If the loaded value isn't a constant expr, we can't handle it.
    604   auto *CE = dyn_cast<ConstantExpr>(C);
    605   if (!CE)
    606     return nullptr;
    607 
    608   if (CE->getOpcode() == Instruction::GetElementPtr) {
    609     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
    610       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    611         if (Constant *V =
    612              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    613           return V;
    614       }
    615     }
    616   }
    617 
    618   if (CE->getOpcode() == Instruction::BitCast)
    619     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
    620       return LoadedC;
    621 
    622   // Instead of loading constant c string, use corresponding integer value
    623   // directly if string length is small enough.
    624   StringRef Str;
    625   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
    626     size_t StrLen = Str.size();
    627     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    628     // Replace load with immediate integer if the result is an integer or fp
    629     // value.
    630     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    631         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    632       APInt StrVal(NumBits, 0);
    633       APInt SingleChar(NumBits, 0);
    634       if (DL.isLittleEndian()) {
    635         for (unsigned char C : reverse(Str.bytes())) {
    636           SingleChar = static_cast<uint64_t>(C);
    637           StrVal = (StrVal << 8) | SingleChar;
    638         }
    639       } else {
    640         for (unsigned char C : Str.bytes()) {
    641           SingleChar = static_cast<uint64_t>(C);
    642           StrVal = (StrVal << 8) | SingleChar;
    643         }
    644         // Append NULL at the end.
    645         SingleChar = 0;
    646         StrVal = (StrVal << 8) | SingleChar;
    647       }
    648 
    649       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    650       if (Ty->isFloatingPointTy())
    651         Res = ConstantExpr::getBitCast(Res, Ty);
    652       return Res;
    653     }
    654   }
    655 
    656   // If this load comes from anywhere in a constant global, and if the global
    657   // is all undef or zero, we know what it loads.
    658   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
    659     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    660       if (GV->getInitializer()->isNullValue())
    661         return Constant::getNullValue(Ty);
    662       if (isa<UndefValue>(GV->getInitializer()))
    663         return UndefValue::get(Ty);
    664     }
    665   }
    666 
    667   // Try hard to fold loads from bitcasted strange and non-type-safe things.
    668   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
    669 }
    670 
    671 namespace {
    672 
    673 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
    674   if (LI->isVolatile()) return nullptr;
    675 
    676   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
    677     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
    678 
    679   return nullptr;
    680 }
    681 
    682 /// One of Op0/Op1 is a constant expression.
    683 /// Attempt to symbolically evaluate the result of a binary operator merging
    684 /// these together.  If target data info is available, it is provided as DL,
    685 /// otherwise DL is null.
    686 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
    687                                     const DataLayout &DL) {
    688   // SROA
    689 
    690   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    691   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    692   // bits.
    693 
    694   if (Opc == Instruction::And) {
    695     KnownBits Known0 = computeKnownBits(Op0, DL);
    696     KnownBits Known1 = computeKnownBits(Op1, DL);
    697     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
    698       // All the bits of Op0 that the 'and' could be masking are already zero.
    699       return Op0;
    700     }
    701     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
    702       // All the bits of Op1 that the 'and' could be masking are already zero.
    703       return Op1;
    704     }
    705 
    706     Known0.Zero |= Known1.Zero;
    707     Known0.One &= Known1.One;
    708     if (Known0.isConstant())
    709       return ConstantInt::get(Op0->getType(), Known0.getConstant());
    710   }
    711 
    712   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    713   // constant.  This happens frequently when iterating over a global array.
    714   if (Opc == Instruction::Sub) {
    715     GlobalValue *GV1, *GV2;
    716     APInt Offs1, Offs2;
    717 
    718     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
    719       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
    720         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
    721 
    722         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    723         // PtrToInt may change the bitwidth so we have convert to the right size
    724         // first.
    725         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
    726                                                 Offs2.zextOrTrunc(OpSize));
    727       }
    728   }
    729 
    730   return nullptr;
    731 }
    732 
    733 /// If array indices are not pointer-sized integers, explicitly cast them so
    734 /// that they aren't implicitly casted by the getelementptr.
    735 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
    736                          Type *ResultTy, Optional<unsigned> InRangeIndex,
    737                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
    738   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
    739   Type *IntPtrScalarTy = IntPtrTy->getScalarType();
    740 
    741   bool Any = false;
    742   SmallVector<Constant*, 32> NewIdxs;
    743   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    744     if ((i == 1 ||
    745          !isa<StructType>(GetElementPtrInst::getIndexedType(
    746              SrcElemTy, Ops.slice(1, i - 1)))) &&
    747         Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
    748       Any = true;
    749       Type *NewType = Ops[i]->getType()->isVectorTy()
    750                           ? IntPtrTy
    751                           : IntPtrTy->getScalarType();
    752       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    753                                                                       true,
    754                                                                       NewType,
    755                                                                       true),
    756                                               Ops[i], NewType));
    757     } else
    758       NewIdxs.push_back(Ops[i]);
    759   }
    760 
    761   if (!Any)
    762     return nullptr;
    763 
    764   Constant *C = ConstantExpr::getGetElementPtr(
    765       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
    766   if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
    767     C = Folded;
    768 
    769   return C;
    770 }
    771 
    772 /// Strip the pointer casts, but preserve the address space information.
    773 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
    774   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    775   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
    776   Ptr = Ptr->stripPointerCasts();
    777   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
    778 
    779   ElemTy = NewPtrTy->getPointerElementType();
    780 
    781   // Preserve the address space number of the pointer.
    782   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    783     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
    784     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
    785   }
    786   return Ptr;
    787 }
    788 
    789 /// If we can symbolically evaluate the GEP constant expression, do so.
    790 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
    791                                   ArrayRef<Constant *> Ops,
    792                                   const DataLayout &DL,
    793                                   const TargetLibraryInfo *TLI) {
    794   const GEPOperator *InnermostGEP = GEP;
    795   bool InBounds = GEP->isInBounds();
    796 
    797   Type *SrcElemTy = GEP->getSourceElementType();
    798   Type *ResElemTy = GEP->getResultElementType();
    799   Type *ResTy = GEP->getType();
    800   if (!SrcElemTy->isSized())
    801     return nullptr;
    802 
    803   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
    804                                    GEP->getInRangeIndex(), DL, TLI))
    805     return C;
    806 
    807   Constant *Ptr = Ops[0];
    808   if (!Ptr->getType()->isPointerTy())
    809     return nullptr;
    810 
    811   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
    812 
    813   // If this is a constant expr gep that is effectively computing an
    814   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    815   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    816       if (!isa<ConstantInt>(Ops[i])) {
    817 
    818         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    819         // "inttoptr (sub (ptrtoint Ptr), V)"
    820         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
    821           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
    822           assert((!CE || CE->getType() == IntPtrTy) &&
    823                  "CastGEPIndices didn't canonicalize index types!");
    824           if (CE && CE->getOpcode() == Instruction::Sub &&
    825               CE->getOperand(0)->isNullValue()) {
    826             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    827             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    828             Res = ConstantExpr::getIntToPtr(Res, ResTy);
    829             if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
    830               Res = FoldedRes;
    831             return Res;
    832           }
    833         }
    834         return nullptr;
    835       }
    836 
    837   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
    838   APInt Offset =
    839       APInt(BitWidth,
    840             DL.getIndexedOffsetInType(
    841                 SrcElemTy,
    842                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
    843   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
    844 
    845   // If this is a GEP of a GEP, fold it all into a single GEP.
