1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy ( ) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #ifndef __UBOOT__ 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/ctype.h> 22 #include <linux/kthread.h> 23 #include <linux/parser.h> 24 #include <linux/seq_file.h> 25 #include <linux/mount.h> 26 #include <linux/math64.h> 27 #include <linux/writeback.h> 28 #else 29 30 #include <common.h> 31 #include <malloc.h> 32 #include <memalign.h> 33 #include <linux/bug.h> 34 #include <linux/log2.h> 35 #include <linux/stat.h> 36 #include <linux/err.h> 37 #include "ubifs.h" 38 #include <ubi_uboot.h> 39 #include <mtd/ubi-user.h> 40 41 struct dentry; 42 struct file; 43 struct iattr; 44 struct kstat; 45 struct vfsmount; 46 47 #define INODE_LOCKED_MAX 64 48 49 struct super_block *ubifs_sb; 50 51 static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; 52 53 int set_anon_super(struct super_block *s, void *data) 54 { 55 return 0; 56 } 57 58 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 59 { 60 struct inode *inode; 61 62 inode = (struct inode *)malloc_cache_aligned( 63 sizeof(struct ubifs_inode)); 64 if (inode) { 65 inode->i_ino = ino; 66 inode->i_sb = sb; 67 list_add(&inode->i_sb_list, &sb->s_inodes); 68 inode->i_state = I_LOCK | I_NEW; 69 } 70 71 return inode; 72 } 73 74 void iget_failed(struct inode *inode) 75 { 76 } 77 78 int ubifs_iput(struct inode *inode) 79 { 80 list_del_init(&inode->i_sb_list); 81 82 free(inode); 83 return 0; 84 } 85 86 /* 87 * Lock (save) inode in inode array for readback after recovery 88 */ 89 void iput(struct inode *inode) 90 { 91 int i; 92 struct inode *ino; 93 94 /* 95 * Search end of list 96 */ 97 for (i = 0; i < INODE_LOCKED_MAX; i++) { 98 if (inodes_locked_down[i] == NULL) 99 break; 100 } 101 102 if (i >= INODE_LOCKED_MAX) { 103 dbg_gen("Error, can't lock (save) more inodes while recovery!!!"); 104 return; 105 } 106 107 /* 108 * Allocate and use new inode 109 */ 110 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode)); 111 memcpy(ino, inode, sizeof(struct ubifs_inode)); 112 113 /* 114 * Finally save inode in array 115 */ 116 inodes_locked_down[i] = ino; 117 } 118 119 /* from fs/inode.c */ 120 /** 121 * clear_nlink - directly zero an inode's link count 122 * @inode: inode 123 * 124 * This is a low-level filesystem helper to replace any 125 * direct filesystem manipulation of i_nlink. See 126 * drop_nlink() for why we care about i_nlink hitting zero. 127 */ 128 void clear_nlink(struct inode *inode) 129 { 130 if (inode->i_nlink) { 131 inode->__i_nlink = 0; 132 atomic_long_inc(&inode->i_sb->s_remove_count); 133 } 134 } 135 EXPORT_SYMBOL(clear_nlink); 136 137 /** 138 * set_nlink - directly set an inode's link count 139 * @inode: inode 140 * @nlink: new nlink (should be non-zero) 141 * 142 * This is a low-level filesystem helper to replace any 143 * direct filesystem manipulation of i_nlink. 144 */ 145 void set_nlink(struct inode *inode, unsigned int nlink) 146 { 147 if (!nlink) { 148 clear_nlink(inode); 149 } else { 150 /* Yes, some filesystems do change nlink from zero to one */ 151 if (inode->i_nlink == 0) 152 atomic_long_dec(&inode->i_sb->s_remove_count); 153 154 inode->__i_nlink = nlink; 155 } 156 } 157 EXPORT_SYMBOL(set_nlink); 158 159 /* from include/linux/fs.h */ 160 static inline void i_uid_write(struct inode *inode, uid_t uid) 161 { 162 inode->i_uid.val = uid; 163 } 164 165 static inline void i_gid_write(struct inode *inode, gid_t gid) 166 { 167 inode->i_gid.val = gid; 168 } 169 170 void unlock_new_inode(struct inode *inode) 171 { 172 return; 173 } 174 #endif 175 176 /* 177 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 178 * allocating too much. 179 */ 180 #define UBIFS_KMALLOC_OK (128*1024) 181 182 /* Slab cache for UBIFS inodes */ 183 struct kmem_cache *ubifs_inode_slab; 184 185 #ifndef __UBOOT__ 186 /* UBIFS TNC shrinker description */ 187 static struct shrinker ubifs_shrinker_info = { 188 .scan_objects = ubifs_shrink_scan, 189 .count_objects = ubifs_shrink_count, 190 .seeks = DEFAULT_SEEKS, 191 }; 192 #endif 193 194 /** 195 * validate_inode - validate inode. 196 * @c: UBIFS file-system description object 197 * @inode: the inode to validate 198 * 199 * This is a helper function for 'ubifs_iget()' which validates various fields 200 * of a newly built inode to make sure they contain sane values and prevent 201 * possible vulnerabilities. Returns zero if the inode is all right and 202 * a non-zero error code if not. 203 */ 204 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 205 { 206 int err; 207 const struct ubifs_inode *ui = ubifs_inode(inode); 208 209 if (inode->i_size > c->max_inode_sz) { 210 ubifs_err(c, "inode is too large (%lld)", 211 (long long)inode->i_size); 212 return 1; 213 } 214 215 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 216 ubifs_err(c, "unknown compression type %d", ui->compr_type); 217 return 2; 218 } 219 220 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 221 return 3; 222 223 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 224 return 4; 225 226 if (ui->xattr && !S_ISREG(inode->i_mode)) 227 return 5; 228 229 if (!ubifs_compr_present(ui->compr_type)) { 230 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 231 inode->i_ino, ubifs_compr_name(ui->compr_type)); 232 } 233 234 err = dbg_check_dir(c, inode); 235 return err; 236 } 237 238 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 239 { 240 int err; 241 union ubifs_key key; 242 struct ubifs_ino_node *ino; 243 struct ubifs_info *c = sb->s_fs_info; 244 struct inode *inode; 245 struct ubifs_inode *ui; 246 #ifdef __UBOOT__ 247 int i; 248 #endif 249 250 dbg_gen("inode %lu", inum); 251 252 #ifdef __UBOOT__ 253 /* 254 * U-Boot special handling of locked down inodes via recovery 255 * e.g. ubifs_recover_size() 256 */ 257 for (i = 0; i < INODE_LOCKED_MAX; i++) { 258 /* 259 * Exit on last entry (NULL), inode not found in list 260 */ 261 if (inodes_locked_down[i] == NULL) 262 break; 263 264 if (inodes_locked_down[i]->i_ino == inum) { 265 /* 266 * We found the locked down inode in our array, 267 * so just return this pointer instead of creating 268 * a new one. 269 */ 270 return inodes_locked_down[i]; 271 } 272 } 273 #endif 274 275 inode = iget_locked(sb, inum); 276 if (!inode) 277 return ERR_PTR(-ENOMEM); 278 if (!(inode->i_state & I_NEW)) 279 return inode; 280 ui = ubifs_inode(inode); 281 282 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 283 if (!ino) { 284 err = -ENOMEM; 285 goto out; 286 } 287 288 ino_key_init(c, &key, inode->i_ino); 289 290 err = ubifs_tnc_lookup(c, &key, ino); 291 if (err) 292 goto out_ino; 293 294 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 295 set_nlink(inode, le32_to_cpu(ino->nlink)); 296 i_uid_write(inode, le32_to_cpu(ino->uid)); 297 i_gid_write(inode, le32_to_cpu(ino->gid)); 298 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 299 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 300 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 301 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 302 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 303 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 304 inode->i_mode = le32_to_cpu(ino->mode); 305 inode->i_size = le64_to_cpu(ino->size); 306 307 ui->data_len = le32_to_cpu(ino->data_len); 308 ui->flags = le32_to_cpu(ino->flags); 309 ui->compr_type = le16_to_cpu(ino->compr_type); 310 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 311 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 312 ui->xattr_size = le32_to_cpu(ino->xattr_size); 313 ui->xattr_names = le32_to_cpu(ino->xattr_names); 314 ui->synced_i_size = ui->ui_size = inode->i_size; 315 316 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 317 318 err = validate_inode(c, inode); 319 if (err) 320 goto out_invalid; 321 322 #ifndef __UBOOT__ 323 switch (inode->i_mode & S_IFMT) { 324 case S_IFREG: 325 inode->i_mapping->a_ops = &ubifs_file_address_operations; 326 inode->i_op = &ubifs_file_inode_operations; 327 inode->i_fop = &ubifs_file_operations; 328 if (ui->xattr) { 329 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 330 if (!ui->data) { 331 err = -ENOMEM; 332 goto out_ino; 333 } 334 memcpy(ui->data, ino->data, ui->data_len); 335 ((char *)ui->data)[ui->data_len] = '\0'; 336 } else if (ui->data_len != 0) { 337 err = 10; 338 goto out_invalid; 339 } 340 break; 341 case S_IFDIR: 342 inode->i_op = &ubifs_dir_inode_operations; 343 inode->i_fop = &ubifs_dir_operations; 344 if (ui->data_len != 0) { 345 err = 11; 346 goto out_invalid; 347 } 348 break; 349 case S_IFLNK: 350 inode->i_op = &ubifs_symlink_inode_operations; 351 