Home | History | Annotate | Download | only in ubifs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * This file is part of UBIFS.
      4  *
      5  * Copyright (C) 2006-2008 Nokia Corporation.
      6  *
      7  * Authors: Artem Bityutskiy ( )
      8  *          Adrian Hunter
      9  */
     10 
     11 /*
     12  * This file implements UBIFS initialization and VFS superblock operations. Some
     13  * initialization stuff which is rather large and complex is placed at
     14  * corresponding subsystems, but most of it is here.
     15  */
     16 
     17 #ifndef __UBOOT__
     18 #include <linux/init.h>
     19 #include <linux/slab.h>
     20 #include <linux/module.h>
     21 #include <linux/ctype.h>
     22 #include <linux/kthread.h>
     23 #include <linux/parser.h>
     24 #include <linux/seq_file.h>
     25 #include <linux/mount.h>
     26 #include <linux/math64.h>
     27 #include <linux/writeback.h>
     28 #else
     29 
     30 #include <common.h>
     31 #include <malloc.h>
     32 #include <memalign.h>
     33 #include <linux/bug.h>
     34 #include <linux/log2.h>
     35 #include <linux/stat.h>
     36 #include <linux/err.h>
     37 #include "ubifs.h"
     38 #include <ubi_uboot.h>
     39 #include <mtd/ubi-user.h>
     40 
     41 struct dentry;
     42 struct file;
     43 struct iattr;
     44 struct kstat;
     45 struct vfsmount;
     46 
     47 #define INODE_LOCKED_MAX	64
     48 
     49 struct super_block *ubifs_sb;
     50 
     51 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
     52 
     53 int set_anon_super(struct super_block *s, void *data)
     54 {
     55 	return 0;
     56 }
     57 
     58 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
     59 {
     60 	struct inode *inode;
     61 
     62 	inode = (struct inode *)malloc_cache_aligned(
     63 			sizeof(struct ubifs_inode));
     64 	if (inode) {
     65 		inode->i_ino = ino;
     66 		inode->i_sb = sb;
     67 		list_add(&inode->i_sb_list, &sb->s_inodes);
     68 		inode->i_state = I_LOCK | I_NEW;
     69 	}
     70 
     71 	return inode;
     72 }
     73 
     74 void iget_failed(struct inode *inode)
     75 {
     76 }
     77 
     78 int ubifs_iput(struct inode *inode)
     79 {
     80 	list_del_init(&inode->i_sb_list);
     81 
     82 	free(inode);
     83 	return 0;
     84 }
     85 
     86 /*
     87  * Lock (save) inode in inode array for readback after recovery
     88  */
     89 void iput(struct inode *inode)
     90 {
     91 	int i;
     92 	struct inode *ino;
     93 
     94 	/*
     95 	 * Search end of list
     96 	 */
     97 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
     98 		if (inodes_locked_down[i] == NULL)
     99 			break;
    100 	}
    101 
    102 	if (i >= INODE_LOCKED_MAX) {
    103 		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
    104 		return;
    105 	}
    106 
    107 	/*
    108 	 * Allocate and use new inode
    109 	 */
    110 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
    111 	memcpy(ino, inode, sizeof(struct ubifs_inode));
    112 
    113 	/*
    114 	 * Finally save inode in array
    115 	 */
    116 	inodes_locked_down[i] = ino;
    117 }
    118 
    119 /* from fs/inode.c */
    120 /**
    121  * clear_nlink - directly zero an inode's link count
    122  * @inode: inode
    123  *
    124  * This is a low-level filesystem helper to replace any
    125  * direct filesystem manipulation of i_nlink.  See
    126  * drop_nlink() for why we care about i_nlink hitting zero.
    127  */
    128 void clear_nlink(struct inode *inode)
    129 {
    130 	if (inode->i_nlink) {
    131 		inode->__i_nlink = 0;
    132 		atomic_long_inc(&inode->i_sb->s_remove_count);
    133 	}
    134 }
    135 EXPORT_SYMBOL(clear_nlink);
    136 
    137 /**
    138  * set_nlink - directly set an inode's link count
    139  * @inode: inode
    140  * @nlink: new nlink (should be non-zero)
    141  *
    142  * This is a low-level filesystem helper to replace any
    143  * direct filesystem manipulation of i_nlink.
    144  */
    145 void set_nlink(struct inode *inode, unsigned int nlink)
    146 {
    147 	if (!nlink) {
    148 		clear_nlink(inode);
    149 	} else {
    150 		/* Yes, some filesystems do change nlink from zero to one */
    151 		if (inode->i_nlink == 0)
    152 			atomic_long_dec(&inode->i_sb->s_remove_count);
    153 
    154 		inode->__i_nlink = nlink;
    155 	}
    156 }
    157 EXPORT_SYMBOL(set_nlink);
    158 
    159 /* from include/linux/fs.h */
    160 static inline void i_uid_write(struct inode *inode, uid_t uid)
    161 {
    162 	inode->i_uid.val = uid;
    163 }
    164 
    165 static inline void i_gid_write(struct inode *inode, gid_t gid)
    166 {
    167 	inode->i_gid.val = gid;
    168 }
    169 
    170 void unlock_new_inode(struct inode *inode)
    171 {
    172 	return;
    173 }
    174 #endif
    175 
    176 /*
    177  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
    178  * allocating too much.
    179  */
    180 #define UBIFS_KMALLOC_OK (128*1024)
    181 
    182 /* Slab cache for UBIFS inodes */
    183 struct kmem_cache *ubifs_inode_slab;
    184 
    185 #ifndef __UBOOT__
    186 /* UBIFS TNC shrinker description */
    187 static struct shrinker ubifs_shrinker_info = {
    188 	.scan_objects = ubifs_shrink_scan,
    189 	.count_objects = ubifs_shrink_count,
    190 	.seeks = DEFAULT_SEEKS,
    191 };
    192 #endif
    193 
    194 /**
    195  * validate_inode - validate inode.
    196  * @c: UBIFS file-system description object
    197  * @inode: the inode to validate
    198  *
    199  * This is a helper function for 'ubifs_iget()' which validates various fields
    200  * of a newly built inode to make sure they contain sane values and prevent
    201  * possible vulnerabilities. Returns zero if the inode is all right and
    202  * a non-zero error code if not.
    203  */
    204 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
    205 {
    206 	int err;
    207 	const struct ubifs_inode *ui = ubifs_inode(inode);
    208 
    209 	if (inode->i_size > c->max_inode_sz) {
    210 		ubifs_err(c, "inode is too large (%lld)",
    211 			  (long long)inode->i_size);
    212 		return 1;
    213 	}
    214 
    215 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
    216 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
    217 		return 2;
    218 	}
    219 
    220 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
    221 		return 3;
    222 
    223 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
    224 		return 4;
    225 
    226 	if (ui->xattr && !S_ISREG(inode->i_mode))
    227 		return 5;
    228 
    229 	if (!ubifs_compr_present(ui->compr_type)) {
    230 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
    231 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
    232 	}
    233 
    234 	err = dbg_check_dir(c, inode);
    235 	return err;
    236 }
    237 
    238 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
    239 {
    240 	int err;
    241 	union ubifs_key key;
    242 	struct ubifs_ino_node *ino;
    243 	struct ubifs_info *c = sb->s_fs_info;
    244 	struct inode *inode;
    245 	struct ubifs_inode *ui;
    246 #ifdef __UBOOT__
    247 	int i;
    248 #endif
    249 
    250 	dbg_gen("inode %lu", inum);
    251 
    252 #ifdef __UBOOT__
    253 	/*
    254 	 * U-Boot special handling of locked down inodes via recovery
    255 	 * e.g. ubifs_recover_size()
    256 	 */
    257 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
    258 		/*
    259 		 * Exit on last entry (NULL), inode not found in list
    260 		 */
    261 		if (inodes_locked_down[i] == NULL)
    262 			break;
    263 
    264 		if (inodes_locked_down[i]->i_ino == inum) {
    265 			/*
    266 			 * We found the locked down inode in our array,
    267 			 * so just return this pointer instead of creating
    268 			 * a new one.
    269 			 */
    270 			return inodes_locked_down[i];
    271 		}
    272 	}
    273 #endif
    274 
    275 	inode = iget_locked(sb, inum);
    276 	if (!inode)
    277 		return ERR_PTR(-ENOMEM);
    278 	if (!(inode->i_state & I_NEW))
    279 		return inode;
    280 	ui = ubifs_inode(inode);
    281 
    282 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
    283 	if (!ino) {
    284 		err = -ENOMEM;
    285 		goto out;
    286 	}
    287 
    288 	ino_key_init(c, &key, inode->i_ino);
    289 
    290 	err = ubifs_tnc_lookup(c, &key, ino);
    291 	if (err)
    292 		goto out_ino;
    293 
    294 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
    295 	set_nlink(inode, le32_to_cpu(ino->nlink));
    296 	i_uid_write(inode, le32_to_cpu(ino->uid));
    297 	i_gid_write(inode, le32_to_cpu(ino->gid));
    298 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
    299 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
    300 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
    301 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
    302 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
    303 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
    304 	inode->i_mode = le32_to_cpu(ino->mode);
    305 	inode->i_size = le64_to_cpu(ino->size);
    306 
    307 	ui->data_len    = le32_to_cpu(ino->data_len);
    308 	ui->flags       = le32_to_cpu(ino->flags);
    309 	ui->compr_type  = le16_to_cpu(ino->compr_type);
    310 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
    311 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
    312 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
    313 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
    314 	ui->synced_i_size = ui->ui_size = inode->i_size;
    315 
    316 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
    317 
    318 	err = validate_inode(c, inode);
    319 	if (err)
    320 		goto out_invalid;
    321 
    322 #ifndef __UBOOT__
    323 	switch (inode->i_mode & S_IFMT) {
    324 	case S_IFREG:
    325 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
    326 		inode->i_op = &ubifs_file_inode_operations;
    327 		inode->i_fop = &ubifs_file_operations;
    328 		if (ui->xattr) {
    329 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
    330 			if (!ui->data) {
    331 				err = -ENOMEM;
    332 				goto out_ino;
    333 			}
    334 			memcpy(ui->data, ino->data, ui->data_len);
    335 			((char *)ui->data)[ui->data_len] = '\0';
    336 		} else if (ui->data_len != 0) {
    337 			err = 10;
    338 			goto out_invalid;
    339 		}
    340 		break;
    341 	case S_IFDIR:
    342 		inode->i_op  = &ubifs_dir_inode_operations;
    343 		inode->i_fop = &ubifs_dir_operations;
    344 		if (ui->data_len != 0) {
    345 			err = 11;
    346 			goto out_invalid;
    347 		}
    348 		break;
    349 	case S_IFLNK:
    350 		inode->i_op = &ubifs_symlink_inode_operations;
    351 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
    352 			err = 12;
    353 			goto out_invalid;
    354 		}
    355 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
    356 		if (!ui->data) {
    357 			err = -ENOMEM;
    358 			goto out_ino;
    359 		}
    360 		memcpy(ui->data, ino->data, ui->data_len);
    361 		((char *)ui->data)[ui->data_len] = '\0';
    362 		inode->i_link = ui->data;
    363 		break;
    364 	case S_IFBLK:
    365 	case S_IFCHR:
    366 	{
    367 		dev_t rdev;
    368 		union ubifs_dev_desc *dev;
    369 
    370 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
    371 		if (!ui->data) {
    372 			err = -ENOMEM;
    373 			goto out_ino;
    374 		}
    375 
    376 		dev = (union ubifs_dev_desc *)ino->data;
    377 		if (ui->data_len == sizeof(dev->new))
    378 			rdev = new_decode_dev(le32_to_cpu(dev->new));
    379 		else if (ui->data_len == sizeof(dev->huge))
    380 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
    381 		else {
    382 			err = 13;
    383 			goto out_invalid;
    384 		}
    385 		memcpy(ui->data, ino->data, ui->data_len);
    386 		inode->i_op = &ubifs_file_inode_operations;
    387 		init_special_inode(inode, inode->i_mode, rdev);
    388 		break;
    389 	}
    390 	case S_IFSOCK:
    391 	case S_IFIFO:
    392 		inode->i_op = &ubifs_file_inode_operations;
    393 		init_special_inode(inode, inode->i_mode, 0);
    394 		if (ui->data_len != 0) {
    395 			err = 14;
    396 			goto out_invalid;
    397 		}
    398 		break;
    399 	default:
    400 		err = 15;
    401 		goto out_invalid;
    402 	}
    403 #else
    404 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
    405 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
    406 			err = 12;
    407 			goto out_invalid;
    408 		}
    409 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
    410 		if (!ui->data) {
    411 			err = -ENOMEM;
    412 			goto out_ino;
    413 		}
    414 		memcpy(ui->data, ino->data, ui->data_len);
    415 		((char *)ui->data)[ui->data_len] = '\0';
    416 	}
    417 #endif
    418 
    419 	kfree(ino);
    420 #ifndef __UBOOT__
    421 	ubifs_set_inode_flags(inode);
    422 #endif
    423 	unlock_new_inode(inode);
    424 	return inode;
    425 
    426 out_invalid:
    427 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
    428 	ubifs_dump_node(c, ino);
    429 	ubifs_dump_inode(c, inode);
    430 	err = -EINVAL;
    431 out_ino:
    432 	kfree(ino);
    433 out:
    434 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
    435 	iget_failed(inode);
    436 	return ERR_PTR(err);
    437 }
    438 
    439 static struct inode *ubifs_alloc_inode(struct super_block *sb)
    440 {
    441 	struct ubifs_inode *ui;
    442 
    443 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
    444 	if (!ui)
    445 		return NULL;
    446 
    447 	memset((void *)ui + sizeof(struct inode), 0,
    448 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
    449 	mutex_init(&ui->ui_mutex);
    450 	spin_lock_init(&ui->ui_lock);
    451 	return &ui->vfs_inode;
    452 };
    453 
    454 #ifndef __UBOOT__
    455 static void ubifs_i_callback(struct rcu_head *head)
    456 {
    457 	struct inode *inode = container_of(head, struct inode, i_rcu);
    458 	struct ubifs_inode *ui = ubifs_inode(inode);
    459 	kmem_cache_free(ubifs_inode_slab, ui);
    460 }
    461 
    462 static void ubifs_destroy_inode(struct inode *inode)
    463 {
    464 	struct ubifs_inode *ui = ubifs_inode(inode);
    465 
    466 	kfree(ui->data);
    467 	call_rcu(&inode->i_rcu, ubifs_i_callback);
    468 }
    469 
    470 /*
    471  * Note, Linux write-back code calls this without 'i_mutex'.
