1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/LowLevelType.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackProtector.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GetElementPtrTypeIterator.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 #define DEBUG_TYPE "irtranslator" 75 76 using namespace llvm; 77 78 char IRTranslator::ID = 0; 79 80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 84 false, false) 85 86 static void reportTranslationError(MachineFunction &MF, 87 const TargetPassConfig &TPC, 88 OptimizationRemarkEmitter &ORE, 89 OptimizationRemarkMissed &R) { 90 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 91 92 // Print the function name explicitly if we don't have a debug location (which 93 // makes the diagnostic less useful) or if we're going to emit a raw error. 94 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 95 R << (" (in function: " + MF.getName() + ")").str(); 96 97 if (TPC.isGlobalISelAbortEnabled()) 98 report_fatal_error(R.getMsg()); 99 else 100 ORE.emit(R); 101 } 102 103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 104 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 105 } 106 107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 108 AU.addRequired<StackProtector>(); 109 AU.addRequired<TargetPassConfig>(); 110 getSelectionDAGFallbackAnalysisUsage(AU); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 114 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 115 SmallVectorImpl<LLT> &ValueTys, 116 SmallVectorImpl<uint64_t> *Offsets = nullptr, 117 uint64_t StartingOffset = 0) { 118 // Given a struct type, recursively traverse the elements. 119 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 120 const StructLayout *SL = DL.getStructLayout(STy); 121 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 122 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 123 StartingOffset + SL->getElementOffset(I)); 124 return; 125 } 126 // Given an array type, recursively traverse the elements. 127 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 128 Type *EltTy = ATy->getElementType(); 129 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 130 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 131 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 132 StartingOffset + i * EltSize); 133 return; 134 } 135 // Interpret void as zero return values. 136 if (Ty.isVoidTy()) 137 return; 138 // Base case: we can get an LLT for this LLVM IR type. 139 ValueTys.push_back(getLLTForType(Ty, DL)); 140 if (Offsets != nullptr) 141 Offsets->push_back(StartingOffset * 8); 142 } 143 144 IRTranslator::ValueToVRegInfo::VRegListT & 145 IRTranslator::allocateVRegs(const Value &Val) { 146 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 147 auto *Regs = VMap.getVRegs(Val); 148 auto *Offsets = VMap.getOffsets(Val); 149 SmallVector<LLT, 4> SplitTys; 150 computeValueLLTs(*DL, *Val.getType(), SplitTys, 151 Offsets->empty() ? Offsets : nullptr); 152 for (unsigned i = 0; i < SplitTys.size(); ++i) 153 Regs->push_back(0); 154 return *Regs; 155 } 156 157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 158 auto VRegsIt = VMap.findVRegs(Val); 159 if (VRegsIt != VMap.vregs_end()) 160 return *VRegsIt->second; 161 162 if (Val.getType()->isVoidTy()) 163 return *VMap.getVRegs(Val); 164 165 // Create entry for this type. 166 auto *VRegs = VMap.getVRegs(Val); 167 auto *Offsets = VMap.getOffsets(Val); 168 169 assert(Val.getType()->isSized() && 170 "Don't know how to create an empty vreg"); 171 172 SmallVector<LLT, 4> SplitTys; 173 computeValueLLTs(*DL, *Val.getType(), SplitTys, 174 Offsets->empty() ? Offsets : nullptr); 175 176 if (!isa<Constant>(Val)) { 177 for (auto Ty : SplitTys) 178 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 179 return *VRegs; 180 } 181 182 if (Val.getType()->isAggregateType()) { 183 // UndefValue, ConstantAggregateZero 184 auto &C = cast<Constant>(Val); 185 unsigned Idx = 0; 186 while (auto Elt = C.getAggregateElement(Idx++)) { 187 auto EltRegs = getOrCreateVRegs(*Elt); 188 std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs)); 189 } 190 } else { 191 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 192 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 193 bool Success = translate(cast<Constant>(Val), VRegs->front()); 194 if (!Success) { 195 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 196 MF->getFunction().getSubprogram(), 197 &MF->getFunction().getEntryBlock()); 198 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 199 reportTranslationError(*MF, *TPC, *ORE, R); 200 return *VRegs; 201 } 202 } 203 204 return *VRegs; 205 } 206 207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 208 if (FrameIndices.find(&AI) != FrameIndices.end()) 209 return FrameIndices[&AI]; 210 211 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 212 unsigned Size = 213 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 214 215 // Always allocate at least one byte. 216 Size = std::max(Size, 1u); 217 218 unsigned Alignment = AI.getAlignment(); 219 if (!Alignment) 220 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 221 222 int &FI = FrameIndices[&AI]; 223 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 224 return FI; 225 } 226 227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 228 unsigned Alignment = 0; 229 Type *ValTy = nullptr; 230 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 231 Alignment = SI->getAlignment(); 232 ValTy = SI->getValueOperand()->getType(); 233 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 234 Alignment = LI->getAlignment(); 235 ValTy = LI->getType(); 236 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 237 // TODO(PR27168): This instruction has no alignment attribute, but unlike 238 // the default alignment for load/store, the default here is to assume 239 // it has NATURAL alignment, not DataLayout-specified alignment. 240 const DataLayout &DL = AI->getModule()->getDataLayout(); 241 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 242 ValTy = AI->getCompareOperand()->getType(); 243 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 244 // TODO(PR27168): This instruction has no alignment attribute, but unlike 245 // the default alignment for load/store, the default here is to assume 246 // it has NATURAL alignment, not DataLayout-specified alignment. 247 const DataLayout &DL = AI->getModule()->getDataLayout(); 248 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 249 ValTy = AI->getType(); 250 } else { 251 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 252 R << "unable to translate memop: " << ore::NV("Opcode", &I); 253 reportTranslationError(*MF, *TPC, *ORE, R); 254 return 1; 255 } 256 257 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 258 } 259 260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 261 MachineBasicBlock *&MBB = BBToMBB[&BB]; 262 assert(MBB && "BasicBlock was not encountered before"); 263 return *MBB; 264 } 265 266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 267 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 268 MachinePreds[Edge].push_back(NewPred); 269 } 270 271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 272 MachineIRBuilder &MIRBuilder) { 273 // FIXME: handle signed/unsigned wrapping flags. 