    846   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
    847     InnermostGEP = GEP;
    848     InBounds &= GEP->isInBounds();
    849 
    850     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
    851 
    852     // Do not try the incorporate the sub-GEP if some index is not a number.
    853     bool AllConstantInt = true;
    854     for (Value *NestedOp : NestedOps)
    855       if (!isa<ConstantInt>(NestedOp)) {
    856         AllConstantInt = false;
    857         break;
    858       }
    859     if (!AllConstantInt)
    860       break;
    861 
    862     Ptr = cast<Constant>(GEP->getOperand(0));
    863     SrcElemTy = GEP->getSourceElementType();
    864     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
    865     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
    866   }
    867 
    868   // If the base value for this address is a literal integer value, fold the
    869   // getelementptr to the resulting integer value casted to the pointer type.
    870   APInt BasePtr(BitWidth, 0);
    871   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
    872     if (CE->getOpcode() == Instruction::IntToPtr) {
    873       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    874         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    875     }
    876   }
    877 
    878   auto *PTy = cast<PointerType>(Ptr->getType());
    879   if ((Ptr->isNullValue() || BasePtr != 0) &&
    880       !DL.isNonIntegralPointerType(PTy)) {
    881     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
    882     return ConstantExpr::getIntToPtr(C, ResTy);
    883   }
    884 
    885   // Otherwise form a regular getelementptr. Recompute the indices so that
    886   // we eliminate over-indexing of the notional static type array bounds.
    887   // This makes it easy to determine if the getelementptr is "inbounds".
    888   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    889   Type *Ty = PTy;
    890   SmallVector<Constant *, 32> NewIdxs;
    891 
    892   do {
    893     if (!Ty->isStructTy()) {
    894       if (Ty->isPointerTy()) {
    895         // The only pointer indexing we'll do is on the first index of the GEP.
    896         if (!NewIdxs.empty())
    897           break;
    898 
    899         Ty = SrcElemTy;
    900 
    901         // Only handle pointers to sized types, not pointers to functions.
    902         if (!Ty->isSized())
    903           return nullptr;
    904       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
    905         Ty = ATy->getElementType();
    906       } else {
    907         // We've reached some non-indexable type.
    908         break;
    909       }
    910 
    911       // Determine which element of the array the offset points into.
    912       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
    913       if (ElemSize == 0) {
    914         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    915         // index for this level and proceed to the next level to see if it can
    916         // accommodate the offset.
    917         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    918       } else {
    919         // The element size is non-zero divide the offset by the element
    920         // size (rounding down), to compute the index at this level.
    921         bool Overflow;
    922         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
    923         if (Overflow)
    924           break;
    925         Offset -= NewIdx * ElemSize;
    926         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    927       }
    928     } else {
    929       auto *STy = cast<StructType>(Ty);
    930       // If we end up with an offset that isn't valid for this struct type, we
    931       // can't re-form this GEP in a regular form, so bail out. The pointer
    932       // operand likely went through casts that are necessary to make the GEP
    933       // sensible.
    934       const StructLayout &SL = *DL.getStructLayout(STy);
    935       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
    936         break;
    937 
    938       // Determine which field of the struct the offset points into. The
    939       // getZExtValue is fine as we've already ensured that the offset is
    940       // within the range representable by the StructLayout API.
    941       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    942       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    943                                          ElIdx));
    944       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    945       Ty = STy->getTypeAtIndex(ElIdx);
    946     }
    947   } while (Ty != ResElemTy);
    948 
    949   // If we haven't used up the entire offset by descending the static
    950   // type, then the offset is pointing into the middle of an indivisible
    951   // member, so we can't simplify it.
    952   if (Offset != 0)
    953     return nullptr;
    954 
    955   // Preserve the inrange index from the innermost GEP if possible. We must
    956   // have calculated the same indices up to and including the inrange index.
    957   Optional<unsigned> InRangeIndex;
    958   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
    959     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
    960         NewIdxs.size() > *LastIRIndex) {
    961       InRangeIndex = LastIRIndex;
    962       for (unsigned I = 0; I <= *LastIRIndex; ++I)
    963         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) {
    964           InRangeIndex = None;
    965           break;
    966         }
    967     }
    968 
    969   // Create a GEP.
    970   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
    971                                                InBounds, InRangeIndex);
    972   assert(C->getType()->getPointerElementType() == Ty &&
    973          "Computed GetElementPtr has unexpected type!");
    974 
    975   // If we ended up indexing a member with a type that doesn't match
    976   // the type of what the original indices indexed, add a cast.
    977   if (Ty != ResElemTy)
    978     C = FoldBitCast(C, ResTy, DL);
    979 
    980   return C;
    981 }
    982 
    983 /// Attempt to constant fold an instruction with the
    984 /// specified opcode and operands.  If successful, the constant result is
    985 /// returned, if not, null is returned.  Note that this function can fail when
    986 /// attempting to fold instructions like loads and stores, which have no
    987 /// constant expression form.
    988 ///
    989 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/inrange
    990 /// etc information, due to only being passed an opcode and operands. Constant
    991 /// folding using this function strips this information.
    992 ///
    993 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
    994                                        ArrayRef<Constant *> Ops,
    995                                        const DataLayout &DL,
    996                                        const TargetLibraryInfo *TLI) {
    997   Type *DestTy = InstOrCE->getType();
    998 
    999   // Handle easy binops first.
   1000   if (Instruction::isBinaryOp(Opcode))
   1001     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
   1002 
   1003   if (Instruction::isCast(Opcode))
   1004     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
   1005 
   1006   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
   1007     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
   1008       return C;
   1009 
   1010     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
   1011                                           Ops.slice(1), GEP->isInBounds(),
   1012                                           GEP->getInRangeIndex());
   1013   }
   1014 
   1015   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
   1016     return CE->getWithOperands(Ops);
   1017 
   1018   switch (Opcode) {
   1019   default: return nullptr;
   1020   case Instruction::ICmp:
   1021   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
   1022   case Instruction::Call:
   1023     if (auto *F = dyn_cast<Function>(Ops.back())) {
   1024       ImmutableCallSite CS(cast<CallInst>(InstOrCE));
   1025       if (canConstantFoldCallTo(CS, F))
   1026         return ConstantFoldCall(CS, F, Ops.slice(0, Ops.size() - 1), TLI);
   1027     }
   1028     return nullptr;
   1029   case Instruction::Select:
   1030     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   1031   case Instruction::ExtractElement:
   1032     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   1033   case Instruction::InsertElement:
   1034     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
   1035   case Instruction::ShuffleVector:
   1036     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   1037   }
   1038 }
   1039 
   1040 } // end anonymous namespace
   1041 
   1042 //===----------------------------------------------------------------------===//
   1043 // Constant Folding public APIs
   1044 //===----------------------------------------------------------------------===//
   1045 
   1046 namespace {
   1047 
   1048 Constant *
   1049 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
   1050                          const TargetLibraryInfo *TLI,
   1051                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
   1052   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
   1053     return nullptr;
   1054 
   1055   SmallVector<Constant *, 8> Ops;
   1056   for (const Use &NewU : C->operands()) {
   1057     auto *NewC = cast<Constant>(&NewU);
   1058     // Recursively fold the ConstantExpr's operands. If we have already folded
   1059     // a ConstantExpr, we don't have to process it again.