    472  */
    473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
    474 {
    475 	int err = 0;
    476 	struct ubifs_info *c = inode->i_sb->s_fs_info;
    477 	struct ubifs_inode *ui = ubifs_inode(inode);
    478 
    479 	ubifs_assert(!ui->xattr);
    480 	if (is_bad_inode(inode))
    481 		return 0;
    482 
    483 	mutex_lock(&ui->ui_mutex);
    484 	/*
    485 	 * Due to races between write-back forced by budgeting
    486 	 * (see 'sync_some_inodes()') and background write-back, the inode may
    487 	 * have already been synchronized, do not do this again. This might
    488 	 * also happen if it was synchronized in an VFS operation, e.g.
    489 	 * 'ubifs_link()'.
    490 	 */
    491 	if (!ui->dirty) {
    492 		mutex_unlock(&ui->ui_mutex);
    493 		return 0;
    494 	}
    495 
    496 	/*
    497 	 * As an optimization, do not write orphan inodes to the media just
    498 	 * because this is not needed.
    499 	 */
    500 	dbg_gen("inode %lu, mode %#x, nlink %u",
    501 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
    502 	if (inode->i_nlink) {
    503 		err = ubifs_jnl_write_inode(c, inode);
    504 		if (err)
    505 			ubifs_err(c, "can't write inode %lu, error %d",
    506 				  inode->i_ino, err);
    507 		else
    508 			err = dbg_check_inode_size(c, inode, ui->ui_size);
    509 	}
    510 
    511 	ui->dirty = 0;
    512 	mutex_unlock(&ui->ui_mutex);
    513 	ubifs_release_dirty_inode_budget(c, ui);
    514 	return err;
    515 }
    516 
    517 static void ubifs_evict_inode(struct inode *inode)
    518 {
    519 	int err;
    520 	struct ubifs_info *c = inode->i_sb->s_fs_info;
    521 	struct ubifs_inode *ui = ubifs_inode(inode);
    522 
    523 	if (ui->xattr)
    524 		/*
    525 		 * Extended attribute inode deletions are fully handled in
    526 		 * 'ubifs_removexattr()'. These inodes are special and have
    527 		 * limited usage, so there is nothing to do here.
    528 		 */
    529 		goto out;
    530 
    531 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
    532 	ubifs_assert(!atomic_read(&inode->i_count));
    533 
    534 	truncate_inode_pages_final(&inode->i_data);
    535 
    536 	if (inode->i_nlink)
    537 		goto done;
    538 
    539 	if (is_bad_inode(inode))
    540 		goto out;
    541 
    542 	ui->ui_size = inode->i_size = 0;
    543 	err = ubifs_jnl_delete_inode(c, inode);
    544 	if (err)
    545 		/*
    546 		 * Worst case we have a lost orphan inode wasting space, so a
    547 		 * simple error message is OK here.
    548 		 */
    549 		ubifs_err(c, "can't delete inode %lu, error %d",
    550 			  inode->i_ino, err);
    551 
    552 out:
    553 	if (ui->dirty)
    554 		ubifs_release_dirty_inode_budget(c, ui);
    555 	else {
    556 		/* We've deleted something - clean the "no space" flags */
    557 		c->bi.nospace = c->bi.nospace_rp = 0;
    558 		smp_wmb();
    559 	}
    560 done:
    561 	clear_inode(inode);
    562 }
    563 #endif
    564 
    565 static void ubifs_dirty_inode(struct inode *inode, int flags)
    566 {
    567 	struct ubifs_inode *ui = ubifs_inode(inode);
    568 
    569 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
    570 	if (!ui->dirty) {
    571 		ui->dirty = 1;
    572 		dbg_gen("inode %lu",  inode->i_ino);
    573 	}
    574 }
    575 
    576 #ifndef __UBOOT__
    577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
    578 {
    579 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
    580 	unsigned long long free;
    581 	__le32 *uuid = (__le32 *)c->uuid;
    582 
    583 	free = ubifs_get_free_space(c);
    584 	dbg_gen("free space %lld bytes (%lld blocks)",
    585 		free, free >> UBIFS_BLOCK_SHIFT);
    586 
    587 	buf->f_type = UBIFS_SUPER_MAGIC;
    588 	buf->f_bsize = UBIFS_BLOCK_SIZE;
    589 	buf->f_blocks = c->block_cnt;
    590 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
    591 	if (free > c->report_rp_size)
    592 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
    593 	else
    594 		buf->f_bavail = 0;
    595 	buf->f_files = 0;
    596 	buf->f_ffree = 0;
    597 	buf->f_namelen = UBIFS_MAX_NLEN;
    598 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
    599 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
    600 	ubifs_assert(buf->f_bfree <= c->block_cnt);
    601 	return 0;
    602 }
    603 
    604 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
    605 {
    606 	struct ubifs_info *c = root->d_sb->s_fs_info;
    607 
    608 	if (c->mount_opts.unmount_mode == 2)
    609 		seq_puts(s, ",fast_unmount");
    610 	else if (c->mount_opts.unmount_mode == 1)
    611 		seq_puts(s, ",norm_unmount");
    612 
    613 	if (c->mount_opts.bulk_read == 2)
    614 		seq_puts(s, ",bulk_read");
    615 	else if (c->mount_opts.bulk_read == 1)
    616 		seq_puts(s, ",no_bulk_read");
    617 
    618 	if (c->mount_opts.chk_data_crc == 2)
    619 		seq_puts(s, ",chk_data_crc");
    620 	else if (c->mount_opts.chk_data_crc == 1)
    621 		seq_puts(s, ",no_chk_data_crc");
    622 
    623 	if (c->mount_opts.override_compr) {
    624 		seq_printf(s, ",compr=%s",
    625 			   ubifs_compr_name(c->mount_opts.compr_type));
    626 	}
    627 
    628 	return 0;
    629 }
    630 
    631 static int ubifs_sync_fs(struct super_block *sb, int wait)
    632 {
    633 	int i, err;
    634 	struct ubifs_info *c = sb->s_fs_info;
    635 
    636 	/*
    637 	 * Zero @wait is just an advisory thing to help the file system shove
    638 	 * lots of data into the queues, and there will be the second
    639 	 * '->sync_fs()' call, with non-zero @wait.
    640 	 */
    641 	if (!wait)
    642 		return 0;
    643 
    644 	/*
    645 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
    646 	 * do this if it waits for an already running commit.
    647 	 */
    648 	for (i = 0; i < c->jhead_cnt; i++) {
    649 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
    650 		if (err)
    651 			return err;
    652 	}
    653 
    654 	/*
    655 	 * Strictly speaking, it is not necessary to commit the journal here,
    656 	 * synchronizing write-buffers would be enough. But committing makes
    657 	 * UBIFS free space predictions much more accurate, so we want to let
    658 	 * the user be able to get more accurate results of 'statfs()' after
    659 	 * they synchronize the file system.
    660 	 */
    661 	err = ubifs_run_commit(c);
    662 	if (err)
    663 		return err;
    664 
    665 	return ubi_sync(c->vi.ubi_num);
    666 }
    667 #endif
    668 
    669 /**
    670  * init_constants_early - initialize UBIFS constants.
    671  * @c: UBIFS file-system description object
    672  *
    673  * This function initialize UBIFS constants which do not need the superblock to
    674  * be read. It also checks that the UBI volume satisfies basic UBIFS
    675  * requirements. Returns zero in case of success and a negative error code in
    676  * case of failure.