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 352 err = 12; 353 goto out_invalid; 354 } 355 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 356 if (!ui->data) { 357 err = -ENOMEM; 358 goto out_ino; 359 } 360 memcpy(ui->data, ino->data, ui->data_len); 361 ((char *)ui->data)[ui->data_len] = '\0'; 362 inode->i_link = ui->data; 363 break; 364 case S_IFBLK: 365 case S_IFCHR: 366 { 367 dev_t rdev; 368 union ubifs_dev_desc *dev; 369 370 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 371 if (!ui->data) { 372 err = -ENOMEM; 373 goto out_ino; 374 } 375 376 dev = (union ubifs_dev_desc *)ino->data; 377 if (ui->data_len == sizeof(dev->new)) 378 rdev = new_decode_dev(le32_to_cpu(dev->new)); 379 else if (ui->data_len == sizeof(dev->huge)) 380 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 381 else { 382 err = 13; 383 goto out_invalid; 384 } 385 memcpy(ui->data, ino->data, ui->data_len); 386 inode->i_op = &ubifs_file_inode_operations; 387 init_special_inode(inode, inode->i_mode, rdev); 388 break; 389 } 390 case S_IFSOCK: 391 case S_IFIFO: 392 inode->i_op = &ubifs_file_inode_operations; 393 init_special_inode(inode, inode->i_mode, 0); 394 if (ui->data_len != 0) { 395 err = 14; 396 goto out_invalid; 397 } 398 break; 399 default: 400 err = 15; 401 goto out_invalid; 402 } 403 #else 404 if ((inode->i_mode & S_IFMT) == S_IFLNK) { 405 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 406 err = 12; 407 goto out_invalid; 408 } 409 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 410 if (!ui->data) { 411 err = -ENOMEM; 412 goto out_ino; 413 } 414 memcpy(ui->data, ino->data, ui->data_len); 415 ((char *)ui->data)[ui->data_len] = '\0'; 416 } 417 #endif 418 419 kfree(ino); 420 #ifndef __UBOOT__ 421 ubifs_set_inode_flags(inode); 422 #endif 423 unlock_new_inode(inode); 424 return inode; 425 426 out_invalid: 427 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 428 ubifs_dump_node(c, ino); 429 ubifs_dump_inode(c, inode); 430 err = -EINVAL; 431 out_ino: 432 kfree(ino); 433 out: 434 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 435 iget_failed(inode); 436 return ERR_PTR(err); 437 } 438 439 static struct inode *ubifs_alloc_inode(struct super_block *sb) 440 { 441 struct ubifs_inode *ui; 442 443 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 444 if (!ui) 445 return NULL; 446 447 memset((void *)ui + sizeof(struct inode), 0, 448 sizeof(struct ubifs_inode) - sizeof(struct inode)); 449 mutex_init(&ui->ui_mutex); 450 spin_lock_init(&ui->ui_lock); 451 return &ui->vfs_inode; 452 }; 453 454 #ifndef __UBOOT__ 455 static void ubifs_i_callback(struct rcu_head *head) 456 { 457 struct inode *inode = container_of(head, struct inode, i_rcu); 458 struct ubifs_inode *ui = ubifs_inode(inode); 459 kmem_cache_free(ubifs_inode_slab, ui); 460 } 461 462 static void ubifs_destroy_inode(struct inode *inode) 463 { 464 struct ubifs_inode *ui = ubifs_inode(inode); 465 466 kfree(ui->data); 467 call_rcu(&inode->i_rcu, ubifs_i_callback); 468 } 469 470 /* 471 * Note, Linux write-back code calls this without 'i_mutex'. 472 */ 473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 474 { 475 int err = 0; 476 struct ubifs_info *c = inode->i_sb->s_fs_info; 477 struct ubifs_inode *ui = ubifs_inode(inode); 478 479 ubifs_assert(!ui->xattr); 480 if (is_bad_inode(inode)) 481 return 0; 482 483 mutex_lock(&ui->ui_mutex); 484 /* 485 * Due to races between write-back forced by budgeting 486 * (see 'sync_some_inodes()') and background write-back, the inode may 487 * have already been synchronized, do not do this again. This might 488 * also happen if it was synchronized in an VFS operation, e.g. 489 * 'ubifs_link()'. 490 */ 491 if (!ui->dirty) { 492 mutex_unlock(&ui->ui_mutex); 493 return 0; 494 } 495 496 /* 497 * As an optimization, do not write orphan inodes to the media just 498 * because this is not needed. 499 */ 500 dbg_gen("inode %lu, mode %#x, nlink %u", 501 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 502 if (inode->i_nlink) { 503 err = ubifs_jnl_write_inode(c, inode); 504 if (err) 505 ubifs_err(c, "can't write inode %lu, error %d", 506 inode->i_ino, err); 507 else 508 err = dbg_check_inode_size(c, inode, ui->ui_size); 509 } 510 511 ui->dirty = 0; 512 mutex_unlock(&ui->ui_mutex); 513 ubifs_release_dirty_inode_budget(c, ui); 514 return err; 515 } 516 517 static void ubifs_evict_inode(struct inode *inode) 518 { 519 int err; 520 struct ubifs_info *c = inode->i_sb->s_fs_info; 521 struct ubifs_inode *ui = ubifs_inode(inode); 522 523 if (ui->xattr) 524 /* 525 * Extended attribute inode deletions are fully handled in 526 * 'ubifs_removexattr()'. These inodes are special and have 527 * limited usage, so there is nothing to do here. 528 */ 529 goto out; 530 531 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 532 ubifs_assert(!atomic_read(&inode->i_count)); 533 534 truncate_inode_pages_final(&inode->i_data); 535 536 if (inode->i_nlink) 537 goto done; 538 539 if (is_bad_inode(inode)) 540 goto out; 541 542 ui->ui_size = inode->i_size = 0; 543 err = ubifs_jnl_delete_inode(c, inode); 544 if (err) 545 /* 546 * Worst case we have a lost orphan inode wasting space, so a 547 * simple error message is OK here. 548 */ 549 ubifs_err(c, "can't delete inode %lu, error %d", 550 inode->i_ino, err); 551 552 out: 553 if (ui->dirty) 554 ubifs_release_dirty_inode_budget(c, ui); 555 else { 556 /* We've deleted something - clean the "no space" flags */ 557 c->bi.nospace = c->bi.nospace_rp = 0; 558 smp_wmb(); 559 } 560 done: 561 clear_inode(inode); 562 } 563 #endif 564 565 static void ubifs_dirty_inode(struct inode *inode, int flags) 566 { 567 struct ubifs_inode *ui = ubifs_inode(inode); 568 569 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 570 if (!ui->dirty) { 571 ui->dirty = 1; 572 dbg_gen("inode %lu", inode->i_ino); 573 } 574 } 575 576 #ifndef __UBOOT__ 577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 578 { 579 struct ubifs_info *c = dentry->d_sb->s_fs_info; 580 unsigned long long free; 581 __le32 *uuid = (__le32 *)c->uuid; 582 583 free = ubifs_get_free_space(c); 584 dbg_gen("free space %lld bytes (%lld blocks)", 585 free, free >> UBIFS_BLOCK_SHIFT); 586 587 buf->f_type = UBIFS_SUPER_MAGIC; 588 buf->f_bsize = UBIFS_BLOCK_SIZE; 589 buf->f_blocks = c->block_cnt; 590 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 591 if (free > c->report_rp_size) 592 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 593 else 594 buf->f_bavail = 0; 595 buf->f_files = 0; 596 buf->f_ffree = 0; 597 buf->f_namelen = UBIFS_MAX_NLEN; 598 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 599 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 600 ubifs_assert(buf->f_bfree <= c->block_cnt); 601 return 0; 602 } 603 604 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 605 { 606 struct ubifs_info *c = root->d_sb->s_fs_info; 607 608 if (c->mount_opts.unmount_mode == 2) 609 seq_puts(s, ",fast_unmount"); 610 else if (c->mount_opts.unmount_mode == 1) 611 seq_puts(s, ",norm_unmount"); 612 613 if (c->mount_opts.bulk_read == 2) 614 seq_puts(s, ",bulk_read"); 615 else if (c->mount_opts.bulk_read == 1) 616 seq_puts(s, ",no_bulk_read"); 617 618 if (c->mount_opts.chk_data_crc == 2) 619 seq_puts(s, ",chk_data_crc"); 620 else if (c->mount_opts.chk_data_crc == 1) 621 seq_puts(s, ",no_chk_data_crc"); 622 623 if (c->mount_opts.override_compr) { 624 seq_printf(s, ",compr=%s", 625 ubifs_compr_name(c->mount_opts.compr_type)); 626 } 627 628 return 0; 629 } 630 631 static int ubifs_sync_fs(struct super_block *sb, int wait) 632 { 633 int i, err; 634 struct ubifs_info *c = sb->s_fs_info; 635 636 /* 637 * Zero @wait is just an advisory thing to help the file system shove 638 * lots of data into the queues, and there will be the second 639 * '->sync_fs()' call, with non-zero @wait. 640 */ 641 if (!wait) 642 return 0; 643 644 /* 645 * Synchronize write buffers, because 'ubifs_run_commit()' does not 646 * do this if it waits for an already running commit. 647 */ 648 for (i = 0; i < c->jhead_cnt; i++) { 649 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 650 if (err) 651 return err; 652 } 653 654 /* 655 * Strictly speaking, it is not necessary to commit the journal here, 656 * synchronizing write-buffers would be enough. But committing makes 657 * UBIFS free space predictions much more accurate, so we want to let 658 * the user be able to get more accurate results of 'statfs()' after 659 * they synchronize the file system. 660 */ 661 err = ubifs_run_commit(c); 662 if (err) 663 return err; 664 665 return ubi_sync(c->vi.ubi_num); 666 } 667 #endif 668 669 /** 670 * init_constants_early - initialize UBIFS constants. 