274 275 // Get or create a virtual register for each value. 276 // Unless the value is a Constant => loadimm cst? 277 // or inline constant each time? 278 // Creation of a virtual register needs to have a size. 279 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 280 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 281 unsigned Res = getOrCreateVReg(U); 282 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 283 return true; 284 } 285 286 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 287 // -0.0 - X --> G_FNEG 288 if (isa<Constant>(U.getOperand(0)) && 289 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 290 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 291 .addDef(getOrCreateVReg(U)) 292 .addUse(getOrCreateVReg(*U.getOperand(1))); 293 return true; 294 } 295 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 296 } 297 298 bool IRTranslator::translateCompare(const User &U, 299 MachineIRBuilder &MIRBuilder) { 300 const CmpInst *CI = dyn_cast<CmpInst>(&U); 301 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 302 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 303 unsigned Res = getOrCreateVReg(U); 304 CmpInst::Predicate Pred = 305 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 306 cast<ConstantExpr>(U).getPredicate()); 307 if (CmpInst::isIntPredicate(Pred)) 308 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 309 else if (Pred == CmpInst::FCMP_FALSE) 310 MIRBuilder.buildCopy( 311 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 312 else if (Pred == CmpInst::FCMP_TRUE) 313 MIRBuilder.buildCopy( 314 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 315 else 316 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 317 318 return true; 319 } 320 321 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 322 const ReturnInst &RI = cast<ReturnInst>(U); 323 const Value *Ret = RI.getReturnValue(); 324 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 325 Ret = nullptr; 326 // The target may mess up with the insertion point, but 327 // this is not important as a return is the last instruction 328 // of the block anyway. 329 330 // FIXME: this interface should simplify when CallLowering gets adapted to 331 // multiple VRegs per Value. 332 unsigned VReg = Ret ? packRegs(*Ret, MIRBuilder) : 0; 333 return CLI->lowerReturn(MIRBuilder, Ret, VReg); 334 } 335 336 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 337 const BranchInst &BrInst = cast<BranchInst>(U); 338 unsigned Succ = 0; 339 if (!BrInst.isUnconditional()) { 340 // We want a G_BRCOND to the true BB followed by an unconditional branch. 341 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 342 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 343 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 344 MIRBuilder.buildBrCond(Tst, TrueBB); 345 } 346 347 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 348 MachineBasicBlock &TgtBB = getMBB(BrTgt); 349 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 350 351 // If the unconditional target is the layout successor, fallthrough. 352 if (!CurBB.isLayoutSuccessor(&TgtBB)) 353 MIRBuilder.buildBr(TgtBB); 354 355 // Link successors. 356 for (const BasicBlock *Succ : BrInst.successors()) 357 CurBB.addSuccessor(&getMBB(*Succ)); 358 return true; 359 } 360 361 bool IRTranslator::translateSwitch(const User &U, 362 MachineIRBuilder &MIRBuilder) { 363 // For now, just translate as a chain of conditional branches. 364 // FIXME: could we share most of the logic/code in 365 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 366 // At first sight, it seems most of the logic in there is independent of 367 // SelectionDAG-specifics and a lot of work went in to optimize switch 368 // lowering in there. 369 370 const SwitchInst &SwInst = cast<SwitchInst>(U); 371 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 372 const BasicBlock *OrigBB = SwInst.getParent(); 373 374 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 375 for (auto &CaseIt : SwInst.cases()) { 376 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 377 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 378 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 379 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 380 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 381 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 382 383 MIRBuilder.buildBrCond(Tst, TrueMBB); 384 CurMBB.addSuccessor(&TrueMBB); 385 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 386 387 MachineBasicBlock *FalseMBB = 388 MF->CreateMachineBasicBlock(SwInst.getParent()); 389 // Insert the comparison blocks one after the other. 390 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 391 MIRBuilder.buildBr(*FalseMBB); 392 CurMBB.addSuccessor(FalseMBB); 393 394 MIRBuilder.setMBB(*FalseMBB); 395 } 396 // handle default case 397 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 398 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 399 MIRBuilder.buildBr(DefaultMBB); 400 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 401 CurMBB.addSuccessor(&DefaultMBB); 402 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 403 404 return true; 405 } 406 407 bool IRTranslator::translateIndirectBr(const User &U, 408 MachineIRBuilder &MIRBuilder) { 409 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 410 411 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 412 MIRBuilder.buildBrIndirect(Tgt); 413 414 // Link successors. 415 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 416 for (const BasicBlock *Succ : BrInst.successors()) 417 CurBB.addSuccessor(&getMBB(*Succ)); 418 419 return true; 420 } 421 422 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 423 const LoadInst &LI = cast<LoadInst>(U); 424 425 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 426 : MachineMemOperand::MONone; 427 Flags |= MachineMemOperand::MOLoad; 428 429 if (DL->getTypeStoreSize(LI.getType()) == 0) 430 return true; 431 432 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 433 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 434 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 435 436 for (unsigned i = 0; i < Regs.size(); ++i) { 437 unsigned Addr = 0; 438 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 439 440 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 441 unsigned BaseAlign = getMemOpAlignment(LI); 442 auto MMO = MF->getMachineMemOperand( 443 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 444 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 445 LI.getSyncScopeID(), LI.getOrdering()); 446 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 447 } 448 449 return true; 450 } 451 452 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 453 const StoreInst &SI = cast<StoreInst>(U); 454 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 455 : MachineMemOperand::MONone; 456 Flags |= MachineMemOperand::MOStore; 457 458 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 459 return true; 460 461 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 462 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 463 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 464 465 for (unsigned i = 0; i < Vals.size(); ++i) { 466 unsigned Addr = 0; 467 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 468 469 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 470 unsigned BaseAlign = getMemOpAlignment(SI); 471 auto MMO = MF->getMachineMemOperand( 472 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 473 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 474 SI.getSyncScopeID(), SI.getOrdering()); 475 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 476 } 477 return true; 478 } 479 480 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 481 const Value *Src = U.getOperand(0); 482 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 483 484 // getIndexedOffsetInType is designed for GEPs, so the first index is the 485 // usual array element rather than looking into the actual aggregate. 