    677  */
    678 static int init_constants_early(struct ubifs_info *c)
    679 {
    680 	if (c->vi.corrupted) {
    681 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
    682 		c->ro_media = 1;
    683 	}
    684 
    685 	if (c->di.ro_mode) {
    686 		ubifs_msg(c, "read-only UBI device");
    687 		c->ro_media = 1;
    688 	}
    689 
    690 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
    691 		ubifs_msg(c, "static UBI volume - read-only mode");
    692 		c->ro_media = 1;
    693 	}
    694 
    695 	c->leb_cnt = c->vi.size;
    696 	c->leb_size = c->vi.usable_leb_size;
    697 	c->leb_start = c->di.leb_start;
    698 	c->half_leb_size = c->leb_size / 2;
    699 	c->min_io_size = c->di.min_io_size;
    700 	c->min_io_shift = fls(c->min_io_size) - 1;
    701 	c->max_write_size = c->di.max_write_size;
    702 	c->max_write_shift = fls(c->max_write_size) - 1;
    703 
    704 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
    705 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
    706 			  c->leb_size, UBIFS_MIN_LEB_SZ);
    707 		return -EINVAL;
    708 	}
    709 
    710 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
    711 		ubifs_err(c, "too few LEBs (%d), min. is %d",
    712 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
    713 		return -EINVAL;
    714 	}
    715 
    716 	if (!is_power_of_2(c->min_io_size)) {
    717 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
    718 		return -EINVAL;
    719 	}
    720 
    721 	/*
    722 	 * Maximum write size has to be greater or equivalent to min. I/O
    723 	 * size, and be multiple of min. I/O size.
    724 	 */
    725 	if (c->max_write_size < c->min_io_size ||
    726 	    c->max_write_size % c->min_io_size ||
    727 	    !is_power_of_2(c->max_write_size)) {
    728 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
    729 			  c->max_write_size, c->min_io_size);
    730 		return -EINVAL;
    731 	}
    732 
    733 	/*
    734 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
    735 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
    736 	 * less than 8.
    737 	 */
    738 	if (c->min_io_size < 8) {
    739 		c->min_io_size = 8;
    740 		c->min_io_shift = 3;
    741 		if (c->max_write_size < c->min_io_size) {
    742 			c->max_write_size = c->min_io_size;
    743 			c->max_write_shift = c->min_io_shift;
    744 		}
    745 	}
    746 
    747 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
    748 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
    749 
    750 	/*
    751 	 * Initialize node length ranges which are mostly needed for node
    752 	 * length validation.
    753 	 */
    754 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
    755 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
    756 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
    757 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
    758 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
    759 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
    760 
    761 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
    762 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
    763 	c->ranges[UBIFS_ORPH_NODE].min_len =
    764 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
    765 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
    766 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
    767 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
    768 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
    769 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
    770 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
    771 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
    772 	/*
    773 	 * Minimum indexing node size is amended later when superblock is
    774 	 * read and the key length is known.
    775 	 */
    776 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
    777 	/*
    778 	 * Maximum indexing node size is amended later when superblock is
    779 	 * read and the fanout is known.
    780 	 */
    781 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
    782 
    783 	/*
    784 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
    785 	 * about these values.
    786 	 */
    787 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
    788 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
    789 
    790 	/*
    791 	 * Calculate how many bytes would be wasted at the end of LEB if it was
    792 	 * fully filled with data nodes of maximum size. This is used in
    793 	 * calculations when reporting free space.
    794 	 */
    795 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
    796 
    797 	/* Buffer size for bulk-reads */
    798 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
    799 	if (c->max_bu_buf_len > c->leb_size)
    800 		c->max_bu_buf_len = c->leb_size;
    801 	return 0;
    802 }
    803 
    804 /**
    805  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
    806  * @c: UBIFS file-system description object
    807  * @lnum: LEB the write-buffer was synchronized to
    808  * @free: how many free bytes left in this LEB
    809  * @pad: how many bytes were padded
    810  *
    811  * This is a callback function which is called by the I/O unit when the
    812  * write-buffer is synchronized. We need this to correctly maintain space
    813  * accounting in bud logical eraseblocks. This function returns zero in case of
    814  * success and a negative error code in case of failure.
    815  *
    816  * This function actually belongs to the journal, but we keep it here because
    817  * we want to keep it static.
    818  */
    819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
    820 {
    821 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
    822 }
    823 
    824 /*
    825  * init_constants_sb - initialize UBIFS constants.
    826  * @c: UBIFS file-system description object
    827  *
    828  * This is a helper function which initializes various UBIFS constants after
    829  * the superblock has been read. It also checks various UBIFS parameters and
    830  * makes sure they are all right. Returns zero in case of success and a
    831  * negative error code in case of failure.
    832  */
    833 static int init_constants_sb(struct ubifs_info *c)
    834 {
    835 	int tmp, err;
    836 	long long tmp64;
    837 
    838 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
    839 	c->max_znode_sz = sizeof(struct ubifs_znode) +
    840 				c->fanout * sizeof(struct ubifs_zbranch);
    841 
    842 	tmp = ubifs_idx_node_sz(c, 1);
    843 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
    844 	c->min_idx_node_sz = ALIGN(tmp, 8);
    845 
    846 	tmp = ubifs_idx_node_sz(c, c->fanout);
    847 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
    848 	c->max_idx_node_sz = ALIGN(tmp, 8);
    849 
    850 	/* Make sure LEB size is large enough to fit full commit */
    851 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
    852 	tmp = ALIGN(tmp, c->min_io_size);
    853 	if (tmp > c->leb_size) {
    854 		ubifs_err(c, "too small LEB size %d, at least %d needed",
    855 			  c->leb_size, tmp);
    856 		return -EINVAL;
    857 	}
    858 
    859 	/*
    860 	 * Make sure that the log is large enough to fit reference nodes for
    861 	 * all buds plus one reserved LEB.
    862 	 */
    863 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
    864 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
    865 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
    866 	tmp /= c->leb_size;
    867 	tmp += 1;
    868 	if (c->log_lebs < tmp) {
    869 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
    870 			  c->log_lebs, tmp);
    871 		return -EINVAL;
    872 	}
    873 
    874 	/*
    875 	 * When budgeting we assume worst-case scenarios when the pages are not
    876 	 * be compressed and direntries are of the maximum size.
    877 	 *
    878 	 * Note, data, which may be stored in inodes is budgeted separately, so
    879 	 * it is not included into 'c->bi.inode_budget'.
    880 	 */
    881 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
    882 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
    883 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
    884 
    885 	/*
    886 	 * When the amount of flash space used by buds becomes
    887 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
    888 	 * The writers are unblocked when the commit is finished. To avoid
    889 	 * writers to be blocked UBIFS initiates background commit in advance,
    890 	 * when number of bud bytes becomes above the limit defined below.
    891 	 */
    892 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
    893 
    894 	/*
    895 	 * Ensure minimum journal size. All the bytes in the journal heads are
    896 	 * considered to be used, when calculating the current journal usage.
    897 	 * Consequently, if the journal is too small, UBIFS will treat it as
    898 	 * always full.
    899 	 */
    900 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
    901 	if (c->bg_bud_bytes < tmp64)
    902 		c->bg_bud_bytes = tmp64;
    903 	if (c->max_bud_bytes < tmp64 + c->leb_size)
    904 		c->max_bud_bytes = tmp64 + c->leb_size;
    905 
    906 	err = ubifs_calc_lpt_geom(c);
    907 	if (err)
    908 		return err;
    909 
    910 	/* Initialize effective LEB size used in budgeting calculations */
    911 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
    912 	return 0;
    913 }
    914 
    915 /*
    916  * init_constants_master - initialize UBIFS constants.
    917  * @c: UBIFS file-system description object
    918  *
    919  * This is a helper function which initializes various UBIFS constants after
    920  * the master node has been read. It also checks various UBIFS parameters and
    921  * makes sure they are all right.
    922  */
    923 static void init_constants_master(struct ubifs_info *c)
    924 {
    925 	long long tmp64;
    926 
    927 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    928 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
    929 
    930 	/*
    931 	 * Calculate total amount of FS blocks. This number is not used
    932 	 * internally because it does not make much sense for UBIFS, but it is
    933 	 * necessary to report something for the 'statfs()' call.
    934 	 *
    935 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
    936 	 * deletions, minimum LEBs for the index, and assume only one journal
    937 	 * head is available.
    938 	 */
    939 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
    940 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
    941 	tmp64 = ubifs_reported_space(c, tmp64);
    942 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
    943 }
    944 
    945 /**
    946  * take_gc_lnum - reserve GC LEB.
    947  * @c: UBIFS file-system description object
    948  *
    949  * This function ensures that the LEB reserved for garbage collection is marked
    950  * as "taken" in lprops. We also have to set free space to LEB size and dirty
    951  * space to zero, because lprops may contain out-of-date information if the
    952  * file-system was un-mounted before it has been committed. This function
    953  * returns zero in case of success and a negative error code in case of
    954  * failure.
    955  */
    956 static int take_gc_lnum(struct ubifs_info *c)
    957 {
    958 	int err;
    959 
    960 	if (c->gc_lnum == -1) {
    961 		ubifs_err(c, "no LEB for GC");
    962 		return -EINVAL;
    963 	}
    964 
    965 	/* And we have to tell lprops that this LEB is taken */
    966 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
    967 				  LPROPS_TAKEN, 0, 0);
    968 	return err;
    969 }
    970 
    971 /**
    972  * alloc_wbufs - allocate write-buffers.
    973  * @c: UBIFS file-system description object
    974  *
    975  * This helper function allocates and initializes UBIFS write-buffers. Returns
    976  * zero in case of success and %-ENOMEM in case of failure.
    977  */
    978 static int alloc_wbufs(struct ubifs_info *c)
    979 {
    980 	int i, err;
    981 
    982 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
    983 			    GFP_KERNEL);
    984 	if (!c->jheads)
    985 		return -ENOMEM;
    986 
    987 	/* Initialize journal heads */
    988 	for (i = 0; i < c->jhead_cnt; i++) {
    989 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
    990 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
    991 		if (err)
    992 			return err;
    993 
    994 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
    995 		c->jheads[i].wbuf.jhead = i;
    996 		c->jheads[i].grouped = 1;
    997 	}
    998 
    999 	/*
   1000 	 * Garbage Collector head does not need to be synchronized by timer.
   1001 	 * Also GC head nodes are not grouped.
   1002 	 */
   1003 	c->jheads[GCHD].wbuf.no_timer = 1;
   1004 	c->jheads[GCHD].grouped = 0;
   1005 
   1006 	return 0;
   1007 }
   1008 
   1009 /**
   1010  * free_wbufs - free write-buffers.
   1011  * @c: UBIFS file-system description object
   1012  */
   1013 static void free_wbufs(struct ubifs_info *c)
   1014 {
   1015 	int i;
   1016 
   1017 	if (c->jheads) {
   1018 		for (i = 0; i < c->jhead_cnt; i++) {
   1019 			kfree(c->jheads[i].wbuf.buf);
   1020 			kfree(c->jheads[i].wbuf.inodes);
   1021 		}
   1022 		kfree(c->jheads);
   1023 		c->jheads = NULL;
   1024 	}
   1025 }
   1026 
   1027 /**
   1028  * free_orphans - free orphans.
   1029  * @c: UBIFS file-system description object
   1030  */
   1031 static void free_orphans(struct ubifs_info *c)
   1032 {
   1033 	struct ubifs_orphan *orph;
   1034 
   1035 	while (c->orph_dnext) {
   1036 		orph = c->orph_dnext;
   1037 		c->orph_dnext = orph->dnext;
   1038 		list_del(&orph->list);
   1039 		kfree(orph);
   1040 	}
   1041 
   1042 	while (!list_empty(&c->orph_list)) {
   1043 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
   1044 		list_del(&orph->list);
   1045 		kfree(orph);
   1046 		ubifs_err(c, "orphan list not empty at unmount");
   1047 	}
   1048 
   1049 	vfree(c->orph_buf);
   1050 	c->orph_buf = NULL;
   1051 }
   1052 
   1053 /**
   1054  * free_buds - free per-bud objects.
