Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains logic for simplifying instructions based on information
     11 // about how they are used.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombineInternal.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 #include "llvm/Support/KnownBits.h"
     20 
     21 using namespace llvm;
     22 using namespace llvm::PatternMatch;
     23 
     24 #define DEBUG_TYPE "instcombine"
     25 
     26 namespace {
     27 
     28 struct AMDGPUImageDMaskIntrinsic {
     29   unsigned Intr;
     30 };
     31 
     32 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
     33 #include "InstCombineTables.inc"
     34 
     35 } // end anonymous namespace
     36 
     37 /// Check to see if the specified operand of the specified instruction is a
     38 /// constant integer. If so, check to see if there are any bits set in the
     39 /// constant that are not demanded. If so, shrink the constant and return true.
     40 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
     41                                    const APInt &Demanded) {
     42   assert(I && "No instruction?");
     43   assert(OpNo < I->getNumOperands() && "Operand index too large");
     44 
     45   // The operand must be a constant integer or splat integer.
     46   Value *Op = I->getOperand(OpNo);
     47   const APInt *C;
     48   if (!match(Op, m_APInt(C)))
     49     return false;
     50 
     51   // If there are no bits set that aren't demanded, nothing to do.
     52   if (C->isSubsetOf(Demanded))
     53     return false;
     54 
     55   // This instruction is producing bits that are not demanded. Shrink the RHS.
     56   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
     57 
     58   return true;
     59 }
     60 
     61 
     62 
     63 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
     64 /// the instruction has any properties that allow us to simplify its operands.
     65 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
     66   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
     67   KnownBits Known(BitWidth);
     68   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
     69 
     70   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
     71                                      0, &Inst);
     72   if (!V) return false;
     73   if (V == &Inst) return true;
     74   replaceInstUsesWith(Inst, V);
     75   return true;
     76 }
     77 
     78 /// This form of SimplifyDemandedBits simplifies the specified instruction
     79 /// operand if possible, updating it in place. It returns true if it made any
     80 /// change and false otherwise.
     81 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
     82                                         const APInt &DemandedMask,
     83                                         KnownBits &Known,
     84                                         unsigned Depth) {
     85   Use &U = I->getOperandUse(OpNo);
     86   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
     87                                           Depth, I);
     88   if (!NewVal) return false;
     89   U = NewVal;
     90   return true;
     91 }
     92 
     93 
     94 /// This function attempts to replace V with a simpler value based on the
     95 /// demanded bits. When this function is called, it is known that only the bits
     96 /// set in DemandedMask of the result of V are ever used downstream.
     97 /// Consequently, depending on the mask and V, it may be possible to replace V
     98 /// with a constant or one of its operands. In such cases, this function does
     99 /// the replacement and returns true. In all other cases, it returns false after
    100 /// analyzing the expression and setting KnownOne and known to be one in the
    101 /// expression. Known.Zero contains all the bits that are known to be zero in
    102 /// the expression. These are provided to potentially allow the caller (which
    103 /// might recursively be SimplifyDemandedBits itself) to simplify the
    104 /// expression.
    105 /// Known.One and Known.Zero always follow the invariant that:
    106 ///   Known.One & Known.Zero == 0.
    107 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
    108 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
    109 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
    110 /// be the same.
    111 ///
    112 /// This returns null if it did not change anything and it permits no
    113 /// simplification.  This returns V itself if it did some simplification of V's
    114 /// operands based on the information about what bits are demanded. This returns
    115 /// some other non-null value if it found out that V is equal to another value
    116 /// in the context where the specified bits are demanded, but not for all users.
    117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
    118                                              KnownBits &Known, unsigned Depth,
    119                                              Instruction *CxtI) {
    120   assert(V != nullptr && "Null pointer of Value???");
    121   assert(Depth <= 6 && "Limit Search Depth");
    122   uint32_t BitWidth = DemandedMask.getBitWidth();
    123   Type *VTy = V->getType();
    124   assert(
    125       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
    126       Known.getBitWidth() == BitWidth &&
    127       "Value *V, DemandedMask and Known must have same BitWidth");
    128 
    129   if (isa<Constant>(V)) {
    130     computeKnownBits(V, Known, Depth, CxtI);
    131     return nullptr;
    132   }
    133 
    134   Known.resetAll();
    135   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
    136     return UndefValue::get(VTy);
    137 
    138   if (Depth == 6)        // Limit search depth.
    139     return nullptr;
    140 
    141   Instruction *I = dyn_cast<Instruction>(V);
    142   if (!I) {
    143     computeKnownBits(V, Known, Depth, CxtI);
    144     return nullptr;        // Only analyze instructions.
    145   }
    146 
    147   // If there are multiple uses of this value and we aren't at the root, then
    148   // we can't do any simplifications of the operands, because DemandedMask
    149   // only reflects the bits demanded by *one* of the users.
    150   if (Depth != 0 && !I->hasOneUse())
    151     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
    152 
    153   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
    154 
    155   // If this is the root being simplified, allow it to have multiple uses,
    156   // just set the DemandedMask to all bits so that we can try to simplify the
    157   // operands.  This allows visitTruncInst (for example) to simplify the
    158   // operand of a trunc without duplicating all the logic below.
    159   if (Depth == 0 && !V->hasOneUse())
    160     DemandedMask.setAllBits();
    161 
    162   switch (I->getOpcode()) {
    163   default:
    164     computeKnownBits(I, Known, Depth, CxtI);
    165     break;
    166   case Instruction::And: {
    167     // If either the LHS or the RHS are Zero, the result is zero.
    168     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
    169         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
    170                              Depth + 1))
    171       return I;
    172     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    173     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
    174 
    175     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    176     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
    177     // Output known-1 bits are only known if set in both the LHS & RHS.
    178     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
    179 
    180     // If the client is only demanding bits that we know, return the known
    181     // constant.
    182     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    183       return Constant::getIntegerValue(VTy, IKnownOne);
    184 
    185     // If all of the demanded bits are known 1 on one side, return the other.
    186     // These bits cannot contribute to the result of the 'and'.
    187     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
    188       return I->getOperand(0);
    189     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
    190       return I->getOperand(1);
    191 
    192     // If the RHS is a constant, see if we can simplify it.
    193     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
    194       return I;
    195 
    196     Known.Zero = std::move(IKnownZero);
    197     Known.One  = std::move(IKnownOne);
    198     break;
    199   }
    200   case Instruction::Or: {
    201     // If either the LHS or the RHS are One, the result is One.
    202     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
    203         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
    204                              Depth + 1))
    205       return I;
    206     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    207     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
    208 
    209     // Output known-0 bits are only known if clear in both the LHS & RHS.
    210     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
    211     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
    212     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
    213 
    214     // If the client is only demanding bits that we know, return the known
    215     // constant.
    216     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    217       return Constant::getIntegerValue(VTy, IKnownOne);
    218 
    219     // If all of the demanded bits are known zero on one side, return the other.
    220     // These bits cannot contribute to the result of the 'or'.