   1060     if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
   1061       auto It = FoldedOps.find(NewC);
   1062       if (It == FoldedOps.end()) {
   1063         if (auto *FoldedC =
   1064                 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
   1065           FoldedOps.insert({NewC, FoldedC});
   1066           NewC = FoldedC;
   1067         } else {
   1068           FoldedOps.insert({NewC, NewC});
   1069         }
   1070       } else {
   1071         NewC = It->second;
   1072       }
   1073     }
   1074     Ops.push_back(NewC);
   1075   }
   1076 
   1077   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
   1078     if (CE->isCompare())
   1079       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
   1080                                              DL, TLI);
   1081 
   1082     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
   1083   }
   1084 
   1085   assert(isa<ConstantVector>(C));
   1086   return ConstantVector::get(Ops);
   1087 }
   1088 
   1089 } // end anonymous namespace
   1090 
   1091 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
   1092                                         const TargetLibraryInfo *TLI) {
   1093   // Handle PHI nodes quickly here...
   1094   if (auto *PN = dyn_cast<PHINode>(I)) {
   1095     Constant *CommonValue = nullptr;
   1096 
   1097     SmallDenseMap<Constant *, Constant *> FoldedOps;
   1098     for (Value *Incoming : PN->incoming_values()) {
   1099       // If the incoming value is undef then skip it.  Note that while we could
   1100       // skip the value if it is equal to the phi node itself we choose not to
   1101       // because that would break the rule that constant folding only applies if
   1102       // all operands are constants.
   1103       if (isa<UndefValue>(Incoming))
   1104         continue;
   1105       // If the incoming value is not a constant, then give up.
   1106       auto *C = dyn_cast<Constant>(Incoming);
   1107       if (!C)
   1108         return nullptr;
   1109       // Fold the PHI's operands.
   1110       if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
   1111         C = FoldedC;
   1112       // If the incoming value is a different constant to
   1113       // the one we saw previously, then give up.
   1114       if (CommonValue && C != CommonValue)
   1115         return nullptr;
   1116       CommonValue = C;
   1117     }
   1118 
   1119     // If we reach here, all incoming values are the same constant or undef.
   1120     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
   1121   }
   1122 
   1123   // Scan the operand list, checking to see if they are all constants, if so,
   1124   // hand off to ConstantFoldInstOperandsImpl.
   1125   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
   1126     return nullptr;
   1127 
   1128   SmallDenseMap<Constant *, Constant *> FoldedOps;
   1129   SmallVector<Constant *, 8> Ops;
   1130   for (const Use &OpU : I->operands()) {
   1131     auto *Op = cast<Constant>(&OpU);
   1132     // Fold the Instruction's operands.
   1133     if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
   1134       Op = FoldedOp;
   1135 
   1136     Ops.push_back(Op);
   1137   }
   1138 
   1139   if (const auto *CI = dyn_cast<CmpInst>(I))
   1140     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
   1141                                            DL, TLI);
   1142 
   1143   if (const auto *LI = dyn_cast<LoadInst>(I))
   1144     return ConstantFoldLoadInst(LI, DL);
   1145 
   1146   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
   1147     return ConstantExpr::getInsertValue(
   1148                                 cast<Constant>(IVI->getAggregateOperand()),
   1149                                 cast<Constant>(IVI->getInsertedValueOperand()),
   1150                                 IVI->getIndices());
   1151   }
   1152 
   1153   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
   1154     return ConstantExpr::getExtractValue(
   1155                                     cast<Constant>(EVI->getAggregateOperand()),
   1156                                     EVI->getIndices());
   1157   }
   1158 
   1159   return ConstantFoldInstOperands(I, Ops, DL, TLI);
   1160 }
   1161 
   1162 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
   1163                                      const TargetLibraryInfo *TLI) {
   1164   SmallDenseMap<Constant *, Constant *> FoldedOps;
   1165   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
   1166 }
   1167 
   1168 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
   1169                                          ArrayRef<Constant *> Ops,
   1170                                          const DataLayout &DL,
   1171                                          const TargetLibraryInfo *TLI) {
   1172   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
   1173 }
   1174 
   1175 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   1176                                                 Constant *Ops0, Constant *Ops1,
   1177                                                 const DataLayout &DL,
   1178                                                 const TargetLibraryInfo *TLI) {
   1179   // fold: icmp (inttoptr x), null         -> icmp x, 0
   1180   // fold: icmp null, (inttoptr x)         -> icmp 0, x
   1181   // fold: icmp (ptrtoint x), 0            -> icmp x, null
   1182   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
   1183   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
   1184   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
   1185   //
   1186   // FIXME: The following comment is out of data and the DataLayout is here now.
   1187   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
   1188   // around to know if bit truncation is happening.
   1189   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
   1190     if (Ops1->isNullValue()) {
   1191       if (CE0->getOpcode() == Instruction::IntToPtr) {
   1192         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1193         // Convert the integer value to the right size to ensure we get the
   1194         // proper extension or truncation.
   1195         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1196                                                    IntPtrTy, false);
   1197         Constant *Null = Constant::getNullValue(C->getType());
   1198         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1199       }
   1200 
   1201       // Only do this transformation if the int is intptrty in size, otherwise
   1202       // there is a truncation or extension that we aren't modeling.
   1203       if (CE0->getOpcode() == Instruction::PtrToInt) {
   1204         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1205         if (CE0->getType() == IntPtrTy) {
   1206           Constant *C = CE0->getOperand(0);
   1207           Constant *Null = Constant::getNullValue(C->getType());
   1208           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1209         }
   1210       }
   1211     }
   1212 
   1213     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1214       if (CE0->getOpcode() == CE1->getOpcode()) {
   1215         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1216           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1217 
   1218           // Convert the integer value to the right size to ensure we get the
   1219           // proper extension or truncation.
   1220           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1221                                                       IntPtrTy, false);
   1222           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1223                                                       IntPtrTy, false);
   1224           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
   1225         }
   1226 
   1227         // Only do this transformation if the int is intptrty in size, otherwise
   1228         // there is a truncation or extension that we aren't modeling.
   1229         if (CE0->getOpcode() == Instruction::PtrToInt) {
   1230           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1231           if (CE0->getType() == IntPtrTy &&
   1232               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
   1233             return ConstantFoldCompareInstOperands(
   1234                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
   1235           }
   1236         }
   1237       }
   1238     }
   1239 
   1240     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1241     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1242     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1243         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1244       Constant *LHS = ConstantFoldCompareInstOperands(
   1245           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
   1246       Constant *RHS = ConstantFoldCompareInstOperands(
   1247           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
   1248       unsigned OpC =
   1249         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1250       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
   1251     }
   1252   } else if (isa<ConstantExpr>(Ops1)) {
   1253     // If RHS is a constant expression, but the left side isn't, swap the
   1254     // operands and try again.
   1255     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
   1256     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
   1257   }
   1258 
   1259   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1260 }
   1261 
   1262 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
   1263                                              Constant *RHS,
   1264                                              const DataLayout &DL) {
   1265   assert(Instruction::isBinaryOp(Opcode));
   1266   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
   1267     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
   1268       return C;
   1269 
   1270   return ConstantExpr::get(Opcode, LHS, RHS);
   1271 }
   1272 
   1273 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
   1274                                         Type *DestTy, const DataLayout &DL) {
   1275   assert(Instruction::isCast(Opcode));
   1276   switch (Opcode) {
   1277   default:
   1278     llvm_unreachable("Missing case");
   1279   case Instruction::PtrToInt:
   1280     // If the input is a inttoptr, eliminate the pair.  This requires knowing
   1281     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
   1282     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
   1283       if (CE->getOpcode() == Instruction::IntToPtr) {
   1284         Constant *Input = CE->getOperand(0);
   1285         unsigned InWidth = Input->getType()->getScalarSizeInBits();
   1286         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
   1287         if (PtrWidth < InWidth) {
   1288           Constant *Mask =
   1289             ConstantInt::get(CE->getContext(),
   1290                              APInt::getLowBitsSet(InWidth, PtrWidth));
   1291           Input = ConstantExpr::getAnd(Input, Mask);
   1292         }
   1293         // Do a zext or trunc to get to the dest size.