   1055  * @c: UBIFS file-system description object
   1056  */
   1057 static void free_buds(struct ubifs_info *c)
   1058 {
   1059 	struct ubifs_bud *bud, *n;
   1060 
   1061 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
   1062 		kfree(bud);
   1063 }
   1064 
   1065 /**
   1066  * check_volume_empty - check if the UBI volume is empty.
   1067  * @c: UBIFS file-system description object
   1068  *
   1069  * This function checks if the UBIFS volume is empty by looking if its LEBs are
   1070  * mapped or not. The result of checking is stored in the @c->empty variable.
   1071  * Returns zero in case of success and a negative error code in case of
   1072  * failure.
   1073  */
   1074 static int check_volume_empty(struct ubifs_info *c)
   1075 {
   1076 	int lnum, err;
   1077 
   1078 	c->empty = 1;
   1079 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
   1080 		err = ubifs_is_mapped(c, lnum);
   1081 		if (unlikely(err < 0))
   1082 			return err;
   1083 		if (err == 1) {
   1084 			c->empty = 0;
   1085 			break;
   1086 		}
   1087 
   1088 		cond_resched();
   1089 	}
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 /*
   1095  * UBIFS mount options.
   1096  *
   1097  * Opt_fast_unmount: do not run a journal commit before un-mounting
   1098  * Opt_norm_unmount: run a journal commit before un-mounting
   1099  * Opt_bulk_read: enable bulk-reads
   1100  * Opt_no_bulk_read: disable bulk-reads
   1101  * Opt_chk_data_crc: check CRCs when reading data nodes
   1102  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
   1103  * Opt_override_compr: override default compressor
   1104  * Opt_err: just end of array marker
   1105  */
   1106 enum {
   1107 	Opt_fast_unmount,
   1108 	Opt_norm_unmount,
   1109 	Opt_bulk_read,
   1110 	Opt_no_bulk_read,
   1111 	Opt_chk_data_crc,
   1112 	Opt_no_chk_data_crc,
   1113 	Opt_override_compr,
   1114 	Opt_err,
   1115 };
   1116 
   1117 #ifndef __UBOOT__
   1118 static const match_table_t tokens = {
   1119 	{Opt_fast_unmount, "fast_unmount"},
   1120 	{Opt_norm_unmount, "norm_unmount"},
   1121 	{Opt_bulk_read, "bulk_read"},
   1122 	{Opt_no_bulk_read, "no_bulk_read"},
   1123 	{Opt_chk_data_crc, "chk_data_crc"},
   1124 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
   1125 	{Opt_override_compr, "compr=%s"},
   1126 	{Opt_err, NULL},
   1127 };
   1128 
   1129 /**
   1130  * parse_standard_option - parse a standard mount option.
   1131  * @option: the option to parse
   1132  *
   1133  * Normally, standard mount options like "sync" are passed to file-systems as
   1134  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
   1135  * be present in the options string. This function tries to deal with this
   1136  * situation and parse standard options. Returns 0 if the option was not
   1137  * recognized, and the corresponding integer flag if it was.
   1138  *
   1139  * UBIFS is only interested in the "sync" option, so do not check for anything
   1140  * else.
   1141  */
   1142 static int parse_standard_option(const char *option)
   1143 {
   1144 
   1145 	pr_notice("UBIFS: parse %s\n", option);
   1146 	if (!strcmp(option, "sync"))
   1147 		return MS_SYNCHRONOUS;
   1148 	return 0;
   1149 }
   1150 
   1151 /**
   1152  * ubifs_parse_options - parse mount parameters.
   1153  * @c: UBIFS file-system description object
   1154  * @options: parameters to parse
   1155  * @is_remount: non-zero if this is FS re-mount
   1156  *
   1157  * This function parses UBIFS mount options and returns zero in case success
   1158  * and a negative error code in case of failure.
   1159  */
   1160 static int ubifs_parse_options(struct ubifs_info *c, char *options,
   1161 			       int is_remount)
   1162 {
   1163 	char *p;
   1164 	substring_t args[MAX_OPT_ARGS];
   1165 
   1166 	if (!options)
   1167 		return 0;
   1168 
   1169 	while ((p = strsep(&options, ","))) {
   1170 		int token;
   1171 
   1172 		if (!*p)
   1173 			continue;
   1174 
   1175 		token = match_token(p, tokens, args);
   1176 		switch (token) {
   1177 		/*
   1178 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
   1179 		 * We accept them in order to be backward-compatible. But this
   1180 		 * should be removed at some point.
   1181 		 */
   1182 		case Opt_fast_unmount:
   1183 			c->mount_opts.unmount_mode = 2;
   1184 			break;
   1185 		case Opt_norm_unmount:
   1186 			c->mount_opts.unmount_mode = 1;
   1187 			break;
   1188 		case Opt_bulk_read:
   1189 			c->mount_opts.bulk_read = 2;
   1190 			c->bulk_read = 1;
   1191 			break;
   1192 		case Opt_no_bulk_read:
   1193 			c->mount_opts.bulk_read = 1;
   1194 			c->bulk_read = 0;
   1195 			break;
   1196 		case Opt_chk_data_crc:
   1197 			c->mount_opts.chk_data_crc = 2;
   1198 			c->no_chk_data_crc = 0;
   1199 			break;
   1200 		case Opt_no_chk_data_crc:
   1201 			c->mount_opts.chk_data_crc = 1;
   1202 			c->no_chk_data_crc = 1;
   1203 			break;
   1204 		case Opt_override_compr:
   1205 		{
   1206 			char *name = match_strdup(&args[0]);
   1207 
   1208 			if (!name)
   1209 				return -ENOMEM;
   1210 			if (!strcmp(name, "none"))
   1211 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
   1212 			else if (!strcmp(name, "lzo"))
   1213 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
   1214 			else if (!strcmp(name, "zlib"))
   1215 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
   1216 			else {
   1217 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
   1218 				kfree(name);
   1219 				return -EINVAL;
   1220 			}
   1221 			kfree(name);
   1222 			c->mount_opts.override_compr = 1;
   1223 			c->default_compr = c->mount_opts.compr_type;
   1224 			break;
   1225 		}
   1226 		default:
   1227 		{
   1228 			unsigned long flag;
   1229 			struct super_block *sb = c->vfs_sb;
   1230 
   1231 			flag = parse_standard_option(p);
   1232 			if (!flag) {
   1233 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
   1234 					  p);
   1235 				return -EINVAL;
   1236 			}
   1237 			sb->s_flags |= flag;
   1238 			break;
   1239 		}
   1240 		}
   1241 	}
   1242 
   1243 	return 0;
   1244 }
   1245 #endif
   1246 
   1247 /**
   1248  * destroy_journal - destroy journal data structures.
   1249  * @c: UBIFS file-system description object
   1250  *
   1251  * This function destroys journal data structures including those that may have
   1252  * been created by recovery functions.
   1253  */
   1254 static void destroy_journal(struct ubifs_info *c)
   1255 {
   1256 	while (!list_empty(&c->unclean_leb_list)) {
   1257 		struct ubifs_unclean_leb *ucleb;
   1258 
   1259 		ucleb = list_entry(c->unclean_leb_list.next,
   1260 				   struct ubifs_unclean_leb, list);
   1261 		list_del(&ucleb->list);
   1262 		kfree(ucleb);
   1263 	}
   1264 	while (!list_empty(&c->old_buds)) {
   1265 		struct ubifs_bud *bud;
   1266 
   1267 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
   1268 		list_del(&bud->list);
   1269 		kfree(bud);
   1270 	}
   1271 	ubifs_destroy_idx_gc(c);
   1272 	ubifs_destroy_size_tree(c);
   1273 	ubifs_tnc_close(c);
   1274 	free_buds(c);
   1275 }
   1276 
   1277 /**
   1278  * bu_init - initialize bulk-read information.
   1279  * @c: UBIFS file-system description object
   1280  */
   1281 static void bu_init(struct ubifs_info *c)
   1282 {
   1283 	ubifs_assert(c->bulk_read == 1);
   1284 
   1285 	if (c->bu.buf)
   1286 		return; /* Already initialized */
   1287 
   1288 again:
   1289 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
   1290 	if (!c->bu.buf) {
   1291 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
   1292 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
   1293 			goto again;
   1294 		}
   1295 
   1296 		/* Just disable bulk-read */
   1297 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
   1298 			   c->max_bu_buf_len);
   1299 		c->mount_opts.bulk_read = 1;
   1300 		c->bulk_read = 0;
   1301 		return;
   1302 	}
   1303 }
   1304 
   1305 #ifndef __UBOOT__
   1306 /**
   1307  * check_free_space - check if there is enough free space to mount.
   1308  * @c: UBIFS file-system description object
   1309  *
   1310  * This function makes sure UBIFS has enough free space to be mounted in
   1311  * read/write mode. UBIFS must always have some free space to allow deletions.
   1312  */
   1313 static int check_free_space(struct ubifs_info *c)
   1314 {
   1315 	ubifs_assert(c->dark_wm > 0);
   1316 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
   1317 		ubifs_err(c, "insufficient free space to mount in R/W mode");
   1318 		ubifs_dump_budg(c, &c->bi);
   1319 		ubifs_dump_lprops(c);
   1320 		return -ENOSPC;
   1321 	}
   1322 	return 0;
   1323 }
   1324 #endif
   1325 
   1326 /**
   1327  * mount_ubifs - mount UBIFS file-system.
   1328  * @c: UBIFS file-system description object
   1329  *
   1330  * This function mounts UBIFS file system. Returns zero in case of success and
   1331  * a negative error code in case of failure.
   1332  */
   1333 static int mount_ubifs(struct ubifs_info *c)
   1334 {
   1335 	int err;
   1336 	long long x;
   1337 #ifndef CONFIG_UBIFS_SILENCE_MSG
   1338 	long long y;
   1339 #endif
   1340 	size_t sz;
   1341 
   1342 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
   1343 	/* Suppress error messages while probing if MS_SILENT is set */
   1344 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
   1345 #ifdef __UBOOT__
   1346 	if (!c->ro_mount) {
   1347 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
   1348 		return -EACCES;
   1349 	}
   1350 #endif
   1351 
   1352 	err = init_constants_early(c);
   1353 	if (err)
   1354 		return err;
   1355 
   1356 	err = ubifs_debugging_init(c);
   1357 	if (err)
   1358 		return err;
   1359 
   1360 	err = check_volume_empty(c);
   1361 	if (err)
   1362 		goto out_free;
   1363 
   1364 	if (c->empty && (c->ro_mount || c->ro_media)) {
   1365 		/*
   1366 		 * This UBI volume is empty, and read-only, or the file system
   1367 		 * is mounted read-only - we cannot format it.
   1368 		 */
   1369 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
   1370 			  c->ro_media ? "UBI volume" : "mount");
   1371 		err = -EROFS;
   1372 		goto out_free;
   1373 	}
   1374 
   1375 	if (c->ro_media && !c->ro_mount) {
   1376 		ubifs_err(c, "cannot mount read-write - read-only media");
   1377 		err = -EROFS;
   1378 		goto out_free;
   1379 	}
   1380 
   1381 	/*
   1382 	 * The requirement for the buffer is that it should fit indexing B-tree
   1383 	 * height amount of integers. We assume the height if the TNC tree will
   1384 	 * never exceed 64.