    221     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
    222       return I->getOperand(0);
    223     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
    224       return I->getOperand(1);
    225 
    226     // If the RHS is a constant, see if we can simplify it.
    227     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    228       return I;
    229 
    230     Known.Zero = std::move(IKnownZero);
    231     Known.One  = std::move(IKnownOne);
    232     break;
    233   }
    234   case Instruction::Xor: {
    235     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
    236         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
    237       return I;
    238     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    239     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
    240 
    241     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    242     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
    243                        (RHSKnown.One & LHSKnown.One);
    244     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    245     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
    246                        (RHSKnown.One & LHSKnown.Zero);
    247 
    248     // If the client is only demanding bits that we know, return the known
    249     // constant.
    250     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    251       return Constant::getIntegerValue(VTy, IKnownOne);
    252 
    253     // If all of the demanded bits are known zero on one side, return the other.
    254     // These bits cannot contribute to the result of the 'xor'.
    255     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
    256       return I->getOperand(0);
    257     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
    258       return I->getOperand(1);
    259 
    260     // If all of the demanded bits are known to be zero on one side or the
    261     // other, turn this into an *inclusive* or.
    262     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    263     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
    264       Instruction *Or =
    265         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
    266                                  I->getName());
    267       return InsertNewInstWith(Or, *I);
    268     }
    269 
    270     // If all of the demanded bits on one side are known, and all of the set
    271     // bits on that side are also known to be set on the other side, turn this
    272     // into an AND, as we know the bits will be cleared.
    273     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    274     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
    275         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
    276       Constant *AndC = Constant::getIntegerValue(VTy,
    277                                                  ~RHSKnown.One & DemandedMask);
    278       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    279       return InsertNewInstWith(And, *I);
    280     }
    281 
    282     // If the RHS is a constant, see if we can simplify it.
    283     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    284     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    285       return I;
    286 
    287     // If our LHS is an 'and' and if it has one use, and if any of the bits we
    288     // are flipping are known to be set, then the xor is just resetting those
    289     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    290     // simplifying both of them.
    291     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
    292       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
    293           isa<ConstantInt>(I->getOperand(1)) &&
    294           isa<ConstantInt>(LHSInst->getOperand(1)) &&
    295           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
    296         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
    297         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
    298         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
    299 
    300         Constant *AndC =
    301           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
    302         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    303         InsertNewInstWith(NewAnd, *I);
    304 
    305         Constant *XorC =
    306           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
    307         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
    308         return InsertNewInstWith(NewXor, *I);
    309       }
    310 
    311     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    312     Known.Zero = std::move(IKnownZero);
    313     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    314     Known.One  = std::move(IKnownOne);
    315     break;
    316   }
    317   case Instruction::Select:
    318     // If this is a select as part of a min/max pattern, don't simplify any
    319     // further in case we break the structure.
    320     Value *LHS, *RHS;
    321     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
    322       return nullptr;
    323 
    324     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
    325         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
    326       return I;
    327     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    328     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
    329 
    330     // If the operands are constants, see if we can simplify them.
    331     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
    332         ShrinkDemandedConstant(I, 2, DemandedMask))
    333       return I;
    334 
    335     // Only known if known in both the LHS and RHS.
    336     Known.One = RHSKnown.One & LHSKnown.One;
    337     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
    338     break;
    339   case Instruction::ZExt:
    340   case Instruction::Trunc: {
    341     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    342 
    343     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
    344     KnownBits InputKnown(SrcBitWidth);
    345     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
    346       return I;
    347     Known = InputKnown.zextOrTrunc(BitWidth);
    348     // Any top bits are known to be zero.
    349     if (BitWidth > SrcBitWidth)
    350       Known.Zero.setBitsFrom(SrcBitWidth);
    351     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    352     break;
    353   }
    354   case Instruction::BitCast:
    355     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
    356       return nullptr;  // vector->int or fp->int?
    357 
    358     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
    359       if (VectorType *SrcVTy =
    360             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
    361         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
    362           // Don't touch a bitcast between vectors of different element counts.
    363           return nullptr;
    364       } else
    365         // Don't touch a scalar-to-vector bitcast.
    366         return nullptr;
    367     } else if (I->getOperand(0)->getType()->isVectorTy())
    368       // Don't touch a vector-to-scalar bitcast.
    369       return nullptr;
    370 
    371     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
    372       return I;
    373     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    374     break;
    375   case Instruction::SExt: {
    376     // Compute the bits in the result that are not present in the input.
    377     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    378 
    379     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
    380 
    381     // If any of the sign extended bits are demanded, we know that the sign
    382     // bit is demanded.
    383     if (DemandedMask.getActiveBits() > SrcBitWidth)
    384       InputDemandedBits.setBit(SrcBitWidth-1);
    385 
    386     KnownBits InputKnown(SrcBitWidth);
    387     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
    388       return I;
    389 
    390     // If the input sign bit is known zero, or if the NewBits are not demanded
    391     // convert this into a zero extension.
    392     if (InputKnown.isNonNegative() ||
    393         DemandedMask.getActiveBits() <= SrcBitWidth) {
    394       // Convert to ZExt cast.
    395       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
    396       return InsertNewInstWith(NewCast, *I);
    397      }
    398 
    399     // If the sign bit of the input is known set or clear, then we know the
    400     // top bits of the result.
    401     Known = InputKnown.sext(BitWidth);
    402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    403     break;
    404   }
    405   case Instruction::Add:
    406   case Instruction::Sub: {
    407     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
    408     /// about the high bits of the operands.
    409     unsigned NLZ = DemandedMask.countLeadingZeros();
    410     // Right fill the mask of bits for this ADD/SUB to demand the most
    411     // significant bit and all those below it.
    412     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
    413     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
    414         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
    415         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
    416         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
    417       if (NLZ > 0) {
    418         // Disable the nsw and nuw flags here: We can no longer guarantee that
    419         // we won't wrap after simplification. Removing the nsw/nuw flags is
    420         // legal here because the top bit is not demanded.
    421         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
    422         BinOP.setHasNoSignedWrap(false);
    423         BinOP.setHasNoUnsignedWrap(false);
    424       }
    425       return I;
    426     }
    427 
    428     // If we are known to be adding/subtracting zeros to every bit below
    429     // the highest demanded bit, we just return the other side.
    430     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
    431       return I->getOperand(0);
    432     // We can't do this with the LHS for subtraction, unless we are only
    433     // demanding the LSB.
    434     if ((I->getOpcode() == Instruction::Add ||
    435          DemandedFromOps.isOneValue()) &&
    436         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
    437       return I->getOperand(1);
    438 
    439     // Otherwise just compute the known bits of the result.
    440     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    441     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
    442                                         NSW, LHSKnown, RHSKnown);
    443     break;
    444   }
    445   case Instruction::Shl: {
    446     const APInt *SA;
    447     if (match(I->getOperand(1), m_APInt(SA))) {
    448       const APInt *ShrAmt;
    449       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
    450         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
    451           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
    452                                                     DemandedMask, Known))
    453             return R;
    454 
    455       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    456       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
    457 
    458       // If the shift is NUW/NSW, then it does demand the high bits.