   1294         return ConstantExpr::getIntegerCast(Input, DestTy, false);
   1295       }
   1296     }
   1297     return ConstantExpr::getCast(Opcode, C, DestTy);
   1298   case Instruction::IntToPtr:
   1299     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
   1300     // the int size is >= the ptr size and the address spaces are the same.
   1301     // This requires knowing the width of a pointer, so it can't be done in
   1302     // ConstantExpr::getCast.
   1303     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
   1304       if (CE->getOpcode() == Instruction::PtrToInt) {
   1305         Constant *SrcPtr = CE->getOperand(0);
   1306         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
   1307         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
   1308 
   1309         if (MidIntSize >= SrcPtrSize) {
   1310           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
   1311           if (SrcAS == DestTy->getPointerAddressSpace())
   1312             return FoldBitCast(CE->getOperand(0), DestTy, DL);
   1313         }
   1314       }
   1315     }
   1316 
   1317     return ConstantExpr::getCast(Opcode, C, DestTy);
   1318   case Instruction::Trunc:
   1319   case Instruction::ZExt:
   1320   case Instruction::SExt:
   1321   case Instruction::FPTrunc:
   1322   case Instruction::FPExt:
   1323   case Instruction::UIToFP:
   1324   case Instruction::SIToFP:
   1325   case Instruction::FPToUI:
   1326   case Instruction::FPToSI:
   1327   case Instruction::AddrSpaceCast:
   1328       return ConstantExpr::getCast(Opcode, C, DestTy);
   1329   case Instruction::BitCast:
   1330     return FoldBitCast(C, DestTy, DL);
   1331   }
   1332 }
   1333 
   1334 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1335                                                        ConstantExpr *CE) {
   1336   if (!CE->getOperand(1)->isNullValue())
   1337     return nullptr;  // Do not allow stepping over the value!
   1338 
   1339   // Loop over all of the operands, tracking down which value we are
   1340   // addressing.
   1341   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1342     C = C->getAggregateElement(CE->getOperand(i));
   1343     if (!C)
   1344       return nullptr;
   1345   }
   1346   return C;
   1347 }
   1348 
   1349 Constant *
   1350 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1351                                         ArrayRef<Constant *> Indices) {
   1352   // Loop over all of the operands, tracking down which value we are
   1353   // addressing.
   1354   for (Constant *Index : Indices) {
   1355     C = C->getAggregateElement(Index);
   1356     if (!C)
   1357       return nullptr;
   1358   }
   1359   return C;
   1360 }
   1361 
   1362 //===----------------------------------------------------------------------===//
   1363 //  Constant Folding for Calls
   1364 //
   1365 
   1366 bool llvm::canConstantFoldCallTo(ImmutableCallSite CS, const Function *F) {
   1367   if (CS.isNoBuiltin() || CS.isStrictFP())
   1368     return false;
   1369   switch (F->getIntrinsicID()) {
   1370   case Intrinsic::fabs:
   1371   case Intrinsic::minnum:
   1372   case Intrinsic::maxnum:
   1373   case Intrinsic::log:
   1374   case Intrinsic::log2:
   1375   case Intrinsic::log10:
   1376   case Intrinsic::exp:
   1377   case Intrinsic::exp2:
   1378   case Intrinsic::floor:
   1379   case Intrinsic::ceil:
   1380   case Intrinsic::sqrt:
   1381   case Intrinsic::sin:
   1382   case Intrinsic::cos:
   1383   case Intrinsic::trunc:
   1384   case Intrinsic::rint:
   1385   case Intrinsic::nearbyint:
   1386   case Intrinsic::pow:
   1387   case Intrinsic::powi:
   1388   case Intrinsic::bswap:
   1389   case Intrinsic::ctpop:
   1390   case Intrinsic::ctlz:
   1391   case Intrinsic::cttz:
   1392   case Intrinsic::fma:
   1393   case Intrinsic::fmuladd:
   1394   case Intrinsic::copysign:
   1395   case Intrinsic::launder_invariant_group:
   1396   case Intrinsic::strip_invariant_group:
   1397   case Intrinsic::round:
   1398   case Intrinsic::masked_load:
   1399   case Intrinsic::sadd_with_overflow:
   1400   case Intrinsic::uadd_with_overflow:
   1401   case Intrinsic::ssub_with_overflow:
   1402   case Intrinsic::usub_with_overflow:
   1403   case Intrinsic::smul_with_overflow:
   1404   case Intrinsic::umul_with_overflow:
   1405   case Intrinsic::convert_from_fp16:
   1406   case Intrinsic::convert_to_fp16:
   1407   case Intrinsic::bitreverse:
   1408   case Intrinsic::x86_sse_cvtss2si:
   1409   case Intrinsic::x86_sse_cvtss2si64:
   1410   case Intrinsic::x86_sse_cvttss2si:
   1411   case Intrinsic::x86_sse_cvttss2si64:
   1412   case Intrinsic::x86_sse2_cvtsd2si:
   1413   case Intrinsic::x86_sse2_cvtsd2si64:
   1414   case Intrinsic::x86_sse2_cvttsd2si:
   1415   case Intrinsic::x86_sse2_cvttsd2si64:
   1416     return true;
   1417   default:
   1418     return false;
   1419   case Intrinsic::not_intrinsic: break;
   1420   }
   1421 
   1422   if (!F->hasName())
   1423     return false;
   1424   StringRef Name = F->getName();
   1425 
   1426   // In these cases, the check of the length is required.  We don't want to
   1427   // return true for a name like "cos\0blah" which strcmp would return equal to
   1428   // "cos", but has length 8.
   1429   switch (Name[0]) {
   1430   default:
   1431     return false;
   1432   case 'a':
   1433     return Name == "acos" || Name == "asin" || Name == "atan" ||
   1434            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
   1435            Name == "atanf" || Name == "atan2f";
   1436   case 'c':
   1437     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
   1438            Name == "ceilf" || Name == "cosf" || Name == "coshf";
   1439   case 'e':
   1440     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
   1441   case 'f':
   1442     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
   1443            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
   1444   case 'l':
   1445     return Name == "log" || Name == "log10" || Name == "logf" ||
   1446            Name == "log10f";
   1447   case 'p':
   1448     return Name == "pow" || Name == "powf";
   1449   case 'r':
   1450     return Name == "round" || Name == "roundf";
   1451   case 's':
   1452     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1453            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
   1454   case 't':
   1455     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
   1456   case '_':
   1457 
   1458     // Check for various function names that get used for the math functions
   1459     // when the header files are preprocessed with the macro
   1460     // __FINITE_MATH_ONLY__ enabled.
   1461     // The '12' here is the length of the shortest name that can match.
   1462     // We need to check the size before looking at Name[1] and Name[2]
   1463     // so we may as well check a limit that will eliminate mismatches.