   1385 	 */
   1386 	err = -ENOMEM;
   1387 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
   1388 	if (!c->bottom_up_buf)
   1389 		goto out_free;
   1390 
   1391 	c->sbuf = vmalloc(c->leb_size);
   1392 	if (!c->sbuf)
   1393 		goto out_free;
   1394 
   1395 #ifndef __UBOOT__
   1396 	if (!c->ro_mount) {
   1397 		c->ileb_buf = vmalloc(c->leb_size);
   1398 		if (!c->ileb_buf)
   1399 			goto out_free;
   1400 	}
   1401 #endif
   1402 
   1403 	if (c->bulk_read == 1)
   1404 		bu_init(c);
   1405 
   1406 #ifndef __UBOOT__
   1407 	if (!c->ro_mount) {
   1408 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
   1409 					       GFP_KERNEL);
   1410 		if (!c->write_reserve_buf)
   1411 			goto out_free;
   1412 	}
   1413 #endif
   1414 
   1415 	c->mounting = 1;
   1416 
   1417 	err = ubifs_read_superblock(c);
   1418 	if (err)
   1419 		goto out_free;
   1420 
   1421 	c->probing = 0;
   1422 
   1423 	/*
   1424 	 * Make sure the compressor which is set as default in the superblock
   1425 	 * or overridden by mount options is actually compiled in.
   1426 	 */
   1427 	if (!ubifs_compr_present(c->default_compr)) {
   1428 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
   1429 			  ubifs_compr_name(c->default_compr));
   1430 		err = -ENOTSUPP;
   1431 		goto out_free;
   1432 	}
   1433 
   1434 	err = init_constants_sb(c);
   1435 	if (err)
   1436 		goto out_free;
   1437 
   1438 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
   1439 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
   1440 	c->cbuf = kmalloc(sz, GFP_NOFS);
   1441 	if (!c->cbuf) {
   1442 		err = -ENOMEM;
   1443 		goto out_free;
   1444 	}
   1445 
   1446 	err = alloc_wbufs(c);
   1447 	if (err)
   1448 		goto out_cbuf;
   1449 
   1450 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
   1451 #ifndef __UBOOT__
   1452 	if (!c->ro_mount) {
   1453 		/* Create background thread */
   1454 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
   1455 		if (IS_ERR(c->bgt)) {
   1456 			err = PTR_ERR(c->bgt);
   1457 			c->bgt = NULL;
   1458 			ubifs_err(c, "cannot spawn \"%s\", error %d",
   1459 				  c->bgt_name, err);
   1460 			goto out_wbufs;
   1461 		}
   1462 		wake_up_process(c->bgt);
   1463 	}
   1464 #endif
   1465 
   1466 	err = ubifs_read_master(c);
   1467 	if (err)
   1468 		goto out_master;
   1469 
   1470 	init_constants_master(c);
   1471 
   1472 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
   1473 		ubifs_msg(c, "recovery needed");
   1474 		c->need_recovery = 1;
   1475 	}
   1476 
   1477 #ifndef __UBOOT__
   1478 	if (c->need_recovery && !c->ro_mount) {
   1479 		err = ubifs_recover_inl_heads(c, c->sbuf);
   1480 		if (err)
   1481 			goto out_master;
   1482 	}
   1483 #endif
   1484 
   1485 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
   1486 	if (err)
   1487 		goto out_master;
   1488 
   1489 #ifndef __UBOOT__
   1490 	if (!c->ro_mount && c->space_fixup) {
   1491 		err = ubifs_fixup_free_space(c);
   1492 		if (err)
   1493 			goto out_lpt;
   1494 	}
   1495 
   1496 	if (!c->ro_mount && !c->need_recovery) {
   1497 		/*
   1498 		 * Set the "dirty" flag so that if we reboot uncleanly we
   1499 		 * will notice this immediately on the next mount.
   1500 		 */
   1501 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
   1502 		err = ubifs_write_master(c);
   1503 		if (err)
   1504 			goto out_lpt;
   1505 	}
   1506 #endif
   1507 
   1508 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
   1509 	if (err)
   1510 		goto out_lpt;
   1511 
   1512 	err = ubifs_replay_journal(c);
   1513 	if (err)
   1514 		goto out_journal;
   1515 
   1516 	/* Calculate 'min_idx_lebs' after journal replay */
   1517 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
   1518 
   1519 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
   1520 	if (err)
   1521 		goto out_orphans;
   1522 
   1523 	if (!c->ro_mount) {
   1524 #ifndef __UBOOT__
   1525 		int lnum;
   1526 
   1527 		err = check_free_space(c);
   1528 		if (err)
   1529 			goto out_orphans;
   1530 
   1531 		/* Check for enough log space */
   1532 		lnum = c->lhead_lnum + 1;
   1533 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
   1534 			lnum = UBIFS_LOG_LNUM;
   1535 		if (lnum == c->ltail_lnum) {
   1536 			err = ubifs_consolidate_log(c);
   1537 			if (err)
   1538 				goto out_orphans;
   1539 		}
   1540 
   1541 		if (c->need_recovery) {
   1542 			err = ubifs_recover_size(c);
   1543 			if (err)
   1544 				goto out_orphans;
   1545 			err = ubifs_rcvry_gc_commit(c);
   1546 			if (err)
   1547 				goto out_orphans;
   1548 		} else {
   1549 			err = take_gc_lnum(c);
   1550 			if (err)
   1551 				goto out_orphans;
   1552 
   1553 			/*
   1554 			 * GC LEB may contain garbage if there was an unclean
   1555 			 * reboot, and it should be un-mapped.
   1556 			 */
   1557 			err = ubifs_leb_unmap(c, c->gc_lnum);
   1558 			if (err)
   1559 				goto out_orphans;
   1560 		}
   1561 
   1562 		err = dbg_check_lprops(c);
   1563 		if (err)
   1564 			goto out_orphans;
   1565 #endif
   1566 	} else if (c->need_recovery) {
   1567 		err = ubifs_recover_size(c);
   1568 		if (err)
   1569 			goto out_orphans;
   1570 	} else {
   1571 		/*
   1572 		 * Even if we mount read-only, we have to set space in GC LEB
   1573 		 * to proper value because this affects UBIFS free space
   1574 		 * reporting. We do not want to have a situation when
   1575 		 * re-mounting from R/O to R/W changes amount of free space.
   1576 		 */
   1577 		err = take_gc_lnum(c);
   1578 		if (err)
   1579 			goto out_orphans;
   1580 	}
   1581 
   1582 #ifndef __UBOOT__
   1583 	spin_lock(&ubifs_infos_lock);
   1584 	list_add_tail(&c->infos_list, &ubifs_infos);
   1585 	spin_unlock(&ubifs_infos_lock);
   1586 #endif
   1587 
   1588 	if (c->need_recovery) {
   1589 		if (c->ro_mount)
   1590 			ubifs_msg(c, "recovery deferred");
   1591 		else {
   1592 			c->need_recovery = 0;
   1593 			ubifs_msg(c, "recovery completed");
   1594 			/*
   1595 			 * GC LEB has to be empty and taken at this point. But
   1596 			 * the journal head LEBs may also be accounted as
   1597 			 * "empty taken" if they are empty.
   1598 			 */
   1599 			ubifs_assert(c->lst.taken_empty_lebs > 0);
   1600 		}
   1601 	} else
   1602 		ubifs_assert(c->lst.taken_empty_lebs > 0);
   1603 
   1604 	err = dbg_check_filesystem(c);
   1605 	if (err)
   1606 		goto out_infos;
   1607 
   1608 	err = dbg_debugfs_init_fs(c);
   1609 	if (err)
   1610 		goto out_infos;
   1611 
   1612 	c->mounting = 0;
   1613 
   1614 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
   1615 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
   1616 		  c->ro_mount ? ", R/O mode" : "");
   1617 	x = (long long)c->main_lebs * c->leb_size;
   1618 #ifndef CONFIG_UBIFS_SILENCE_MSG
   1619 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
   1620 #endif
   1621 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
   1622 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
   1623 		  c->max_write_size);
   1624 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
   1625 		  x, x >> 20, c->main_lebs,
   1626 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
   1627 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
   1628 		  c->report_rp_size, c->report_rp_size >> 10);
   1629 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
   1630 		  c->fmt_version, c->ro_compat_version,
   1631 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
   1632 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
   1633 
   1634 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
   1635 	dbg_gen("data journal heads:  %d",
   1636 		c->jhead_cnt - NONDATA_JHEADS_CNT);
   1637 	dbg_gen("log LEBs:            %d (%d - %d)",
   1638 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
   1639 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
   1640 		c->lpt_lebs, c->lpt_first, c->lpt_last);
   1641 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
   1642 		c->orph_lebs, c->orph_first, c->orph_last);
   1643 	dbg_gen("main area LEBs:      %d (%d - %d)",
   1644 		c->main_lebs, c->main_first, c->leb_cnt - 1);
   1645 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
   1646 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
   1647 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
   1648 		c->bi.old_idx_sz >> 20);
   1649 	dbg_gen("key hash type:       %d", c->key_hash_type);
   1650 	dbg_gen("tree fanout:         %d", c->fanout);
   1651 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
   1652 	dbg_gen("max. znode size      %d", c->max_znode_sz);
   1653 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
   1654 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
   1655 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
   1656 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
   1657 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
   1658 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
   1659 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
   1660 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
   1661 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
   1662 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
   1663 	dbg_gen("dead watermark:      %d", c->dead_wm);
   1664 	dbg_gen("dark watermark:      %d", c->dark_wm);
   1665 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
   1666 	x = (long long)c->main_lebs * c->dark_wm;
   1667 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
   1668 		x, x >> 10, x >> 20);
   1669 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
   1670 		c->max_bud_bytes, c->max_bud_bytes >> 10,
   1671 		c->max_bud_bytes >> 20);
   1672 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
   1673 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
   1674 		c->bg_bud_bytes >> 20);
   1675 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
   1676 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
   1677 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
   1678 	dbg_gen("commit number:       %llu", c->cmt_no);
   1679 
   1680 	return 0;
   1681 
   1682 out_infos:
   1683 	spin_lock(&ubifs_infos_lock);
   1684 	list_del(&c->infos_list);
   1685 	spin_unlock(&ubifs_infos_lock);
   1686 out_orphans:
   1687 	free_orphans(c);
   1688 out_journal:
   1689 	destroy_journal(c);
   1690 out_lpt:
   1691 	ubifs_lpt_free(c, 0);
   1692 out_master:
   1693 	kfree(c->mst_node);
   1694 	kfree(c->rcvrd_mst_node);
   1695 	if (c->bgt)
   1696 		kthread_stop(c->bgt);
   1697 #ifndef __UBOOT__
   1698 out_wbufs:
   1699 #endif
   1700 	free_wbufs(c);
   1701 out_cbuf:
   1702 	kfree(c->cbuf);
   1703 out_free:
   1704 	kfree(c->write_reserve_buf);
   1705 	kfree(c->bu.buf);
   1706 	vfree(c->ileb_buf);
   1707 	vfree(c->sbuf);
   1708 	kfree(c->bottom_up_buf);
   1709 	ubifs_debugging_exit(c);
   1710 	return err;
   1711 }
   1712 
   1713 /**
   1714  * ubifs_umount - un-mount UBIFS file-system.
   1715  * @c: UBIFS file-system description object
   1716  *
   1717  * Note, this function is called to free allocated resourced when un-mounting,
   1718  * as well as free resources when an error occurred while we were half way
   1719  * through mounting (error path cleanup function). So it has to make sure the
   1720  * resource was actually allocated before freeing it.