    459       ShlOperator *IOp = cast<ShlOperator>(I);
    460       if (IOp->hasNoSignedWrap())
    461         DemandedMaskIn.setHighBits(ShiftAmt+1);
    462       else if (IOp->hasNoUnsignedWrap())
    463         DemandedMaskIn.setHighBits(ShiftAmt);
    464 
    465       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
    466         return I;
    467       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    468       Known.Zero <<= ShiftAmt;
    469       Known.One  <<= ShiftAmt;
    470       // low bits known zero.
    471       if (ShiftAmt)
    472         Known.Zero.setLowBits(ShiftAmt);
    473     }
    474     break;
    475   }
    476   case Instruction::LShr: {
    477     const APInt *SA;
    478     if (match(I->getOperand(1), m_APInt(SA))) {
    479       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    480 
    481       // Unsigned shift right.
    482       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    483 
    484       // If the shift is exact, then it does demand the low bits (and knows that
    485       // they are zero).
    486       if (cast<LShrOperator>(I)->isExact())
    487         DemandedMaskIn.setLowBits(ShiftAmt);
    488 
    489       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
    490         return I;
    491       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    492       Known.Zero.lshrInPlace(ShiftAmt);
    493       Known.One.lshrInPlace(ShiftAmt);
    494       if (ShiftAmt)
    495         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
    496     }
    497     break;
    498   }
    499   case Instruction::AShr: {
    500     // If this is an arithmetic shift right and only the low-bit is set, we can
    501     // always convert this into a logical shr, even if the shift amount is
    502     // variable.  The low bit of the shift cannot be an input sign bit unless
    503     // the shift amount is >= the size of the datatype, which is undefined.
    504     if (DemandedMask.isOneValue()) {
    505       // Perform the logical shift right.
    506       Instruction *NewVal = BinaryOperator::CreateLShr(
    507                         I->getOperand(0), I->getOperand(1), I->getName());
    508       return InsertNewInstWith(NewVal, *I);
    509     }
    510 
    511     // If the sign bit is the only bit demanded by this ashr, then there is no
    512     // need to do it, the shift doesn't change the high bit.
    513     if (DemandedMask.isSignMask())
    514       return I->getOperand(0);
    515 
    516     const APInt *SA;
    517     if (match(I->getOperand(1), m_APInt(SA))) {
    518       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    519 
    520       // Signed shift right.
    521       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    522       // If any of the high bits are demanded, we should set the sign bit as
    523       // demanded.
    524       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
    525         DemandedMaskIn.setSignBit();
    526 
    527       // If the shift is exact, then it does demand the low bits (and knows that
    528       // they are zero).
    529       if (cast<AShrOperator>(I)->isExact())
    530         DemandedMaskIn.setLowBits(ShiftAmt);
    531 
    532       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
    533         return I;
    534 
    535       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
    536 
    537       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    538       // Compute the new bits that are at the top now plus sign bits.
    539       APInt HighBits(APInt::getHighBitsSet(
    540           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
    541       Known.Zero.lshrInPlace(ShiftAmt);
    542       Known.One.lshrInPlace(ShiftAmt);
    543 
    544       // If the input sign bit is known to be zero, or if none of the top bits
    545       // are demanded, turn this into an unsigned shift right.
    546       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
    547       if (Known.Zero[BitWidth-ShiftAmt-1] ||
    548           !DemandedMask.intersects(HighBits)) {
    549         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
    550                                                           I->getOperand(1));
    551         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
    552         return InsertNewInstWith(LShr, *I);
    553       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
    554         Known.One |= HighBits;
    555       }
    556     }
    557     break;
    558   }
    559   case Instruction::UDiv: {
    560     // UDiv doesn't demand low bits that are zero in the divisor.
    561     const APInt *SA;
    562     if (match(I->getOperand(1), m_APInt(SA))) {
    563       // If the shift is exact, then it does demand the low bits.
    564       if (cast<UDivOperator>(I)->isExact())
    565         break;
    566 
    567       // FIXME: Take the demanded mask of the result into account.
    568       unsigned RHSTrailingZeros = SA->countTrailingZeros();
    569       APInt DemandedMaskIn =
    570           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
    571       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
    572         return I;
    573 
    574       // Propagate zero bits from the input.
    575       Known.Zero.setHighBits(std::min(
    576           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
    577     }
    578     break;
    579   }
    580   case Instruction::SRem:
    581     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    582       // X % -1 demands all the bits because we don't want to introduce
    583       // INT_MIN % -1 (== undef) by accident.
    584       if (Rem->isMinusOne())
    585         break;
    586       APInt RA = Rem->getValue().abs();
    587       if (RA.isPowerOf2()) {
    588         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
    589           return I->getOperand(0);
    590 
    591         APInt LowBits = RA - 1;
    592         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
    593         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
    594           return I;
    595 
    596         // The low bits of LHS are unchanged by the srem.
    597         Known.Zero = LHSKnown.Zero & LowBits;
    598         Known.One = LHSKnown.One & LowBits;
    599 
    600         // If LHS is non-negative or has all low bits zero, then the upper bits
    601         // are all zero.
    602         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
    603           Known.Zero |= ~LowBits;
    604 
    605         // If LHS is negative and not all low bits are zero, then the upper bits
    606         // are all one.
    607         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
    608           Known.One |= ~LowBits;
    609 
    610         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    611         break;
    612       }
    613     }
    614 
    615     // The sign bit is the LHS's sign bit, except when the result of the
    616     // remainder is zero.
    617     if (DemandedMask.isSignBitSet()) {
    618       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
    619       // If it's known zero, our sign bit is also zero.
    620       if (LHSKnown.isNonNegative())
    621         Known.makeNonNegative();
    622     }
    623     break;
    624   case Instruction::URem: {
    625     KnownBits Known2(BitWidth);
    626     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    627     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
    628         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
    629       return I;
    630 
    631     unsigned Leaders = Known2.countMinLeadingZeros();
    632     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    633     break;
    634   }
    635   case Instruction::Call:
    636     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    637       switch (II->getIntrinsicID()) {
    638       default: break;
    639       case Intrinsic::bswap: {
    640         // If the only bits demanded come from one byte of the bswap result,
    641         // just shift the input byte into position to eliminate the bswap.
    642         unsigned NLZ = DemandedMask.countLeadingZeros();
    643         unsigned NTZ = DemandedMask.countTrailingZeros();
    644 
    645         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
    646         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
    647         // have 14 leading zeros, round to 8.
    648         NLZ &= ~7;
    649         NTZ &= ~7;
    650         // If we need exactly one byte, we can do this transformation.
    651         if (BitWidth-NLZ-NTZ == 8) {
    652           unsigned ResultBit = NTZ;
    653           unsigned InputBit = BitWidth-NTZ-8;
    654 
    655           // Replace this with either a left or right shift to get the byte into
    656           // the right place.