671 * @c: UBIFS file-system description object 672 * 673 * This function initialize UBIFS constants which do not need the superblock to 674 * be read. It also checks that the UBI volume satisfies basic UBIFS 675 * requirements. Returns zero in case of success and a negative error code in 676 * case of failure. 677 */ 678 static int init_constants_early(struct ubifs_info *c) 679 { 680 if (c->vi.corrupted) { 681 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 682 c->ro_media = 1; 683 } 684 685 if (c->di.ro_mode) { 686 ubifs_msg(c, "read-only UBI device"); 687 c->ro_media = 1; 688 } 689 690 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 691 ubifs_msg(c, "static UBI volume - read-only mode"); 692 c->ro_media = 1; 693 } 694 695 c->leb_cnt = c->vi.size; 696 c->leb_size = c->vi.usable_leb_size; 697 c->leb_start = c->di.leb_start; 698 c->half_leb_size = c->leb_size / 2; 699 c->min_io_size = c->di.min_io_size; 700 c->min_io_shift = fls(c->min_io_size) - 1; 701 c->max_write_size = c->di.max_write_size; 702 c->max_write_shift = fls(c->max_write_size) - 1; 703 704 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 705 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 706 c->leb_size, UBIFS_MIN_LEB_SZ); 707 return -EINVAL; 708 } 709 710 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 711 ubifs_err(c, "too few LEBs (%d), min. is %d", 712 c->leb_cnt, UBIFS_MIN_LEB_CNT); 713 return -EINVAL; 714 } 715 716 if (!is_power_of_2(c->min_io_size)) { 717 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 718 return -EINVAL; 719 } 720 721 /* 722 * Maximum write size has to be greater or equivalent to min. I/O 723 * size, and be multiple of min. I/O size. 724 */ 725 if (c->max_write_size < c->min_io_size || 726 c->max_write_size % c->min_io_size || 727 !is_power_of_2(c->max_write_size)) { 728 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 729 c->max_write_size, c->min_io_size); 730 return -EINVAL; 731 } 732 733 /* 734 * UBIFS aligns all node to 8-byte boundary, so to make function in 735 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 736 * less than 8. 737 */ 738 if (c->min_io_size < 8) { 739 c->min_io_size = 8; 740 c->min_io_shift = 3; 741 if (c->max_write_size < c->min_io_size) { 742 c->max_write_size = c->min_io_size; 743 c->max_write_shift = c->min_io_shift; 744 } 745 } 746 747 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 748 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 749 750 /* 751 * Initialize node length ranges which are mostly needed for node 752 * length validation. 753 */ 754 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 755 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 756 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 757 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 758 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 759 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 760 761 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 762 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 763 c->ranges[UBIFS_ORPH_NODE].min_len = 764 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 765 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 766 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 767 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 768 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 769 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 770 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 771 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 772 /* 773 * Minimum indexing node size is amended later when superblock is 774 * read and the key length is known. 775 */ 776 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 777 /* 778 * Maximum indexing node size is amended later when superblock is 779 * read and the fanout is known. 780 */ 781 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 782 783 /* 784 * Initialize dead and dark LEB space watermarks. See gc.c for comments 785 * about these values. 786 */ 787 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 788 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 789 790 /* 791 * Calculate how many bytes would be wasted at the end of LEB if it was 792 * fully filled with data nodes of maximum size. This is used in 793 * calculations when reporting free space. 794 */ 795 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 796 797 /* Buffer size for bulk-reads */ 798 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 799 if (c->max_bu_buf_len > c->leb_size) 800 c->max_bu_buf_len = c->leb_size; 801 return 0; 802 } 803 804 /** 805 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 806 * @c: UBIFS file-system description object 807 * @lnum: LEB the write-buffer was synchronized to 808 * @free: how many free bytes left in this LEB 809 * @pad: how many bytes were padded 810 * 811 * This is a callback function which is called by the I/O unit when the 812 * write-buffer is synchronized. We need this to correctly maintain space 813 * accounting in bud logical eraseblocks. This function returns zero in case of 814 * success and a negative error code in case of failure. 815 * 816 * This function actually belongs to the journal, but we keep it here because 817 * we want to keep it static. 818 */ 819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 820 { 821 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 822 } 823 824 /* 825 * init_constants_sb - initialize UBIFS constants. 826 * @c: UBIFS file-system description object 827 * 828 * This is a helper function which initializes various UBIFS constants after 829 * the superblock has been read. It also checks various UBIFS parameters and 830 * makes sure they are all right. Returns zero in case of success and a 831 * negative error code in case of failure. 832 */ 833 static int init_constants_sb(struct ubifs_info *c) 834 { 835 int tmp, err; 836 long long tmp64; 837 838 c->main_bytes = (long long)c->main_lebs * c->leb_size; 839 c->max_znode_sz = sizeof(struct ubifs_znode) + 840 c->fanout * sizeof(struct ubifs_zbranch); 841 842 tmp = ubifs_idx_node_sz(c, 1); 843 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 844 c->min_idx_node_sz = ALIGN(tmp, 8); 845 846 tmp = ubifs_idx_node_sz(c, c->fanout); 847 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 848 c->max_idx_node_sz = ALIGN(tmp, 8); 849 850 /* Make sure LEB size is large enough to fit full commit */ 851 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 852 tmp = ALIGN(tmp, c->min_io_size); 853 if (tmp > c->leb_size) { 854 ubifs_err(c, "too small LEB size %d, at least %d needed", 855 c->leb_size, tmp); 856 return -EINVAL; 857 } 858 859 /* 860 * Make sure that the log is large enough to fit reference nodes for 861 * all buds plus one reserved LEB. 862 */ 863 tmp64 = c->max_bud_bytes + c->leb_size - 1; 864 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 865 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 866 tmp /= c->leb_size; 867 tmp += 1; 868 if (c->log_lebs < tmp) { 869 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 870 c->log_lebs, tmp); 871 return -EINVAL; 872 } 873 874 /* 875 * When budgeting we assume worst-case scenarios when the pages are not 876 * be compressed and direntries are of the maximum size. 877 * 878 * Note, data, which may be stored in inodes is budgeted separately, so 879 * it is not included into 'c->bi.inode_budget'. 880 */ 881 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 882 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 883 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 884 885 /* 886 * When the amount of flash space used by buds becomes 887 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 888 * The writers are unblocked when the commit is finished. To avoid 889 * writers to be blocked UBIFS initiates background commit in advance, 890 * when number of bud bytes becomes above the limit defined below. 891 */ 892 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 893 894 /* 895 * Ensure minimum journal size. All the bytes in the journal heads are 896 * considered to be used, when calculating the current journal usage. 897 * Consequently, if the journal is too small, UBIFS will treat it as 898 * always full. 899 */ 900 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 901 if (c->bg_bud_bytes < tmp64) 902 c->bg_bud_bytes = tmp64; 903 if (c->max_bud_bytes < tmp64 + c->leb_size) 904 c->max_bud_bytes = tmp64 + c->leb_size; 905 906 err = ubifs_calc_lpt_geom(c); 907 if (err) 908 return err; 909 910 /* Initialize effective LEB size used in budgeting calculations */ 911 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 912 return 0; 913 } 914 915 /* 916 * init_constants_master - initialize UBIFS constants. 