   1721  */
   1722 #ifndef __UBOOT__
   1723 static void ubifs_umount(struct ubifs_info *c)
   1724 #else
   1725 void ubifs_umount(struct ubifs_info *c)
   1726 #endif
   1727 {
   1728 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
   1729 		c->vi.vol_id);
   1730 
   1731 	dbg_debugfs_exit_fs(c);
   1732 	spin_lock(&ubifs_infos_lock);
   1733 	list_del(&c->infos_list);
   1734 	spin_unlock(&ubifs_infos_lock);
   1735 
   1736 #ifndef __UBOOT__
   1737 	if (c->bgt)
   1738 		kthread_stop(c->bgt);
   1739 
   1740 	destroy_journal(c);
   1741 #endif
   1742 	free_wbufs(c);
   1743 	free_orphans(c);
   1744 	ubifs_lpt_free(c, 0);
   1745 
   1746 	kfree(c->cbuf);
   1747 	kfree(c->rcvrd_mst_node);
   1748 	kfree(c->mst_node);
   1749 	kfree(c->write_reserve_buf);
   1750 	kfree(c->bu.buf);
   1751 	vfree(c->ileb_buf);
   1752 	vfree(c->sbuf);
   1753 	kfree(c->bottom_up_buf);
   1754 	ubifs_debugging_exit(c);
   1755 #ifdef __UBOOT__
   1756 	/* Finally free U-Boot's global copy of superblock */
   1757 	if (ubifs_sb != NULL) {
   1758 		free(ubifs_sb->s_fs_info);
   1759 		free(ubifs_sb);
   1760 	}
   1761 #endif
   1762 }
   1763 
   1764 #ifndef __UBOOT__
   1765 /**
   1766  * ubifs_remount_rw - re-mount in read-write mode.
   1767  * @c: UBIFS file-system description object
   1768  *
   1769  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
   1770  * mode. This function allocates the needed resources and re-mounts UBIFS in
   1771  * read-write mode.
   1772  */
   1773 static int ubifs_remount_rw(struct ubifs_info *c)
   1774 {
   1775 	int err, lnum;
   1776 
   1777 	if (c->rw_incompat) {
   1778 		ubifs_err(c, "the file-system is not R/W-compatible");
   1779 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
   1780 			  c->fmt_version, c->ro_compat_version,
   1781 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
   1782 		return -EROFS;
   1783 	}
   1784 
   1785 	mutex_lock(&c->umount_mutex);
   1786 	dbg_save_space_info(c);
   1787 	c->remounting_rw = 1;
   1788 	c->ro_mount = 0;
   1789 
   1790 	if (c->space_fixup) {
   1791 		err = ubifs_fixup_free_space(c);
   1792 		if (err)
   1793 			goto out;
   1794 	}
   1795 
   1796 	err = check_free_space(c);
   1797 	if (err)
   1798 		goto out;
   1799 
   1800 	if (c->old_leb_cnt != c->leb_cnt) {
   1801 		struct ubifs_sb_node *sup;
   1802 
   1803 		sup = ubifs_read_sb_node(c);
   1804 		if (IS_ERR(sup)) {
   1805 			err = PTR_ERR(sup);
   1806 			goto out;
   1807 		}
   1808 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
   1809 		err = ubifs_write_sb_node(c, sup);
   1810 		kfree(sup);
   1811 		if (err)
   1812 			goto out;
   1813 	}
   1814 
   1815 	if (c->need_recovery) {
   1816 		ubifs_msg(c, "completing deferred recovery");
   1817 		err = ubifs_write_rcvrd_mst_node(c);
   1818 		if (err)
   1819 			goto out;
   1820 		err = ubifs_recover_size(c);
   1821 		if (err)
   1822 			goto out;
   1823 		err = ubifs_clean_lebs(c, c->sbuf);
   1824 		if (err)
   1825 			goto out;
   1826 		err = ubifs_recover_inl_heads(c, c->sbuf);
   1827 		if (err)
   1828 			goto out;
   1829 	} else {
   1830 		/* A readonly mount is not allowed to have orphans */
   1831 		ubifs_assert(c->tot_orphans == 0);
   1832 		err = ubifs_clear_orphans(c);
   1833 		if (err)
   1834 			goto out;
   1835 	}
   1836 
   1837 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
   1838 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
   1839 		err = ubifs_write_master(c);
   1840 		if (err)
   1841 			goto out;
   1842 	}
   1843 
   1844 	c->ileb_buf = vmalloc(c->leb_size);
   1845 	if (!c->ileb_buf) {
   1846 		err = -ENOMEM;
   1847 		goto out;
   1848 	}
   1849 
   1850 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
   1851 	if (!c->write_reserve_buf) {
   1852 		err = -ENOMEM;
   1853 		goto out;
   1854 	}
   1855 
   1856 	err = ubifs_lpt_init(c, 0, 1);
   1857 	if (err)
   1858 		goto out;
   1859 
   1860 	/* Create background thread */
   1861 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
   1862 	if (IS_ERR(c->bgt)) {
   1863 		err = PTR_ERR(c->bgt);
   1864 		c->bgt = NULL;
   1865 		ubifs_err(c, "cannot spawn \"%s\", error %d",
   1866 			  c->bgt_name, err);
   1867 		goto out;
   1868 	}
   1869 	wake_up_process(c->bgt);
   1870 
   1871 	c->orph_buf = vmalloc(c->leb_size);
   1872 	if (!c->orph_buf) {
   1873 		err = -ENOMEM;
   1874 		goto out;
   1875 	}
   1876 
   1877 	/* Check for enough log space */
   1878 	lnum = c->lhead_lnum + 1;
   1879 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
   1880 		lnum = UBIFS_LOG_LNUM;
   1881 	if (lnum == c->ltail_lnum) {
   1882 		err = ubifs_consolidate_log(c);
   1883 		if (err)
   1884 			goto out;
   1885 	}
   1886 
   1887 	if (c->need_recovery)
   1888 		err = ubifs_rcvry_gc_commit(c);
   1889 	else
   1890 		err = ubifs_leb_unmap(c, c->gc_lnum);
   1891 	if (err)
   1892 		goto out;
   1893 
   1894 	dbg_gen("re-mounted read-write");
   1895 	c->remounting_rw = 0;
   1896 
   1897 	if (c->need_recovery) {
   1898 		c->need_recovery = 0;
   1899 		ubifs_msg(c, "deferred recovery completed");
   1900 	} else {
   1901 		/*
   1902 		 * Do not run the debugging space check if the were doing
   1903 		 * recovery, because when we saved the information we had the
   1904 		 * file-system in a state where the TNC and lprops has been
   1905 		 * modified in memory, but all the I/O operations (including a
   1906 		 * commit) were deferred. So the file-system was in
   1907 		 * "non-committed" state. Now the file-system is in committed
   1908 		 * state, and of course the amount of free space will change
   1909 		 * because, for example, the old index size was imprecise.
   1910 		 */
   1911 		err = dbg_check_space_info(c);
   1912 	}
   1913 
   1914 	mutex_unlock(&c->umount_mutex);
   1915 	return err;
   1916 
   1917 out:
   1918 	c->ro_mount = 1;
   1919 	vfree(c->orph_buf);
   1920 	c->orph_buf = NULL;
   1921 	if (c->bgt) {
   1922 		kthread_stop(c->bgt);
   1923 		c->bgt = NULL;
   1924 	}
   1925 	free_wbufs(c);
   1926 	kfree(c->write_reserve_buf);
   1927 	c->write_reserve_buf = NULL;
   1928 	vfree(c->ileb_buf);
   1929 	c->ileb_buf = NULL;
   1930 	ubifs_lpt_free(c, 1);
   1931 	c->remounting_rw = 0;
   1932 	mutex_unlock(&c->umount_mutex);
   1933 	return err;
   1934 }
   1935 
   1936 /**
   1937  * ubifs_remount_ro - re-mount in read-only mode.
   1938  * @c: UBIFS file-system description object
   1939  *
   1940  * We assume VFS has stopped writing. Possibly the background thread could be
   1941  * running a commit, however kthread_stop will wait in that case.
   1942  */
   1943 static void ubifs_remount_ro(struct ubifs_info *c)
   1944 {
   1945 	int i, err;
   1946 
   1947 	ubifs_assert(!c->need_recovery);
   1948 	ubifs_assert(!c->ro_mount);
   1949 
   1950 	mutex_lock(&c->umount_mutex);
   1951 	if (c->bgt) {
   1952 		kthread_stop(c->bgt);
   1953 		c->bgt = NULL;
   1954 	}
   1955 
   1956 	dbg_save_space_info(c);
   1957 
   1958 	for (i = 0; i < c->jhead_cnt; i++)
   1959 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
   1960 
   1961 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
   1962 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
   1963 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
   1964 	err = ubifs_write_master(c);
   1965 	if (err)
   1966 		ubifs_ro_mode(c, err);
   1967 
   1968 	vfree(c->orph_buf);
   1969 	c->orph_buf = NULL;
   1970 	kfree(c->write_reserve_buf);
   1971 	c->write_reserve_buf = NULL;
   1972 	vfree(c->ileb_buf);
   1973 	c->ileb_buf = NULL;
   1974 	ubifs_lpt_free(c, 1);
   1975 	c->ro_mount = 1;
   1976 	err = dbg_check_space_info(c);
   1977 	if (err)
   1978 		ubifs_ro_mode(c, err);
   1979 	mutex_unlock(&c->umount_mutex);
   1980 }
   1981 
   1982 static void ubifs_put_super(struct super_block *sb)
   1983 {
   1984 	int i;
   1985 	struct ubifs_info *c = sb->s_fs_info;
   1986 
   1987 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
   1988 
   1989 	/*
   1990 	 * The following asserts are only valid if there has not been a failure
   1991 	 * of the media. For example, there will be dirty inodes if we failed
   1992 	 * to write them back because of I/O errors.
   1993 	 */
   1994 	if (!c->ro_error) {
   1995 		ubifs_assert(c->bi.idx_growth == 0);
   1996 		ubifs_assert(c->bi.dd_growth == 0);
   1997 		ubifs_assert(c->bi.data_growth == 0);
   1998 	}
   1999 
   2000 	/*
   2001 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
   2002 	 * and file system un-mount. Namely, it prevents the shrinker from
   2003 	 * picking this superblock for shrinking - it will be just skipped if
   2004 	 * the mutex is locked.
   2005 	 */
   2006 	mutex_lock(&c->umount_mutex);
   2007 	if (!c->ro_mount) {
   2008 		/*
   2009 		 * First of all kill the background thread to make sure it does
   2010 		 * not interfere with un-mounting and freeing resources.
   2011 		 */
   2012 		if (c->bgt) {
   2013 			kthread_stop(c->bgt);
   2014 			c->bgt = NULL;
   2015 		}
   2016 
   2017 		/*
   2018 		 * On fatal errors c->ro_error is set to 1, in which case we do
   2019 		 * not write the master node.
   2020 		 */
   2021 		if (!c->ro_error) {
   2022 			int err;
   2023 
   2024 			/* Synchronize write-buffers */
   2025 			for (i = 0; i < c->jhead_cnt; i++)
   2026 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
   2027 
   2028 			/*
   2029 			 * We are being cleanly unmounted which means the
   2030 			 * orphans were killed - indicate this in the master
   2031 			 * node. Also save the reserved GC LEB number.
