Home | History | Annotate | Download | only in ec
      1 /*
      2  * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
      3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
      4  *
      5  * Licensed under the OpenSSL license (the "License").  You may not use
      6  * this file except in compliance with the License.  You can obtain a copy
      7  * in the file LICENSE in the source distribution or at
      8  * https://www.openssl.org/source/license.html
      9  *
     10  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
     11  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
     12  * (2) University of Haifa, Israel
     13  *
     14  * Reference:
     15  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
     16  *                          256 Bit Primes"
     17  */
     18 
     19 #include <openssl/ec.h>
     20 
     21 #include <assert.h>
     22 #include <stdint.h>
     23 #include <string.h>
     24 
     25 #include <openssl/bn.h>
     26 #include <openssl/cpu.h>
     27 #include <openssl/crypto.h>
     28 #include <openssl/err.h>
     29 
     30 #include "../bn/internal.h"
     31 #include "../delocate.h"
     32 #include "../../internal.h"
     33 #include "internal.h"
     34 #include "p256-x86_64.h"
     35 
     36 
     37 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
     38     !defined(OPENSSL_SMALL)
     39 
     40 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
     41 
     42 // One converted into the Montgomery domain
     43 static const BN_ULONG ONE[P256_LIMBS] = {
     44     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
     45     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
     46 };
     47 
     48 // Precomputed tables for the default generator
     49 #include "p256-x86_64-table.h"
     50 
     51 // Recode window to a signed digit, see util-64.c for details
     52 static unsigned booth_recode_w5(unsigned in) {
     53   unsigned s, d;
     54 
     55   s = ~((in >> 5) - 1);
     56   d = (1 << 6) - in - 1;
     57   d = (d & s) | (in & ~s);
     58   d = (d >> 1) + (d & 1);
     59 
     60   return (d << 1) + (s & 1);
     61 }
     62 
     63 static unsigned booth_recode_w7(unsigned in) {
     64   unsigned s, d;
     65 
     66   s = ~((in >> 7) - 1);
     67   d = (1 << 8) - in - 1;
     68   d = (d & s) | (in & ~s);
     69   d = (d >> 1) + (d & 1);
     70 
     71   return (d << 1) + (s & 1);
     72 }
     73 
     74 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
     75 // if |move| is zero.
     76 //
     77 // WARNING: this breaks the usual convention of constant-time functions
     78 // returning masks.
     79 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
     80                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
     81   BN_ULONG mask1 = ((BN_ULONG)0) - move;
     82   BN_ULONG mask2 = ~mask1;
     83 
     84   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
     85   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
     86   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
     87   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
     88   if (P256_LIMBS == 8) {
     89     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
     90     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
     91     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
     92     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
     93   }
     94 }
     95 
     96 // is_not_zero returns one iff in != 0 and zero otherwise.
     97 //
     98 // WARNING: this breaks the usual convention of constant-time functions
     99 // returning masks.
    100 //
    101 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
    102 //   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
    103 // )
    104 //
    105 // (declare-fun x () (_ BitVec 64))
    106 //
    107 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
    108 // (check-sat)
    109 //
    110 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
    111 // (check-sat)
    112 //
    113 static BN_ULONG is_not_zero(BN_ULONG in) {
    114   in |= (0 - in);
    115   in >>= BN_BITS2 - 1;
    116   return in;
    117 }
    118 
    119 // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
    120 // That is, |r| is the modular inverse of |in| for input and output in the
    121 // Montgomery domain.
