Home | History | Annotate | Download | only in GlobalISel
      1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements the IRTranslator class.
     11 //===----------------------------------------------------------------------===//
     12 
     13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
     14 #include "llvm/ADT/PostOrderIterator.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/ScopeExit.h"
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
     20 #include "llvm/CodeGen/Analysis.h"
     21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
     22 #include "llvm/CodeGen/LowLevelType.h"
     23 #include "llvm/CodeGen/MachineBasicBlock.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineOperand.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/StackProtector.h"
     31 #include "llvm/CodeGen/TargetFrameLowering.h"
     32 #include "llvm/CodeGen/TargetLowering.h"
     33 #include "llvm/CodeGen/TargetPassConfig.h"
     34 #include "llvm/CodeGen/TargetRegisterInfo.h"
     35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     36 #include "llvm/IR/BasicBlock.h"
     37 #include "llvm/IR/CFG.h"
     38 #include "llvm/IR/Constant.h"
     39 #include "llvm/IR/Constants.h"
     40 #include "llvm/IR/DataLayout.h"
     41 #include "llvm/IR/DebugInfo.h"
     42 #include "llvm/IR/DerivedTypes.h"
     43 #include "llvm/IR/Function.h"
     44 #include "llvm/IR/GetElementPtrTypeIterator.h"
     45 #include "llvm/IR/InlineAsm.h"
     46 #include "llvm/IR/InstrTypes.h"
     47 #include "llvm/IR/Instructions.h"
     48 #include "llvm/IR/IntrinsicInst.h"
     49 #include "llvm/IR/Intrinsics.h"
     50 #include "llvm/IR/LLVMContext.h"
     51 #include "llvm/IR/Metadata.h"
     52 #include "llvm/IR/Type.h"
     53 #include "llvm/IR/User.h"
     54 #include "llvm/IR/Value.h"
     55 #include "llvm/MC/MCContext.h"
     56 #include "llvm/Pass.h"
     57 #include "llvm/Support/Casting.h"
     58 #include "llvm/Support/CodeGen.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Support/ErrorHandling.h"
     61 #include "llvm/Support/LowLevelTypeImpl.h"
     62 #include "llvm/Support/MathExtras.h"
     63 #include "llvm/Support/raw_ostream.h"
     64 #include "llvm/Target/TargetIntrinsicInfo.h"
     65 #include "llvm/Target/TargetMachine.h"
     66 #include <algorithm>
     67 #include <cassert>
     68 #include <cstdint>
     69 #include <iterator>
     70 #include <string>
     71 #include <utility>
     72 #include <vector>
     73 
     74 #define DEBUG_TYPE "irtranslator"
     75 
     76 using namespace llvm;
     77 
     78 char IRTranslator::ID = 0;
     79 
     80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
     81                 false, false)
     82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
     83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
     84                 false, false)
     85 
     86 static void reportTranslationError(MachineFunction &MF,
     87                                    const TargetPassConfig &TPC,
     88                                    OptimizationRemarkEmitter &ORE,
     89                                    OptimizationRemarkMissed &R) {
     90   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
     91 
     92   // Print the function name explicitly if we don't have a debug location (which
     93   // makes the diagnostic less useful) or if we're going to emit a raw error.
     94   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
     95     R << (" (in function: " + MF.getName() + ")").str();
     96 
     97   if (TPC.isGlobalISelAbortEnabled())
     98     report_fatal_error(R.getMsg());
     99   else
    100     ORE.emit(R);
    101 }
    102 
    103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
    104   initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
    105 }
    106 
    107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
    108   AU.addRequired<StackProtector>();
    109   AU.addRequired<TargetPassConfig>();
    110   getSelectionDAGFallbackAnalysisUsage(AU);
    111   MachineFunctionPass::getAnalysisUsage(AU);
    112 }
    113 
    114 static void computeValueLLTs(const DataLayout &DL, Type &Ty,
    115                              SmallVectorImpl<LLT> &ValueTys,
    116                              SmallVectorImpl<uint64_t> *Offsets = nullptr,
    117                              uint64_t StartingOffset = 0) {
    118   // Given a struct type, recursively traverse the elements.
    119   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
    120     const StructLayout *SL = DL.getStructLayout(STy);
    121     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
    122       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
    123                        StartingOffset + SL->getElementOffset(I));
    124     return;
    125   }
    126   // Given an array type, recursively traverse the elements.
    127   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
    128     Type *EltTy = ATy->getElementType();
    129     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    130     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
    131       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
    132                        StartingOffset + i * EltSize);
    133     return;
    134   }
    135   // Interpret void as zero return values.
    136   if (Ty.isVoidTy())
    137     return;
    138   // Base case: we can get an LLT for this LLVM IR type.
    139   ValueTys.push_back(getLLTForType(Ty, DL));
    140   if (Offsets != nullptr)
    141     Offsets->push_back(StartingOffset * 8);
    142 }
    143 
    144 IRTranslator::ValueToVRegInfo::VRegListT &
    145 IRTranslator::allocateVRegs(const Value &Val) {
    146   assert(!VMap.contains(Val) && "Value already allocated in VMap");
    147   auto *Regs = VMap.getVRegs(Val);
    148   auto *Offsets = VMap.getOffsets(Val);
    149   SmallVector<LLT, 4> SplitTys;
    150   computeValueLLTs(*DL, *Val.getType(), SplitTys,
    151                    Offsets->empty() ? Offsets : nullptr);
    152   for (unsigned i = 0; i < SplitTys.size(); ++i)
    153     Regs->push_back(0);
    154   return *Regs;
    155 }
    156 
    157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
    158   auto VRegsIt = VMap.findVRegs(Val);
    159   if (VRegsIt != VMap.vregs_end())
    160     return *VRegsIt->second;
    161 
    162   if (Val.getType()->isVoidTy())
    163     return *VMap.getVRegs(Val);
    164 
    165   // Create entry for this type.
    166   auto *VRegs = VMap.getVRegs(Val);
    167   auto *Offsets = VMap.getOffsets(Val);
    168 
    169   assert(Val.getType()->isSized() &&
    170          "Don't know how to create an empty vreg");
    171 
    172   SmallVector<LLT, 4> SplitTys;
    173   computeValueLLTs(*DL, *Val.getType(), SplitTys,
    174                    Offsets->empty() ? Offsets : nullptr);
    175 
    176   if (!isa<Constant>(Val)) {
    177     for (auto Ty : SplitTys)
    178       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
    179     return *VRegs;
    180   }
    181 
    182   if (Val.getType()->isAggregateType()) {
    183     // UndefValue, ConstantAggregateZero
    184     auto &C = cast<Constant>(Val);
    185     unsigned Idx = 0;
    186     while (auto Elt = C.getAggregateElement(Idx++)) {
    187       auto EltRegs = getOrCreateVRegs(*Elt);
    188       std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
    189     }
    190   } else {
    191     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
    192     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
    193     bool Success = translate(cast<Constant>(Val), VRegs->front());
    194     if (!Success) {
    195       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
    196                                  MF->getFunction().getSubprogram(),
    197                                  &MF->getFunction().getEntryBlock());
    198       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
    199       reportTranslationError(*MF, *TPC, *ORE, R);
    200       return *VRegs;
    201     }
    202   }
    203 
    204   return *VRegs;
    205 }
    206 
    207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
    208   if (FrameIndices.find(&AI) != FrameIndices.end())
    209     return FrameIndices[&AI];
    210 
    211   unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
    212   unsigned Size =
    213       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
    214 
    215   // Always allocate at least one byte.