    657           Instruction *NewVal;
    658           if (InputBit > ResultBit)
    659             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
    660                     ConstantInt::get(I->getType(), InputBit-ResultBit));
    661           else
    662             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
    663                     ConstantInt::get(I->getType(), ResultBit-InputBit));
    664           NewVal->takeName(I);
    665           return InsertNewInstWith(NewVal, *I);
    666         }
    667 
    668         // TODO: Could compute known zero/one bits based on the input.
    669         break;
    670       }
    671       case Intrinsic::x86_mmx_pmovmskb:
    672       case Intrinsic::x86_sse_movmsk_ps:
    673       case Intrinsic::x86_sse2_movmsk_pd:
    674       case Intrinsic::x86_sse2_pmovmskb_128:
    675       case Intrinsic::x86_avx_movmsk_ps_256:
    676       case Intrinsic::x86_avx_movmsk_pd_256:
    677       case Intrinsic::x86_avx2_pmovmskb: {
    678         // MOVMSK copies the vector elements' sign bits to the low bits
    679         // and zeros the high bits.
    680         unsigned ArgWidth;
    681         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
    682           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
    683         } else {
    684           auto Arg = II->getArgOperand(0);
    685           auto ArgType = cast<VectorType>(Arg->getType());
    686           ArgWidth = ArgType->getNumElements();
    687         }
    688 
    689         // If we don't need any of low bits then return zero,
    690         // we know that DemandedMask is non-zero already.
    691         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
    692         if (DemandedElts.isNullValue())
    693           return ConstantInt::getNullValue(VTy);
    694 
    695         // We know that the upper bits are set to zero.
    696         Known.Zero.setBitsFrom(ArgWidth);
    697         return nullptr;
    698       }
    699       case Intrinsic::x86_sse42_crc32_64_64:
    700         Known.Zero.setBitsFrom(32);
    701         return nullptr;
    702       }
    703     }
    704     computeKnownBits(V, Known, Depth, CxtI);
    705     break;
    706   }
    707 
    708   // If the client is only demanding bits that we know, return the known
    709   // constant.
    710   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
    711     return Constant::getIntegerValue(VTy, Known.One);
    712   return nullptr;
    713 }
    714 
    715 /// Helper routine of SimplifyDemandedUseBits. It computes Known
    716 /// bits. It also tries to handle simplifications that can be done based on
    717 /// DemandedMask, but without modifying the Instruction.
    718 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
    719                                                      const APInt &DemandedMask,
    720                                                      KnownBits &Known,
    721                                                      unsigned Depth,
    722                                                      Instruction *CxtI) {
    723   unsigned BitWidth = DemandedMask.getBitWidth();
    724   Type *ITy = I->getType();
    725 
    726   KnownBits LHSKnown(BitWidth);
    727   KnownBits RHSKnown(BitWidth);
    728 
    729   // Despite the fact that we can't simplify this instruction in all User's
    730   // context, we can at least compute the known bits, and we can
    731   // do simplifications that apply to *just* the one user if we know that
    732   // this instruction has a simpler value in that context.
    733   switch (I->getOpcode()) {
    734   case Instruction::And: {
    735     // If either the LHS or the RHS are Zero, the result is zero.
    736     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    737     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
    738                      CxtI);
    739 
    740     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    741     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
    742     // Output known-1 bits are only known if set in both the LHS & RHS.
    743     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
    744 
    745     // If the client is only demanding bits that we know, return the known
    746     // constant.
    747     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    748       return Constant::getIntegerValue(ITy, IKnownOne);
    749 
    750     // If all of the demanded bits are known 1 on one side, return the other.
    751     // These bits cannot contribute to the result of the 'and' in this
    752     // context.
    753     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
    754       return I->getOperand(0);
    755     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
    756       return I->getOperand(1);
    757 
    758     Known.Zero = std::move(IKnownZero);
    759     Known.One  = std::move(IKnownOne);
    760     break;
    761   }
    762   case Instruction::Or: {
    763     // We can simplify (X|Y) -> X or Y in the user's context if we know that
    764     // only bits from X or Y are demanded.
    765 
    766     // If either the LHS or the RHS are One, the result is One.
    767     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    768     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
    769                      CxtI);
    770 
    771     // Output known-0 bits are only known if clear in both the LHS & RHS.
    772     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
    773     // Output known-1 are known to be set if set in either the LHS | RHS.
    774     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
    775 
    776     // If the client is only demanding bits that we know, return the known
    777     // constant.
    778     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    779       return Constant::getIntegerValue(ITy, IKnownOne);
    780 
    781     // If all of the demanded bits are known zero on one side, return the
    782     // other.  These bits cannot contribute to the result of the 'or' in this
    783     // context.
    784     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
    785       return I->getOperand(0);
    786     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
    787       return I->getOperand(1);
    788 
    789     Known.Zero = std::move(IKnownZero);
    790     Known.One  = std::move(IKnownOne);
    791     break;
    792   }
    793   case Instruction::Xor: {
    794     // We can simplify (X^Y) -> X or Y in the user's context if we know that
    795     // only bits from X or Y are demanded.
    796 
    797     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    798     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
    799                      CxtI);
    800 
    801     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    802     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
    803                        (RHSKnown.One & LHSKnown.One);
    804     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    805     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
    806                        (RHSKnown.One & LHSKnown.Zero);
    807 
    808     // If the client is only demanding bits that we know, return the known
    809     // constant.
    810     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
    811       return Constant::getIntegerValue(ITy, IKnownOne);
    812 
    813     // If all of the demanded bits are known zero on one side, return the
    814     // other.
    815     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
    816       return I->getOperand(0);
    817     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
    818       return I->getOperand(1);
    819 
    820     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    821     Known.Zero = std::move(IKnownZero);
    822     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    823     Known.One  = std::move(IKnownOne);
    824     break;
    825   }
    826   default:
    827     // Compute the Known bits to simplify things downstream.
    828     computeKnownBits(I, Known, Depth, CxtI);
    829 
    830     // If this user is only demanding bits that we know, return the known
    831     // constant.
    832     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
    833       return Constant::getIntegerValue(ITy, Known.One);
    834 
    835     break;
    836   }
    837 
    838   return nullptr;
    839 }
    840 
    841 
    842 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
    843 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
    844 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
    845 /// of "C2-C1".
    846 ///
    847 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
    848 /// ..., bn}, without considering the specific value X is holding.
    849 /// This transformation is legal iff one of following conditions is hold:
    850 ///  1) All the bit in S are 0, in this case E1 == E2.
    851 ///  2) We don't care those bits in S, per the input DemandedMask.
    852 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
    853 ///     rest bits.
    854 ///
    855 /// Currently we only test condition 2).
    856 ///
    857 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
    858 /// not successful.
    859 Value *
    860 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
    861                                          Instruction *Shl, const APInt &ShlOp1,
    862                                          const APInt &DemandedMask,
    863                                          KnownBits &Known) {
    864   if (!ShlOp1 || !ShrOp1)
    865     return nullptr; // No-op.