   2032 			 */
   2033 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
   2034 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
   2035 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
   2036 			err = ubifs_write_master(c);
   2037 			if (err)
   2038 				/*
   2039 				 * Recovery will attempt to fix the master area
   2040 				 * next mount, so we just print a message and
   2041 				 * continue to unmount normally.
   2042 				 */
   2043 				ubifs_err(c, "failed to write master node, error %d",
   2044 					  err);
   2045 		} else {
   2046 #ifndef __UBOOT__
   2047 			for (i = 0; i < c->jhead_cnt; i++)
   2048 				/* Make sure write-buffer timers are canceled */
   2049 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
   2050 #endif
   2051 		}
   2052 	}
   2053 
   2054 	ubifs_umount(c);
   2055 #ifndef __UBOOT__
   2056 	bdi_destroy(&c->bdi);
   2057 #endif
   2058 	ubi_close_volume(c->ubi);
   2059 	mutex_unlock(&c->umount_mutex);
   2060 }
   2061 #endif
   2062 
   2063 #ifndef __UBOOT__
   2064 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
   2065 {
   2066 	int err;
   2067 	struct ubifs_info *c = sb->s_fs_info;
   2068 
   2069 	sync_filesystem(sb);
   2070 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
   2071 
   2072 	err = ubifs_parse_options(c, data, 1);
   2073 	if (err) {
   2074 		ubifs_err(c, "invalid or unknown remount parameter");
   2075 		return err;
   2076 	}
   2077 
   2078 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
   2079 		if (c->ro_error) {
   2080 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
   2081 			return -EROFS;
   2082 		}
   2083 		if (c->ro_media) {
   2084 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
   2085 			return -EROFS;
   2086 		}
   2087 		err = ubifs_remount_rw(c);
   2088 		if (err)
   2089 			return err;
   2090 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
   2091 		if (c->ro_error) {
   2092 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
   2093 			return -EROFS;
   2094 		}
   2095 		ubifs_remount_ro(c);
   2096 	}
   2097 
   2098 	if (c->bulk_read == 1)
   2099 		bu_init(c);
   2100 	else {
   2101 		dbg_gen("disable bulk-read");
   2102 		kfree(c->bu.buf);
   2103 		c->bu.buf = NULL;
   2104 	}
   2105 
   2106 	ubifs_assert(c->lst.taken_empty_lebs > 0);
   2107 	return 0;
   2108 }
   2109 #endif
   2110 
   2111 const struct super_operations ubifs_super_operations = {
   2112 	.alloc_inode   = ubifs_alloc_inode,
   2113 #ifndef __UBOOT__
   2114 	.destroy_inode = ubifs_destroy_inode,
   2115 	.put_super     = ubifs_put_super,
   2116 	.write_inode   = ubifs_write_inode,
   2117 	.evict_inode   = ubifs_evict_inode,
   2118 	.statfs        = ubifs_statfs,
   2119 #endif
   2120 	.dirty_inode   = ubifs_dirty_inode,
   2121 #ifndef __UBOOT__
   2122 	.remount_fs    = ubifs_remount_fs,
   2123 	.show_options  = ubifs_show_options,
   2124 	.sync_fs       = ubifs_sync_fs,
   2125 #endif
   2126 };
   2127 
   2128 /**
   2129  * open_ubi - parse UBI device name string and open the UBI device.
   2130  * @name: UBI volume name
   2131  * @mode: UBI volume open mode
   2132  *
   2133  * The primary method of mounting UBIFS is by specifying the UBI volume
   2134  * character device node path. However, UBIFS may also be mounted withoug any
   2135  * character device node using one of the following methods:
   2136  *
   2137  * o ubiX_Y    - mount UBI device number X, volume Y;
   2138  * o ubiY      - mount UBI device number 0, volume Y;
   2139  * o ubiX:NAME - mount UBI device X, volume with name NAME;
   2140  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
   2141  *
   2142  * Alternative '!' separator may be used instead of ':' (because some shells
   2143  * like busybox may interpret ':' as an NFS host name separator). This function
   2144  * returns UBI volume description object in case of success and a negative
   2145  * error code in case of failure.
   2146  */
   2147 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
   2148 {
   2149 #ifndef __UBOOT__
   2150 	struct ubi_volume_desc *ubi;
   2151 #endif
   2152 	int dev, vol;
   2153 	char *endptr;
   2154 
   2155 #ifndef __UBOOT__
   2156 	/* First, try to open using the device node path method */
   2157 	ubi = ubi_open_volume_path(name, mode);
   2158 	if (!IS_ERR(ubi))
   2159 		return ubi;
   2160 #endif
   2161 
   2162 	/* Try the "nodev" method */
   2163 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
   2164 		return ERR_PTR(-EINVAL);
   2165 
   2166 	/* ubi:NAME method */
   2167 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
   2168 		return ubi_open_volume_nm(0, name + 4, mode);
   2169 
   2170 	if (!isdigit(name[3]))
   2171 		return ERR_PTR(-EINVAL);
   2172 
   2173 	dev = simple_strtoul(name + 3, &endptr, 0);
   2174 
   2175 	/* ubiY method */
   2176 	if (*endptr == '\0')
   2177 		return ubi_open_volume(0, dev, mode);
   2178 
   2179 	/* ubiX_Y method */
   2180 	if (*endptr == '_' && isdigit(endptr[1])) {
   2181 		vol = simple_strtoul(endptr + 1, &endptr, 0);
   2182 		if (*endptr != '\0')
   2183 			return ERR_PTR(-EINVAL);
   2184 		return ubi_open_volume(dev, vol, mode);
   2185 	}
   2186 
   2187 	/* ubiX:NAME method */
   2188 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
   2189 		return ubi_open_volume_nm(dev, ++endptr, mode);
   2190 
   2191 	return ERR_PTR(-EINVAL);
   2192 }
   2193 
   2194 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
   2195 {
   2196 	struct ubifs_info *c;
   2197 
   2198 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
   2199 	if (c) {
   2200 		spin_lock_init(&c->cnt_lock);
   2201 		spin_lock_init(&c->cs_lock);
   2202 		spin_lock_init(&c->buds_lock);
   2203 		spin_lock_init(&c->space_lock);
   2204 		spin_lock_init(&c->orphan_lock);
   2205 		init_rwsem(&c->commit_sem);
   2206 		mutex_init(&c->lp_mutex);
   2207 		mutex_init(&c->tnc_mutex);
   2208 		mutex_init(&c->log_mutex);
   2209 		mutex_init(&c->umount_mutex);
   2210 		mutex_init(&c->bu_mutex);
   2211 		mutex_init(&c->write_reserve_mutex);
   2212 		init_waitqueue_head(&c->cmt_wq);
   2213 		c->buds = RB_ROOT;
   2214 		c->old_idx = RB_ROOT;
   2215 		c->size_tree = RB_ROOT;
   2216 		c->orph_tree = RB_ROOT;
   2217 		INIT_LIST_HEAD(&c->infos_list);
   2218 		INIT_LIST_HEAD(&c->idx_gc);
   2219 		INIT_LIST_HEAD(&c->replay_list);
   2220 		INIT_LIST_HEAD(&c->replay_buds);
   2221 		INIT_LIST_HEAD(&c->uncat_list);
   2222 		INIT_LIST_HEAD(&c->empty_list);
   2223 		INIT_LIST_HEAD(&c->freeable_list);
   2224 		INIT_LIST_HEAD(&c->frdi_idx_list);
   2225 		INIT_LIST_HEAD(&c->unclean_leb_list);
   2226 		INIT_LIST_HEAD(&c->old_buds);
   2227 		INIT_LIST_HEAD(&c->orph_list);
   2228 		INIT_LIST_HEAD(&c->orph_new);
   2229 		c->no_chk_data_crc = 1;
   2230 
   2231 		c->highest_inum = UBIFS_FIRST_INO;
   2232 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
   2233 
   2234 		ubi_get_volume_info(ubi, &c->vi);
   2235 		ubi_get_device_info(c->vi.ubi_num, &c->di);
   2236 	}
   2237 	return c;
   2238 }
   2239 
   2240 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
   2241 {
   2242 	struct ubifs_info *c = sb->s_fs_info;
   2243 	struct inode *root;
   2244 	int err;
   2245 
   2246 	c->vfs_sb = sb;
   2247 #ifndef __UBOOT__
   2248 	/* Re-open the UBI device in read-write mode */
   2249 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
   2250 #else
   2251 	/* U-Boot read only mode */
   2252 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
   2253 #endif
   2254 
   2255 	if (IS_ERR(c->ubi)) {
   2256 		err = PTR_ERR(c->ubi);
   2257 		goto out;
   2258 	}
   2259 
   2260 #ifndef __UBOOT__
   2261 	/*
   2262 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
   2263 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
   2264 	 * which means the user would have to wait not just for their own I/O
   2265 	 * but the read-ahead I/O as well i.e. completely pointless.