    216   Size = std::max(Size, 1u);
    217 
    218   unsigned Alignment = AI.getAlignment();
    219   if (!Alignment)
    220     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
    221 
    222   int &FI = FrameIndices[&AI];
    223   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
    224   return FI;
    225 }
    226 
    227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
    228   unsigned Alignment = 0;
    229   Type *ValTy = nullptr;
    230   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
    231     Alignment = SI->getAlignment();
    232     ValTy = SI->getValueOperand()->getType();
    233   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    234     Alignment = LI->getAlignment();
    235     ValTy = LI->getType();
    236   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
    237     // TODO(PR27168): This instruction has no alignment attribute, but unlike
    238     // the default alignment for load/store, the default here is to assume
    239     // it has NATURAL alignment, not DataLayout-specified alignment.
    240     const DataLayout &DL = AI->getModule()->getDataLayout();
    241     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
    242     ValTy = AI->getCompareOperand()->getType();
    243   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
    244     // TODO(PR27168): This instruction has no alignment attribute, but unlike
    245     // the default alignment for load/store, the default here is to assume
    246     // it has NATURAL alignment, not DataLayout-specified alignment.
    247     const DataLayout &DL = AI->getModule()->getDataLayout();
    248     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
    249     ValTy = AI->getType();
    250   } else {
    251     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
    252     R << "unable to translate memop: " << ore::NV("Opcode", &I);
    253     reportTranslationError(*MF, *TPC, *ORE, R);
    254     return 1;
    255   }
    256 
    257   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
    258 }
    259 
    260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
    261   MachineBasicBlock *&MBB = BBToMBB[&BB];
    262   assert(MBB && "BasicBlock was not encountered before");
    263   return *MBB;
    264 }
    265 
    266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
    267   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
    268   MachinePreds[Edge].push_back(NewPred);
    269 }
    270 
    271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
    272                                      MachineIRBuilder &MIRBuilder) {
    273   // FIXME: handle signed/unsigned wrapping flags.
    274 
    275   // Get or create a virtual register for each value.
    276   // Unless the value is a Constant => loadimm cst?
    277   // or inline constant each time?
    278   // Creation of a virtual register needs to have a size.
    279   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
    280   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
    281   unsigned Res = getOrCreateVReg(U);
    282   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
    283   return true;
    284 }
    285 
    286 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
    287   // -0.0 - X --> G_FNEG
    288   if (isa<Constant>(U.getOperand(0)) &&
    289       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
    290     MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
    291         .addDef(getOrCreateVReg(U))
    292         .addUse(getOrCreateVReg(*U.getOperand(1)));
    293     return true;
    294   }
    295   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
    296 }
    297 
    298 bool IRTranslator::translateCompare(const User &U,
    299                                     MachineIRBuilder &MIRBuilder) {
    300   const CmpInst *CI = dyn_cast<CmpInst>(&U);
    301   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
    302   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
    303   unsigned Res = getOrCreateVReg(U);
    304   CmpInst::Predicate Pred =
    305       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
    306                                     cast<ConstantExpr>(U).getPredicate());
    307   if (CmpInst::isIntPredicate(Pred))
    308     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
    309   else if (Pred == CmpInst::FCMP_FALSE)
    310     MIRBuilder.buildCopy(
    311         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
    312   else if (Pred == CmpInst::FCMP_TRUE)
    313     MIRBuilder.buildCopy(
    314         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
    315   else
    316     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
    317 
    318   return true;
    319 }
    320 
    321 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
    322   const ReturnInst &RI = cast<ReturnInst>(U);
    323   const Value *Ret = RI.getReturnValue();
    324   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
    325     Ret = nullptr;
    326   // The target may mess up with the insertion point, but
    327   // this is not important as a return is the last instruction
    328   // of the block anyway.
    329 
    330   // FIXME: this interface should simplify when CallLowering gets adapted to
    331   // multiple VRegs per Value.
    332   unsigned VReg = Ret ? packRegs(*Ret, MIRBuilder) : 0;
    333   return CLI->lowerReturn(MIRBuilder, Ret, VReg);
    334 }
    335 
    336 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
    337   const BranchInst &BrInst = cast<BranchInst>(U);
    338   unsigned Succ = 0;
    339   if (!BrInst.isUnconditional()) {
    340     // We want a G_BRCOND to the true BB followed by an unconditional branch.
    341     unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
    342     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
    343     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
    344     MIRBuilder.buildBrCond(Tst, TrueBB);
    345   }
    346 
    347   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
    348   MachineBasicBlock &TgtBB = getMBB(BrTgt);
    349   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
    350 
    351   // If the unconditional target is the layout successor, fallthrough.
    352   if (!CurBB.isLayoutSuccessor(&TgtBB))
    353     MIRBuilder.buildBr(TgtBB);
    354 
    355   // Link successors.
    356   for (const BasicBlock *Succ : BrInst.successors())
    357     CurBB.addSuccessor(&getMBB(*Succ));
    358   return true;
    359 }
    360 
    361 bool IRTranslator::translateSwitch(const User &U,
    362                                    MachineIRBuilder &MIRBuilder) {
    363   // For now, just translate as a chain of conditional branches.
    364   // FIXME: could we share most of the logic/code in
    365   // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
    366   // At first sight, it seems most of the logic in there is independent of
    367   // SelectionDAG-specifics and a lot of work went in to optimize switch
    368   // lowering in there.
    369 
    370   const SwitchInst &SwInst = cast<SwitchInst>(U);
    371   const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
    372   const BasicBlock *OrigBB = SwInst.getParent();
    373 
    374   LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
    375   for (auto &CaseIt : SwInst.cases()) {
    376     const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
    377     const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
    378     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
    379     MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
    380     const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
    381     MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
    382 
    383     MIRBuilder.buildBrCond(Tst, TrueMBB);
    384     CurMBB.addSuccessor(&TrueMBB);
    385     addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
    386 
    387     MachineBasicBlock *FalseMBB =
    388         MF->CreateMachineBasicBlock(SwInst.getParent());
    389     // Insert the comparison blocks one after the other.
    390     MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
    391     MIRBuilder.buildBr(*FalseMBB);
    392     CurMBB.addSuccessor(FalseMBB);
    393 
    394     MIRBuilder.setMBB(*FalseMBB);
    395   }
    396   // handle default case
    397   const BasicBlock *DefaultBB = SwInst.getDefaultDest();
    398   MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
    399   MIRBuilder.buildBr(DefaultMBB);
    400   MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
    401   CurMBB.addSuccessor(&DefaultMBB);
    402   addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
    403 
    404   return true;
    405 }
    406 
    407 bool IRTranslator::translateIndirectBr(const User &U,
    408                                        MachineIRBuilder &MIRBuilder) {
    409   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
    410 
    411   const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
    412   MIRBuilder.buildBrIndirect(Tgt);
    413 
    414   // Link successors.