    866 
    867   Value *VarX = Shr->getOperand(0);
    868   Type *Ty = VarX->getType();
    869   unsigned BitWidth = Ty->getScalarSizeInBits();
    870   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
    871     return nullptr; // Undef.
    872 
    873   unsigned ShlAmt = ShlOp1.getZExtValue();
    874   unsigned ShrAmt = ShrOp1.getZExtValue();
    875 
    876   Known.One.clearAllBits();
    877   Known.Zero.setLowBits(ShlAmt - 1);
    878   Known.Zero &= DemandedMask;
    879 
    880   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
    881   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
    882 
    883   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
    884   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
    885                       (BitMask1.ashr(ShrAmt) << ShlAmt);
    886 
    887   if (ShrAmt <= ShlAmt) {
    888     BitMask2 <<= (ShlAmt - ShrAmt);
    889   } else {
    890     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
    891                         BitMask2.ashr(ShrAmt - ShlAmt);
    892   }
    893 
    894   // Check if condition-2 (see the comment to this function) is satified.
    895   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
    896     if (ShrAmt == ShlAmt)
    897       return VarX;
    898 
    899     if (!Shr->hasOneUse())
    900       return nullptr;
    901 
    902     BinaryOperator *New;
    903     if (ShrAmt < ShlAmt) {
    904       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
    905       New = BinaryOperator::CreateShl(VarX, Amt);
    906       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
    907       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
    908       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
    909     } else {
    910       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
    911       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
    912                      BinaryOperator::CreateAShr(VarX, Amt);
    913       if (cast<BinaryOperator>(Shr)->isExact())
    914         New->setIsExact(true);
    915     }
    916 
    917     return InsertNewInstWith(New, *Shl);
    918   }
    919 
    920   return nullptr;
    921 }
    922 
    923 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
    924 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
    925                                                            APInt DemandedElts,
    926                                                            int DMaskIdx) {
    927   unsigned VWidth = II->getType()->getVectorNumElements();
    928   if (VWidth == 1)
    929     return nullptr;
    930 
    931   ConstantInt *NewDMask = nullptr;
    932 
    933   if (DMaskIdx < 0) {
    934     // Pretend that a prefix of elements is demanded to simplify the code
    935     // below.
    936     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
    937   } else {
    938     ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
    939     if (!DMask)
    940       return nullptr; // non-constant dmask is not supported by codegen
    941 
    942     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
    943 
    944     // Mask off values that are undefined because the dmask doesn't cover them
    945     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
    946 
    947     unsigned NewDMaskVal = 0;
    948     unsigned OrigLoadIdx = 0;
    949     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
    950       const unsigned Bit = 1 << SrcIdx;
    951       if (!!(DMaskVal & Bit)) {
    952         if (!!DemandedElts[OrigLoadIdx])
    953           NewDMaskVal |= Bit;
    954         OrigLoadIdx++;
    955       }
    956     }
    957 
    958     if (DMaskVal != NewDMaskVal)
    959       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
    960   }
    961 
    962   // TODO: Handle 3 vectors when supported in code gen.
    963   unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
    964   if (!NewNumElts)
    965     return UndefValue::get(II->getType());
    966 
    967   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
    968     if (NewDMask)
    969       II->setArgOperand(DMaskIdx, NewDMask);
    970     return nullptr;
    971   }
    972 
    973   // Determine the overload types of the original intrinsic.
    974   auto IID = II->getIntrinsicID();
    975   SmallVector<Intrinsic::IITDescriptor, 16> Table;
    976   getIntrinsicInfoTableEntries(IID, Table);
    977   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
    978 
    979   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
    980   SmallVector<Type *, 6> OverloadTys;
    981   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
    982   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    983     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
    984 
    985   // Get the new return type overload of the intrinsic.
    986   Module *M = II->getParent()->getParent()->getParent();
    987   Type *EltTy = II->getType()->getVectorElementType();
    988   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
    989 
    990   OverloadTys[0] = NewTy;
    991   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
    992 
    993   SmallVector<Value *, 16> Args;
    994   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
    995     Args.push_back(II->getArgOperand(I));
    996 
    997   if (NewDMask)
    998     Args[DMaskIdx] = NewDMask;
    999 
   1000   IRBuilderBase::InsertPointGuard Guard(Builder);
   1001   Builder.SetInsertPoint(II);
   1002 
   1003   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
   1004   NewCall->takeName(II);
   1005   NewCall->copyMetadata(*II);
   1006 
   1007   if (NewNumElts == 1) {
   1008     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
   1009                                        DemandedElts.countTrailingZeros());
   1010   }
   1011 
   1012   SmallVector<uint32_t, 8> EltMask;
   1013   unsigned NewLoadIdx = 0;
   1014   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
   1015     if (!!DemandedElts[OrigLoadIdx])
   1016       EltMask.push_back(NewLoadIdx++);
   1017     else
   1018       EltMask.push_back(NewNumElts);
   1019   }
   1020 
   1021   Value *Shuffle =
   1022       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
   1023 
   1024   return Shuffle;
   1025 }
   1026 
   1027 /// The specified value produces a vector with any number of elements.
   1028 /// DemandedElts contains the set of elements that are actually used by the
   1029 /// caller. This method analyzes which elements of the operand are undef and
   1030 /// returns that information in UndefElts.
   1031 ///
   1032 /// If the information about demanded elements can be used to simplify the
   1033 /// operation, the operation is simplified, then the resultant value is
   1034 /// returned.  This returns null if no change was made.
   1035 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
   1036                                                 APInt &UndefElts,
   1037                                                 unsigned Depth) {
   1038   unsigned VWidth = V->getType()->getVectorNumElements();
   1039   APInt EltMask(APInt::getAllOnesValue(VWidth));
   1040   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
   1041 
   1042   if (isa<UndefValue>(V)) {
   1043     // If the entire vector is undefined, just return this info.
   1044     UndefElts = EltMask;
   1045     return nullptr;
   1046   }
   1047 
   1048   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
   1049     UndefElts = EltMask;
   1050     return UndefValue::get(V->getType());
   1051   }
   1052 
   1053   UndefElts = 0;
   1054 
   1055   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
   1056   if (Constant *C = dyn_cast<Constant>(V)) {
   1057     // Check if this is identity. If so, return 0 since we are not simplifying
   1058     // anything.
   1059     if (DemandedElts.isAllOnesValue())
   1060       return nullptr;
   1061 
   1062     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
   1063     Constant *Undef = UndefValue::get(EltTy);
   1064 
   1065     SmallVector<Constant*, 16> Elts;
   1066     for (unsigned i = 0; i != VWidth; ++i) {
   1067       if (!DemandedElts[i]) {   // If not demanded, set to undef.
   1068         Elts.push_back(Undef);
   1069         UndefElts.setBit(i);
   1070         continue;
   1071       }
   1072 
   1073       Constant *Elt = C->getAggregateElement(i);
   1074       if (!Elt) return nullptr;
   1075 
   1076       if (isa<UndefValue>(Elt)) {   // Already undef.
   1077         Elts.push_back(Undef);
   1078         UndefElts.setBit(i);
   1079       } else {                               // Otherwise, defined.