    122 static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
    123                                           const BN_ULONG in[P256_LIMBS]) {
    124   /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
    125      ffffffff
    126      We use FLT and used poly-2 as exponent */
    127   BN_ULONG p2[P256_LIMBS];
    128   BN_ULONG p4[P256_LIMBS];
    129   BN_ULONG p8[P256_LIMBS];
    130   BN_ULONG p16[P256_LIMBS];
    131   BN_ULONG p32[P256_LIMBS];
    132   BN_ULONG res[P256_LIMBS];
    133   int i;
    134 
    135   ecp_nistz256_sqr_mont(res, in);
    136   ecp_nistz256_mul_mont(p2, res, in);  // 3*p
    137 
    138   ecp_nistz256_sqr_mont(res, p2);
    139   ecp_nistz256_sqr_mont(res, res);
    140   ecp_nistz256_mul_mont(p4, res, p2);  // f*p
    141 
    142   ecp_nistz256_sqr_mont(res, p4);
    143   ecp_nistz256_sqr_mont(res, res);
    144   ecp_nistz256_sqr_mont(res, res);
    145   ecp_nistz256_sqr_mont(res, res);
    146   ecp_nistz256_mul_mont(p8, res, p4);  // ff*p
    147 
    148   ecp_nistz256_sqr_mont(res, p8);
    149   for (i = 0; i < 7; i++) {
    150     ecp_nistz256_sqr_mont(res, res);
    151   }
    152   ecp_nistz256_mul_mont(p16, res, p8);  // ffff*p
    153 
    154   ecp_nistz256_sqr_mont(res, p16);
    155   for (i = 0; i < 15; i++) {
    156     ecp_nistz256_sqr_mont(res, res);
    157   }
    158   ecp_nistz256_mul_mont(p32, res, p16);  // ffffffff*p
    159 
    160   ecp_nistz256_sqr_mont(res, p32);
    161   for (i = 0; i < 31; i++) {
    162     ecp_nistz256_sqr_mont(res, res);
    163   }
    164   ecp_nistz256_mul_mont(res, res, in);
    165 
    166   for (i = 0; i < 32 * 4; i++) {
    167     ecp_nistz256_sqr_mont(res, res);
    168   }
    169   ecp_nistz256_mul_mont(res, res, p32);
    170 
    171   for (i = 0; i < 32; i++) {
    172     ecp_nistz256_sqr_mont(res, res);
    173   }
    174   ecp_nistz256_mul_mont(res, res, p32);
    175 
    176   for (i = 0; i < 16; i++) {
    177     ecp_nistz256_sqr_mont(res, res);
    178   }
    179   ecp_nistz256_mul_mont(res, res, p16);
    180 
    181   for (i = 0; i < 8; i++) {
    182     ecp_nistz256_sqr_mont(res, res);
    183   }
    184   ecp_nistz256_mul_mont(res, res, p8);
    185 
    186   ecp_nistz256_sqr_mont(res, res);
    187   ecp_nistz256_sqr_mont(res, res);
    188   ecp_nistz256_sqr_mont(res, res);
    189   ecp_nistz256_sqr_mont(res, res);
    190   ecp_nistz256_mul_mont(res, res, p4);
    191 
    192   ecp_nistz256_sqr_mont(res, res);
    193   ecp_nistz256_sqr_mont(res, res);
    194   ecp_nistz256_mul_mont(res, res, p2);
    195 
    196   ecp_nistz256_sqr_mont(res, res);
    197   ecp_nistz256_sqr_mont(res, res);
    198   ecp_nistz256_mul_mont(r, res, in);
    199 }
    200 
    201 // r = p * p_scalar
    202 static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
    203                                       const EC_RAW_POINT *p,
    204                                       const EC_SCALAR *p_scalar) {
    205   assert(p != NULL);
    206   assert(p_scalar != NULL);
    207   assert(group->field.width == P256_LIMBS);
    208 
    209   static const unsigned kWindowSize = 5;
    210   static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
    211 
    212   // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
    213   // add no more than 63 bytes of overhead. Thus, |table| should require
    214   // ~1599 ((96 * 16) + 63) bytes of stack space.
    215   alignas(64) P256_POINT table[16];
    216   uint8_t p_str[33];
    217   OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
    218   p_str[32] = 0;
    219 
    220   // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
    221   // not stored. All other values are actually stored with an offset of -1 in
    222   // table.