   1464     if (Name.size() < 12 || Name[1] != '_')
   1465       return false;
   1466     switch (Name[2]) {
   1467     default:
   1468       return false;
   1469     case 'a':
   1470       return Name == "__acos_finite" || Name == "__acosf_finite" ||
   1471              Name == "__asin_finite" || Name == "__asinf_finite" ||
   1472              Name == "__atan2_finite" || Name == "__atan2f_finite";
   1473     case 'c':
   1474       return Name == "__cosh_finite" || Name == "__coshf_finite";
   1475     case 'e':
   1476       return Name == "__exp_finite" || Name == "__expf_finite" ||
   1477              Name == "__exp2_finite" || Name == "__exp2f_finite";
   1478     case 'l':
   1479       return Name == "__log_finite" || Name == "__logf_finite" ||
   1480              Name == "__log10_finite" || Name == "__log10f_finite";
   1481     case 'p':
   1482       return Name == "__pow_finite" || Name == "__powf_finite";
   1483     case 's':
   1484       return Name == "__sinh_finite" || Name == "__sinhf_finite";
   1485     }
   1486   }
   1487 }
   1488 
   1489 namespace {
   1490 
   1491 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
   1492   if (Ty->isHalfTy()) {
   1493     APFloat APF(V);
   1494     bool unused;
   1495     APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &unused);
   1496     return ConstantFP::get(Ty->getContext(), APF);
   1497   }
   1498   if (Ty->isFloatTy())
   1499     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1500   if (Ty->isDoubleTy())
   1501     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1502   llvm_unreachable("Can only constant fold half/float/double");
   1503 }
   1504 
   1505 /// Clear the floating-point exception state.
   1506 inline void llvm_fenv_clearexcept() {
   1507 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
   1508   feclearexcept(FE_ALL_EXCEPT);
   1509 #endif
   1510   errno = 0;
   1511 }
   1512 
   1513 /// Test if a floating-point exception was raised.
   1514 inline bool llvm_fenv_testexcept() {
   1515   int errno_val = errno;
   1516   if (errno_val == ERANGE || errno_val == EDOM)
   1517     return true;
   1518 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
   1519   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
   1520     return true;
   1521 #endif
   1522   return false;
   1523 }
   1524 
   1525 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
   1526   llvm_fenv_clearexcept();
   1527   V = NativeFP(V);
   1528   if (llvm_fenv_testexcept()) {
   1529     llvm_fenv_clearexcept();
   1530     return nullptr;
   1531   }
   1532 
   1533   return GetConstantFoldFPValue(V, Ty);
   1534 }
   1535 
   1536 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
   1537                                double W, Type *Ty) {
   1538   llvm_fenv_clearexcept();
   1539   V = NativeFP(V, W);
   1540   if (llvm_fenv_testexcept()) {
   1541     llvm_fenv_clearexcept();
   1542     return nullptr;
   1543   }
   1544 
   1545   return GetConstantFoldFPValue(V, Ty);
   1546 }
   1547 
   1548 /// Attempt to fold an SSE floating point to integer conversion of a constant
   1549 /// floating point. If roundTowardZero is false, the default IEEE rounding is
   1550 /// used (toward nearest, ties to even). This matches the behavior of the
   1551 /// non-truncating SSE instructions in the default rounding mode. The desired
   1552 /// integer type Ty is used to select how many bits are available for the
   1553 /// result. Returns null if the conversion cannot be performed, otherwise
   1554 /// returns the Constant value resulting from the conversion.
   1555 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
   1556                                       Type *Ty) {
   1557   // All of these conversion intrinsics form an integer of at most 64bits.
   1558   unsigned ResultWidth = Ty->getIntegerBitWidth();
   1559   assert(ResultWidth <= 64 &&
   1560          "Can only constant fold conversions to 64 and 32 bit ints");
   1561 
   1562   uint64_t UIntVal;
   1563   bool isExact = false;
   1564   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1565                                               : APFloat::rmNearestTiesToEven;
   1566   APFloat::opStatus status =
   1567       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
   1568                            /*isSigned=*/true, mode, &isExact);
   1569   if (status != APFloat::opOK &&
   1570       (!roundTowardZero || status != APFloat::opInexact))
   1571     return nullptr;
   1572   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1573 }
   1574 
   1575 double getValueAsDouble(ConstantFP *Op) {
   1576   Type *Ty = Op->getType();
   1577 
   1578   if (Ty->isFloatTy())
   1579     return Op->getValueAPF().convertToFloat();
   1580 
   1581   if (Ty->isDoubleTy())
   1582     return Op->getValueAPF().convertToDouble();
   1583 
   1584   bool unused;
   1585   APFloat APF = Op->getValueAPF();
   1586   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
   1587   return APF.convertToDouble();
   1588 }
   1589 
   1590 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
   1591                                  ArrayRef<Constant *> Operands,
   1592                                  const TargetLibraryInfo *TLI,
   1593                                  ImmutableCallSite CS) {
   1594   if (Operands.size() == 1) {
   1595     if (isa<UndefValue>(Operands[0])) {
   1596       // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
   1597       if (IntrinsicID == Intrinsic::cos)
   1598         return Constant::getNullValue(Ty);
   1599       if (IntrinsicID == Intrinsic::bswap ||
   1600           IntrinsicID == Intrinsic::bitreverse ||
   1601           IntrinsicID == Intrinsic::launder_invariant_group ||
   1602           IntrinsicID == Intrinsic::strip_invariant_group)
   1603         return Operands[0];
   1604     }
   1605 
   1606     if (isa<ConstantPointerNull>(Operands[0])) {
   1607       // launder(null) == null == strip(null) iff in addrspace 0
   1608       if (IntrinsicID == Intrinsic::launder_invariant_group ||
   1609           IntrinsicID == Intrinsic::strip_invariant_group) {
   1610         // If instruction is not yet put in a basic block (e.g. when cloning
   1611         // a function during inlining), CS caller may not be available.
   1612         // So check CS's BB first before querying CS.getCaller.
   1613         const Function *Caller = CS.getParent() ? CS.getCaller() : nullptr;
   1614         if (Caller &&
   1615             !NullPointerIsDefined(
   1616                 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
   1617           return Operands[0];
   1618         }
   1619         return nullptr;
   1620       }
   1621     }
   1622 
   1623     if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1624       if (IntrinsicID == Intrinsic::convert_to_fp16) {
   1625         APFloat Val(Op->getValueAPF());
   1626 
   1627         bool lost = false;
   1628         Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
   1629 
   1630         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
   1631       }
   1632 
   1633       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1634         return nullptr;
   1635 
   1636       if (IntrinsicID == Intrinsic::round) {
   1637         APFloat V = Op->getValueAPF();
   1638         V.roundToIntegral(APFloat::rmNearestTiesToAway);
   1639         return ConstantFP::get(Ty->getContext(), V);
   1640       }
   1641 
   1642       if (IntrinsicID == Intrinsic::floor) {
   1643         APFloat V = Op->getValueAPF();
   1644         V.roundToIntegral(APFloat::rmTowardNegative);
   1645         return ConstantFP::get(Ty->getContext(), V);
   1646       }
   1647 
   1648       if (IntrinsicID == Intrinsic::ceil) {
   1649         APFloat V = Op->getValueAPF();
   1650         V.roundToIntegral(APFloat::rmTowardPositive);
   1651         return ConstantFP::get(Ty->getContext(), V);
   1652       }
   1653 
   1654       if (IntrinsicID == Intrinsic::trunc) {
   1655         APFloat V = Op->getValueAPF();
   1656         V.roundToIntegral(APFloat::rmTowardZero);
   1657         return ConstantFP::get(Ty->getContext(), V);
   1658       }
   1659 
   1660       if (IntrinsicID == Intrinsic::rint) {
   1661         APFloat V = Op->getValueAPF();
   1662         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1663         return ConstantFP::get(Ty->getContext(), V);
   1664       }
   1665 
   1666       if (IntrinsicID == Intrinsic::nearbyint) {
   1667         APFloat V = Op->getValueAPF();
   1668         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1669         return ConstantFP::get(Ty->getContext(), V);
   1670       }
   1671 
   1672       /// We only fold functions with finite arguments. Folding NaN and inf is
   1673       /// likely to be aborted with an exception anyway, and some host libms
   1674       /// have known errors raising exceptions.