   1080         Elts.push_back(Elt);
   1081       }
   1082     }
   1083 
   1084     // If we changed the constant, return it.
   1085     Constant *NewCV = ConstantVector::get(Elts);
   1086     return NewCV != C ? NewCV : nullptr;
   1087   }
   1088 
   1089   // Limit search depth.
   1090   if (Depth == 10)
   1091     return nullptr;
   1092 
   1093   // If multiple users are using the root value, proceed with
   1094   // simplification conservatively assuming that all elements
   1095   // are needed.
   1096   if (!V->hasOneUse()) {
   1097     // Quit if we find multiple users of a non-root value though.
   1098     // They'll be handled when it's their turn to be visited by
   1099     // the main instcombine process.
   1100     if (Depth != 0)
   1101       // TODO: Just compute the UndefElts information recursively.
   1102       return nullptr;
   1103 
   1104     // Conservatively assume that all elements are needed.
   1105     DemandedElts = EltMask;
   1106   }
   1107 
   1108   Instruction *I = dyn_cast<Instruction>(V);
   1109   if (!I) return nullptr;        // Only analyze instructions.
   1110 
   1111   bool MadeChange = false;
   1112   APInt UndefElts2(VWidth, 0);
   1113   APInt UndefElts3(VWidth, 0);
   1114   Value *TmpV;
   1115   switch (I->getOpcode()) {
   1116   default: break;
   1117 
   1118   case Instruction::InsertElement: {
   1119     // If this is a variable index, we don't know which element it overwrites.
   1120     // demand exactly the same input as we produce.
   1121     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
   1122     if (!Idx) {
   1123       // Note that we can't propagate undef elt info, because we don't know
   1124       // which elt is getting updated.
   1125       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
   1126                                         UndefElts2, Depth + 1);
   1127       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1128       break;
   1129     }
   1130 
   1131     // The element inserted overwrites whatever was there, so the input demanded
   1132     // set is simpler than the output set.
   1133     unsigned IdxNo = Idx->getZExtValue();
   1134     APInt PreInsertDemandedElts = DemandedElts;
   1135     if (IdxNo < VWidth)
   1136       PreInsertDemandedElts.clearBit(IdxNo);
   1137     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts,
   1138                                       UndefElts, Depth + 1);
   1139     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1140 
   1141     // If this is inserting an element that isn't demanded, remove this
   1142     // insertelement.
   1143     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
   1144       Worklist.Add(I);
   1145       return I->getOperand(0);
   1146     }
   1147 
   1148     // The inserted element is defined.
   1149     UndefElts.clearBit(IdxNo);
   1150     break;
   1151   }
   1152   case Instruction::ShuffleVector: {
   1153     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
   1154     unsigned LHSVWidth =
   1155       Shuffle->getOperand(0)->getType()->getVectorNumElements();
   1156     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
   1157     for (unsigned i = 0; i < VWidth; i++) {
   1158       if (DemandedElts[i]) {
   1159         unsigned MaskVal = Shuffle->getMaskValue(i);
   1160         if (MaskVal != -1u) {
   1161           assert(MaskVal < LHSVWidth * 2 &&
   1162                  "shufflevector mask index out of range!");
   1163           if (MaskVal < LHSVWidth)
   1164             LeftDemanded.setBit(MaskVal);
   1165           else
   1166             RightDemanded.setBit(MaskVal - LHSVWidth);
   1167         }
   1168       }
   1169     }
   1170 
   1171     APInt LHSUndefElts(LHSVWidth, 0);
   1172     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
   1173                                       LHSUndefElts, Depth + 1);
   1174     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1175 
   1176     APInt RHSUndefElts(LHSVWidth, 0);
   1177     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
   1178                                       RHSUndefElts, Depth + 1);
   1179     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1180 
   1181     bool NewUndefElts = false;
   1182     unsigned LHSIdx = -1u, LHSValIdx = -1u;
   1183     unsigned RHSIdx = -1u, RHSValIdx = -1u;
   1184     bool LHSUniform = true;
   1185     bool RHSUniform = true;
   1186     for (unsigned i = 0; i < VWidth; i++) {
   1187       unsigned MaskVal = Shuffle->getMaskValue(i);
   1188       if (MaskVal == -1u) {
   1189         UndefElts.setBit(i);
   1190       } else if (!DemandedElts[i]) {
   1191         NewUndefElts = true;
   1192         UndefElts.setBit(i);
   1193       } else if (MaskVal < LHSVWidth) {
   1194         if (LHSUndefElts[MaskVal]) {
   1195           NewUndefElts = true;
   1196           UndefElts.setBit(i);
   1197         } else {
   1198           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
   1199           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
   1200           LHSUniform = LHSUniform && (MaskVal == i);
   1201         }
   1202       } else {
   1203         if (RHSUndefElts[MaskVal - LHSVWidth]) {
   1204           NewUndefElts = true;
   1205           UndefElts.setBit(i);
   1206         } else {
   1207           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
   1208           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
   1209           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
   1210         }
   1211       }
   1212     }
   1213 
   1214     // Try to transform shuffle with constant vector and single element from
   1215     // this constant vector to single insertelement instruction.
   1216     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
   1217     // insertelement V, C[ci], ci-n
   1218     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
   1219       Value *Op = nullptr;
   1220       Constant *Value = nullptr;
   1221       unsigned Idx = -1u;
   1222 
   1223       // Find constant vector with the single element in shuffle (LHS or RHS).
   1224       if (LHSIdx < LHSVWidth && RHSUniform) {
   1225         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
   1226           Op = Shuffle->getOperand(1);
   1227           Value = CV->getOperand(LHSValIdx);
   1228           Idx = LHSIdx;
   1229         }
   1230       }
   1231       if (RHSIdx < LHSVWidth && LHSUniform) {
   1232         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
   1233           Op = Shuffle->getOperand(0);
   1234           Value = CV->getOperand(RHSValIdx);
   1235           Idx = RHSIdx;
   1236         }
   1237       }
   1238       // Found constant vector with single element - convert to insertelement.
   1239       if (Op && Value) {
   1240         Instruction *New = InsertElementInst::Create(
   1241             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
   1242             Shuffle->getName());
   1243         InsertNewInstWith(New, *Shuffle);
   1244         return New;
   1245       }
   1246     }
   1247     if (NewUndefElts) {
   1248       // Add additional discovered undefs.
   1249       SmallVector<Constant*, 16> Elts;
   1250       for (unsigned i = 0; i < VWidth; ++i) {
   1251         if (UndefElts[i])
   1252           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
   1253         else
   1254           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
   1255                                           Shuffle->getMaskValue(i)));
   1256       }
   1257       I->setOperand(2, ConstantVector::get(Elts));
   1258       MadeChange = true;
   1259     }
   1260     break;
   1261   }
   1262   case Instruction::Select: {
   1263     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
   1264     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
   1265       for (unsigned i = 0; i < VWidth; i++) {
   1266         Constant *CElt = CV->getAggregateElement(i);
   1267         // Method isNullValue always returns false when called on a
   1268         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
   1269         // to avoid propagating incorrect information.