    223   P256_POINT *row = table;
    224   assert(group->field.width == P256_LIMBS);
    225   OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
    226   OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
    227   OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
    228 
    229   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
    230   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
    231   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
    232   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
    233   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
    234   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
    235   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
    236   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
    237   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
    238   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
    239   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
    240   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
    241   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
    242   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
    243   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
    244 
    245   BN_ULONG tmp[P256_LIMBS];
    246   alignas(32) P256_POINT h;
    247   unsigned index = 255;
    248   unsigned wvalue = p_str[(index - 1) / 8];
    249   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
    250 
    251   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
    252 
    253   while (index >= 5) {
    254     if (index != 255) {
    255       unsigned off = (index - 1) / 8;
    256 
    257       wvalue = p_str[off] | p_str[off + 1] << 8;
    258       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
    259 
    260       wvalue = booth_recode_w5(wvalue);
    261 
    262       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
    263 
    264       ecp_nistz256_neg(tmp, h.Y);
    265       copy_conditional(h.Y, tmp, (wvalue & 1));
    266 
    267       ecp_nistz256_point_add(r, r, &h);
    268     }
    269 
    270     index -= kWindowSize;
    271 
    272     ecp_nistz256_point_double(r, r);
    273     ecp_nistz256_point_double(r, r);
    274     ecp_nistz256_point_double(r, r);
    275     ecp_nistz256_point_double(r, r);
    276     ecp_nistz256_point_double(r, r);
    277   }
    278 
    279   // Final window
    280   wvalue = p_str[0];
    281   wvalue = (wvalue << 1) & kMask;
    282 
    283   wvalue = booth_recode_w5(wvalue);
    284 
    285   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
    286 
    287   ecp_nistz256_neg(tmp, h.Y);
    288   copy_conditional(h.Y, tmp, wvalue & 1);
    289 
    290   ecp_nistz256_point_add(r, r, &h);
    291 }
    292 
    293 typedef union {
    294   P256_POINT p;
    295   P256_POINT_AFFINE a;
    296 } p256_point_union_t;
    297 
    298 static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) {
    299   static const unsigned kWindowSize = 7;
    300   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
    301   *index = kWindowSize;
    302 
    303   unsigned wvalue = (p_str[0] << 1) & kMask;
    304   return booth_recode_w7(wvalue);
    305 }
    306 
    307 static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) {
    308   static const unsigned kWindowSize = 7;
    309   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
    310 
    311   const unsigned off = (*index - 1) / 8;
    312   unsigned wvalue = p_str[off] | p_str[off + 1] << 8;
    313   wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
    314   *index += kWindowSize;
    315 
    316   return booth_recode_w7(wvalue);
    317 }
    318 
    319 static void mul_p_add_and_store(const EC_GROUP *group, EC_RAW_POINT *r,
    320                                 const EC_SCALAR *g_scalar,
    321                                 const EC_RAW_POINT *p_,
    322                                 const EC_SCALAR *p_scalar,
    323                                 p256_point_union_t *t, p256_point_union_t *p) {
    324   const int p_is_infinity = g_scalar == NULL;
    325   if (p_scalar != NULL) {
    326     P256_POINT *out = &t->p;
    327     if (p_is_infinity) {
    328       out = &p->p;
    329     }
    330 
    331     ecp_nistz256_windowed_mul(group, out, p_, p_scalar);
    332     if (!p_is_infinity) {
    333       ecp_nistz256_point_add(&p->p, &p->p, out);
    334     }
    335   }
    336 
    337   assert(group->field.width == P256_LIMBS);
    338   OPENSSL_memcpy(r->X.words, p->p.X, P256_LIMBS * sizeof(BN_ULONG));
    339   OPENSSL_memcpy(r->Y.words, p->p.Y, P256_LIMBS * sizeof(BN_ULONG));
    340   OPENSSL_memcpy(r->Z.words, p->p.Z, P256_LIMBS * sizeof(BN_ULONG));
    341 }
    342 
    343 static void ecp_nistz256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
    344                                     const EC_SCALAR *g_scalar,
    345                                     const EC_RAW_POINT *p_,
    346                                     const EC_SCALAR *p_scalar) {
    347   assert((p_ != NULL) == (p_scalar != NULL));
    348 
    349   alignas(32) p256_point_union_t t, p;
    350 
    351   if (g_scalar != NULL) {
    352     uint8_t p_str[33];
    353     OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
    354     p_str[32] = 0;
    355 
    356     // First window
    357     unsigned index = 0;
    358     unsigned wvalue = calc_first_wvalue(&index, p_str);
    359 
    360     ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
    361 
    362     ecp_nistz256_neg(p.p.Z, p.p.Y);
    363     copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
    364 
    365     // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
    366     // is infinity and |ONE| otherwise. |p| was computed from the table, so it
    367     // is infinity iff |wvalue >> 1| is zero.