917 * @c: UBIFS file-system description object 918 * 919 * This is a helper function which initializes various UBIFS constants after 920 * the master node has been read. It also checks various UBIFS parameters and 921 * makes sure they are all right. 922 */ 923 static void init_constants_master(struct ubifs_info *c) 924 { 925 long long tmp64; 926 927 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 928 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 929 930 /* 931 * Calculate total amount of FS blocks. This number is not used 932 * internally because it does not make much sense for UBIFS, but it is 933 * necessary to report something for the 'statfs()' call. 934 * 935 * Subtract the LEB reserved for GC, the LEB which is reserved for 936 * deletions, minimum LEBs for the index, and assume only one journal 937 * head is available. 938 */ 939 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 940 tmp64 *= (long long)c->leb_size - c->leb_overhead; 941 tmp64 = ubifs_reported_space(c, tmp64); 942 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 943 } 944 945 /** 946 * take_gc_lnum - reserve GC LEB. 947 * @c: UBIFS file-system description object 948 * 949 * This function ensures that the LEB reserved for garbage collection is marked 950 * as "taken" in lprops. We also have to set free space to LEB size and dirty 951 * space to zero, because lprops may contain out-of-date information if the 952 * file-system was un-mounted before it has been committed. This function 953 * returns zero in case of success and a negative error code in case of 954 * failure. 955 */ 956 static int take_gc_lnum(struct ubifs_info *c) 957 { 958 int err; 959 960 if (c->gc_lnum == -1) { 961 ubifs_err(c, "no LEB for GC"); 962 return -EINVAL; 963 } 964 965 /* And we have to tell lprops that this LEB is taken */ 966 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 967 LPROPS_TAKEN, 0, 0); 968 return err; 969 } 970 971 /** 972 * alloc_wbufs - allocate write-buffers. 973 * @c: UBIFS file-system description object 974 * 975 * This helper function allocates and initializes UBIFS write-buffers. Returns 976 * zero in case of success and %-ENOMEM in case of failure. 977 */ 978 static int alloc_wbufs(struct ubifs_info *c) 979 { 980 int i, err; 981 982 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 983 GFP_KERNEL); 984 if (!c->jheads) 985 return -ENOMEM; 986 987 /* Initialize journal heads */ 988 for (i = 0; i < c->jhead_cnt; i++) { 989 INIT_LIST_HEAD(&c->jheads[i].buds_list); 990 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 991 if (err) 992 return err; 993 994 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 995 c->jheads[i].wbuf.jhead = i; 996 c->jheads[i].grouped = 1; 997 } 998 999 /* 1000 * Garbage Collector head does not need to be synchronized by timer. 1001 * Also GC head nodes are not grouped. 1002 */ 1003 c->jheads[GCHD].wbuf.no_timer = 1; 1004 c->jheads[GCHD].grouped = 0; 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * free_wbufs - free write-buffers. 1011 * @c: UBIFS file-system description object 1012 */ 1013 static void free_wbufs(struct ubifs_info *c) 1014 { 1015 int i; 1016 1017 if (c->jheads) { 1018 for (i = 0; i < c->jhead_cnt; i++) { 1019 kfree(c->jheads[i].wbuf.buf); 1020 kfree(c->jheads[i].wbuf.inodes); 1021 } 1022 kfree(c->jheads); 1023 c->jheads = NULL; 1024 } 1025 } 1026 1027 /** 1028 * free_orphans - free orphans. 1029 * @c: UBIFS file-system description object 1030 */ 1031 static void free_orphans(struct ubifs_info *c) 1032 { 1033 struct ubifs_orphan *orph; 1034 1035 while (c->orph_dnext) { 1036 orph = c->orph_dnext; 1037 c->orph_dnext = orph->dnext; 1038 list_del(&orph->list); 1039 kfree(orph); 1040 } 1041 1042 while (!list_empty(&c->orph_list)) { 1043 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 1044 list_del(&orph->list); 1045 kfree(orph); 1046 ubifs_err(c, "orphan list not empty at unmount"); 1047 } 1048 1049 vfree(c->orph_buf); 1050 c->orph_buf = NULL; 1051 } 1052 1053 /** 1054 * free_buds - free per-bud objects. 1055 * @c: UBIFS file-system description object 1056 */ 1057 static void free_buds(struct ubifs_info *c) 1058 { 1059 struct ubifs_bud *bud, *n; 1060 1061 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 1062 kfree(bud); 1063 } 1064 1065 /** 1066 * check_volume_empty - check if the UBI volume is empty. 1067 * @c: UBIFS file-system description object 1068 * 1069 * This function checks if the UBIFS volume is empty by looking if its LEBs are 1070 * mapped or not. The result of checking is stored in the @c->empty variable. 1071 * Returns zero in case of success and a negative error code in case of 1072 * failure. 1073 */ 1074 static int check_volume_empty(struct ubifs_info *c) 1075 { 1076 int lnum, err; 1077 1078 c->empty = 1; 1079 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 1080 err = ubifs_is_mapped(c, lnum); 1081 if (unlikely(err < 0)) 1082 return err; 1083 if (err == 1) { 1084 c->empty = 0; 1085 break; 1086 } 1087 1088 cond_resched(); 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * UBIFS mount options. 1096 * 1097 * Opt_fast_unmount: do not run a journal commit before un-mounting 1098 * Opt_norm_unmount: run a journal commit before un-mounting 1099 * Opt_bulk_read: enable bulk-reads 1100 * Opt_no_bulk_read: disable bulk-reads 1101 * Opt_chk_data_crc: check CRCs when reading data nodes 1102 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 1103 * Opt_override_compr: override default compressor 1104 * Opt_err: just end of array marker 1105 */ 1106 enum { 1107 Opt_fast_unmount, 1108 Opt_norm_unmount, 1109 Opt_bulk_read, 1110 Opt_no_bulk_read, 1111 Opt_chk_data_crc, 1112 Opt_no_chk_data_crc, 1113 Opt_override_compr, 1114 Opt_err, 1115 }; 1116 1117 #ifndef __UBOOT__ 1118 static const match_table_t tokens = { 1119 {Opt_fast_unmount, "fast_unmount"}, 1120 {Opt_norm_unmount, "norm_unmount"}, 1121 {Opt_bulk_read, "bulk_read"}, 1122 {Opt_no_bulk_read, "no_bulk_read"}, 1123 {Opt_chk_data_crc, "chk_data_crc"}, 1124 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 1125 {Opt_override_compr, "compr=%s"}, 1126 {Opt_err, NULL}, 1127 }; 1128 1129 /** 1130 * parse_standard_option - parse a standard mount option. 1131 * @option: the option to parse 1132 * 1133 * Normally, standard mount options like "sync" are passed to file-systems as 1134 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1135 * be present in the options string. This function tries to deal with this 1136 * situation and parse standard options. Returns 0 if the option was not 1137 * recognized, and the corresponding integer flag if it was. 1138 * 1139 * UBIFS is only interested in the "sync" option, so do not check for anything 1140 * else. 1141 */ 1142 static int parse_standard_option(const char *option) 1143 { 1144 1145 pr_notice("UBIFS: parse %s\n", option); 1146 if (!strcmp(option, "sync")) 1147 return MS_SYNCHRONOUS; 1148 return 0; 1149 } 1150 1151 /** 1152 * ubifs_parse_options - parse mount parameters. 1153 * @c: UBIFS file-system description object 1154 * @options: parameters to parse 1155 * @is_remount: non-zero if this is FS re-mount 1156 * 1157 * This function parses UBIFS mount options and returns zero in case success 1158 * and a negative error code in case of failure. 1159 */ 1160 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1161 int is_remount) 1162 { 1163 char *p; 1164 substring_t args[MAX_OPT_ARGS]; 1165 1166 if (!options) 1167 return 0; 1168 1169 while ((p = strsep(&options, ","))) { 1170 int token; 1171 1172 if (!*p) 1173 continue; 1174 1175 token = match_token(p, tokens, args); 1176 switch (token) { 1177 /* 1178 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1179 * We accept them in order to be backward-compatible. But this 1180 * should be removed at some point. 