486 SmallVector<Value *, 1> Indices; 487 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 488 489 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 490 for (auto Idx : EVI->indices()) 491 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 492 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 493 for (auto Idx : IVI->indices()) 494 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 495 } else { 496 for (unsigned i = 1; i < U.getNumOperands(); ++i) 497 Indices.push_back(U.getOperand(i)); 498 } 499 500 return 8 * static_cast<uint64_t>( 501 DL.getIndexedOffsetInType(Src->getType(), Indices)); 502 } 503 504 bool IRTranslator::translateExtractValue(const User &U, 505 MachineIRBuilder &MIRBuilder) { 506 const Value *Src = U.getOperand(0); 507 uint64_t Offset = getOffsetFromIndices(U, *DL); 508 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 509 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 510 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 511 Offsets.begin(); 512 auto &DstRegs = allocateVRegs(U); 513 514 for (unsigned i = 0; i < DstRegs.size(); ++i) 515 DstRegs[i] = SrcRegs[Idx++]; 516 517 return true; 518 } 519 520 bool IRTranslator::translateInsertValue(const User &U, 521 MachineIRBuilder &MIRBuilder) { 522 const Value *Src = U.getOperand(0); 523 uint64_t Offset = getOffsetFromIndices(U, *DL); 524 auto &DstRegs = allocateVRegs(U); 525 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 526 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 527 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 528 auto InsertedIt = InsertedRegs.begin(); 529 530 for (unsigned i = 0; i < DstRegs.size(); ++i) { 531 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 532 DstRegs[i] = *InsertedIt++; 533 else 534 DstRegs[i] = SrcRegs[i]; 535 } 536 537 return true; 538 } 539 540 bool IRTranslator::translateSelect(const User &U, 541 MachineIRBuilder &MIRBuilder) { 542 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 543 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 544 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 545 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 546 547 for (unsigned i = 0; i < ResRegs.size(); ++i) 548 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); 549 550 return true; 551 } 552 553 bool IRTranslator::translateBitCast(const User &U, 554 MachineIRBuilder &MIRBuilder) { 555 // If we're bitcasting to the source type, we can reuse the source vreg. 556 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 557 getLLTForType(*U.getType(), *DL)) { 558 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 559 auto &Regs = *VMap.getVRegs(U); 560 // If we already assigned a vreg for this bitcast, we can't change that. 561 // Emit a copy to satisfy the users we already emitted. 562 if (!Regs.empty()) 563 MIRBuilder.buildCopy(Regs[0], SrcReg); 564 else { 565 Regs.push_back(SrcReg); 566 VMap.getOffsets(U)->push_back(0); 567 } 568 return true; 569 } 570 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 571 } 572 573 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 574 MachineIRBuilder &MIRBuilder) { 575 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 576 unsigned Res = getOrCreateVReg(U); 577 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 578 return true; 579 } 580 581 bool IRTranslator::translateGetElementPtr(const User &U, 582 MachineIRBuilder &MIRBuilder) { 583 // FIXME: support vector GEPs. 584 if (U.getType()->isVectorTy()) 585 return false; 586 587 Value &Op0 = *U.getOperand(0); 588 unsigned BaseReg = getOrCreateVReg(Op0); 589 Type *PtrIRTy = Op0.getType(); 590 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 591 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 592 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 593 594 int64_t Offset = 0; 595 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 596 GTI != E; ++GTI) { 597 const Value *Idx = GTI.getOperand(); 598 if (StructType *StTy = GTI.getStructTypeOrNull()) { 599 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 600 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 601 continue; 602 } else { 603 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 604 605 // If this is a scalar constant or a splat vector of constants, 606 // handle it quickly. 607 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 608 Offset += ElementSize * CI->getSExtValue(); 609 continue; 610 } 611 612 if (Offset != 0) { 613 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 614 unsigned OffsetReg = 615 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 616 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 617 618 BaseReg = NewBaseReg; 619 Offset = 0; 620 } 621 622 unsigned IdxReg = getOrCreateVReg(*Idx); 623 if (MRI->getType(IdxReg) != OffsetTy) { 624 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 625 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 626 IdxReg = NewIdxReg; 627 } 628 629 // N = N + Idx * ElementSize; 630 // Avoid doing it for ElementSize of 1. 631 unsigned GepOffsetReg; 632 if (ElementSize != 1) { 633 unsigned ElementSizeReg = 634 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 635 636 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 637 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 638 } else 639 GepOffsetReg = IdxReg; 640 641 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 642 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 643 BaseReg = NewBaseReg; 644 } 645 } 646 647 if (Offset != 0) { 648 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 649 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 650 return true; 651 } 652 653 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 654 return true; 655 } 656 657 bool IRTranslator::translateMemfunc(const CallInst &CI, 658 MachineIRBuilder &MIRBuilder, 659 unsigned ID) { 660 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 661 Type *DstTy = CI.getArgOperand(0)->getType(); 662 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 663 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 664 return false; 665 666 SmallVector<CallLowering::ArgInfo, 8> Args; 667 for (int i = 0; i < 3; ++i) { 668 const auto &Arg = CI.getArgOperand(i); 669 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 670 } 671 672 const char *Callee; 673 switch (ID) { 674 case Intrinsic::memmove: 675 case Intrinsic::memcpy: { 676 Type *SrcTy = CI.getArgOperand(1)->getType(); 677 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 678 return false; 679 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 680 break; 681 } 682 case Intrinsic::memset: 683 Callee = "memset"; 684 break; 685 default: 686 return false; 687 } 688 689 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 690 MachineOperand::CreateES(Callee), 691 CallLowering::ArgInfo(0, CI.getType()), Args); 692 } 693 694 void IRTranslator::getStackGuard(unsigned DstReg, 695 MachineIRBuilder &MIRBuilder) { 696 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 697 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 698 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 699 MIB.addDef(DstReg); 700 701 auto &TLI = *MF->getSubtarget().getTargetLowering(); 702 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 703 if (!Global) 704 return; 705 706 MachinePointerInfo MPInfo(Global); 707 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 708 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 709 MachineMemOperand::MODereferenceable; 710 *MemRefs = 711 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 712 DL->getPointerABIAlignment(0)); 713 MIB.setMemRefs(MemRefs, MemRefs + 1); 714 } 715 716 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 717 MachineIRBuilder &MIRBuilder) { 718 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 719 auto MIB = MIRBuilder.buildInstr(Op) 720 .addDef(ResRegs[0]) 721 .addDef(ResRegs[1]) 722 .addUse(getOrCreateVReg(*CI.getOperand(0))) 723 .addUse(getOrCreateVReg(*CI.getOperand(1))); 724 725 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 726 unsigned Zero = getOrCreateVReg( 727 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 728 MIB.addUse(Zero); 729 } 730 731 return true; 732 } 733 734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 735 MachineIRBuilder &MIRBuilder) { 736 switch (ID) { 737 default: 738 break; 739 case Intrinsic::lifetime_start: 740 case Intrinsic::lifetime_end: 741 // Stack coloring is not enabled in O0 (which we care about now) so we can 742 // drop these. Make sure someone notices when we start compiling at higher 743 // opts though. 744 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 745 return false; 746 return true; 747 case Intrinsic::dbg_declare: { 748 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 749 assert(DI.getVariable() && "Missing variable"); 750 751 const Value *Address = DI.getAddress(); 752 if (!Address || isa<UndefValue>(Address)) { 753 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 754 return true; 755 } 756 757 assert(DI.getVariable()->isValidLocationForIntrinsic( 758 MIRBuilder.getDebugLoc()) && 759 "Expected inlined-at fields to agree"); 760 auto AI = dyn_cast<AllocaInst>(Address); 761 if (AI && AI->isStaticAlloca()) { 762 // Static allocas are tracked at the MF level, no need for DBG_VALUE 763 // instructions (in fact, they get ignored if they *do* exist). 764 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 765 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 766 } else 767 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 768 DI.getVariable(), DI.getExpression()); 769 return true; 770 } 771 case Intrinsic::vaend: 772 // No target I know of cares about va_end. Certainly no in-tree target 773 // does. Simplest intrinsic ever! 774 return true; 775 case Intrinsic::vastart: { 776 auto &TLI = *MF->getSubtarget().getTargetLowering(); 777 Value *Ptr = CI.getArgOperand(0); 778 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 779 780 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 781 .addUse(getOrCreateVReg(*Ptr)) 782 .addMemOperand(MF->getMachineMemOperand( 783 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 784 return true; 785 } 786 case Intrinsic::dbg_value: { 787 // This form of DBG_VALUE is target-independent. 788 const DbgValueInst &DI = cast<DbgValueInst>(CI); 789 const Value *V = DI.getValue(); 790 assert(DI.getVariable()->isValidLocationForIntrinsic( 791 MIRBuilder.getDebugLoc()) && 792 "Expected inlined-at fields to agree"); 793 if (!V) { 794 // Currently the optimizer can produce this; insert an undef to 795 // help debugging. Probably the optimizer should not do this. 796 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 797 } else if (const auto *CI = dyn_cast<Constant>(V)) { 798 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 799 } else { 800 unsigned Reg = getOrCreateVReg(*V); 801 // FIXME: This does not handle register-indirect values at offset 0. The 802 // direct/indirect thing shouldn't really be handled by something as 803 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 804 // pretty baked in right now. 805 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 806 } 807 return true; 808 } 809 case Intrinsic::uadd_with_overflow: 810 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 811 case Intrinsic::sadd_with_overflow: 812 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 813 case Intrinsic::usub_with_overflow: 814 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 815 case Intrinsic::ssub_with_overflow: 816 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 817 case Intrinsic::umul_with_overflow: 818 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 819 case Intrinsic::smul_with_overflow: 820 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 821 case Intrinsic::pow: 822 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 823 .addDef(getOrCreateVReg(CI)) 824 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 825 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 826 return true; 827 case Intrinsic::exp: 828 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 829 .addDef(getOrCreateVReg(CI)) 830 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 831 return true; 832 case Intrinsic::exp2: 833 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 834 .addDef(getOrCreateVReg(CI)) 835 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 836 return true; 837 case Intrinsic::log: 838 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 839 .addDef(getOrCreateVReg(CI)) 840 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 841 return true; 842 case Intrinsic::log2: 843 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 844 .addDef(getOrCreateVReg(CI)) 845 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 846 return true; 847 case Intrinsic::fabs: 848 MIRBuilder.buildInstr(TargetOpcode::G_FABS) 849 .addDef(getOrCreateVReg(CI)) 850 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 851 return true; 852 case Intrinsic::fma: 853 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 854 .addDef(getOrCreateVReg(CI)) 855 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 856 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 857 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 858 return true; 859 case Intrinsic::fmuladd: { 860 const TargetMachine &TM = MF->getTarget(); 861 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 862 unsigned Dst = getOrCreateVReg(CI); 863 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 864 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 865 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 866 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 867 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 868 // TODO: Revisit this to see if we should move this part of the 869 // lowering to the combiner. 