   1675       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1676         return nullptr;
   1677 
   1678       /// Currently APFloat versions of these functions do not exist, so we use
   1679       /// the host native double versions.  Float versions are not called
   1680       /// directly but for all these it is true (float)(f((double)arg)) ==
   1681       /// f(arg).  Long double not supported yet.
   1682       double V = getValueAsDouble(Op);
   1683 
   1684       switch (IntrinsicID) {
   1685         default: break;
   1686         case Intrinsic::fabs:
   1687           return ConstantFoldFP(fabs, V, Ty);
   1688         case Intrinsic::log2:
   1689           return ConstantFoldFP(Log2, V, Ty);
   1690         case Intrinsic::log:
   1691           return ConstantFoldFP(log, V, Ty);
   1692         case Intrinsic::log10:
   1693           return ConstantFoldFP(log10, V, Ty);
   1694         case Intrinsic::exp:
   1695           return ConstantFoldFP(exp, V, Ty);
   1696         case Intrinsic::exp2:
   1697           return ConstantFoldFP(exp2, V, Ty);
   1698         case Intrinsic::sin:
   1699           return ConstantFoldFP(sin, V, Ty);
   1700         case Intrinsic::cos:
   1701           return ConstantFoldFP(cos, V, Ty);
   1702         case Intrinsic::sqrt:
   1703           return ConstantFoldFP(sqrt, V, Ty);
   1704       }
   1705 
   1706       if (!TLI)
   1707         return nullptr;
   1708 
   1709       char NameKeyChar = Name[0];
   1710       if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_')
   1711         NameKeyChar = Name[2];
   1712 
   1713       switch (NameKeyChar) {
   1714       case 'a':
   1715         if ((Name == "acos" && TLI->has(LibFunc_acos)) ||
   1716             (Name == "acosf" && TLI->has(LibFunc_acosf)) ||
   1717             (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) ||
   1718             (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite)))
   1719           return ConstantFoldFP(acos, V, Ty);
   1720         else if ((Name == "asin" && TLI->has(LibFunc_asin)) ||
   1721                  (Name == "asinf" && TLI->has(LibFunc_asinf)) ||
   1722                  (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) ||
   1723                  (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite)))
   1724           return ConstantFoldFP(asin, V, Ty);
   1725         else if ((Name == "atan" && TLI->has(LibFunc_atan)) ||
   1726                  (Name == "atanf" && TLI->has(LibFunc_atanf)))
   1727           return ConstantFoldFP(atan, V, Ty);
   1728         break;
   1729       case 'c':
   1730         if ((Name == "ceil" && TLI->has(LibFunc_ceil)) ||
   1731             (Name == "ceilf" && TLI->has(LibFunc_ceilf)))
   1732           return ConstantFoldFP(ceil, V, Ty);
   1733         else if ((Name == "cos" && TLI->has(LibFunc_cos)) ||
   1734                  (Name == "cosf" && TLI->has(LibFunc_cosf)))
   1735           return ConstantFoldFP(cos, V, Ty);
   1736         else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) ||
   1737                  (Name == "coshf" && TLI->has(LibFunc_coshf)) ||
   1738                  (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) ||
   1739                  (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite)))
   1740           return ConstantFoldFP(cosh, V, Ty);
   1741         break;
   1742       case 'e':
   1743         if ((Name == "exp" && TLI->has(LibFunc_exp)) ||
   1744             (Name == "expf" && TLI->has(LibFunc_expf)) ||
   1745             (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) ||
   1746             (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite)))
   1747           return ConstantFoldFP(exp, V, Ty);
   1748         if ((Name == "exp2" && TLI->has(LibFunc_exp2)) ||
   1749             (Name == "exp2f" && TLI->has(LibFunc_exp2f)) ||
   1750             (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) ||
   1751             (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite)))
   1752           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1753           // C99 library.
   1754           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1755         break;
   1756       case 'f':
   1757         if ((Name == "fabs" && TLI->has(LibFunc_fabs)) ||
   1758             (Name == "fabsf" && TLI->has(LibFunc_fabsf)))
   1759           return ConstantFoldFP(fabs, V, Ty);
   1760         else if ((Name == "floor" && TLI->has(LibFunc_floor)) ||
   1761                  (Name == "floorf" && TLI->has(LibFunc_floorf)))
   1762           return ConstantFoldFP(floor, V, Ty);
   1763         break;
   1764       case 'l':
   1765         if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) ||
   1766             (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) ||
   1767             (Name == "__log_finite" && V > 0 &&
   1768               TLI->has(LibFunc_log_finite)) ||
   1769             (Name == "__logf_finite" && V > 0 &&
   1770               TLI->has(LibFunc_logf_finite)))
   1771           return ConstantFoldFP(log, V, Ty);
   1772         else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) ||
   1773                  (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) ||
   1774                  (Name == "__log10_finite" && V > 0 &&
   1775                    TLI->has(LibFunc_log10_finite)) ||
   1776                  (Name == "__log10f_finite" && V > 0 &&
   1777                    TLI->has(LibFunc_log10f_finite)))
   1778           return ConstantFoldFP(log10, V, Ty);
   1779         break;
   1780       case 'r':
   1781         if ((Name == "round" && TLI->has(LibFunc_round)) ||
   1782             (Name == "roundf" && TLI->has(LibFunc_roundf)))
   1783           return ConstantFoldFP(round, V, Ty);
   1784         break;
   1785       case 's':
   1786         if ((Name == "sin" && TLI->has(LibFunc_sin)) ||
   1787             (Name == "sinf" && TLI->has(LibFunc_sinf)))
   1788           return ConstantFoldFP(sin, V, Ty);
   1789         else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) ||
   1790                  (Name == "sinhf" && TLI->has(LibFunc_sinhf)) ||
   1791                  (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) ||
   1792                  (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite)))
   1793           return ConstantFoldFP(sinh, V, Ty);
   1794         else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) ||
   1795                  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf)))
   1796           return ConstantFoldFP(sqrt, V, Ty);
   1797         break;
   1798       case 't':
   1799         if ((Name == "tan" && TLI->has(LibFunc_tan)) ||
   1800             (Name == "tanf" && TLI->has(LibFunc_tanf)))
   1801           return ConstantFoldFP(tan, V, Ty);
   1802         else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) ||
   1803                  (Name == "tanhf" && TLI->has(LibFunc_tanhf)))
   1804           return ConstantFoldFP(tanh, V, Ty);
   1805         break;
   1806       default:
   1807         break;
   1808       }
   1809       return nullptr;
   1810     }
   1811 
   1812     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1813       switch (IntrinsicID) {
   1814       case Intrinsic::bswap:
   1815         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
   1816       case Intrinsic::ctpop:
   1817         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1818       case Intrinsic::bitreverse:
   1819         return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
   1820       case Intrinsic::convert_from_fp16: {
   1821         APFloat Val(APFloat::IEEEhalf(), Op->getValue());
   1822 
   1823         bool lost = false;
   1824         APFloat::opStatus status = Val.convert(
   1825             Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
   1826 
   1827         // Conversion is always precise.
   1828         (void)status;
   1829         assert(status == APFloat::opOK && !lost &&
   1830                "Precision lost during fp16 constfolding");
   1831 
   1832         return ConstantFP::get(Ty->getContext(), Val);
   1833       }
   1834       default:
   1835         return nullptr;
   1836       }
   1837     }
   1838 
   1839     // Support ConstantVector in case we have an Undef in the top.