    415   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
    416   for (const BasicBlock *Succ : BrInst.successors())
    417     CurBB.addSuccessor(&getMBB(*Succ));
    418 
    419   return true;
    420 }
    421 
    422 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
    423   const LoadInst &LI = cast<LoadInst>(U);
    424 
    425   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
    426                                : MachineMemOperand::MONone;
    427   Flags |= MachineMemOperand::MOLoad;
    428 
    429   if (DL->getTypeStoreSize(LI.getType()) == 0)
    430     return true;
    431 
    432   ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
    433   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
    434   unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
    435 
    436   for (unsigned i = 0; i < Regs.size(); ++i) {
    437     unsigned Addr = 0;
    438     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
    439 
    440     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
    441     unsigned BaseAlign = getMemOpAlignment(LI);
    442     auto MMO = MF->getMachineMemOperand(
    443         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
    444         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
    445         LI.getSyncScopeID(), LI.getOrdering());
    446     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
    447   }
    448 
    449   return true;
    450 }
    451 
    452 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
    453   const StoreInst &SI = cast<StoreInst>(U);
    454   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
    455                                : MachineMemOperand::MONone;
    456   Flags |= MachineMemOperand::MOStore;
    457 
    458   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
    459     return true;
    460 
    461   ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
    462   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
    463   unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
    464 
    465   for (unsigned i = 0; i < Vals.size(); ++i) {
    466     unsigned Addr = 0;
    467     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
    468 
    469     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
    470     unsigned BaseAlign = getMemOpAlignment(SI);
    471     auto MMO = MF->getMachineMemOperand(
    472         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
    473         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
    474         SI.getSyncScopeID(), SI.getOrdering());
    475     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
    476   }
    477   return true;
    478 }
    479 
    480 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
    481   const Value *Src = U.getOperand(0);
    482   Type *Int32Ty = Type::getInt32Ty(U.getContext());
    483 
    484   // getIndexedOffsetInType is designed for GEPs, so the first index is the
    485   // usual array element rather than looking into the actual aggregate.
    486   SmallVector<Value *, 1> Indices;
    487   Indices.push_back(ConstantInt::get(Int32Ty, 0));
    488 
    489   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
    490     for (auto Idx : EVI->indices())
    491       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
    492   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
    493     for (auto Idx : IVI->indices())
    494       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
    495   } else {
    496     for (unsigned i = 1; i < U.getNumOperands(); ++i)
    497       Indices.push_back(U.getOperand(i));
    498   }
    499 
    500   return 8 * static_cast<uint64_t>(
    501                  DL.getIndexedOffsetInType(Src->getType(), Indices));
    502 }
    503 
    504 bool IRTranslator::translateExtractValue(const User &U,
    505                                          MachineIRBuilder &MIRBuilder) {
    506   const Value *Src = U.getOperand(0);
    507   uint64_t Offset = getOffsetFromIndices(U, *DL);
    508   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
    509   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
    510   unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
    511                  Offsets.begin();
    512   auto &DstRegs = allocateVRegs(U);
    513 
    514   for (unsigned i = 0; i < DstRegs.size(); ++i)
    515     DstRegs[i] = SrcRegs[Idx++];
    516 
    517   return true;
    518 }
    519 
    520 bool IRTranslator::translateInsertValue(const User &U,
    521                                         MachineIRBuilder &MIRBuilder) {
    522   const Value *Src = U.getOperand(0);
    523   uint64_t Offset = getOffsetFromIndices(U, *DL);
    524   auto &DstRegs = allocateVRegs(U);
    525   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
    526   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
    527   ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
    528   auto InsertedIt = InsertedRegs.begin();
    529 
    530   for (unsigned i = 0; i < DstRegs.size(); ++i) {
    531     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
    532       DstRegs[i] = *InsertedIt++;
    533     else
    534       DstRegs[i] = SrcRegs[i];
    535   }
    536 
    537   return true;
    538 }
    539 
    540 bool IRTranslator::translateSelect(const User &U,
    541                                    MachineIRBuilder &MIRBuilder) {
    542   unsigned Tst = getOrCreateVReg(*U.getOperand(0));
    543   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
    544   ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
    545   ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
    546 
    547   for (unsigned i = 0; i < ResRegs.size(); ++i)
    548     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
    549 
    550   return true;
    551 }
    552 
    553 bool IRTranslator::translateBitCast(const User &U,
    554                                     MachineIRBuilder &MIRBuilder) {
    555   // If we're bitcasting to the source type, we can reuse the source vreg.
    556   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
    557       getLLTForType(*U.getType(), *DL)) {
    558     unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
    559     auto &Regs = *VMap.getVRegs(U);
    560     // If we already assigned a vreg for this bitcast, we can't change that.
    561     // Emit a copy to satisfy the users we already emitted.
    562     if (!Regs.empty())
    563       MIRBuilder.buildCopy(Regs[0], SrcReg);
    564     else {
    565       Regs.push_back(SrcReg);
    566       VMap.getOffsets(U)->push_back(0);
    567     }
    568     return true;
    569   }
    570   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
    571 }
    572 
    573 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
    574                                  MachineIRBuilder &MIRBuilder) {
    575   unsigned Op = getOrCreateVReg(*U.getOperand(0));
    576   unsigned Res = getOrCreateVReg(U);
    577   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
    578   return true;
    579 }
    580 
    581 bool IRTranslator::translateGetElementPtr(const User &U,
    582                                           MachineIRBuilder &MIRBuilder) {
    583   // FIXME: support vector GEPs.
    584   if (U.getType()->isVectorTy())
    585     return false;
    586 
    587   Value &Op0 = *U.getOperand(0);
    588   unsigned BaseReg = getOrCreateVReg(Op0);
    589   Type *PtrIRTy = Op0.getType();
    590   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
    591   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
    592   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
    593 
    594   int64_t Offset = 0;
    595   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
    596        GTI != E; ++GTI) {
    597     const Value *Idx = GTI.getOperand();
    598     if (StructType *StTy = GTI.getStructTypeOrNull()) {
    599       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
    600       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
    601       continue;
    602     } else {
    603       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
    604 
    605       // If this is a scalar constant or a splat vector of constants,
    606       // handle it quickly.
    607       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
    608         Offset += ElementSize * CI->getSExtValue();
    609         continue;
    610       }
    611 
    612       if (Offset != 0) {
    613         unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
    614         unsigned OffsetReg =
    615             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
    616         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
    617 
    618         BaseReg = NewBaseReg;
    619         Offset = 0;
    620       }
    621 
    622       unsigned IdxReg = getOrCreateVReg(*Idx);
    623       if (MRI->getType(IdxReg) != OffsetTy) {
    624         unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
    625         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
    626         IdxReg = NewIdxReg;
    627       }
    628 
    629       // N = N + Idx * ElementSize;
    630       // Avoid doing it for ElementSize of 1.