1181 */ 1182 case Opt_fast_unmount: 1183 c->mount_opts.unmount_mode = 2; 1184 break; 1185 case Opt_norm_unmount: 1186 c->mount_opts.unmount_mode = 1; 1187 break; 1188 case Opt_bulk_read: 1189 c->mount_opts.bulk_read = 2; 1190 c->bulk_read = 1; 1191 break; 1192 case Opt_no_bulk_read: 1193 c->mount_opts.bulk_read = 1; 1194 c->bulk_read = 0; 1195 break; 1196 case Opt_chk_data_crc: 1197 c->mount_opts.chk_data_crc = 2; 1198 c->no_chk_data_crc = 0; 1199 break; 1200 case Opt_no_chk_data_crc: 1201 c->mount_opts.chk_data_crc = 1; 1202 c->no_chk_data_crc = 1; 1203 break; 1204 case Opt_override_compr: 1205 { 1206 char *name = match_strdup(&args[0]); 1207 1208 if (!name) 1209 return -ENOMEM; 1210 if (!strcmp(name, "none")) 1211 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1212 else if (!strcmp(name, "lzo")) 1213 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1214 else if (!strcmp(name, "zlib")) 1215 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1216 else { 1217 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1218 kfree(name); 1219 return -EINVAL; 1220 } 1221 kfree(name); 1222 c->mount_opts.override_compr = 1; 1223 c->default_compr = c->mount_opts.compr_type; 1224 break; 1225 } 1226 default: 1227 { 1228 unsigned long flag; 1229 struct super_block *sb = c->vfs_sb; 1230 1231 flag = parse_standard_option(p); 1232 if (!flag) { 1233 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1234 p); 1235 return -EINVAL; 1236 } 1237 sb->s_flags |= flag; 1238 break; 1239 } 1240 } 1241 } 1242 1243 return 0; 1244 } 1245 #endif 1246 1247 /** 1248 * destroy_journal - destroy journal data structures. 1249 * @c: UBIFS file-system description object 1250 * 1251 * This function destroys journal data structures including those that may have 1252 * been created by recovery functions. 1253 */ 1254 static void destroy_journal(struct ubifs_info *c) 1255 { 1256 while (!list_empty(&c->unclean_leb_list)) { 1257 struct ubifs_unclean_leb *ucleb; 1258 1259 ucleb = list_entry(c->unclean_leb_list.next, 1260 struct ubifs_unclean_leb, list); 1261 list_del(&ucleb->list); 1262 kfree(ucleb); 1263 } 1264 while (!list_empty(&c->old_buds)) { 1265 struct ubifs_bud *bud; 1266 1267 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1268 list_del(&bud->list); 1269 kfree(bud); 1270 } 1271 ubifs_destroy_idx_gc(c); 1272 ubifs_destroy_size_tree(c); 1273 ubifs_tnc_close(c); 1274 free_buds(c); 1275 } 1276 1277 /** 1278 * bu_init - initialize bulk-read information. 1279 * @c: UBIFS file-system description object 1280 */ 1281 static void bu_init(struct ubifs_info *c) 1282 { 1283 ubifs_assert(c->bulk_read == 1); 1284 1285 if (c->bu.buf) 1286 return; /* Already initialized */ 1287 1288 again: 1289 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1290 if (!c->bu.buf) { 1291 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1292 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1293 goto again; 1294 } 1295 1296 /* Just disable bulk-read */ 1297 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1298 c->max_bu_buf_len); 1299 c->mount_opts.bulk_read = 1; 1300 c->bulk_read = 0; 1301 return; 1302 } 1303 } 1304 1305 #ifndef __UBOOT__ 1306 /** 1307 * check_free_space - check if there is enough free space to mount. 1308 * @c: UBIFS file-system description object 1309 * 1310 * This function makes sure UBIFS has enough free space to be mounted in 1311 * read/write mode. UBIFS must always have some free space to allow deletions. 1312 */ 1313 static int check_free_space(struct ubifs_info *c) 1314 { 1315 ubifs_assert(c->dark_wm > 0); 1316 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1317 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1318 ubifs_dump_budg(c, &c->bi); 1319 ubifs_dump_lprops(c); 1320 return -ENOSPC; 1321 } 1322 return 0; 1323 } 1324 #endif 1325 1326 /** 1327 * mount_ubifs - mount UBIFS file-system. 1328 * @c: UBIFS file-system description object 1329 * 1330 * This function mounts UBIFS file system. Returns zero in case of success and 1331 * a negative error code in case of failure. 1332 */ 1333 static int mount_ubifs(struct ubifs_info *c) 1334 { 1335 int err; 1336 long long x; 1337 #ifndef CONFIG_UBIFS_SILENCE_MSG 1338 long long y; 1339 #endif 1340 size_t sz; 1341 1342 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1343 /* Suppress error messages while probing if MS_SILENT is set */ 1344 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1345 #ifdef __UBOOT__ 1346 if (!c->ro_mount) { 1347 printf("UBIFS: only ro mode in U-Boot allowed.\n"); 1348 return -EACCES; 1349 } 1350 #endif 1351 1352 err = init_constants_early(c); 1353 if (err) 1354 return err; 1355 1356 err = ubifs_debugging_init(c); 1357 if (err) 1358 return err; 1359 1360 err = check_volume_empty(c); 1361 if (err) 1362 goto out_free; 1363 1364 if (c->empty && (c->ro_mount || c->ro_media)) { 1365 /* 1366 * This UBI volume is empty, and read-only, or the file system 1367 * is mounted read-only - we cannot format it. 1368 */ 1369 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1370 c->ro_media ? "UBI volume" : "mount"); 1371 err = -EROFS; 1372 goto out_free; 1373 } 1374 1375 if (c->ro_media && !c->ro_mount) { 1376 ubifs_err(c, "cannot mount read-write - read-only media"); 1377 err = -EROFS; 1378 goto out_free; 1379 } 1380 1381 /* 1382 * The requirement for the buffer is that it should fit indexing B-tree 1383 * height amount of integers. We assume the height if the TNC tree will 1384 * never exceed 64. 1385 */ 1386 err = -ENOMEM; 1387 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1388 if (!c->bottom_up_buf) 1389 goto out_free; 1390 1391 c->sbuf = vmalloc(c->leb_size); 1392 if (!c->sbuf) 1393 goto out_free; 1394 1395 #ifndef __UBOOT__ 1396 if (!c->ro_mount) { 1397 c->ileb_buf = vmalloc(c->leb_size); 1398 if (!c->ileb_buf) 1399 goto out_free; 1400 } 1401 #endif 1402 1403 if (c->bulk_read == 1) 1404 bu_init(c); 1405 1406 #ifndef __UBOOT__ 1407 if (!c->ro_mount) { 1408 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1409 GFP_KERNEL); 1410 if (!c->write_reserve_buf) 1411 goto out_free; 1412 } 1413 #endif 1414 1415 c->mounting = 1; 1416 1417 err = ubifs_read_superblock(c); 1418 if (err) 1419 goto out_free; 1420 1421 c->probing = 0; 1422 1423 /* 1424 * Make sure the compressor which is set as default in the superblock 1425 * or overridden by mount options is actually compiled in. 1426 */ 1427 if (!ubifs_compr_present(c->default_compr)) { 1428 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1429 ubifs_compr_name(c->default_compr)); 1430 err = -ENOTSUPP; 1431 goto out_free; 1432 } 1433 1434 err = init_constants_sb(c); 1435 if (err) 1436 goto out_free; 1437 1438 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1439 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1440 c->cbuf = kmalloc(sz, GFP_NOFS); 1441 if (!c->cbuf) { 1442 err = -ENOMEM; 1443 goto out_free; 1444 } 1445 1446 err = alloc_wbufs(c); 1447 if (err) 1448 goto out_cbuf; 1449 1450 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1451 #ifndef __UBOOT__ 1452 if (!c->ro_mount) { 1453 /* Create background thread */ 1454 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1455 if (IS_ERR(c->bgt)) { 1456 err = PTR_ERR(c->bgt); 1457 c->bgt = NULL; 1458 ubifs_err(c, "cannot spawn \"%s\", error %d", 1459 c->bgt_name, err); 1460 goto out_wbufs; 1461 } 1462 wake_up_process(c->bgt); 1463 } 1464 #endif 1465 1466 err = ubifs_read_master(c); 1467 if (err) 1468 goto out_master; 1469 1470 init_constants_master(c); 1471 1472 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1473 ubifs_msg(c, "recovery needed"); 1474 c->need_recovery = 1; 1475 } 1476 1477 #ifndef __UBOOT__ 1478 if (c->need_recovery && !c->ro_mount) { 1479 err = ubifs_recover_inl_heads(c, c->sbuf); 1480 if (err) 1481 goto out_master; 1482 } 1483 #endif 1484 1485 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1486 if (err) 1487 goto out_master; 1488 1489 #ifndef __UBOOT__ 1490 if (!c->ro_mount && c->space_fixup) { 1491 err = ubifs_fixup_free_space(c); 1492 if (err) 1493 goto out_lpt; 1494 } 1495 1496 if (!c->ro_mount && !c->need_recovery) { 1497 /* 1498 * Set the "dirty" flag so that if we reboot uncleanly we 1499 * will notice this immediately on the next mount. 1500 */ 1501 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1502 err = ubifs_write_master(c); 1503 if (err) 1504 goto out_lpt; 1505 } 1506 #endif 1507 1508 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1509 if (err) 1510 goto out_lpt; 1511 1512 err = ubifs_replay_journal(c); 1513 if (err) 1514 goto out_journal; 1515 1516 /* Calculate 'min_idx_lebs' after journal replay */ 1517 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1518 1519 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1520 if (err) 1521 goto out_orphans; 1522 1523 if (!c->ro_mount) { 1524 #ifndef __UBOOT__ 1525 int lnum; 1526 1527 err = check_free_space(c); 1528 if (err) 1529 goto out_orphans; 1530 1531 /* Check for enough log space */ 1532 lnum = c->lhead_lnum + 1; 1533 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1534 lnum = UBIFS_LOG_LNUM; 1535 if (lnum == c->ltail_lnum) { 1536 err = ubifs_consolidate_log(c); 1537 if (err) 1538 goto out_orphans; 1539 } 1540 1541 if (c->need_recovery) { 1542 err = ubifs_recover_size(c); 1543 if (err) 1544 goto out_orphans; 1545 err = ubifs_rcvry_gc_commit(c); 1546 if (err) 1547 goto out_orphans; 1548 } else { 1549 err = take_gc_lnum(c); 1550 if (err) 1551 goto out_orphans; 1552 1553 /* 1554 * GC LEB may contain garbage if there was an unclean 1555 * reboot, and it should be un-mapped. 