870 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); 871 } else { 872 LLT Ty = getLLTForType(*CI.getType(), *DL); 873 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); 874 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); 875 } 876 return true; 877 } 878 case Intrinsic::memcpy: 879 case Intrinsic::memmove: 880 case Intrinsic::memset: 881 return translateMemfunc(CI, MIRBuilder, ID); 882 case Intrinsic::eh_typeid_for: { 883 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 884 unsigned Reg = getOrCreateVReg(CI); 885 unsigned TypeID = MF->getTypeIDFor(GV); 886 MIRBuilder.buildConstant(Reg, TypeID); 887 return true; 888 } 889 case Intrinsic::objectsize: { 890 // If we don't know by now, we're never going to know. 891 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 892 893 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 894 return true; 895 } 896 case Intrinsic::stackguard: 897 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 898 return true; 899 case Intrinsic::stackprotector: { 900 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 901 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 902 getStackGuard(GuardVal, MIRBuilder); 903 904 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 905 MIRBuilder.buildStore( 906 GuardVal, getOrCreateVReg(*Slot), 907 *MF->getMachineMemOperand( 908 MachinePointerInfo::getFixedStack(*MF, 909 getOrCreateFrameIndex(*Slot)), 910 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 911 PtrTy.getSizeInBits() / 8, 8)); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 bool IRTranslator::translateInlineAsm(const CallInst &CI, 919 MachineIRBuilder &MIRBuilder) { 920 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 921 if (!IA.getConstraintString().empty()) 922 return false; 923 924 unsigned ExtraInfo = 0; 925 if (IA.hasSideEffects()) 926 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 927 if (IA.getDialect() == InlineAsm::AD_Intel) 928 ExtraInfo |= InlineAsm::Extra_AsmDialect; 929 930 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 931 .addExternalSymbol(IA.getAsmString().c_str()) 932 .addImm(ExtraInfo); 933 934 return true; 935 } 936 937 unsigned IRTranslator::packRegs(const Value &V, 938 MachineIRBuilder &MIRBuilder) { 939 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 940 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 941 LLT BigTy = getLLTForType(*V.getType(), *DL); 942 943 if (Regs.size() == 1) 944 return Regs[0]; 945 946 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 947 MIRBuilder.buildUndef(Dst); 948 for (unsigned i = 0; i < Regs.size(); ++i) { 949 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 950 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 951 Dst = NewDst; 952 } 953 return Dst; 954 } 955 956 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 957 MachineIRBuilder &MIRBuilder) { 958 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 959 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 960 961 for (unsigned i = 0; i < Regs.size(); ++i) 962 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 963 } 964 965 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 966 const CallInst &CI = cast<CallInst>(U); 967 auto TII = MF->getTarget().getIntrinsicInfo(); 968 const Function *F = CI.getCalledFunction(); 969 970 // FIXME: support Windows dllimport function calls. 971 if (F && F->hasDLLImportStorageClass()) 972 return false; 973 974 if (CI.isInlineAsm()) 975 return translateInlineAsm(CI, MIRBuilder); 976 977 Intrinsic::ID ID = Intrinsic::not_intrinsic; 978 if (F && F->isIntrinsic()) { 979 ID = F->getIntrinsicID(); 980 if (TII && ID == Intrinsic::not_intrinsic) 981 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 982 } 983 984 bool IsSplitType = valueIsSplit(CI); 985 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 986 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 987 getLLTForType(*CI.getType(), *DL)) 988 : getOrCreateVReg(CI); 989 990 SmallVector<unsigned, 8> Args; 991 for (auto &Arg: CI.arg_operands()) 992 Args.push_back(packRegs(*Arg, MIRBuilder)); 993 994 MF->getFrameInfo().setHasCalls(true); 995 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 996 return getOrCreateVReg(*CI.getCalledValue()); 997 }); 998 999 if (IsSplitType) 1000 unpackRegs(CI, Res, MIRBuilder); 1001 return Success; 1002 } 1003 1004 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1005 1006 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1007 return true; 1008 1009 unsigned Res = 0; 1010 if (!CI.getType()->isVoidTy()) { 1011 if (IsSplitType) 1012 Res = 1013 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 1014 else 1015 Res = getOrCreateVReg(CI); 1016 } 1017 MachineInstrBuilder MIB = 1018 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1019 1020 for (auto &Arg : CI.arg_operands()) { 1021 // Some intrinsics take metadata parameters. Reject them. 1022 if (isa<MetadataAsValue>(Arg)) 1023 return false; 1024 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1025 } 1026 1027 if (IsSplitType) 1028 unpackRegs(CI, Res, MIRBuilder); 1029 1030 // Add a MachineMemOperand if it is a target mem intrinsic. 1031 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1032 TargetLowering::IntrinsicInfo Info; 1033 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1034 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1035 uint64_t Size = Info.memVT.getStoreSize(); 1036 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1037 Info.flags, Size, Info.align)); 1038 } 1039 1040 return true; 1041 } 1042 1043 bool IRTranslator::translateInvoke(const User &U, 1044 MachineIRBuilder &MIRBuilder) { 1045 const InvokeInst &I = cast<InvokeInst>(U); 1046 MCContext &Context = MF->getContext(); 1047 1048 const BasicBlock *ReturnBB = I.getSuccessor(0); 1049 const BasicBlock *EHPadBB = I.getSuccessor(1); 1050 1051 const Value *Callee = I.getCalledValue(); 1052 const Function *Fn = dyn_cast<Function>(Callee); 1053 if (isa<InlineAsm>(Callee)) 1054 return false; 1055 1056 // FIXME: support invoking patchpoint and statepoint intrinsics. 1057 if (Fn && Fn->isIntrinsic()) 1058 return false; 1059 1060 // FIXME: support whatever these are. 1061 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1062 return false; 1063 1064 // FIXME: support Windows exception handling. 1065 if (!isa<LandingPadInst>(EHPadBB->front())) 1066 return false; 1067 1068 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1069 // the region covered by the try. 1070 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1071 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1072 1073 unsigned Res = 1074 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1075 SmallVector<unsigned, 8> Args; 1076 for (auto &Arg: I.arg_operands()) 1077 Args.push_back(packRegs(*Arg, MIRBuilder)); 1078 1079 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1080 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1081 return false; 1082 1083 unpackRegs(I, Res, MIRBuilder); 1084 1085 MCSymbol *EndSymbol = Context.createTempSymbol(); 1086 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1087 1088 // FIXME: track probabilities. 