    631       unsigned GepOffsetReg;
    632       if (ElementSize != 1) {
    633         unsigned ElementSizeReg =
    634             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
    635 
    636         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
    637         MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
    638       } else
    639         GepOffsetReg = IdxReg;
    640 
    641       unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
    642       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
    643       BaseReg = NewBaseReg;
    644     }
    645   }
    646 
    647   if (Offset != 0) {
    648     unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
    649     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
    650     return true;
    651   }
    652 
    653   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
    654   return true;
    655 }
    656 
    657 bool IRTranslator::translateMemfunc(const CallInst &CI,
    658                                     MachineIRBuilder &MIRBuilder,
    659                                     unsigned ID) {
    660   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
    661   Type *DstTy = CI.getArgOperand(0)->getType();
    662   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
    663       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
    664     return false;
    665 
    666   SmallVector<CallLowering::ArgInfo, 8> Args;
    667   for (int i = 0; i < 3; ++i) {
    668     const auto &Arg = CI.getArgOperand(i);
    669     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
    670   }
    671 
    672   const char *Callee;
    673   switch (ID) {
    674   case Intrinsic::memmove:
    675   case Intrinsic::memcpy: {
    676     Type *SrcTy = CI.getArgOperand(1)->getType();
    677     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
    678       return false;
    679     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
    680     break;
    681   }
    682   case Intrinsic::memset:
    683     Callee = "memset";
    684     break;
    685   default:
    686     return false;
    687   }
    688 
    689   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
    690                         MachineOperand::CreateES(Callee),
    691                         CallLowering::ArgInfo(0, CI.getType()), Args);
    692 }
    693 
    694 void IRTranslator::getStackGuard(unsigned DstReg,
    695                                  MachineIRBuilder &MIRBuilder) {
    696   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    697   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
    698   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
    699   MIB.addDef(DstReg);
    700 
    701   auto &TLI = *MF->getSubtarget().getTargetLowering();
    702   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
    703   if (!Global)
    704     return;
    705 
    706   MachinePointerInfo MPInfo(Global);
    707   MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
    708   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
    709                MachineMemOperand::MODereferenceable;
    710   *MemRefs =
    711       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
    712                                DL->getPointerABIAlignment(0));
    713   MIB.setMemRefs(MemRefs, MemRefs + 1);
    714 }
    715 
    716 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
    717                                               MachineIRBuilder &MIRBuilder) {
    718   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
    719   auto MIB = MIRBuilder.buildInstr(Op)
    720                  .addDef(ResRegs[0])
    721                  .addDef(ResRegs[1])
    722                  .addUse(getOrCreateVReg(*CI.getOperand(0)))
    723                  .addUse(getOrCreateVReg(*CI.getOperand(1)));
    724 
    725   if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
    726     unsigned Zero = getOrCreateVReg(
    727         *Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
    728     MIB.addUse(Zero);
    729   }
    730 
    731   return true;
    732 }
    733 
    734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
    735                                            MachineIRBuilder &MIRBuilder) {
    736   switch (ID) {
    737   default:
    738     break;
    739   case Intrinsic::lifetime_start:
    740   case Intrinsic::lifetime_end:
    741     // Stack coloring is not enabled in O0 (which we care about now) so we can
    742     // drop these. Make sure someone notices when we start compiling at higher
    743     // opts though.
    744     if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
    745       return false;
    746     return true;
    747   case Intrinsic::dbg_declare: {
    748     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
    749     assert(DI.getVariable() && "Missing variable");
    750 
    751     const Value *Address = DI.getAddress();
    752     if (!Address || isa<UndefValue>(Address)) {
    753       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
    754       return true;
    755     }
    756 
    757     assert(DI.getVariable()->isValidLocationForIntrinsic(
    758                MIRBuilder.getDebugLoc()) &&
    759            "Expected inlined-at fields to agree");
    760     auto AI = dyn_cast<AllocaInst>(Address);
    761     if (AI && AI->isStaticAlloca()) {
    762       // Static allocas are tracked at the MF level, no need for DBG_VALUE
    763       // instructions (in fact, they get ignored if they *do* exist).
    764       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
    765                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
    766     } else
    767       MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
    768                                      DI.getVariable(), DI.getExpression());
    769     return true;
    770   }
    771   case Intrinsic::vaend:
    772     // No target I know of cares about va_end. Certainly no in-tree target
    773     // does. Simplest intrinsic ever!
    774     return true;
    775   case Intrinsic::vastart: {
    776     auto &TLI = *MF->getSubtarget().getTargetLowering();
    777     Value *Ptr = CI.getArgOperand(0);
    778     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
    779 
    780     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
    781         .addUse(getOrCreateVReg(*Ptr))
    782         .addMemOperand(MF->getMachineMemOperand(
    783             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
    784     return true;
    785   }
    786   case Intrinsic::dbg_value: {
    787     // This form of DBG_VALUE is target-independent.
    788     const DbgValueInst &DI = cast<DbgValueInst>(CI);
    789     const Value *V = DI.getValue();
    790     assert(DI.getVariable()->isValidLocationForIntrinsic(
    791                MIRBuilder.getDebugLoc()) &&
    792            "Expected inlined-at fields to agree");
    793     if (!V) {
    794       // Currently the optimizer can produce this; insert an undef to
    795       // help debugging.  Probably the optimizer should not do this.
    796       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
    797     } else if (const auto *CI = dyn_cast<Constant>(V)) {
    798       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
    799     } else {
    800       unsigned Reg = getOrCreateVReg(*V);
    801       // FIXME: This does not handle register-indirect values at offset 0. The
    802       // direct/indirect thing shouldn't really be handled by something as
    803       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
    804       // pretty baked in right now.
    805       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
    806     }
    807     return true;
    808   }
    809   case Intrinsic::uadd_with_overflow:
    810     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
    811   case Intrinsic::sadd_with_overflow:
    812     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
    813   case Intrinsic::usub_with_overflow:
    814     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
    815   case Intrinsic::ssub_with_overflow:
    816     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
    817   case Intrinsic::umul_with_overflow:
    818     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
    819   case Intrinsic::smul_with_overflow:
    820     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
    821   case Intrinsic::pow:
    822     MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
    823         .addDef(getOrCreateVReg(CI))
    824         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
    825         .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
    826     return true;
    827   case Intrinsic::exp:
    828     MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
    829         .addDef(getOrCreateVReg(CI))
    830         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    831     return true;
    832   case Intrinsic::exp2:
    833     MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
    834         .addDef(getOrCreateVReg(CI))
    835         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    836     return true;
    837   case Intrinsic::log:
    838     MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
    839         .addDef(getOrCreateVReg(CI))
    840         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    841     return true;
    842   case Intrinsic::log2:
    843     MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
    844         .addDef(getOrCreateVReg(CI))
    845         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    846     return true;
    847   case Intrinsic::fabs:
    848     MIRBuilder.buildInstr(TargetOpcode::G_FABS)
    849         .addDef(getOrCreateVReg(CI))
    850         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    851     return true;
    852   case Intrinsic::fma:
    853     MIRBuilder.buildInstr(TargetOpcode::G_FMA)
    854         .addDef(getOrCreateVReg(CI))
    855         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
    856         .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
    857         .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
    858     return true;
    859   case Intrinsic::fmuladd: {
    860     const TargetMachine &TM = MF->getTarget();
    861     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
    862     unsigned Dst = getOrCreateVReg(CI);
    863     unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
    864     unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
    865     unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
    866     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
    867         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
    868       // TODO: Revisit this to see if we should move this part of the
    869       // lowering to the combiner.
    870       MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
    871     } else {
    872       LLT Ty = getLLTForType(*CI.getType(), *DL);
    873       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
    874       MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
    875     }
    876     return true;
    877   }
    878   case Intrinsic::memcpy:
    879   case Intrinsic::memmove:
    880   case Intrinsic::memset:
    881     return translateMemfunc(CI, MIRBuilder, ID);
    882   case Intrinsic::eh_typeid_for: {
    883     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
    884     unsigned Reg = getOrCreateVReg(CI);
    885     unsigned TypeID = MF->getTypeIDFor(GV);
    886     MIRBuilder.buildConstant(Reg, TypeID);
    887     return true;
    888   }
    889   case Intrinsic::objectsize: {
    890     // If we don't know by now, we're never going to know.