   1840     if (isa<ConstantVector>(Operands[0]) ||
   1841         isa<ConstantDataVector>(Operands[0])) {
   1842       auto *Op = cast<Constant>(Operands[0]);
   1843       switch (IntrinsicID) {
   1844       default: break;
   1845       case Intrinsic::x86_sse_cvtss2si:
   1846       case Intrinsic::x86_sse_cvtss2si64:
   1847       case Intrinsic::x86_sse2_cvtsd2si:
   1848       case Intrinsic::x86_sse2_cvtsd2si64:
   1849         if (ConstantFP *FPOp =
   1850                 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1851           return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
   1852                                              /*roundTowardZero=*/false, Ty);
   1853         break;
   1854       case Intrinsic::x86_sse_cvttss2si:
   1855       case Intrinsic::x86_sse_cvttss2si64:
   1856       case Intrinsic::x86_sse2_cvttsd2si:
   1857       case Intrinsic::x86_sse2_cvttsd2si64:
   1858         if (ConstantFP *FPOp =
   1859                 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1860           return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
   1861                                              /*roundTowardZero=*/true, Ty);
   1862         break;
   1863       }
   1864     }
   1865 
   1866     return nullptr;
   1867   }
   1868 
   1869   if (Operands.size() == 2) {
   1870     if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1871       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1872         return nullptr;
   1873       double Op1V = getValueAsDouble(Op1);
   1874 
   1875       if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1876         if (Op2->getType() != Op1->getType())
   1877           return nullptr;
   1878 
   1879         double Op2V = getValueAsDouble(Op2);
   1880         if (IntrinsicID == Intrinsic::pow) {
   1881           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1882         }
   1883         if (IntrinsicID == Intrinsic::copysign) {
   1884           APFloat V1 = Op1->getValueAPF();
   1885           const APFloat &V2 = Op2->getValueAPF();
   1886           V1.copySign(V2);
   1887           return ConstantFP::get(Ty->getContext(), V1);
   1888         }
   1889 
   1890         if (IntrinsicID == Intrinsic::minnum) {
   1891           const APFloat &C1 = Op1->getValueAPF();
   1892           const APFloat &C2 = Op2->getValueAPF();
   1893           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
   1894         }
   1895 
   1896         if (IntrinsicID == Intrinsic::maxnum) {
   1897           const APFloat &C1 = Op1->getValueAPF();
   1898           const APFloat &C2 = Op2->getValueAPF();
   1899           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
   1900         }
   1901 
   1902         if (!TLI)
   1903           return nullptr;
   1904         if ((Name == "pow" && TLI->has(LibFunc_pow)) ||
   1905             (Name == "powf" && TLI->has(LibFunc_powf)) ||
   1906             (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) ||
   1907             (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite)))
   1908           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1909         if ((Name == "fmod" && TLI->has(LibFunc_fmod)) ||
   1910             (Name == "fmodf" && TLI->has(LibFunc_fmodf)))
   1911           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1912         if ((Name == "atan2" && TLI->has(LibFunc_atan2)) ||
   1913             (Name == "atan2f" && TLI->has(LibFunc_atan2f)) ||
   1914             (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) ||
   1915             (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite)))
   1916           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1917       } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1918         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
   1919           return ConstantFP::get(Ty->getContext(),
   1920                                  APFloat((float)std::pow((float)Op1V,
   1921                                                  (int)Op2C->getZExtValue())));
   1922         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
   1923           return ConstantFP::get(Ty->getContext(),
   1924                                  APFloat((float)std::pow((float)Op1V,
   1925                                                  (int)Op2C->getZExtValue())));
   1926         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
   1927           return ConstantFP::get(Ty->getContext(),
   1928                                  APFloat((double)std::pow((double)Op1V,
   1929                                                    (int)Op2C->getZExtValue())));
   1930       }
   1931       return nullptr;
   1932     }
   1933 
   1934     if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1935       if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1936         switch (IntrinsicID) {
   1937         default: break;
   1938         case Intrinsic::sadd_with_overflow:
   1939         case Intrinsic::uadd_with_overflow:
   1940         case Intrinsic::ssub_with_overflow:
   1941         case Intrinsic::usub_with_overflow:
   1942         case Intrinsic::smul_with_overflow:
   1943         case Intrinsic::umul_with_overflow: {
   1944           APInt Res;
   1945           bool Overflow;
   1946           switch (IntrinsicID) {
   1947           default: llvm_unreachable("Invalid case");
   1948           case Intrinsic::sadd_with_overflow:
   1949             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1950             break;
   1951           case Intrinsic::uadd_with_overflow:
   1952             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1953             break;
   1954           case Intrinsic::ssub_with_overflow:
   1955             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1956             break;
   1957           case Intrinsic::usub_with_overflow:
   1958             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1959             break;
   1960           case Intrinsic::smul_with_overflow:
   1961             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1962             break;
   1963           case Intrinsic::umul_with_overflow:
   1964             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1965             break;
   1966           }
   1967           Constant *Ops[] = {
   1968             ConstantInt::get(Ty->getContext(), Res),
   1969             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
   1970           };
   1971           return ConstantStruct::get(cast<StructType>(Ty), Ops);
   1972         }
   1973         case Intrinsic::cttz:
   1974           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
   1975             return UndefValue::get(Ty);
   1976           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1977         case Intrinsic::ctlz:
   1978           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
   1979             return UndefValue::get(Ty);
   1980           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1981         }
   1982       }
   1983 
   1984       return nullptr;
   1985     }
   1986     return nullptr;
   1987   }
   1988 
   1989   if (Operands.size() != 3)
   1990     return nullptr;
   1991 
   1992   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1993     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1994       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
   1995         switch (IntrinsicID) {
   1996         default: break;
   1997         case Intrinsic::fma:
   1998         case Intrinsic::fmuladd: {
   1999           APFloat V = Op1->getValueAPF();
   2000           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
   2001                                                    Op3->getValueAPF(),
   2002                                                    APFloat::rmNearestTiesToEven);
   2003           if (s != APFloat::opInvalidOp)
   2004             return ConstantFP::get(Ty->getContext(), V);
   2005 
   2006           return nullptr;
   2007         }
   2008         }
   2009       }
   2010     }
   2011   }
   2012 
   2013   return nullptr;
   2014 }
   2015 
   2016 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
   2017                                  VectorType *VTy, ArrayRef<Constant *> Operands,
   2018                                  const DataLayout &DL,
   2019                                  const TargetLibraryInfo *TLI,
   2020                                  ImmutableCallSite CS) {
   2021   SmallVector<Constant *, 4> Result(VTy->getNumElements());
   2022   SmallVector<Constant *, 4> Lane(Operands.size());
   2023   Type *Ty = VTy->getElementType();
   2024 
   2025   if (IntrinsicID == Intrinsic::masked_load) {
   2026     auto *SrcPtr = Operands[0];
   2027     auto *Mask = Operands[2];
   2028     auto *Passthru = Operands[3];
   2029 
   2030     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
   2031 
   2032     SmallVector<Constant *, 32> NewElements;
   2033     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   2034       auto *MaskElt = Mask->getAggregateElement(I);
   2035       if (!MaskElt)
   2036         break;
   2037       auto *PassthruElt = Passthru->getAggregateElement(I);
   2038       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
   2039       if (isa<UndefValue>(MaskElt)) {
   2040         if (PassthruElt)
   2041           NewElements.push_back(PassthruElt);
   2042         else if (VecElt)
   2043           NewElements.push_back(VecElt);
   2044         else
   2045           return nullptr;
   2046       }
   2047       if (MaskElt->isNullValue()) {
   2048         if (!PassthruElt)
   2049           return nullptr;
   2050         NewElements.push_back(PassthruElt);
   2051       } else if (MaskElt->isOneValue()) {
   2052         if (!VecElt)
   2053           return nullptr;
   2054         NewElements.push_back(VecElt);
   2055       } else {
   2056         return nullptr;
   2057       }
   2058     }
   2059     if (NewElements.size() != VTy->getNumElements())
   2060       return nullptr;
   2061     return ConstantVector::get(NewElements);
   2062   }
   2063 
   2064   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   2065     // Gather a column of constants.