1556 */ 1557 err = ubifs_leb_unmap(c, c->gc_lnum); 1558 if (err) 1559 goto out_orphans; 1560 } 1561 1562 err = dbg_check_lprops(c); 1563 if (err) 1564 goto out_orphans; 1565 #endif 1566 } else if (c->need_recovery) { 1567 err = ubifs_recover_size(c); 1568 if (err) 1569 goto out_orphans; 1570 } else { 1571 /* 1572 * Even if we mount read-only, we have to set space in GC LEB 1573 * to proper value because this affects UBIFS free space 1574 * reporting. We do not want to have a situation when 1575 * re-mounting from R/O to R/W changes amount of free space. 1576 */ 1577 err = take_gc_lnum(c); 1578 if (err) 1579 goto out_orphans; 1580 } 1581 1582 #ifndef __UBOOT__ 1583 spin_lock(&ubifs_infos_lock); 1584 list_add_tail(&c->infos_list, &ubifs_infos); 1585 spin_unlock(&ubifs_infos_lock); 1586 #endif 1587 1588 if (c->need_recovery) { 1589 if (c->ro_mount) 1590 ubifs_msg(c, "recovery deferred"); 1591 else { 1592 c->need_recovery = 0; 1593 ubifs_msg(c, "recovery completed"); 1594 /* 1595 * GC LEB has to be empty and taken at this point. But 1596 * the journal head LEBs may also be accounted as 1597 * "empty taken" if they are empty. 1598 */ 1599 ubifs_assert(c->lst.taken_empty_lebs > 0); 1600 } 1601 } else 1602 ubifs_assert(c->lst.taken_empty_lebs > 0); 1603 1604 err = dbg_check_filesystem(c); 1605 if (err) 1606 goto out_infos; 1607 1608 err = dbg_debugfs_init_fs(c); 1609 if (err) 1610 goto out_infos; 1611 1612 c->mounting = 0; 1613 1614 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1615 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1616 c->ro_mount ? ", R/O mode" : ""); 1617 x = (long long)c->main_lebs * c->leb_size; 1618 #ifndef CONFIG_UBIFS_SILENCE_MSG 1619 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1620 #endif 1621 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1622 c->leb_size, c->leb_size >> 10, c->min_io_size, 1623 c->max_write_size); 1624 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1625 x, x >> 20, c->main_lebs, 1626 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1627 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1628 c->report_rp_size, c->report_rp_size >> 10); 1629 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1630 c->fmt_version, c->ro_compat_version, 1631 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1632 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1633 1634 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1635 dbg_gen("data journal heads: %d", 1636 c->jhead_cnt - NONDATA_JHEADS_CNT); 1637 dbg_gen("log LEBs: %d (%d - %d)", 1638 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1639 dbg_gen("LPT area LEBs: %d (%d - %d)", 1640 c->lpt_lebs, c->lpt_first, c->lpt_last); 1641 dbg_gen("orphan area LEBs: %d (%d - %d)", 1642 c->orph_lebs, c->orph_first, c->orph_last); 1643 dbg_gen("main area LEBs: %d (%d - %d)", 1644 c->main_lebs, c->main_first, c->leb_cnt - 1); 1645 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1646 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1647 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1648 c->bi.old_idx_sz >> 20); 1649 dbg_gen("key hash type: %d", c->key_hash_type); 1650 dbg_gen("tree fanout: %d", c->fanout); 1651 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1652 dbg_gen("max. znode size %d", c->max_znode_sz); 1653 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1654 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1655 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1656 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1657 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1658 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1659 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1660 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1661 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1662 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1663 dbg_gen("dead watermark: %d", c->dead_wm); 1664 dbg_gen("dark watermark: %d", c->dark_wm); 1665 dbg_gen("LEB overhead: %d", c->leb_overhead); 1666 x = (long long)c->main_lebs * c->dark_wm; 1667 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1668 x, x >> 10, x >> 20); 1669 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1670 c->max_bud_bytes, c->max_bud_bytes >> 10, 1671 c->max_bud_bytes >> 20); 1672 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1673 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1674 c->bg_bud_bytes >> 20); 1675 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1676 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1677 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1678 dbg_gen("commit number: %llu", c->cmt_no); 1679 1680 return 0; 1681 1682 out_infos: 1683 spin_lock(&ubifs_infos_lock); 1684 list_del(&c->infos_list); 1685 spin_unlock(&ubifs_infos_lock); 1686 out_orphans: 1687 free_orphans(c); 1688 out_journal: 1689 destroy_journal(c); 1690 out_lpt: 1691 ubifs_lpt_free(c, 0); 1692 out_master: 1693 kfree(c->mst_node); 1694 kfree(c->rcvrd_mst_node); 1695 if (c->bgt) 1696 kthread_stop(c->bgt); 1697 #ifndef __UBOOT__ 1698 out_wbufs: 1699 #endif 1700 free_wbufs(c); 1701 out_cbuf: 1702 kfree(c->cbuf); 1703 out_free: 1704 kfree(c->write_reserve_buf); 1705 kfree(c->bu.buf); 1706 vfree(c->ileb_buf); 1707 vfree(c->sbuf); 1708 kfree(c->bottom_up_buf); 1709 ubifs_debugging_exit(c); 1710 return err; 1711 } 1712 1713 /** 1714 * ubifs_umount - un-mount UBIFS file-system. 1715 * @c: UBIFS file-system description object 1716 * 1717 * Note, this function is called to free allocated resourced when un-mounting, 1718 * as well as free resources when an error occurred while we were half way 1719 * through mounting (error path cleanup function). So it has to make sure the 1720 * resource was actually allocated before freeing it. 1721 */ 1722 #ifndef __UBOOT__ 1723 static void ubifs_umount(struct ubifs_info *c) 1724 #else 1725 void ubifs_umount(struct ubifs_info *c) 1726 #endif 1727 { 1728 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1729 c->vi.vol_id); 1730 1731 dbg_debugfs_exit_fs(c); 1732 spin_lock(&ubifs_infos_lock); 1733 list_del(&c->infos_list); 1734 spin_unlock(&ubifs_infos_lock); 1735 1736 #ifndef __UBOOT__ 1737 if (c->bgt) 1738 kthread_stop(c->bgt); 1739 1740 destroy_journal(c); 1741 #endif 1742 free_wbufs(c); 1743 free_orphans(c); 1744 ubifs_lpt_free(c, 0); 1745 1746 kfree(c->cbuf); 1747 kfree(c->rcvrd_mst_node); 1748 kfree(c->mst_node); 1749 kfree(c->write_reserve_buf); 1750 kfree(c->bu.buf); 1751 vfree(c->ileb_buf); 1752 vfree(c->sbuf); 1753 kfree(c->bottom_up_buf); 1754 ubifs_debugging_exit(c); 1755 #ifdef __UBOOT__ 1756 /* Finally free U-Boot's global copy of superblock */ 1757 if (ubifs_sb != NULL) { 1758 free(ubifs_sb->s_fs_info); 1759 free(ubifs_sb); 1760 } 1761 #endif 1762 } 1763 1764 #ifndef __UBOOT__ 1765 /** 1766 * ubifs_remount_rw - re-mount in read-write mode. 1767 * @c: UBIFS file-system description object 1768 * 1769 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1770 * mode. This function allocates the needed resources and re-mounts UBIFS in 1771 * read-write mode. 1772 */ 1773 static int ubifs_remount_rw(struct ubifs_info *c) 1774 { 1775 int err, lnum; 1776 1777 if (c->rw_incompat) { 1778 ubifs_err(c, "the file-system is not R/W-compatible"); 1779 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1780 c->fmt_version, c->ro_compat_version, 1781 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1782 return -EROFS; 1783 } 1784 1785 mutex_lock(&c->umount_mutex); 1786 dbg_save_space_info(c); 1787 c->remounting_rw = 1; 1788 c->ro_mount = 0; 1789 1790 if (c->space_fixup) { 1791 err = ubifs_fixup_free_space(c); 1792 if (err) 1793 goto out; 1794 } 1795 1796 err = check_free_space(c); 1797 if (err) 1798 goto out; 1799 1800 if (c->old_leb_cnt != c->leb_cnt) { 1801 struct ubifs_sb_node *sup; 1802 1803 sup = ubifs_read_sb_node(c); 1804 if (IS_ERR(sup)) { 1805 err = PTR_ERR(sup); 1806 goto out; 1807 } 1808 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1809 err = ubifs_write_sb_node(c, sup); 1810 kfree(sup); 1811 if (err) 1812 goto out; 1813 } 1814 1815 if (c->need_recovery) { 1816 ubifs_msg(c, "completing deferred recovery"); 1817 err = ubifs_write_rcvrd_mst_node(c); 1818 if (err) 1819 goto out; 1820 err = ubifs_recover_size(c); 1821 if (err) 1822 goto out; 1823 err = ubifs_clean_lebs(c, c->sbuf); 1824 if (err) 1825 goto out; 1826 err = ubifs_recover_inl_heads(c, c->sbuf); 1827 if (err) 1828 goto out; 1829 } else { 1830 /* A readonly mount is not