    891     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
    892 
    893     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
    894     return true;
    895   }
    896   case Intrinsic::stackguard:
    897     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
    898     return true;
    899   case Intrinsic::stackprotector: {
    900     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
    901     unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
    902     getStackGuard(GuardVal, MIRBuilder);
    903 
    904     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
    905     MIRBuilder.buildStore(
    906         GuardVal, getOrCreateVReg(*Slot),
    907         *MF->getMachineMemOperand(
    908             MachinePointerInfo::getFixedStack(*MF,
    909                                               getOrCreateFrameIndex(*Slot)),
    910             MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
    911             PtrTy.getSizeInBits() / 8, 8));
    912     return true;
    913   }
    914   }
    915   return false;
    916 }
    917 
    918 bool IRTranslator::translateInlineAsm(const CallInst &CI,
    919                                       MachineIRBuilder &MIRBuilder) {
    920   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
    921   if (!IA.getConstraintString().empty())
    922     return false;
    923 
    924   unsigned ExtraInfo = 0;
    925   if (IA.hasSideEffects())
    926     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
    927   if (IA.getDialect() == InlineAsm::AD_Intel)
    928     ExtraInfo |= InlineAsm::Extra_AsmDialect;
    929 
    930   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
    931     .addExternalSymbol(IA.getAsmString().c_str())
    932     .addImm(ExtraInfo);
    933 
    934   return true;
    935 }
    936 
    937 unsigned IRTranslator::packRegs(const Value &V,
    938                                   MachineIRBuilder &MIRBuilder) {
    939   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
    940   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
    941   LLT BigTy = getLLTForType(*V.getType(), *DL);
    942 
    943   if (Regs.size() == 1)
    944     return Regs[0];
    945 
    946   unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
    947   MIRBuilder.buildUndef(Dst);
    948   for (unsigned i = 0; i < Regs.size(); ++i) {
    949     unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
    950     MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
    951     Dst = NewDst;
    952   }
    953   return Dst;
    954 }
    955 
    956 void IRTranslator::unpackRegs(const Value &V, unsigned Src,
    957                                 MachineIRBuilder &MIRBuilder) {
    958   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
    959   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
    960 
    961   for (unsigned i = 0; i < Regs.size(); ++i)
    962     MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
    963 }
    964 
    965 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
    966   const CallInst &CI = cast<CallInst>(U);
    967   auto TII = MF->getTarget().getIntrinsicInfo();
    968   const Function *F = CI.getCalledFunction();
    969 
    970   // FIXME: support Windows dllimport function calls.
    971   if (F && F->hasDLLImportStorageClass())
    972     return false;
    973 
    974   if (CI.isInlineAsm())
    975     return translateInlineAsm(CI, MIRBuilder);
    976 
    977   Intrinsic::ID ID = Intrinsic::not_intrinsic;
    978   if (F && F->isIntrinsic()) {
    979     ID = F->getIntrinsicID();
    980     if (TII && ID == Intrinsic::not_intrinsic)
    981       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
    982   }
    983 
    984   bool IsSplitType = valueIsSplit(CI);
    985   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
    986     unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
    987                                      getLLTForType(*CI.getType(), *DL))
    988                                : getOrCreateVReg(CI);
    989 
    990     SmallVector<unsigned, 8> Args;
    991     for (auto &Arg: CI.arg_operands())
    992       Args.push_back(packRegs(*Arg, MIRBuilder));
    993 
    994     MF->getFrameInfo().setHasCalls(true);
    995     bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
    996       return getOrCreateVReg(*CI.getCalledValue());
    997     });
    998 
    999     if (IsSplitType)
   1000       unpackRegs(CI, Res, MIRBuilder);
   1001     return Success;
   1002   }
   1003 
   1004   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
   1005 
   1006   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
   1007     return true;
   1008 
   1009   unsigned Res = 0;
   1010   if (!CI.getType()->isVoidTy()) {
   1011     if (IsSplitType)
   1012       Res =
   1013           MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
   1014     else
   1015       Res = getOrCreateVReg(CI);
   1016   }
   1017   MachineInstrBuilder MIB =
   1018       MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
   1019 
   1020   for (auto &Arg : CI.arg_operands()) {
   1021     // Some intrinsics take metadata parameters. Reject them.
   1022     if (isa<MetadataAsValue>(Arg))
   1023       return false;
   1024     MIB.addUse(packRegs(*Arg, MIRBuilder));
   1025   }
   1026 
   1027   if (IsSplitType)
   1028     unpackRegs(CI, Res, MIRBuilder);
   1029 
   1030   // Add a MachineMemOperand if it is a target mem intrinsic.
   1031   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
   1032   TargetLowering::IntrinsicInfo Info;
   1033   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
   1034   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
   1035     uint64_t Size = Info.memVT.getStoreSize();
   1036     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
   1037                                                Info.flags, Size, Info.align));
   1038   }
   1039 
   1040   return true;
   1041 }
   1042 
   1043 bool IRTranslator::translateInvoke(const User &U,
   1044                                    MachineIRBuilder &MIRBuilder) {
   1045   const InvokeInst &I = cast<InvokeInst>(U);
   1046   MCContext &Context = MF->getContext();
   1047 
   1048   const BasicBlock *ReturnBB = I.getSuccessor(0);
   1049   const BasicBlock *EHPadBB = I.getSuccessor(1);
   1050 
   1051   const Value *Callee = I.getCalledValue();
   1052   const Function *Fn = dyn_cast<Function>(Callee);
   1053   if (isa<InlineAsm>(Callee))
   1054     return false;
   1055 
   1056   // FIXME: support invoking patchpoint and statepoint intrinsics.
   1057   if (Fn && Fn->isIntrinsic())
   1058     return false;
   1059 
   1060   // FIXME: support whatever these are.
   1061   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
   1062     return false;
   1063 
   1064   // FIXME: support Windows exception handling.
   1065   if (!isa<LandingPadInst>(EHPadBB->front()))
   1066     return false;
   1067 
   1068   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
   1069   // the region covered by the try.
   1070   MCSymbol *BeginSymbol = Context.createTempSymbol();
   1071   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
   1072 
   1073   unsigned Res =
   1074         MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
   1075   SmallVector<unsigned, 8> Args;
   1076   for (auto &Arg: I.arg_operands())
   1077     Args.push_back(packRegs(*Arg, MIRBuilder));
   1078 
   1079   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
   1080                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
   1081     return false;
   1082 
   1083   unpackRegs(I, Res, MIRBuilder);
   1084 
   1085   MCSymbol *EndSymbol = Context.createTempSymbol();
   1086   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
   1087 
   1088   // FIXME: track probabilities.
   1089   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
   1090                     &ReturnMBB = getMBB(*ReturnBB);
   1091   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
   1092   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
   1093   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
   1094   MIRBuilder.buildBr(ReturnMBB);
   1095 
   1096   return true;
   1097 }
   1098 
   1099 bool IRTranslator::translateLandingPad(const User &U,
   1100                                        MachineIRBuilder &MIRBuilder) {
   1101   const LandingPadInst &LP = cast<LandingPadInst>(U);
   1102 
   1103   MachineBasicBlock &MBB = MIRBuilder.getMBB();
   1104   addLandingPadInfo(LP, MBB);
   1105 
   1106   MBB.setIsEHPad();
   1107 
   1108   // If there aren't registers to copy the values into (e.g., during SjLj
   1109   // exceptions), then don't bother.