1089 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1090 &ReturnMBB = getMBB(*ReturnBB); 1091 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1092 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1093 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1094 MIRBuilder.buildBr(ReturnMBB); 1095 1096 return true; 1097 } 1098 1099 bool IRTranslator::translateLandingPad(const User &U, 1100 MachineIRBuilder &MIRBuilder) { 1101 const LandingPadInst &LP = cast<LandingPadInst>(U); 1102 1103 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1104 addLandingPadInfo(LP, MBB); 1105 1106 MBB.setIsEHPad(); 1107 1108 // If there aren't registers to copy the values into (e.g., during SjLj 1109 // exceptions), then don't bother. 1110 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1111 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1112 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1113 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1114 return true; 1115 1116 // If landingpad's return type is token type, we don't create DAG nodes 1117 // for its exception pointer and selector value. The extraction of exception 1118 // pointer or selector value from token type landingpads is not currently 1119 // supported. 1120 if (LP.getType()->isTokenTy()) 1121 return true; 1122 1123 // Add a label to mark the beginning of the landing pad. Deletion of the 1124 // landing pad can thus be detected via the MachineModuleInfo. 1125 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1126 .addSym(MF->addLandingPad(&MBB)); 1127 1128 LLT Ty = getLLTForType(*LP.getType(), *DL); 1129 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1130 MIRBuilder.buildUndef(Undef); 1131 1132 SmallVector<LLT, 2> Tys; 1133 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1134 Tys.push_back(getLLTForType(*Ty, *DL)); 1135 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1136 1137 // Mark exception register as live in. 1138 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1139 if (!ExceptionReg) 1140 return false; 1141 1142 MBB.addLiveIn(ExceptionReg); 1143 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1144 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1145 1146 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1147 if (!SelectorReg) 1148 return false; 1149 1150 MBB.addLiveIn(SelectorReg); 1151 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1152 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1153 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1154 1155 return true; 1156 } 1157 1158 bool IRTranslator::translateAlloca(const User &U, 1159 MachineIRBuilder &MIRBuilder) { 1160 auto &AI = cast<AllocaInst>(U); 1161 1162 if (AI.isSwiftError()) 1163 return false; 1164 1165 if (AI.isStaticAlloca()) { 1166 unsigned Res = getOrCreateVReg(AI); 1167 int FI = getOrCreateFrameIndex(AI); 1168 MIRBuilder.buildFrameIndex(Res, FI); 1169 return true; 1170 } 1171 1172 // FIXME: support stack probing for Windows. 1173 if (MF->getTarget().getTargetTriple().isOSWindows()) 1174 return false; 1175 1176 // Now we're in the harder dynamic case. 1177 Type *Ty = AI.getAllocatedType(); 1178 unsigned Align = 1179 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1180 1181 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1182 1183 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1184 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1185 if (MRI->getType(NumElts) != IntPtrTy) { 1186 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1187 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1188 NumElts = ExtElts; 1189 } 1190 1191 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1192 unsigned TySize = 1193 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1194 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1195 1196 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1197 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1198 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1199 1200 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1201 MIRBuilder.buildCopy(SPTmp, SPReg); 1202 1203 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1204 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1205 1206 // Handle alignment. We have to realign if the allocation granule was smaller 1207 // than stack alignment, or the specific alloca requires more than stack 1208 // alignment. 1209 unsigned StackAlign = 1210 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1211 Align = std::max(Align, StackAlign); 1212 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1213 // Round the size of the allocation up to the stack alignment size 1214 // by add SA-1 to the size. This doesn't overflow because we're computing 1215 // an address inside an alloca. 1216 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1217 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1218 AllocTmp = AlignedAlloc; 1219 } 1220 1221 MIRBuilder.buildCopy(SPReg, AllocTmp); 1222 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1223 1224 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1225 assert(MF->getFrameInfo().hasVarSizedObjects()); 1226 return true; 1227 } 1228 1229 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1230 // FIXME: We may need more info about the type. Because of how LLT works, 1231 // we're completely discarding the i64/double distinction here (amongst 1232 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1233 // anyway but that's not guaranteed. 1234 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1235 .addDef(getOrCreateVReg(U)) 1236 .addUse(getOrCreateVReg(*U.getOperand(0))) 1237 .addImm(DL->getABITypeAlignment(U.getType())); 1238 return true; 1239 } 1240 1241 bool IRTranslator::translateInsertElement(const User &U, 1242 MachineIRBuilder &MIRBuilder) { 1243 // If it is a <1 x Ty> vector, use the scalar as it is 1244 // not a legal vector type in LLT. 1245 if (U.getType()->getVectorNumElements() == 1) { 1246 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1247 auto &Regs = *VMap.getVRegs(U); 1248 if (Regs.empty()) { 1249 Regs.push_back(Elt); 1250 VMap.getOffsets(U)->push_back(0); 1251 } else { 1252 MIRBuilder.buildCopy(Regs[0], Elt); 1253 } 1254 return true; 1255 } 1256 1257 unsigned Res = getOrCreateVReg(U); 1258 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1259 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1260 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1261 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1262 return true; 1263 } 1264 1265 bool IRTranslator::translateExtractElement(const User &U, 1266 MachineIRBuilder &MIRBuilder) { 1267 // If it is a <1 x Ty> vector, use the scalar as it is 1268 // not a legal vector type in LLT. 1269 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1270 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1271 auto &Regs = *VMap.getVRegs(U); 1272 if (Regs.empty()) { 1273 Regs.push_back(Elt); 1274 VMap.getOffsets(U)->push_back(0); 1275 } else { 1276 MIRBuilder.buildCopy(Regs[0], Elt); 1277 } 1278 return true; 1279 } 1280 unsigned Res = getOrCreateVReg(U); 1281 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1282 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1283 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1284 return true; 1285 } 1286 1287 bool IRTranslator::translateShuffleVector(const User &U, 1288 MachineIRBuilder &MIRBuilder) { 1289 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1290 .addDef(getOrCreateVReg(U)) 1291 .addUse(getOrCreateVReg(*U.getOperand(0))) 1292 .addUse(getOrCreateVReg(*U.getOperand(1))) 1293 .addUse(getOrCreateVReg(*U.getOperand(2))); 1294 return true; 1295 } 1296 1297 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1298 const PHINode &PI = cast<PHINode>(U); 1299 1300 SmallVector<MachineInstr *, 4> Insts; 1301 for (auto Reg : getOrCreateVRegs(PI)) { 1302 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg); 1303 Insts.push_back(MIB.getInstr()); 1304 } 1305 1306 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1307 return true; 1308 } 1309 1310 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1311 MachineIRBuilder &MIRBuilder) { 1312 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1313 1314 if (I.isWeak()) 1315 return false; 1316 1317 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1318 : MachineMemOperand::MONone; 1319 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1320 1321 Type *ResType = I.getType(); 1322 Type *ValType = ResType->Type::getStructElementType(0); 1323 1324 auto Res = getOrCreateVRegs(I); 1325 unsigned OldValRes = Res[0]; 1326 unsigned SuccessRes = Res[1]; 1327 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1328 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1329 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1330 1331 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1332 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1333 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1334 Flags, DL->getTypeStoreSize(ValType), 1335 getMemOpAlignment(I), AAMDNodes(), nullptr, 1336 I.getSyncScopeID(), I.getSuccessOrdering(), 1337 I.getFailureOrdering())); 1338 return true; 1339 } 1340 1341 bool IRTranslator::translateAtomicRMW(const User &U, 1342 MachineIRBuilder &MIRBuilder) { 1343 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1344 1345 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1346 : MachineMemOperand::MONone; 1347 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1348 1349 Type *ResType = I.getType(); 1350 1351 unsigned Res = getOrCreateVReg(I); 1352 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1353 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1354 1355 unsigned Opcode = 0; 1356 switch (I.getOperation()) { 1357 default: 1358 llvm_unreachable("Unknown atomicrmw op"); 1359 return false; 1360 case AtomicRMWInst::Xchg: 1361 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1362 break; 1363 case AtomicRMWInst::Add: 1364 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1365 break; 1366 case AtomicRMWInst::Sub: 1367 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1368 break; 1369 case AtomicRMWInst::And: 1370 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1371 break; 1372 case AtomicRMWInst::Nand: 1373 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1374 break; 1375 case AtomicRMWInst::Or: 1376 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1377 break; 1378 case AtomicRMWInst::Xor: 1379 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1380 break; 1381 case AtomicRMWInst::Max: 1382 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1383 break; 1384 case AtomicRMWInst::Min: 1385 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1386 break; 1387 case AtomicRMWInst::UMax: 1388 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1389 break; 1390 case AtomicRMWInst::UMin: 1391 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1392 break; 1393 } 1394 1395 MIRBuilder.buildAtomicRMW( 1396 Opcode, Res, Addr, Val, 1397 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1398 Flags, DL->getTypeStoreSize(ResType), 1399 getMemOpAlignment(I), AAMDNodes(), nullptr, 1400 I.getSyncScopeID(), I.getOrdering())); 1401 return true; 1402 } 1403 1404 void IRTranslator::finishPendingPhis() { 1405 for (auto &Phi : PendingPHIs) { 1406 const PHINode *PI = Phi.first; 1407 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1408 1409 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1410 // won't create extra control flow here, otherwise we need to find the 1411 // dominating predecessor here (or perhaps force the weirder IRTranslators 1412 // to provide a simple boundary). 1413 SmallSet<const BasicBlock *, 4> HandledPreds; 1414 1415 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1416 auto IRPred = PI->getIncomingBlock(i); 1417 if (HandledPreds.count(IRPred)) 1418 continue; 1419 1420 HandledPreds.insert(IRPred); 1421 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1422 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1423 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1424 "incorrect CFG at MachineBasicBlock level"); 1425 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1426 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1427 MIB.addUse(ValRegs[j]); 1428 MIB.addMBB(Pred); 1429 } 1430 } 1431 } 1432 } 1433 } 1434 1435 bool IRTranslator::valueIsSplit(const Value &V, 1436 SmallVectorImpl<uint64_t> *Offsets) { 1437 SmallVector<LLT, 4> SplitTys; 1438 if (Offsets && !Offsets->empty()) 1439 Offsets->clear(); 1440 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1441 return SplitTys.size() > 1; 1442 } 1443 1444 bool IRTranslator::translate(const Instruction &Inst) { 1445 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1446 switch(Inst.getOpcode()) { 1447 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1448 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1449 #include "llvm/IR/Instruction.def" 1450 default: 1451 return false; 1452 } 1453 } 1454 1455 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1456 if (auto CI = dyn_cast<ConstantInt>(&C)) 1457 EntryBuilder.buildConstant(Reg, *CI); 1458 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1459 EntryBuilder.buildFConstant(Reg, *CF); 1460 else if (isa<UndefValue>(C)) 1461 EntryBuilder.buildUndef(Reg); 1462 else if (isa<ConstantPointerNull>(C)) { 1463 // As we are trying to build a constant val of 0 into a pointer, 1464 // insert a cast to make them correct with respect to types. 1465 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1466 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1467 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1468 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1469 EntryBuilder.buildCast(Reg, ZeroReg); 1470 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1471 EntryBuilder.buildGlobalValue(Reg, GV); 1472 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1473 if (!CAZ->getType()->isVectorTy()) 1474 return false; 1475 // Return the scalar if it is a <1 x Ty> vector. 1476 if (CAZ->getNumElements() == 1) 1477 return translate(*CAZ->getElementValue(0u), Reg); 1478 std::vector<unsigned> Ops; 1479 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1480 Constant &Elt = *CAZ->getElementValue(i); 1481 Ops.push_back(getOrCreateVReg(Elt)); 1482 } 1483 EntryBuilder.buildMerge(Reg, Ops); 1484 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1485 // Return the scalar if it is a <1 x Ty> vector. 