allowed to have orphans */ 1831 ubifs_assert(c->tot_orphans == 0); 1832 err = ubifs_clear_orphans(c); 1833 if (err) 1834 goto out; 1835 } 1836 1837 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1838 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1839 err = ubifs_write_master(c); 1840 if (err) 1841 goto out; 1842 } 1843 1844 c->ileb_buf = vmalloc(c->leb_size); 1845 if (!c->ileb_buf) { 1846 err = -ENOMEM; 1847 goto out; 1848 } 1849 1850 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1851 if (!c->write_reserve_buf) { 1852 err = -ENOMEM; 1853 goto out; 1854 } 1855 1856 err = ubifs_lpt_init(c, 0, 1); 1857 if (err) 1858 goto out; 1859 1860 /* Create background thread */ 1861 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1862 if (IS_ERR(c->bgt)) { 1863 err = PTR_ERR(c->bgt); 1864 c->bgt = NULL; 1865 ubifs_err(c, "cannot spawn \"%s\", error %d", 1866 c->bgt_name, err); 1867 goto out; 1868 } 1869 wake_up_process(c->bgt); 1870 1871 c->orph_buf = vmalloc(c->leb_size); 1872 if (!c->orph_buf) { 1873 err = -ENOMEM; 1874 goto out; 1875 } 1876 1877 /* Check for enough log space */ 1878 lnum = c->lhead_lnum + 1; 1879 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1880 lnum = UBIFS_LOG_LNUM; 1881 if (lnum == c->ltail_lnum) { 1882 err = ubifs_consolidate_log(c); 1883 if (err) 1884 goto out; 1885 } 1886 1887 if (c->need_recovery) 1888 err = ubifs_rcvry_gc_commit(c); 1889 else 1890 err = ubifs_leb_unmap(c, c->gc_lnum); 1891 if (err) 1892 goto out; 1893 1894 dbg_gen("re-mounted read-write"); 1895 c->remounting_rw = 0; 1896 1897 if (c->need_recovery) { 1898 c->need_recovery = 0; 1899 ubifs_msg(c, "deferred recovery completed"); 1900 } else { 1901 /* 1902 * Do not run the debugging space check if the were doing 1903 * recovery, because when we saved the information we had the 1904 * file-system in a state where the TNC and lprops has been 1905 * modified in memory, but all the I/O operations (including a 1906 * commit) were deferred. So the file-system was in 1907 * "non-committed" state. Now the file-system is in committed 1908 * state, and of course the amount of free space will change 1909 * because, for example, the old index size was imprecise. 1910 */ 1911 err = dbg_check_space_info(c); 1912 } 1913 1914 mutex_unlock(&c->umount_mutex); 1915 return err; 1916 1917 out: 1918 c->ro_mount = 1; 1919 vfree(c->orph_buf); 1920 c->orph_buf = NULL; 1921 if (c->bgt) { 1922 kthread_stop(c->bgt); 1923 c->bgt = NULL; 1924 } 1925 free_wbufs(c); 1926 kfree(c->write_reserve_buf); 1927 c->write_reserve_buf = NULL; 1928 vfree(c->ileb_buf); 1929 c->ileb_buf = NULL; 1930 ubifs_lpt_free(c, 1); 1931 c->remounting_rw = 0; 1932 mutex_unlock(&c->umount_mutex); 1933 return err; 1934 } 1935 1936 /** 1937 * ubifs_remount_ro - re-mount in read-only mode. 1938 * @c: UBIFS file-system description object 1939 * 1940 * We assume VFS has stopped writing. Possibly the background thread could be 1941 * running a commit, however kthread_stop will wait in that case. 1942 */ 1943 static void ubifs_remount_ro(struct ubifs_info *c) 1944 { 1945 int i, err; 1946 1947 ubifs_assert(!c->need_recovery); 1948 ubifs_assert(!c->ro_mount); 1949 1950 mutex_lock(&c->umount_mutex); 1951 if (c->bgt) { 1952 kthread_stop(c->bgt); 1953 c->bgt = NULL; 1954 } 1955 1956 dbg_save_space_info(c); 1957 1958 for (i = 0; i < c->jhead_cnt; i++) 1959 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1960 1961 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1962 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1963 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1964 err = ubifs_write_master(c); 1965 if (err) 1966 ubifs_ro_mode(c, err); 1967 1968 vfree(c->orph_buf); 1969 c->orph_buf = NULL; 1970 kfree(c->write_reserve_buf); 1971 c->write_reserve_buf = NULL; 1972 vfree(c->ileb_buf); 1973 c->ileb_buf = NULL; 1974 ubifs_lpt_free(c, 1); 1975 c->ro_mount = 1; 1976 err = dbg_check_space_info(c); 1977 if (err) 1978 ubifs_ro_mode(c, err); 1979 mutex_unlock(&c->umount_mutex); 1980 } 1981 1982 static void ubifs_put_super(struct super_block *sb) 1983 { 1984 int i; 1985 struct ubifs_info *c = sb->s_fs_info; 1986 1987 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1988 1989 /* 1990 * The following asserts are only valid if there has not been a failure 1991 * of the media. For example, there will be dirty inodes if we failed 1992 * to write them back because of I/O errors. 1993 */ 1994 if (!c->ro_error) { 1995 ubifs_assert(c->bi.idx_growth == 0); 1996 ubifs_assert(c->bi.dd_growth == 0); 1997 ubifs_assert(c->bi.data_growth == 0); 1998 } 1999 2000 /* 2001 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 2002 * and file system un-mount. Namely, it prevents the shrinker from 2003 * picking this superblock for shrinking - it will be just skipped if 2004 * the mutex is locked. 2005 */ 2006 mutex_lock(&c->umount_mutex); 2007 if (!c->ro_mount) { 2008 /* 2009 * First of all kill the background thread to make sure it does 2010 * not interfere with un-mounting and freeing resources. 2011 */ 2012 if (c->bgt) { 2013 kthread_stop(c->bgt); 2014 c->bgt = NULL; 2015 } 2016 2017 /* 2018 * On fatal errors c->ro_error is set to 1, in which case we do 2019 * not write the master node. 2020 */ 2021 if (!c->ro_error) { 2022 int err; 2023 2024 /* Synchronize write-buffers */ 2025 for (i = 0; i < c->jhead_cnt; i++) 2026 ubifs_wbuf_sync(&c->jheads[i].wbuf); 2027 2028 /* 2029 * We are being cleanly unmounted which means the 2030 * orphans were killed - indicate this in the master 2031 * node. Also save the reserved GC LEB number. 2032 */ 2033 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 2034 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 2035 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 2036 err = ubifs_write_master(c); 2037 if (err) 2038 /* 2039 * Recovery will attempt to fix the master area 2040 * next mount, so we just print a message and 2041 * continue to unmount normally. 2042 */ 2043 ubifs_err(c, "failed to write master node, error %d", 2044 err); 2045 } else { 2046 #ifndef __UBOOT__ 2047 for (i = 0; i < c->jhead_cnt; i++) 2048 /* Make sure write-buffer timers are canceled */ 2049 hrtimer_cancel(&c->jheads[i].wbuf.timer); 2050 #endif 2051 } 2052 } 2053 2054 ubifs_umount(c); 2055 #ifndef __UBOOT__ 2056 bdi_destroy(&c->bdi); 2057 #endif 2058 ubi_close_volume(c->ubi); 2059 mutex_unlock(&c->umount_mutex); 2060 } 2061 #endif 2062 2063 #ifndef __UBOOT__ 2064 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 2065 { 2066 int err; 2067 struct ubifs_info *c = sb->s_fs_info; 2068 2069 sync_filesystem(sb); 2070 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2071 2072 err = ubifs_parse_options(c, data, 1); 2073 if (err) { 2074 ubifs_err(c, "invalid or unknown remount parameter"); 2075 return err; 2076 } 2077 2078 if (c->ro_mount && !(*flags & MS_RDONLY)) { 2079 if (c->ro_error) { 2080 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 2081 return -EROFS; 2082 } 2083 if (c->ro_media) { 2084 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 2085 return -EROFS; 2086 } 2087 err = ubifs_remount_rw(c); 2088 if (err) 2089 return err; 2090 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 2091 if (c->ro_error) { 2092 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 2093 return -EROFS; 2094 } 2095 ubifs_remount_ro(c); 2096 } 2097 2098 if (c->bulk_read == 1) 2099 bu_init(c); 2100 else { 2101 dbg_gen("disable bulk-read"); 2102 kfree(c->bu.buf); 2103 c->bu.buf = NULL; 2104 } 2105 2106 ubifs_assert(c->lst.taken_empty_lebs > 0); 2107 return 0; 2108 } 2109 #endif 2110 2111 const struct super_operations ubifs_super_operations = { 2112 .alloc_inode = ubifs_alloc_inode, 2113 #ifndef __UBOOT__ 2114 .destroy_inode = ubifs_destroy_inode, 2115 .put_super = ubifs_put_super, 2116 .write_inode = ubifs_write_inode, 2117 .evict_inode = ubifs_evict_inode, 2118 .statfs = ubifs_statfs, 2119 #endif 2120 .dirty_inode = ubifs_dirty_inode, 2121 #ifndef __UBOOT__ 2122 .remount_fs = ubifs_remount_fs, 2123 .show_options = ubifs_show_options, 2124 .sync_fs = ubifs_sync_fs, 2125 #endif 2126 }; 2127 2128 /** 2129 * open_ubi - parse UBI device name string and open the UBI device. 2130 * @name: UBI volume name 2131 * @mode: UBI volume open mode 2132 * 2133 * The primary method of mounting UBIFS is by specifying the UBI volume 2134 * character device node path. However, UBIFS may also be mounted withoug any 2135 * character device node using one of the following methods: 2136 * 2137 * o ubiX_Y - mount UBI device number X, volume Y; 2138 * o ubiY - mount UBI device number 0, volume Y; 2139 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2140 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2141 * 2142 * Alternative '!' separator may be used instead of ':' (because some shells 2143 * like busybox may interpret ':' as an NFS host name separator). This function 2144 * returns UBI volume description object in case of success and a negative 2145 * error code in case of failure. 