   1110   auto &TLI = *MF->getSubtarget().getTargetLowering();
   1111   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
   1112   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
   1113       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
   1114     return true;
   1115 
   1116   // If landingpad's return type is token type, we don't create DAG nodes
   1117   // for its exception pointer and selector value. The extraction of exception
   1118   // pointer or selector value from token type landingpads is not currently
   1119   // supported.
   1120   if (LP.getType()->isTokenTy())
   1121     return true;
   1122 
   1123   // Add a label to mark the beginning of the landing pad.  Deletion of the
   1124   // landing pad can thus be detected via the MachineModuleInfo.
   1125   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
   1126     .addSym(MF->addLandingPad(&MBB));
   1127 
   1128   LLT Ty = getLLTForType(*LP.getType(), *DL);
   1129   unsigned Undef = MRI->createGenericVirtualRegister(Ty);
   1130   MIRBuilder.buildUndef(Undef);
   1131 
   1132   SmallVector<LLT, 2> Tys;
   1133   for (Type *Ty : cast<StructType>(LP.getType())->elements())
   1134     Tys.push_back(getLLTForType(*Ty, *DL));
   1135   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
   1136 
   1137   // Mark exception register as live in.
   1138   unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
   1139   if (!ExceptionReg)
   1140     return false;
   1141 
   1142   MBB.addLiveIn(ExceptionReg);
   1143   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
   1144   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
   1145 
   1146   unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
   1147   if (!SelectorReg)
   1148     return false;
   1149 
   1150   MBB.addLiveIn(SelectorReg);
   1151   unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
   1152   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
   1153   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
   1154 
   1155   return true;
   1156 }
   1157 
   1158 bool IRTranslator::translateAlloca(const User &U,
   1159                                    MachineIRBuilder &MIRBuilder) {
   1160   auto &AI = cast<AllocaInst>(U);
   1161 
   1162   if (AI.isSwiftError())
   1163     return false;
   1164 
   1165   if (AI.isStaticAlloca()) {
   1166     unsigned Res = getOrCreateVReg(AI);
   1167     int FI = getOrCreateFrameIndex(AI);
   1168     MIRBuilder.buildFrameIndex(Res, FI);
   1169     return true;
   1170   }
   1171 
   1172   // FIXME: support stack probing for Windows.
   1173   if (MF->getTarget().getTargetTriple().isOSWindows())
   1174     return false;
   1175 
   1176   // Now we're in the harder dynamic case.
   1177   Type *Ty = AI.getAllocatedType();
   1178   unsigned Align =
   1179       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
   1180 
   1181   unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
   1182 
   1183   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
   1184   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
   1185   if (MRI->getType(NumElts) != IntPtrTy) {
   1186     unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
   1187     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
   1188     NumElts = ExtElts;
   1189   }
   1190 
   1191   unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
   1192   unsigned TySize =
   1193       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
   1194   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
   1195 
   1196   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
   1197   auto &TLI = *MF->getSubtarget().getTargetLowering();
   1198   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
   1199 
   1200   unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
   1201   MIRBuilder.buildCopy(SPTmp, SPReg);
   1202 
   1203   unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
   1204   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
   1205 
   1206   // Handle alignment. We have to realign if the allocation granule was smaller
   1207   // than stack alignment, or the specific alloca requires more than stack
   1208   // alignment.
   1209   unsigned StackAlign =
   1210       MF->getSubtarget().getFrameLowering()->getStackAlignment();
   1211   Align = std::max(Align, StackAlign);
   1212   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
   1213     // Round the size of the allocation up to the stack alignment size
   1214     // by add SA-1 to the size. This doesn't overflow because we're computing
   1215     // an address inside an alloca.
   1216     unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
   1217     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
   1218     AllocTmp = AlignedAlloc;
   1219   }
   1220 
   1221   MIRBuilder.buildCopy(SPReg, AllocTmp);
   1222   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
   1223 
   1224   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
   1225   assert(MF->getFrameInfo().hasVarSizedObjects());
   1226   return true;
   1227 }
   1228 
   1229 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
   1230   // FIXME: We may need more info about the type. Because of how LLT works,
   1231   // we're completely discarding the i64/double distinction here (amongst
   1232   // others). Fortunately the ABIs I know of where that matters don't use va_arg
   1233   // anyway but that's not guaranteed.
   1234   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
   1235     .addDef(getOrCreateVReg(U))
   1236     .addUse(getOrCreateVReg(*U.getOperand(0)))
   1237     .addImm(DL->getABITypeAlignment(U.getType()));
   1238   return true;
   1239 }
   1240 
   1241 bool IRTranslator::translateInsertElement(const User &U,
   1242                                           MachineIRBuilder &MIRBuilder) {
   1243   // If it is a <1 x Ty> vector, use the scalar as it is
   1244   // not a legal vector type in LLT.
   1245   if (U.getType()->getVectorNumElements() == 1) {
   1246     unsigned Elt = getOrCreateVReg(*U.getOperand(1));
   1247     auto &Regs = *VMap.getVRegs(U);
   1248     if (Regs.empty()) {
   1249       Regs.push_back(Elt);
   1250       VMap.getOffsets(U)->push_back(0);
   1251     } else {
   1252       MIRBuilder.buildCopy(Regs[0], Elt);
   1253     }
   1254     return true;
   1255   }
   1256 
   1257   unsigned Res = getOrCreateVReg(U);
   1258   unsigned Val = getOrCreateVReg(*U.getOperand(0));
   1259   unsigned Elt = getOrCreateVReg(*U.getOperand(1));
   1260   unsigned Idx = getOrCreateVReg(*U.getOperand(2));
   1261   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
   1262   return true;
   1263 }
   1264 
   1265 bool IRTranslator::translateExtractElement(const User &U,
   1266                                            MachineIRBuilder &MIRBuilder) {
   1267   // If it is a <1 x Ty> vector, use the scalar as it is
   1268   // not a legal vector type in LLT.