   1270         if (isa<ConstantExpr>(CElt))
   1271           continue;
   1272         if (CElt->isNullValue())
   1273           LeftDemanded.clearBit(i);
   1274         else
   1275           RightDemanded.clearBit(i);
   1276       }
   1277     }
   1278 
   1279     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
   1280                                       Depth + 1);
   1281     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1282 
   1283     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
   1284                                       UndefElts2, Depth + 1);
   1285     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
   1286 
   1287     // Output elements are undefined if both are undefined.
   1288     UndefElts &= UndefElts2;
   1289     break;
   1290   }
   1291   case Instruction::BitCast: {
   1292     // Vector->vector casts only.
   1293     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
   1294     if (!VTy) break;
   1295     unsigned InVWidth = VTy->getNumElements();
   1296     APInt InputDemandedElts(InVWidth, 0);
   1297     UndefElts2 = APInt(InVWidth, 0);
   1298     unsigned Ratio;
   1299 
   1300     if (VWidth == InVWidth) {
   1301       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
   1302       // elements as are demanded of us.
   1303       Ratio = 1;
   1304       InputDemandedElts = DemandedElts;
   1305     } else if ((VWidth % InVWidth) == 0) {
   1306       // If the number of elements in the output is a multiple of the number of
   1307       // elements in the input then an input element is live if any of the
   1308       // corresponding output elements are live.
   1309       Ratio = VWidth / InVWidth;
   1310       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
   1311         if (DemandedElts[OutIdx])
   1312           InputDemandedElts.setBit(OutIdx / Ratio);
   1313     } else if ((InVWidth % VWidth) == 0) {
   1314       // If the number of elements in the input is a multiple of the number of
   1315       // elements in the output then an input element is live if the
   1316       // corresponding output element is live.
   1317       Ratio = InVWidth / VWidth;
   1318       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
   1319         if (DemandedElts[InIdx / Ratio])
   1320           InputDemandedElts.setBit(InIdx);
   1321     } else {
   1322       // Unsupported so far.
   1323       break;
   1324     }
   1325 
   1326     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
   1327                                       UndefElts2, Depth + 1);
   1328     if (TmpV) {
   1329       I->setOperand(0, TmpV);
   1330       MadeChange = true;
   1331     }
   1332 
   1333     if (VWidth == InVWidth) {
   1334       UndefElts = UndefElts2;
   1335     } else if ((VWidth % InVWidth) == 0) {
   1336       // If the number of elements in the output is a multiple of the number of
   1337       // elements in the input then an output element is undef if the
   1338       // corresponding input element is undef.
   1339       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
   1340         if (UndefElts2[OutIdx / Ratio])
   1341           UndefElts.setBit(OutIdx);
   1342     } else if ((InVWidth % VWidth) == 0) {
   1343       // If the number of elements in the input is a multiple of the number of
   1344       // elements in the output then an output element is undef if all of the
   1345       // corresponding input elements are undef.
   1346       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
   1347         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
   1348         if (SubUndef.countPopulation() == Ratio)
   1349           UndefElts.setBit(OutIdx);
   1350       }
   1351     } else {
   1352       llvm_unreachable("Unimp");
   1353     }
   1354     break;
   1355   }
   1356   case Instruction::And:
   1357   case Instruction::Or:
   1358   case Instruction::Xor:
   1359   case Instruction::Add:
   1360   case Instruction::Sub:
   1361   case Instruction::Mul:
   1362     // div/rem demand all inputs, because they don't want divide by zero.
   1363     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
   1364                                       Depth + 1);
   1365     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1366     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
   1367                                       UndefElts2, Depth + 1);
   1368     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1369 
   1370     // Output elements are undefined if both are undefined.  Consider things
   1371     // like undef&0.  The result is known zero, not undef.
   1372     UndefElts &= UndefElts2;
   1373     break;
   1374   case Instruction::FPTrunc:
   1375   case Instruction::FPExt:
   1376     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
   1377                                       Depth + 1);
   1378     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1379     break;
   1380 
   1381   case Instruction::Call: {
   1382     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
   1383     if (!II) break;
   1384     switch (II->getIntrinsicID()) {
   1385     case Intrinsic::x86_xop_vfrcz_ss:
   1386     case Intrinsic::x86_xop_vfrcz_sd:
   1387       // The instructions for these intrinsics are speced to zero upper bits not
   1388       // pass them through like other scalar intrinsics. So we shouldn't just
   1389       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
   1390       // Instead we should return a zero vector.
   1391       if (!DemandedElts[0]) {
   1392         Worklist.Add(II);
   1393         return ConstantAggregateZero::get(II->getType());
   1394       }
   1395 
   1396       // Only the lower element is used.
   1397       DemandedElts = 1;
   1398       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1399                                         UndefElts, Depth + 1);
   1400       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1401 
   1402       // Only the lower element is undefined. The high elements are zero.
   1403       UndefElts = UndefElts[0];
   1404       break;
   1405 
   1406     // Unary scalar-as-vector operations that work column-wise.
   1407     case Intrinsic::x86_sse_rcp_ss:
   1408     case Intrinsic::x86_sse_rsqrt_ss:
   1409       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1410                                         UndefElts, Depth + 1);
   1411       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1412 
   1413       // If lowest element of a scalar op isn't used then use Arg0.
   1414       if (!DemandedElts[0]) {
   1415         Worklist.Add(II);
   1416         return II->getArgOperand(0);
   1417       }
   1418       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
   1419       // checks).
   1420       break;
   1421 
   1422     // Binary scalar-as-vector operations that work column-wise. The high
   1423     // elements come from operand 0. The low element is a function of both
   1424     // operands.
   1425     case Intrinsic::x86_sse_min_ss:
   1426     case Intrinsic::x86_sse_max_ss:
   1427     case Intrinsic::x86_sse_cmp_ss:
   1428     case Intrinsic::x86_sse2_min_sd:
   1429     case Intrinsic::x86_sse2_max_sd:
   1430     case Intrinsic::x86_sse2_cmp_sd: {
   1431       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1432                                         UndefElts, Depth + 1);
   1433       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1434 
   1435       // If lowest element of a scalar op isn't used then use Arg0.
   1436       if (!DemandedElts[0]) {
   1437         Worklist.Add(II);
   1438         return II->getArgOperand(0);
   1439       }
   1440 
   1441       // Only lower element is used for operand 1.
   1442       DemandedElts = 1;
   1443       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
   1444                                         UndefElts2, Depth + 1);
   1445       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1446 
   1447       // Lower element is undefined if both lower elements are undefined.
   1448       // Consider things like undef&0.  The result is known zero, not undef.
   1449       if (!UndefElts2[0])
   1450         UndefElts.clearBit(0);
   1451 
   1452       break;
   1453     }
   1454 
   1455     // Binary scalar-as-vector operations that work column-wise. The high
   1456     // elements come from operand 0 and the low element comes from operand 1.