   2066     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
   2067       // These intrinsics use a scalar type for their second argument.
   2068       if (J == 1 &&
   2069           (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz ||
   2070            IntrinsicID == Intrinsic::powi)) {
   2071         Lane[J] = Operands[J];
   2072         continue;
   2073       }
   2074 
   2075       Constant *Agg = Operands[J]->getAggregateElement(I);
   2076       if (!Agg)
   2077         return nullptr;
   2078 
   2079       Lane[J] = Agg;
   2080     }
   2081 
   2082     // Use the regular scalar folding to simplify this column.
   2083     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, CS);
   2084     if (!Folded)
   2085       return nullptr;
   2086     Result[I] = Folded;
   2087   }
   2088 
   2089   return ConstantVector::get(Result);
   2090 }
   2091 
   2092 } // end anonymous namespace
   2093 
   2094 Constant *
   2095 llvm::ConstantFoldCall(ImmutableCallSite CS, Function *F,
   2096                        ArrayRef<Constant *> Operands,
   2097                        const TargetLibraryInfo *TLI) {
   2098   if (CS.isNoBuiltin() || CS.isStrictFP())
   2099     return nullptr;
   2100   if (!F->hasName())
   2101     return nullptr;
   2102   StringRef Name = F->getName();
   2103 
   2104   Type *Ty = F->getReturnType();
   2105 
   2106   if (auto *VTy = dyn_cast<VectorType>(Ty))
   2107     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
   2108                                   F->getParent()->getDataLayout(), TLI, CS);
   2109 
   2110   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, CS);
   2111 }
   2112 
   2113 bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) {
   2114   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
   2115   // (and to some extent ConstantFoldScalarCall).
   2116   if (CS.isNoBuiltin() || CS.isStrictFP())
   2117     return false;
   2118   Function *F = CS.getCalledFunction();
   2119   if (!F)
   2120     return false;
   2121 
   2122   LibFunc Func;
   2123   if (!TLI || !TLI->getLibFunc(*F, Func))
   2124     return false;
   2125 
   2126   if (CS.getNumArgOperands() == 1) {
   2127     if (ConstantFP *OpC = dyn_cast<ConstantFP>(CS.getArgOperand(0))) {
   2128       const APFloat &Op = OpC->getValueAPF();
   2129       switch (Func) {
   2130       case LibFunc_logl:
   2131       case LibFunc_log:
   2132       case LibFunc_logf:
   2133       case LibFunc_log2l:
   2134       case LibFunc_log2:
   2135       case LibFunc_log2f:
   2136       case LibFunc_log10l:
   2137       case LibFunc_log10:
   2138       case LibFunc_log10f:
   2139         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
   2140 
   2141       case LibFunc_expl:
   2142       case LibFunc_exp:
   2143       case LibFunc_expf:
   2144         // FIXME: These boundaries are slightly conservative.
   2145         if (OpC->getType()->isDoubleTy())
   2146           return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
   2147                  Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
   2148         if (OpC->getType()->isFloatTy())
   2149           return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
   2150                  Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
   2151         break;
   2152 
   2153       case LibFunc_exp2l:
   2154       case LibFunc_exp2:
   2155       case LibFunc_exp2f:
   2156         // FIXME: These boundaries are slightly conservative.
   2157         if (OpC->getType()->isDoubleTy())
   2158           return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
   2159                  Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
   2160         if (OpC->getType()->isFloatTy())
   2161           return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
   2162                  Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
   2163         break;
   2164 
   2165       case LibFunc_sinl:
   2166       case LibFunc_sin:
   2167       case LibFunc_sinf:
   2168       case LibFunc_cosl:
   2169       case LibFunc_cos:
   2170       case LibFunc_cosf:
   2171         return !Op.isInfinity();
   2172 
   2173       case LibFunc_tanl:
   2174       case LibFunc_tan:
   2175       case LibFunc_tanf: {
   2176         // FIXME: Stop using the host math library.
   2177         // FIXME: The computation isn't done in the right precision.
   2178         Type *Ty = OpC->getType();
   2179         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
   2180           double OpV = getValueAsDouble(OpC);
   2181           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
   2182         }
   2183         break;
   2184       }
   2185 
   2186       case LibFunc_asinl:
   2187       case LibFunc_asin:
   2188       case LibFunc_asinf:
   2189       case LibFunc_acosl:
   2190       case LibFunc_acos:
   2191       case LibFunc_acosf:
   2192         return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
   2193                    APFloat::cmpLessThan &&
   2194                Op.compare(APFloat(Op.getSemantics(), "1")) !=
   2195                    APFloat::cmpGreaterThan;
   2196 
   2197       case LibFunc_sinh:
   2198       case LibFunc_cosh:
   2199       case LibFunc_sinhf:
   2200       case LibFunc_coshf:
   2201       case LibFunc_sinhl:
   2202       case LibFunc_coshl:
   2203         // FIXME: These boundaries are slightly conservative.
   2204         if (OpC->getType()->isDoubleTy())
   2205           return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
   2206                  Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
   2207         if (OpC->getType()->isFloatTy())
   2208           return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
   2209                  Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
   2210         break;
   2211 
   2212       case LibFunc_sqrtl:
   2213       case LibFunc_sqrt:
   2214       case LibFunc_sqrtf:
   2215         return Op.isNaN() || Op.isZero() || !Op.isNegative();
   2216 
   2217       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
   2218       // maybe others?
   2219       default:
   2220         break;
   2221       }
   2222     }
   2223   }
   2224 
   2225   if (CS.getNumArgOperands() == 2) {
   2226     ConstantFP *Op0C = dyn_cast<ConstantFP>(CS.getArgOperand(0));
   2227     ConstantFP *Op1C = dyn_cast<ConstantFP>(CS.getArgOperand(1));
   2228     if (Op0C && Op1C) {
   2229       const APFloat &Op0 = Op0C->getValueAPF();
   2230       const APFloat &Op1 = Op1C->getValueAPF();
   2231 
   2232       switch (Func) {
   2233       case LibFunc_powl:
   2234       case LibFunc_pow:
   2235       case LibFunc_powf: {
   2236         // FIXME: Stop using the host math library.
   2237         // FIXME: The computation isn't done in the right precision.
   2238         Type *Ty = Op0C->getType();
   2239         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
   2240           if (Ty == Op1C->getType()) {
   2241             double Op0V = getValueAsDouble(Op0C);
   2242             double Op1V = getValueAsDouble(Op1C);
   2243             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
   2244           }
   2245         }
   2246         break;
   2247       }
   2248 
   2249       case LibFunc_fmodl:
   2250       case LibFunc_fmod:
   2251       case LibFunc_fmodf:
   2252         return Op0.isNaN() || Op1.isNaN() ||
   2253                (!Op0.isInfinity() && !Op1.isZero());
   2254 
   2255       default:
   2256         break;
   2257       }
   2258     }
   2259   }
   2260 
   2261   return false;
   2262 }
   2263