    368     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
    369     copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
    370 
    371     for (int i = 1; i < 37; i++) {
    372       wvalue = calc_wvalue(&index, p_str);
    373 
    374       ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
    375 
    376       ecp_nistz256_neg(t.p.Z, t.a.Y);
    377       copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
    378 
    379       // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
    380       // are the same non-infinity point, so it is important that we compute the
    381       // |g_scalar| term before the |p_scalar| term.
    382       ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
    383     }
    384   }
    385 
    386   mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
    387 }
    388 
    389 static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
    390                                            EC_RAW_POINT *r,
    391                                            const EC_SCALAR *g_scalar,
    392                                            const EC_RAW_POINT *p_,
    393                                            const EC_SCALAR *p_scalar) {
    394   assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
    395 
    396   alignas(32) p256_point_union_t t, p;
    397   uint8_t p_str[33];
    398   OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
    399   p_str[32] = 0;
    400 
    401   // First window
    402   unsigned index = 0;
    403   unsigned wvalue = calc_first_wvalue(&index, p_str);
    404 
    405   // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
    406   // is infinity and |ONE| otherwise. |p| was computed from the table, so it
    407   // is infinity iff |wvalue >> 1| is zero.
    408   if ((wvalue >> 1) != 0) {
    409     OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
    410                    sizeof(p.a));
    411     OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
    412   } else {
    413     OPENSSL_memset(&p.a, 0, sizeof(p.a));
    414     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
    415   }
    416 
    417   if ((wvalue & 1) == 1) {
    418     ecp_nistz256_neg(p.p.Y, p.p.Y);
    419   }
    420 
    421   for (int i = 1; i < 37; i++) {
    422     wvalue = calc_wvalue(&index, p_str);
    423 
    424     if ((wvalue >> 1) == 0) {
    425       continue;
    426     }
    427 
    428     OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
    429                    sizeof(p.a));
    430 
    431     if ((wvalue & 1) == 1) {
    432       ecp_nistz256_neg(t.a.Y, t.a.Y);
    433     }
    434 
    435     // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
    436     // are the same non-infinity point, so it is important that we compute the
    437     // |g_scalar| term before the |p_scalar| term.
    438     ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
    439   }
    440 
    441   mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
    442 }
    443 
    444 static int ecp_nistz256_get_affine(const EC_GROUP *group,
    445                                    const EC_RAW_POINT *point, EC_FELEM *x,
    446                                    EC_FELEM *y) {
    447   if (ec_GFp_simple_is_at_infinity(group, point)) {
    448     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    449     return 0;
    450   }
    451 
    452   BN_ULONG z_inv2[P256_LIMBS];
    453   BN_ULONG z_inv3[P256_LIMBS];
    454   assert(group->field.width == P256_LIMBS);
    455   ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words);
    456   ecp_nistz256_sqr_mont(z_inv2, z_inv3);
    457 
    458   // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
    459   // and then calling |ecp_nistz256_from_mont| again to convert the |y|
    460   // coordinate below, convert the common factor |z_inv2| once now, saving one
    461   // reduction.
    462   ecp_nistz256_from_mont(z_inv2, z_inv2);
    463 
    464   if (x != NULL) {
    465     ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
    466   }
    467 
    468   if (y != NULL) {
    469     ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
    470     ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words);
    471   }
    472 
    473   return 1;
    474 }
    475 
    476 static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
    477                              const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
    478   P256_POINT a, b;
    479   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
    480   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
    481   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
    482   OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
    483   OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
    484   OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
    485   ecp_nistz256_point_add(&a, &a, &b);
    486   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
    487   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
    488   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
    489 }
    490 
    491 static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
    492                              const EC_RAW_POINT *a_) {
    493   P256_POINT a;
    494   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
    495   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
    496   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
    497   ecp_nistz256_point_double(&a, &a);
    498   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
    499   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
    500   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
    501 }
    502 
    503 static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
    504                                      const EC_SCALAR *in) {
    505   // table[i] stores a power of |in| corresponding to the matching enum value.
    506   enum {
    507     // The following indices specify the power in binary.
    508     i_1 = 0,
    509     i_10,
    510     i_11,
    511     i_101,
    512     i_111,
    513     i_1010,
    514     i_1111,
    515     i_10101,
    516     i_101010,
    517     i_101111,
    518     // The following indices specify 2^N-1, or N ones in a row.