   1457     case Intrinsic::x86_sse41_round_ss:
   1458     case Intrinsic::x86_sse41_round_sd: {
   1459       // Don't use the low element of operand 0.
   1460       APInt DemandedElts2 = DemandedElts;
   1461       DemandedElts2.clearBit(0);
   1462       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
   1463                                         UndefElts, Depth + 1);
   1464       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1465 
   1466       // If lowest element of a scalar op isn't used then use Arg0.
   1467       if (!DemandedElts[0]) {
   1468         Worklist.Add(II);
   1469         return II->getArgOperand(0);
   1470       }
   1471 
   1472       // Only lower element is used for operand 1.
   1473       DemandedElts = 1;
   1474       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
   1475                                         UndefElts2, Depth + 1);
   1476       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1477 
   1478       // Take the high undef elements from operand 0 and take the lower element
   1479       // from operand 1.
   1480       UndefElts.clearBit(0);
   1481       UndefElts |= UndefElts2[0];
   1482       break;
   1483     }
   1484 
   1485     // Three input scalar-as-vector operations that work column-wise. The high
   1486     // elements come from operand 0 and the low element is a function of all
   1487     // three inputs.
   1488     case Intrinsic::x86_avx512_mask_add_ss_round:
   1489     case Intrinsic::x86_avx512_mask_div_ss_round:
   1490     case Intrinsic::x86_avx512_mask_mul_ss_round:
   1491     case Intrinsic::x86_avx512_mask_sub_ss_round:
   1492     case Intrinsic::x86_avx512_mask_max_ss_round:
   1493     case Intrinsic::x86_avx512_mask_min_ss_round:
   1494     case Intrinsic::x86_avx512_mask_add_sd_round:
   1495     case Intrinsic::x86_avx512_mask_div_sd_round:
   1496     case Intrinsic::x86_avx512_mask_mul_sd_round:
   1497     case Intrinsic::x86_avx512_mask_sub_sd_round:
   1498     case Intrinsic::x86_avx512_mask_max_sd_round:
   1499     case Intrinsic::x86_avx512_mask_min_sd_round:
   1500       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1501                                         UndefElts, Depth + 1);
   1502       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1503 
   1504       // If lowest element of a scalar op isn't used then use Arg0.
   1505       if (!DemandedElts[0]) {
   1506         Worklist.Add(II);
   1507         return II->getArgOperand(0);
   1508       }
   1509 
   1510       // Only lower element is used for operand 1 and 2.
   1511       DemandedElts = 1;
   1512       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
   1513                                         UndefElts2, Depth + 1);
   1514       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1515       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
   1516                                         UndefElts3, Depth + 1);
   1517       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
   1518 
   1519       // Lower element is undefined if all three lower elements are undefined.
   1520       // Consider things like undef&0.  The result is known zero, not undef.
   1521       if (!UndefElts2[0] || !UndefElts3[0])
   1522         UndefElts.clearBit(0);
   1523 
   1524       break;
   1525 
   1526     case Intrinsic::x86_sse2_packssdw_128:
   1527     case Intrinsic::x86_sse2_packsswb_128:
   1528     case Intrinsic::x86_sse2_packuswb_128:
   1529     case Intrinsic::x86_sse41_packusdw:
   1530     case Intrinsic::x86_avx2_packssdw:
   1531     case Intrinsic::x86_avx2_packsswb:
   1532     case Intrinsic::x86_avx2_packusdw:
   1533     case Intrinsic::x86_avx2_packuswb:
   1534     case Intrinsic::x86_avx512_packssdw_512:
   1535     case Intrinsic::x86_avx512_packsswb_512:
   1536     case Intrinsic::x86_avx512_packusdw_512:
   1537     case Intrinsic::x86_avx512_packuswb_512: {
   1538       auto *Ty0 = II->getArgOperand(0)->getType();
   1539       unsigned InnerVWidth = Ty0->getVectorNumElements();
   1540       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
   1541 
   1542       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
   1543       unsigned VWidthPerLane = VWidth / NumLanes;
   1544       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
   1545 
   1546       // Per lane, pack the elements of the first input and then the second.
   1547       // e.g.
   1548       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
   1549       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
   1550       for (int OpNum = 0; OpNum != 2; ++OpNum) {
   1551         APInt OpDemandedElts(InnerVWidth, 0);
   1552         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
   1553           unsigned LaneIdx = Lane * VWidthPerLane;
   1554           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
   1555             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
   1556             if (DemandedElts[Idx])
   1557               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
   1558           }
   1559         }
   1560 
   1561         // Demand elements from the operand.
   1562         auto *Op = II->getArgOperand(OpNum);
   1563         APInt OpUndefElts(InnerVWidth, 0);
   1564         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
   1565                                           Depth + 1);
   1566         if (TmpV) {
   1567           II->setArgOperand(OpNum, TmpV);
   1568           MadeChange = true;
   1569         }
   1570 
   1571         // Pack the operand's UNDEF elements, one lane at a time.
   1572         OpUndefElts = OpUndefElts.zext(VWidth);
   1573         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
   1574           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
   1575           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
   1576           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
   1577           UndefElts |= LaneElts;
   1578         }
   1579       }
   1580       break;
   1581     }
   1582 
   1583     // PSHUFB
   1584     case Intrinsic::x86_ssse3_pshuf_b_128:
   1585     case Intrinsic::x86_avx2_pshuf_b:
   1586     case Intrinsic::x86_avx512_pshuf_b_512:
   1587     // PERMILVAR
   1588     case Intrinsic::x86_avx_vpermilvar_ps:
   1589     case Intrinsic::x86_avx_vpermilvar_ps_256:
   1590     case Intrinsic::x86_avx512_vpermilvar_ps_512:
   1591     case Intrinsic::x86_avx_vpermilvar_pd:
   1592     case Intrinsic::x86_avx_vpermilvar_pd_256:
   1593     case Intrinsic::x86_avx512_vpermilvar_pd_512:
   1594     // PERMV
   1595     case Intrinsic::x86_avx2_permd:
   1596     case Intrinsic::x86_avx2_permps: {
   1597       Value *Op1 = II->getArgOperand(1);
   1598       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
   1599                                         Depth + 1);
   1600       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1601       break;
   1602     }
   1603 
   1604     // SSE4A instructions leave the upper 64-bits of the 128-bit result
   1605     // in an undefined state.
   1606     case Intrinsic::x86_sse4a_extrq:
   1607     case Intrinsic::x86_sse4a_extrqi:
   1608     case Intrinsic::x86_sse4a_insertq:
   1609     case Intrinsic::x86_sse4a_insertqi:
   1610       UndefElts.setHighBits(VWidth / 2);
   1611       break;
   1612     case Intrinsic::amdgcn_buffer_load:
   1613     case Intrinsic::amdgcn_buffer_load_format:
   1614       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
   1615     default: {
   1616       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
   1617         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
   1618 
   1619       break;
   1620     }
   1621     }
   1622     break;
   1623   }
   1624   }
   1625   return MadeChange ? I : nullptr;
   1626 }
   1627