   1269   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
   1270     unsigned Elt = getOrCreateVReg(*U.getOperand(0));
   1271     auto &Regs = *VMap.getVRegs(U);
   1272     if (Regs.empty()) {
   1273       Regs.push_back(Elt);
   1274       VMap.getOffsets(U)->push_back(0);
   1275     } else {
   1276       MIRBuilder.buildCopy(Regs[0], Elt);
   1277     }
   1278     return true;
   1279   }
   1280   unsigned Res = getOrCreateVReg(U);
   1281   unsigned Val = getOrCreateVReg(*U.getOperand(0));
   1282   unsigned Idx = getOrCreateVReg(*U.getOperand(1));
   1283   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
   1284   return true;
   1285 }
   1286 
   1287 bool IRTranslator::translateShuffleVector(const User &U,
   1288                                           MachineIRBuilder &MIRBuilder) {
   1289   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
   1290       .addDef(getOrCreateVReg(U))
   1291       .addUse(getOrCreateVReg(*U.getOperand(0)))
   1292       .addUse(getOrCreateVReg(*U.getOperand(1)))
   1293       .addUse(getOrCreateVReg(*U.getOperand(2)));
   1294   return true;
   1295 }
   1296 
   1297 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
   1298   const PHINode &PI = cast<PHINode>(U);
   1299 
   1300   SmallVector<MachineInstr *, 4> Insts;
   1301   for (auto Reg : getOrCreateVRegs(PI)) {
   1302     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
   1303     Insts.push_back(MIB.getInstr());
   1304   }
   1305 
   1306   PendingPHIs.emplace_back(&PI, std::move(Insts));
   1307   return true;
   1308 }
   1309 
   1310 bool IRTranslator::translateAtomicCmpXchg(const User &U,
   1311                                           MachineIRBuilder &MIRBuilder) {
   1312   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
   1313 
   1314   if (I.isWeak())
   1315     return false;
   1316 
   1317   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
   1318                               : MachineMemOperand::MONone;
   1319   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   1320 
   1321   Type *ResType = I.getType();
   1322   Type *ValType = ResType->Type::getStructElementType(0);
   1323 
   1324   auto Res = getOrCreateVRegs(I);
   1325   unsigned OldValRes = Res[0];
   1326   unsigned SuccessRes = Res[1];
   1327   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
   1328   unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
   1329   unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
   1330 
   1331   MIRBuilder.buildAtomicCmpXchgWithSuccess(
   1332       OldValRes, SuccessRes, Addr, Cmp, NewVal,
   1333       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
   1334                                 Flags, DL->getTypeStoreSize(ValType),
   1335                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
   1336                                 I.getSyncScopeID(), I.getSuccessOrdering(),
   1337                                 I.getFailureOrdering()));
   1338   return true;
   1339 }
   1340 
   1341 bool IRTranslator::translateAtomicRMW(const User &U,
   1342                                       MachineIRBuilder &MIRBuilder) {
   1343   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
   1344 
   1345   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
   1346                               : MachineMemOperand::MONone;
   1347   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   1348 
   1349   Type *ResType = I.getType();
   1350 
   1351   unsigned Res = getOrCreateVReg(I);
   1352   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
   1353   unsigned Val = getOrCreateVReg(*I.getValOperand());
   1354 
   1355   unsigned Opcode = 0;
   1356   switch (I.getOperation()) {
   1357   default:
   1358     llvm_unreachable("Unknown atomicrmw op");
   1359     return false;
   1360   case AtomicRMWInst::Xchg:
   1361     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
   1362     break;
   1363   case AtomicRMWInst::Add:
   1364     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
   1365     break;
   1366   case AtomicRMWInst::Sub:
   1367     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
   1368     break;
   1369   case AtomicRMWInst::And:
   1370     Opcode = TargetOpcode::G_ATOMICRMW_AND;
   1371     break;
   1372   case AtomicRMWInst::Nand:
   1373     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
   1374     break;
   1375   case AtomicRMWInst::Or:
   1376     Opcode = TargetOpcode::G_ATOMICRMW_OR;
   1377     break;
   1378   case AtomicRMWInst::Xor:
   1379     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
   1380     break;
   1381   case AtomicRMWInst::Max:
   1382     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
   1383     break;
   1384   case AtomicRMWInst::Min:
   1385     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
   1386     break;
   1387   case AtomicRMWInst::UMax:
   1388     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
   1389     break;
   1390   case AtomicRMWInst::UMin:
   1391     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
   1392     break;
   1393   }
   1394 
   1395   MIRBuilder.buildAtomicRMW(
   1396       Opcode, Res, Addr, Val,
   1397       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
   1398                                 Flags, DL->getTypeStoreSize(ResType),
   1399                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
   1400                                 I.getSyncScopeID(), I.getOrdering()));
   1401   return true;
   1402 }
   1403 
   1404 void IRTranslator::finishPendingPhis() {
   1405   for (auto &Phi : PendingPHIs) {
   1406     const PHINode *PI = Phi.first;
   1407     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
   1408 
   1409     // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
   1410     // won't create extra control flow here, otherwise we need to find the
   1411     // dominating predecessor here (or perhaps force the weirder IRTranslators
   1412     // to provide a simple boundary).
   1413     SmallSet<const BasicBlock *, 4> HandledPreds;
   1414 
   1415     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
   1416       auto IRPred = PI->getIncomingBlock(i);
   1417       if (HandledPreds.count(IRPred))
   1418         continue;
   1419 
   1420       HandledPreds.insert(IRPred);
   1421       ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
   1422       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
   1423         assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
   1424                "incorrect CFG at MachineBasicBlock level");
   1425         for (unsigned j = 0; j < ValRegs.size(); ++j) {
   1426           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
   1427           MIB.addUse(ValRegs[j]);
   1428           MIB.addMBB(Pred);
   1429         }
   1430       }
   1431     }
   1432   }
   1433 }
   1434 
   1435 bool IRTranslator::valueIsSplit(const Value &V,
   1436                                 SmallVectorImpl<uint64_t> *Offsets) {
   1437   SmallVector<LLT, 4> SplitTys;
   1438   if (Offsets && !Offsets->empty())
   1439     Offsets->clear();
   1440   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
   1441   return SplitTys.size() > 1;
   1442 }
   1443 
   1444 bool IRTranslator::translate(const Instruction &Inst) {
   1445   CurBuilder.setDebugLoc(Inst.getDebugLoc());
   1446   switch(Inst.getOpcode()) {
   1447 #define HANDLE_INST(NUM, OPCODE, CLASS) \
   1448     case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
   1449 #include "llvm/IR/Instruction.def"
   1450   default:
   1451     return false;
   1452   }
   1453 }
   1454 
   1455 bool IRTranslator::translate(const Constant &C, unsigned Reg) {
   1456   if (auto CI = dyn_cast<ConstantInt>(&C))
   1457     EntryBuilder.buildConstant(Reg, *CI);
   1458   else if (auto CF = dyn_cast<ConstantFP>(&C))
   1459     EntryBuilder.buildFConstant(Reg, *CF);
   1460   else if (isa<UndefValue>(C))
   1461     EntryBuilder.buildUndef(Reg);
   1462   else if (isa<ConstantPointerNull>(C)) {
   1463     // As we are trying to build a constant val of 0 into a pointer,
   1464     // insert a cast to make them correct with respect to types.
   1465     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
   1466     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
   1467     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
   1468     unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
   1469     EntryBuilder.buildCast(Reg, ZeroReg);
   1470   } else if (auto GV = dyn_cast<GlobalValue>(&C))
   1471     EntryBuilder.buildGlobalValue(Reg, GV);
   1472   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
   1473     if (!CAZ->getType()->isVectorTy())
   1474       return false;
   1475     // Return the scalar if it is a <1 x Ty> vector.
   1476     if (CAZ->getNumElements() == 1)
   1477       return translate(*CAZ->getElementValue(0u), Reg);
   1478     std::vector<unsigned> Ops;
   1479     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
   1480       Constant &Elt = *CAZ->getElementValue(i);
   1481       Ops.push_back(getOrCreateVReg(Elt));
   1482     }
   1483     EntryBuilder.buildMerge(Reg, Ops);
   1484   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
   1485     // Return the scalar if it is a <1 x Ty> vector.