    519     i_x6,
    520     i_x8,
    521     i_x16,
    522     i_x32
    523   };
    524   BN_ULONG table[15][P256_LIMBS];
    525 
    526   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
    527   //
    528   // Even though this code path spares 12 squarings, 4.5%, and 13
    529   // multiplications, 25%, the overall sign operation is not that much faster,
    530   // not more that 2%. Most of the performance of this function comes from the
    531   // scalar operations.
    532 
    533   // Pre-calculate powers.
    534   OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
    535 
    536   ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
    537 
    538   ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
    539 
    540   ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
    541 
    542   ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
    543 
    544   ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
    545 
    546   ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
    547 
    548   ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
    549   ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
    550 
    551   ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
    552 
    553   ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
    554 
    555   ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
    556 
    557   ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
    558   ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
    559 
    560   ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
    561   ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
    562 
    563   ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
    564   ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
    565 
    566   // Compute |in| raised to the order-2.
    567   ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
    568   ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
    569   static const struct {
    570     uint8_t p, i;
    571   } kChain[27] = {{32, i_x32},    {6, i_101111}, {5, i_111},    {4, i_11},
    572                   {5, i_1111},    {5, i_10101},  {4, i_101},    {3, i_101},
    573                   {3, i_101},     {5, i_111},    {9, i_101111}, {6, i_1111},
    574                   {2, i_1},       {5, i_1},      {6, i_1111},   {5, i_111},
    575                   {4, i_111},     {5, i_111},    {5, i_101},    {3, i_11},
    576                   {10, i_101111}, {2, i_11},     {5, i_11},     {5, i_11},
    577                   {3, i_1},       {7, i_10101},  {6, i_1111}};
    578   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
    579     ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
    580     ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
    581   }
    582 }
    583 
    584 static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group,
    585                                                  EC_SCALAR *out,
    586                                                  const EC_SCALAR *in) {
    587   if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
    588     // No AVX support; fallback to generic code.
    589     return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in);
    590   }
    591 
    592   assert(group->order.width == P256_LIMBS);
    593   if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
    594     return 0;
    595   }
    596 
    597   // The result should be returned in the Montgomery domain.
    598   ec_scalar_to_montgomery(group, out, out);
    599   return 1;
    600 }
    601 
    602 static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
    603                                          const EC_RAW_POINT *p,
    604                                          const EC_SCALAR *r) {
    605   if (ec_GFp_simple_is_at_infinity(group, p)) {
    606     return 0;
    607   }
    608 
    609   assert(group->order.width == P256_LIMBS);
    610   assert(group->field.width == P256_LIMBS);
    611 
    612   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
    613   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
    614   // not.
    615   BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
    616   ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
    617   ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
    618   ecp_nistz256_from_mont(X, p->X.words);
    619 
    620   if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
    621     return 1;
    622   }
    623 
    624   // During signing the x coefficient is reduced modulo the group order.
    625   // Therefore there is a small possibility, less than 1/2^128, that group_order
    626   // < p.x < P. in that case we need not only to compare against |r| but also to
    627   // compare against r+group_order.
    628   if (bn_less_than_words(r->words, group->field_minus_order.words,
    629                          P256_LIMBS)) {
    630     // We can ignore the carry because: r + group_order < p < 2^256.
    631     bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
    632     ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
    633     if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
    634       return 1;
    635     }
    636   }
    637 
    638   return 0;
    639 }
    640 
    641 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
    642   out->group_init = ec_GFp_mont_group_init;
    643   out->group_finish = ec_GFp_mont_group_finish;
    644   out->group_set_curve = ec_GFp_mont_group_set_curve;
    645   out->point_get_affine_coordinates = ecp_nistz256_get_affine;
    646   out->add = ecp_nistz256_add;
    647   out->dbl = ecp_nistz256_dbl;
    648   out->mul = ecp_nistz256_points_mul;
    649   out->mul_public = ecp_nistz256_points_mul_public;
    650   out->felem_mul = ec_GFp_mont_felem_mul;
    651   out->felem_sqr = ec_GFp_mont_felem_sqr;
    652   out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
    653   out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
    654   out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord;
    655   out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime;
    656   out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
    657 }
    658 
    659 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
    660           !defined(OPENSSL_SMALL) */
    661