1486 if (CV->getNumElements() == 1) 1487 return translate(*CV->getElementAsConstant(0), Reg); 1488 std::vector<unsigned> Ops; 1489 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1490 Constant &Elt = *CV->getElementAsConstant(i); 1491 Ops.push_back(getOrCreateVReg(Elt)); 1492 } 1493 EntryBuilder.buildMerge(Reg, Ops); 1494 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1495 switch(CE->getOpcode()) { 1496 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1497 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1498 #include "llvm/IR/Instruction.def" 1499 default: 1500 return false; 1501 } 1502 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1503 if (CV->getNumOperands() == 1) 1504 return translate(*CV->getOperand(0), Reg); 1505 SmallVector<unsigned, 4> Ops; 1506 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1507 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1508 } 1509 EntryBuilder.buildMerge(Reg, Ops); 1510 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1511 EntryBuilder.buildBlockAddress(Reg, BA); 1512 } else 1513 return false; 1514 1515 return true; 1516 } 1517 1518 void IRTranslator::finalizeFunction() { 1519 // Release the memory used by the different maps we 1520 // needed during the translation. 1521 PendingPHIs.clear(); 1522 VMap.reset(); 1523 FrameIndices.clear(); 1524 MachinePreds.clear(); 1525 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1526 // to avoid accessing freed memory (in runOnMachineFunction) and to avoid 1527 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1528 EntryBuilder = MachineIRBuilder(); 1529 CurBuilder = MachineIRBuilder(); 1530 } 1531 1532 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1533 MF = &CurMF; 1534 const Function &F = MF->getFunction(); 1535 if (F.empty()) 1536 return false; 1537 CLI = MF->getSubtarget().getCallLowering(); 1538 CurBuilder.setMF(*MF); 1539 EntryBuilder.setMF(*MF); 1540 MRI = &MF->getRegInfo(); 1541 DL = &F.getParent()->getDataLayout(); 1542 TPC = &getAnalysis<TargetPassConfig>(); 1543 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1544 1545 assert(PendingPHIs.empty() && "stale PHIs"); 1546 1547 if (!DL->isLittleEndian()) { 1548 // Currently we don't properly handle big endian code. 1549 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1550 F.getSubprogram(), &F.getEntryBlock()); 1551 R << "unable to translate in big endian mode"; 1552 reportTranslationError(*MF, *TPC, *ORE, R); 1553 } 1554 1555 // Release the per-function state when we return, whether we succeeded or not. 1556 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1557 1558 // Setup a separate basic-block for the arguments and constants 1559 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1560 MF->push_back(EntryBB); 1561 EntryBuilder.setMBB(*EntryBB); 1562 1563 // Create all blocks, in IR order, to preserve the layout. 1564 for (const BasicBlock &BB: F) { 1565 auto *&MBB = BBToMBB[&BB]; 1566 1567 MBB = MF->CreateMachineBasicBlock(&BB); 1568 MF->push_back(MBB); 1569 1570 if (BB.hasAddressTaken()) 1571 MBB->setHasAddressTaken(); 1572 } 1573 1574 // Make our arguments/constants entry block fallthrough to the IR entry block. 1575 EntryBB->addSuccessor(&getMBB(F.front())); 1576 1577 // Lower the actual args into this basic block. 1578 SmallVector<unsigned, 8> VRegArgs; 1579 for (const Argument &Arg: F.args()) { 1580 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1581 continue; // Don't handle zero sized types. 1582 VRegArgs.push_back( 1583 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1584 } 1585 1586 // We don't currently support translating swifterror or swiftself functions. 1587 for (auto &Arg : F.args()) { 1588 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1589 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1590 F.getSubprogram(), &F.getEntryBlock()); 1591 R << "unable to lower arguments due to swifterror/swiftself: " 1592 << ore::NV("Prototype", F.getType()); 1593 reportTranslationError(*MF, *TPC, *ORE, R); 1594 return false; 1595 } 1596 } 1597 1598 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1599 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1600 F.getSubprogram(), &F.getEntryBlock()); 1601 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1602 reportTranslationError(*MF, *TPC, *ORE, R); 1603 return false; 1604 } 1605 1606 auto ArgIt = F.arg_begin(); 1607 for (auto &VArg : VRegArgs) { 1608 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1609 // creating redundant copies. 1610 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1611 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1612 assert(VRegs.empty() && "VRegs already populated?"); 1613 VRegs.push_back(VArg); 1614 } else { 1615 unpackRegs(*ArgIt, VArg, EntryBuilder); 1616 } 1617 ArgIt++; 1618 } 1619 1620 // Need to visit defs before uses when translating instructions. 1621 ReversePostOrderTraversal<const Function *> RPOT(&F); 1622 for (const BasicBlock *BB : RPOT) { 1623 MachineBasicBlock &MBB = getMBB(*BB); 1624 // Set the insertion point of all the following translations to 1625 // the end of this basic block. 1626 CurBuilder.setMBB(MBB); 1627 1628 for (const Instruction &Inst : *BB) { 1629 if (translate(Inst)) 1630 continue; 1631 1632 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1633 Inst.getDebugLoc(), BB); 1634 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1635 1636 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1637 std::string InstStrStorage; 1638 raw_string_ostream InstStr(InstStrStorage); 1639 InstStr << Inst; 1640 1641 R << ": '" << InstStr.str() << "'"; 1642 } 1643 1644 reportTranslationError(*MF, *TPC, *ORE, R); 1645 return false; 1646 } 1647 } 1648 1649 finishPendingPhis(); 1650 1651 // Merge the argument lowering and constants block with its single 1652 // successor, the LLVM-IR entry block. We want the basic block to 1653 // be maximal. 1654 assert(EntryBB->succ_size() == 1 && 1655 "Custom BB used for lowering should have only one successor"); 1656 // Get the successor of the current entry block. 1657 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1658 assert(NewEntryBB.pred_size() == 1 && 1659 "LLVM-IR entry block has a predecessor!?"); 1660 // Move all the instruction from the current entry block to the 1661 // new entry block. 1662 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1663 EntryBB->end()); 1664 1665 // Update the live-in information for the new entry block. 1666 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1667 NewEntryBB.addLiveIn(LiveIn); 1668 NewEntryBB.sortUniqueLiveIns(); 1669 1670 // Get rid of the now empty basic block. 1671 EntryBB->removeSuccessor(&NewEntryBB); 1672 MF->remove(EntryBB); 1673 MF->DeleteMachineBasicBlock(EntryBB); 1674 1675 assert(&MF->front() == &NewEntryBB && 1676 "New entry wasn't next in the list of basic block!"); 1677 1678 // Initialize stack protector information. 1679 StackProtector &SP = getAnalysis<StackProtector>(); 1680 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1681 1682 return false; 1683 } 1684