   2266 	 *
   2267 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
   2268 	 */
   2269 	c->bdi.name = "ubifs",
   2270 	c->bdi.capabilities = 0;
   2271 	err  = bdi_init(&c->bdi);
   2272 	if (err)
   2273 		goto out_close;
   2274 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
   2275 			   c->vi.ubi_num, c->vi.vol_id);
   2276 	if (err)
   2277 		goto out_bdi;
   2278 
   2279 	err = ubifs_parse_options(c, data, 0);
   2280 	if (err)
   2281 		goto out_bdi;
   2282 
   2283 	sb->s_bdi = &c->bdi;
   2284 #endif
   2285 	sb->s_fs_info = c;
   2286 	sb->s_magic = UBIFS_SUPER_MAGIC;
   2287 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
   2288 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
   2289 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
   2290 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
   2291 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
   2292 	sb->s_op = &ubifs_super_operations;
   2293 #ifndef __UBOOT__
   2294 	sb->s_xattr = ubifs_xattr_handlers;
   2295 #endif
   2296 
   2297 	mutex_lock(&c->umount_mutex);
   2298 	err = mount_ubifs(c);
   2299 	if (err) {
   2300 		ubifs_assert(err < 0);
   2301 		goto out_unlock;
   2302 	}
   2303 
   2304 	/* Read the root inode */
   2305 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
   2306 	if (IS_ERR(root)) {
   2307 		err = PTR_ERR(root);
   2308 		goto out_umount;
   2309 	}
   2310 
   2311 #ifndef __UBOOT__
   2312 	sb->s_root = d_make_root(root);
   2313 	if (!sb->s_root) {
   2314 		err = -ENOMEM;
   2315 		goto out_umount;
   2316 	}
   2317 #else
   2318 	sb->s_root = NULL;
   2319 #endif
   2320 
   2321 	mutex_unlock(&c->umount_mutex);
   2322 	return 0;
   2323 
   2324 out_umount:
   2325 	ubifs_umount(c);
   2326 out_unlock:
   2327 	mutex_unlock(&c->umount_mutex);
   2328 #ifndef __UBOOT__
   2329 out_bdi:
   2330 	bdi_destroy(&c->bdi);
   2331 out_close:
   2332 #endif
   2333 	ubi_close_volume(c->ubi);
   2334 out:
   2335 	return err;
   2336 }
   2337 
   2338 static int sb_test(struct super_block *sb, void *data)
   2339 {
   2340 	struct ubifs_info *c1 = data;
   2341 	struct ubifs_info *c = sb->s_fs_info;
   2342 
   2343 	return c->vi.cdev == c1->vi.cdev;
   2344 }
   2345 
   2346 static int sb_set(struct super_block *sb, void *data)
   2347 {
   2348 	sb->s_fs_info = data;
   2349 	return set_anon_super(sb, NULL);
   2350 }
   2351 
   2352 static struct super_block *alloc_super(struct file_system_type *type, int flags)
   2353 {
   2354 	struct super_block *s;
   2355 	int err;
   2356 
   2357 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
   2358 	if (!s) {
   2359 		err = -ENOMEM;
   2360 		return ERR_PTR(err);
   2361 	}
   2362 
   2363 	INIT_HLIST_NODE(&s->s_instances);
   2364 	INIT_LIST_HEAD(&s->s_inodes);
   2365 	s->s_time_gran = 1000000000;
   2366 	s->s_flags = flags;
   2367 
   2368 	return s;
   2369 }
   2370 
   2371 /**
   2372  *	sget	-	find or create a superblock
   2373  *	@type:	filesystem type superblock should belong to
   2374  *	@test:	comparison callback
   2375  *	@set:	setup callback
   2376  *	@flags:	mount flags
   2377  *	@data:	argument to each of them
   2378  */
   2379 struct super_block *sget(struct file_system_type *type,
   2380 			int (*test)(struct super_block *,void *),
   2381 			int (*set)(struct super_block *,void *),
   2382 			int flags,
   2383 			void *data)
   2384 {
   2385 	struct super_block *s = NULL;
   2386 #ifndef __UBOOT__
   2387 	struct super_block *old;
   2388 #endif
   2389 	int err;
   2390 
   2391 #ifndef __UBOOT__
   2392 retry:
   2393 	spin_lock(&sb_lock);
   2394 	if (test) {
   2395 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
   2396 			if (!test(old, data))
   2397 				continue;
   2398 			if (!grab_super(old))
   2399 				goto retry;
   2400 			if (s) {
   2401 				up_write(&s->s_umount);
   2402 				destroy_super(s);
   2403 				s = NULL;
   2404 			}
   2405 			return old;
   2406 		}
   2407 	}
   2408 #endif
   2409 	if (!s) {
   2410 		spin_unlock(&sb_lock);
   2411 		s = alloc_super(type, flags);
   2412 		if (!s)
   2413 			return ERR_PTR(-ENOMEM);
   2414 #ifndef __UBOOT__
   2415 		goto retry;
   2416 #endif
   2417 	}
   2418 
   2419 	err = set(s, data);
   2420 	if (err) {
   2421 #ifndef __UBOOT__
   2422 		spin_unlock(&sb_lock);
   2423 		up_write(&s->s_umount);
   2424 		destroy_super(s);
   2425 #endif
   2426 		return ERR_PTR(err);
   2427 	}
   2428 	s->s_type = type;
   2429 #ifndef __UBOOT__
   2430 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
   2431 	list_add_tail(&s->s_list, &super_blocks);
   2432 #else
   2433 	strncpy(s->s_id, type->name, sizeof(s->s_id));
   2434 #endif
   2435 	hlist_add_head(&s->s_instances, &type->fs_supers);
   2436 #ifndef __UBOOT__
   2437 	spin_unlock(&sb_lock);
   2438 	get_filesystem(type);
   2439 	register_shrinker(&s->s_shrink);
   2440 #endif
   2441 	return s;
   2442 }
   2443 
   2444 EXPORT_SYMBOL(sget);
   2445 
   2446 
   2447 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
   2448 			const char *name, void *data)
   2449 {
   2450 	struct ubi_volume_desc *ubi;
   2451 	struct ubifs_info *c;
   2452 	struct super_block *sb;
   2453 	int err;
   2454 
   2455 	dbg_gen("name %s, flags %#x", name, flags);
   2456 
   2457 	/*
   2458 	 * Get UBI device number and volume ID. Mount it read-only so far
   2459 	 * because this might be a new mount point, and UBI allows only one
   2460 	 * read-write user at a time.
   2461 	 */
   2462 	ubi = open_ubi(name, UBI_READONLY);
   2463 	if (IS_ERR(ubi)) {
   2464 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
   2465 		       current->pid, name, (int)PTR_ERR(ubi));
   2466 		return ERR_CAST(ubi);
   2467 	}
   2468 
   2469 	c = alloc_ubifs_info(ubi);
   2470 	if (!c) {
   2471 		err = -ENOMEM;
   2472 		goto out_close;
   2473 	}
   2474 
   2475 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
   2476 
   2477 	sb = sget(fs_type, sb_test, sb_set, flags, c);
   2478 	if (IS_ERR(sb)) {
   2479 		err = PTR_ERR(sb);
   2480 		kfree(c);
   2481 		goto out_close;
   2482 	}
   2483 
   2484 	if (sb->s_root) {
   2485 		struct ubifs_info *c1 = sb->s_fs_info;
   2486 		kfree(c);
   2487 		/* A new mount point for already mounted UBIFS */
   2488 		dbg_gen("this ubi volume is already mounted");
   2489 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
   2490 			err = -EBUSY;
   2491 			goto out_deact;
   2492 		}
   2493 	} else {
   2494 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
   2495 		if (err)
   2496 			goto out_deact;
   2497 		/* We do not support atime */
   2498 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
   2499 	}
   2500 
   2501 	/* 'fill_super()' opens ubi again so we must close it here */
   2502 	ubi_close_volume(ubi);
   2503 
   2504 #ifdef __UBOOT__
   2505 	ubifs_sb = sb;
   2506 	return 0;
   2507 #else
   2508 	return dget(sb->s_root);
   2509 #endif
   2510 
   2511 out_deact:
   2512 #ifndef __UBOOT__
   2513 	deactivate_locked_super(sb);
   2514 #endif
   2515 out_close:
   2516 	ubi_close_volume(ubi);
   2517 	return ERR_PTR(err);
   2518 }
   2519 
   2520 static void kill_ubifs_super(struct super_block *s)
   2521 {
   2522 	struct ubifs_info *c = s->s_fs_info;
   2523 #ifndef __UBOOT__
   2524 	kill_anon_super(s);
   2525 #endif
   2526 	kfree(c);
   2527 }
   2528 
   2529 static struct file_system_type ubifs_fs_type = {
   2530 	.name    = "ubifs",
   2531 	.owner   = THIS_MODULE,
   2532 	.mount   = ubifs_mount,
   2533 	.kill_sb = kill_ubifs_super,
   2534 };
   2535 #ifndef __UBOOT__
   2536 MODULE_ALIAS_FS("ubifs");
   2537 
   2538 /*
   2539  * Inode slab cache constructor.
   2540  */
   2541 static void inode_slab_ctor(void *obj)
   2542 {
   2543 	struct ubifs_inode *ui = obj;
   2544 	inode_init_once(&ui->vfs_inode);
   2545 }
   2546 
   2547 static int __init ubifs_init(void)
   2548 #else
   2549 int ubifs_init(void)
   2550 #endif
   2551 {
   2552 	int err;
   2553 
   2554 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
   2555 
   2556 	/* Make sure node sizes are 8-byte aligned */
   2557 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
   2558 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
   2559 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
   2560 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
   2561 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
   2562 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
   2563 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
   2564 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
   2565 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
   2566 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
   2567 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
   2568 
   2569 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
   2570 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
   2571 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
   2572 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
   2573 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
   2574 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
   2575 
   2576 	/* Check min. node size */
   2577 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
   2578 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
   2579 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
   2580 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
   2581 
   2582 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2583 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2584 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2585 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
   2586 
   2587 	/* Defined node sizes */
   2588 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
   2589 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
   2590 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
   2591 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
   2592 
   2593 	/*
   2594 	 * We use 2 bit wide bit-fields to store compression type, which should
   2595 	 * be amended if more compressors are added. The bit-fields are:
   2596 	 * @compr_type in 'struct ubifs_inode', @default_compr in
   2597 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
   2598 	 */
   2599 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
   2600 
   2601 	/*
   2602 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
   2603 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
   2604 	 */
   2605 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
   2606 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
   2607 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
   2608 		return -EINVAL;
   2609 	}
   2610 
   2611 #ifndef __UBOOT__
   2612 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
   2613 				sizeof(struct ubifs_inode), 0,
   2614 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
   2615 				&inode_slab_ctor);
   2616 	if (!ubifs_inode_slab)
   2617 		return -ENOMEM;
   2618 
   2619 	err = register_shrinker(&ubifs_shrinker_info);
   2620 	if (err)
   2621 		goto out_slab;
   2622 #endif
   2623 
   2624 	err = ubifs_compressors_init();
   2625 	if (err)
   2626 		goto out_shrinker;
   2627 
   2628 #ifndef __UBOOT__
   2629 	err = dbg_debugfs_init();
   2630 	if (err)
   2631 		goto out_compr;
   2632 
   2633 	err = register_filesystem(&ubifs_fs_type);
   2634 	if (err) {
   2635 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
   2636 		       current->pid, err);
   2637 		goto out_dbg;
   2638 	}
   2639 #endif
   2640 	return 0;
   2641 
   2642 #ifndef __UBOOT__
   2643 out_dbg:
   2644 	dbg_debugfs_exit();
   2645 out_compr:
   2646 	ubifs_compressors_exit();
   2647 #endif
   2648 out_shrinker:
   2649 #ifndef __UBOOT__
   2650 	unregister_shrinker(&ubifs_shrinker_info);
   2651 out_slab:
   2652 #endif
   2653 	kmem_cache_destroy(ubifs_inode_slab);
   2654 	return err;
   2655 }
   2656 /* late_initcall to let compressors initialize first */
   2657 late_initcall(ubifs_init);
   2658 
   2659 #ifndef __UBOOT__
   2660 static void __exit ubifs_exit(void)
   2661 {
   2662 	ubifs_assert(list_empty(&ubifs_infos));
   2663 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
   2664 
   2665 	dbg_debugfs_exit();
   2666 	ubifs_compressors_exit();
   2667 	unregister_shrinker(&ubifs_shrinker_info);
   2668 
   2669 	/*
   2670 	 * Make sure all delayed rcu free inodes are flushed before we
   2671 	 * destroy cache.
   2672 	 */
   2673 	rcu_barrier();
   2674 	kmem_cache_destroy(ubifs_inode_slab);
   2675 	unregister_filesystem(&ubifs_fs_type);
   2676 }
   2677 module_exit(ubifs_exit);
   2678 
   2679 MODULE_LICENSE("GPL");
   2680 MODULE_VERSION(__stringify(UBIFS_VERSION));
   2681 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
   2682 MODULE_DESCRIPTION("UBIFS - UBI File System");
   2683 #else
   2684 int uboot_ubifs_mount(char *vol_name)
   2685 {
   2686 	struct dentry *ret;
   2687 	int flags;
   2688 
   2689 	/*
   2690 	 * First unmount if allready mounted
   2691 	 */
   2692 	if (ubifs_sb)
   2693 		ubifs_umount(ubifs_sb->s_fs_info);
   2694 
   2695 	/*
   2696 	 * Mount in read-only mode
   2697 	 */
   2698 	flags = MS_RDONLY;
   2699 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
   2700 	if (IS_ERR(ret)) {
   2701 		printf("Error reading superblock on volume '%s' " \
   2702 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
   2703 		return -1;
   2704 	}
   2705 
   2706 	return 0;
   2707 }
   2708 #endif
   2709