   1486     if (CV->getNumElements() == 1)
   1487       return translate(*CV->getElementAsConstant(0), Reg);
   1488     std::vector<unsigned> Ops;
   1489     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
   1490       Constant &Elt = *CV->getElementAsConstant(i);
   1491       Ops.push_back(getOrCreateVReg(Elt));
   1492     }
   1493     EntryBuilder.buildMerge(Reg, Ops);
   1494   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
   1495     switch(CE->getOpcode()) {
   1496 #define HANDLE_INST(NUM, OPCODE, CLASS)                         \
   1497       case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
   1498 #include "llvm/IR/Instruction.def"
   1499     default:
   1500       return false;
   1501     }
   1502   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
   1503     if (CV->getNumOperands() == 1)
   1504       return translate(*CV->getOperand(0), Reg);
   1505     SmallVector<unsigned, 4> Ops;
   1506     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
   1507       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
   1508     }
   1509     EntryBuilder.buildMerge(Reg, Ops);
   1510   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
   1511     EntryBuilder.buildBlockAddress(Reg, BA);
   1512   } else
   1513     return false;
   1514 
   1515   return true;
   1516 }
   1517 
   1518 void IRTranslator::finalizeFunction() {
   1519   // Release the memory used by the different maps we
   1520   // needed during the translation.
   1521   PendingPHIs.clear();
   1522   VMap.reset();
   1523   FrameIndices.clear();
   1524   MachinePreds.clear();
   1525   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
   1526   // to avoid accessing freed memory (in runOnMachineFunction) and to avoid
   1527   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
   1528   EntryBuilder = MachineIRBuilder();
   1529   CurBuilder = MachineIRBuilder();
   1530 }
   1531 
   1532 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
   1533   MF = &CurMF;
   1534   const Function &F = MF->getFunction();
   1535   if (F.empty())
   1536     return false;
   1537   CLI = MF->getSubtarget().getCallLowering();
   1538   CurBuilder.setMF(*MF);
   1539   EntryBuilder.setMF(*MF);
   1540   MRI = &MF->getRegInfo();
   1541   DL = &F.getParent()->getDataLayout();
   1542   TPC = &getAnalysis<TargetPassConfig>();
   1543   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
   1544 
   1545   assert(PendingPHIs.empty() && "stale PHIs");
   1546 
   1547   if (!DL->isLittleEndian()) {
   1548     // Currently we don't properly handle big endian code.
   1549     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
   1550                                F.getSubprogram(), &F.getEntryBlock());
   1551     R << "unable to translate in big endian mode";
   1552     reportTranslationError(*MF, *TPC, *ORE, R);
   1553   }
   1554 
   1555   // Release the per-function state when we return, whether we succeeded or not.
   1556   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
   1557 
   1558   // Setup a separate basic-block for the arguments and constants
   1559   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
   1560   MF->push_back(EntryBB);
   1561   EntryBuilder.setMBB(*EntryBB);
   1562 
   1563   // Create all blocks, in IR order, to preserve the layout.
   1564   for (const BasicBlock &BB: F) {
   1565     auto *&MBB = BBToMBB[&BB];
   1566 
   1567     MBB = MF->CreateMachineBasicBlock(&BB);
   1568     MF->push_back(MBB);
   1569 
   1570     if (BB.hasAddressTaken())
   1571       MBB->setHasAddressTaken();
   1572   }
   1573 
   1574   // Make our arguments/constants entry block fallthrough to the IR entry block.
   1575   EntryBB->addSuccessor(&getMBB(F.front()));
   1576 
   1577   // Lower the actual args into this basic block.
   1578   SmallVector<unsigned, 8> VRegArgs;
   1579   for (const Argument &Arg: F.args()) {
   1580     if (DL->getTypeStoreSize(Arg.getType()) == 0)
   1581       continue; // Don't handle zero sized types.
   1582     VRegArgs.push_back(
   1583         MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
   1584   }
   1585 
   1586   // We don't currently support translating swifterror or swiftself functions.
   1587   for (auto &Arg : F.args()) {
   1588     if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
   1589       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
   1590                                  F.getSubprogram(), &F.getEntryBlock());
   1591       R << "unable to lower arguments due to swifterror/swiftself: "
   1592         << ore::NV("Prototype", F.getType());
   1593       reportTranslationError(*MF, *TPC, *ORE, R);
   1594       return false;
   1595     }
   1596   }
   1597 
   1598   if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
   1599     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
   1600                                F.getSubprogram(), &F.getEntryBlock());
   1601     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
   1602     reportTranslationError(*MF, *TPC, *ORE, R);
   1603     return false;
   1604   }
   1605 
   1606   auto ArgIt = F.arg_begin();
   1607   for (auto &VArg : VRegArgs) {
   1608     // If the argument is an unsplit scalar then don't use unpackRegs to avoid
   1609     // creating redundant copies.
   1610     if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
   1611       auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
   1612       assert(VRegs.empty() && "VRegs already populated?");
   1613       VRegs.push_back(VArg);
   1614     } else {
   1615       unpackRegs(*ArgIt, VArg, EntryBuilder);
   1616     }
   1617     ArgIt++;
   1618   }
   1619 
   1620   // Need to visit defs before uses when translating instructions.
   1621   ReversePostOrderTraversal<const Function *> RPOT(&F);
   1622   for (const BasicBlock *BB : RPOT) {
   1623     MachineBasicBlock &MBB = getMBB(*BB);
   1624     // Set the insertion point of all the following translations to
   1625     // the end of this basic block.
   1626     CurBuilder.setMBB(MBB);
   1627 
   1628     for (const Instruction &Inst : *BB) {
   1629       if (translate(Inst))
   1630         continue;
   1631 
   1632       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
   1633                                  Inst.getDebugLoc(), BB);
   1634       R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
   1635 
   1636       if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
   1637         std::string InstStrStorage;
   1638         raw_string_ostream InstStr(InstStrStorage);
   1639         InstStr << Inst;
   1640 
   1641         R << ": '" << InstStr.str() << "'";
   1642       }
   1643 
   1644       reportTranslationError(*MF, *TPC, *ORE, R);
   1645       return false;
   1646     }
   1647   }
   1648 
   1649   finishPendingPhis();
   1650 
   1651   // Merge the argument lowering and constants block with its single
   1652   // successor, the LLVM-IR entry block.  We want the basic block to
   1653   // be maximal.
   1654   assert(EntryBB->succ_size() == 1 &&
   1655          "Custom BB used for lowering should have only one successor");
   1656   // Get the successor of the current entry block.
   1657   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
   1658   assert(NewEntryBB.pred_size() == 1 &&
   1659          "LLVM-IR entry block has a predecessor!?");
   1660   // Move all the instruction from the current entry block to the
   1661   // new entry block.
   1662   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
   1663                     EntryBB->end());
   1664 
   1665   // Update the live-in information for the new entry block.
   1666   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
   1667     NewEntryBB.addLiveIn(LiveIn);
   1668   NewEntryBB.sortUniqueLiveIns();
   1669 
   1670   // Get rid of the now empty basic block.
   1671   EntryBB->removeSuccessor(&NewEntryBB);
   1672   MF->remove(EntryBB);
   1673   MF->DeleteMachineBasicBlock(EntryBB);
   1674 
   1675   assert(&MF->front() == &NewEntryBB &&
   1676          "New entry wasn't next in the list of basic block!");
   1677 
   1678   // Initialize stack protector information.
   1679   StackProtector &SP = getAnalysis<StackProtector>();
   1680   SP.copyToMachineFrameInfo(MF->getFrameInfo());
   1681 
   1682   return false;
   1683 }
   1684