2146 */ 2147 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2148 { 2149 #ifndef __UBOOT__ 2150 struct ubi_volume_desc *ubi; 2151 #endif 2152 int dev, vol; 2153 char *endptr; 2154 2155 #ifndef __UBOOT__ 2156 /* First, try to open using the device node path method */ 2157 ubi = ubi_open_volume_path(name, mode); 2158 if (!IS_ERR(ubi)) 2159 return ubi; 2160 #endif 2161 2162 /* Try the "nodev" method */ 2163 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2164 return ERR_PTR(-EINVAL); 2165 2166 /* ubi:NAME method */ 2167 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2168 return ubi_open_volume_nm(0, name + 4, mode); 2169 2170 if (!isdigit(name[3])) 2171 return ERR_PTR(-EINVAL); 2172 2173 dev = simple_strtoul(name + 3, &endptr, 0); 2174 2175 /* ubiY method */ 2176 if (*endptr == '\0') 2177 return ubi_open_volume(0, dev, mode); 2178 2179 /* ubiX_Y method */ 2180 if (*endptr == '_' && isdigit(endptr[1])) { 2181 vol = simple_strtoul(endptr + 1, &endptr, 0); 2182 if (*endptr != '\0') 2183 return ERR_PTR(-EINVAL); 2184 return ubi_open_volume(dev, vol, mode); 2185 } 2186 2187 /* ubiX:NAME method */ 2188 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2189 return ubi_open_volume_nm(dev, ++endptr, mode); 2190 2191 return ERR_PTR(-EINVAL); 2192 } 2193 2194 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2195 { 2196 struct ubifs_info *c; 2197 2198 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2199 if (c) { 2200 spin_lock_init(&c->cnt_lock); 2201 spin_lock_init(&c->cs_lock); 2202 spin_lock_init(&c->buds_lock); 2203 spin_lock_init(&c->space_lock); 2204 spin_lock_init(&c->orphan_lock); 2205 init_rwsem(&c->commit_sem); 2206 mutex_init(&c->lp_mutex); 2207 mutex_init(&c->tnc_mutex); 2208 mutex_init(&c->log_mutex); 2209 mutex_init(&c->umount_mutex); 2210 mutex_init(&c->bu_mutex); 2211 mutex_init(&c->write_reserve_mutex); 2212 init_waitqueue_head(&c->cmt_wq); 2213 c->buds = RB_ROOT; 2214 c->old_idx = RB_ROOT; 2215 c->size_tree = RB_ROOT; 2216 c->orph_tree = RB_ROOT; 2217 INIT_LIST_HEAD(&c->infos_list); 2218 INIT_LIST_HEAD(&c->idx_gc); 2219 INIT_LIST_HEAD(&c->replay_list); 2220 INIT_LIST_HEAD(&c->replay_buds); 2221 INIT_LIST_HEAD(&c->uncat_list); 2222 INIT_LIST_HEAD(&c->empty_list); 2223 INIT_LIST_HEAD(&c->freeable_list); 2224 INIT_LIST_HEAD(&c->frdi_idx_list); 2225 INIT_LIST_HEAD(&c->unclean_leb_list); 2226 INIT_LIST_HEAD(&c->old_buds); 2227 INIT_LIST_HEAD(&c->orph_list); 2228 INIT_LIST_HEAD(&c->orph_new); 2229 c->no_chk_data_crc = 1; 2230 2231 c->highest_inum = UBIFS_FIRST_INO; 2232 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2233 2234 ubi_get_volume_info(ubi, &c->vi); 2235 ubi_get_device_info(c->vi.ubi_num, &c->di); 2236 } 2237 return c; 2238 } 2239 2240 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2241 { 2242 struct ubifs_info *c = sb->s_fs_info; 2243 struct inode *root; 2244 int err; 2245 2246 c->vfs_sb = sb; 2247 #ifndef __UBOOT__ 2248 /* Re-open the UBI device in read-write mode */ 2249 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2250 #else 2251 /* U-Boot read only mode */ 2252 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); 2253 #endif 2254 2255 if (IS_ERR(c->ubi)) { 2256 err = PTR_ERR(c->ubi); 2257 goto out; 2258 } 2259 2260 #ifndef __UBOOT__ 2261 /* 2262 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2263 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2264 * which means the user would have to wait not just for their own I/O 2265 * but the read-ahead I/O as well i.e. completely pointless. 2266 * 2267 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2268 */ 2269 c->bdi.name = "ubifs", 2270 c->bdi.capabilities = 0; 2271 err = bdi_init(&c->bdi); 2272 if (err) 2273 goto out_close; 2274 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2275 c->vi.ubi_num, c->vi.vol_id); 2276 if (err) 2277 goto out_bdi; 2278 2279 err = ubifs_parse_options(c, data, 0); 2280 if (err) 2281 goto out_bdi; 2282 2283 sb->s_bdi = &c->bdi; 2284 #endif 2285 sb->s_fs_info = c; 2286 sb->s_magic = UBIFS_SUPER_MAGIC; 2287 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2288 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2289 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2290 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2291 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2292 sb->s_op = &ubifs_super_operations; 2293 #ifndef __UBOOT__ 2294 sb->s_xattr = ubifs_xattr_handlers; 2295 #endif 2296 2297 mutex_lock(&c->umount_mutex); 2298 err = mount_ubifs(c); 2299 if (err) { 2300 ubifs_assert(err < 0); 2301 goto out_unlock; 2302 } 2303 2304 /* Read the root inode */ 2305 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2306 if (IS_ERR(root)) { 2307 err = PTR_ERR(root); 2308 goto out_umount; 2309 } 2310 2311 #ifndef __UBOOT__ 2312 sb->s_root = d_make_root(root); 2313 if (!sb->s_root) { 2314 err = -ENOMEM; 2315 goto out_umount; 2316 } 2317 #else 2318 sb->s_root = NULL; 2319 #endif 2320 2321 mutex_unlock(&c->umount_mutex); 2322 return 0; 2323 2324 out_umount: 2325 ubifs_umount(c); 2326 out_unlock: 2327 mutex_unlock(&c->umount_mutex); 2328 #ifndef __UBOOT__ 2329 out_bdi: 2330 bdi_destroy(&c->bdi); 2331 out_close: 2332 #endif 2333 ubi_close_volume(c->ubi); 2334 out: 2335 return err; 2336 } 2337 2338 static int sb_test(struct super_block *sb, void *data) 2339 { 2340 struct ubifs_info *c1 = data; 2341 struct ubifs_info *c = sb->s_fs_info; 2342 2343 return c->vi.cdev == c1->vi.cdev; 2344 } 2345 2346 static int sb_set(struct super_block *sb, void *data) 2347 { 2348 sb->s_fs_info = data; 2349 return set_anon_super(sb, NULL); 2350 } 2351 2352 static struct super_block *alloc_super(struct file_system_type *type, int flags) 2353 { 2354 struct super_block *s; 2355 int err; 2356 2357 s = kzalloc(sizeof(struct super_block), GFP_USER); 2358 if (!s) { 2359 err = -ENOMEM; 2360 return ERR_PTR(err); 2361 } 2362 2363 INIT_HLIST_NODE(&s->s_instances); 2364 INIT_LIST_HEAD(&s->s_inodes); 2365 s->s_time_gran = 1000000000; 2366 s->s_flags = flags; 2367 2368 return s; 2369 } 2370 2371 /** 2372 * sget - find or create a superblock 2373 * @type: filesystem type superblock should belong to 2374 * @test: comparison callback 2375 * @set: setup callback 2376 * @flags: mount flags 2377 * @data: argument to each of them 2378 */ 2379 struct super_block *sget(struct file_system_type *type, 2380 int (*test)(struct super_block *,void *), 2381 int (*set)(struct super_block *,void *), 2382 int flags, 2383 void *data) 2384 { 2385 struct super_block *s = NULL; 2386 #ifndef __UBOOT__ 2387 struct super_block *old; 2388 #endif 2389 int err; 2390 2391 #ifndef __UBOOT__ 2392 retry: 2393 spin_lock(&sb_lock); 2394 if (test) { 2395 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 2396 if (!test(old, data)) 2397 continue; 2398 if (!grab_super(old)) 2399 goto retry; 2400 if (s) { 2401 up_write(&s->s_umount); 2402 destroy_super(s); 2403 s = NULL; 2404 } 2405 return old; 2406 } 2407 } 2408 #endif 2409 if (!s) { 2410 spin_unlock(&sb_lock); 2411 s = alloc_super(type, flags); 2412 if (!s) 2413 return ERR_PTR(-ENOMEM); 2414 #ifndef __UBOOT__ 2415 goto retry; 2416 #endif 2417 } 2418 2419 err = set(s, data); 2420 if (err) { 2421 #ifndef __UBOOT__ 2422 spin_unlock(&sb_lock); 2423 up_write(&s->s_umount); 2424 destroy_super(s); 2425 #endif 2426 return ERR_PTR(err); 2427 } 2428 s->s_type = type; 2429 #ifndef __UBOOT__ 2430 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 2431 list_add_tail(&s->s_list, &super_blocks); 2432 #else 2433 strncpy(s->s_id, type->name, sizeof(s->s_id)); 2434 #endif 2435 hlist_add_head(&s->s_instances, &type->fs_supers); 2436 #ifndef __UBOOT__ 2437 spin_unlock(&sb_lock); 2438 get_filesystem(type); 2439 register_shrinker(&s->s_shrink); 2440 #endif 2441 return s; 2442 } 2443 2444 EXPORT_SYMBOL(sget); 2445 2446 2447 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2448 const char *name, void *data) 2449 { 2450 struct ubi_volume_desc *ubi; 2451 struct ubifs_info *c; 2452 struct super_block *sb; 2453 int err; 2454 2455 dbg_gen("name %s, flags %#x", name, flags); 2456 2457 /* 2458 * Get UBI device number and volume ID. Mount it read-only so far 2459 * because this might be a new mount point, and UBI allows only one 2460 * read-write user at a time. 2461 */ 2462 ubi = open_ubi(name, UBI_READONLY); 2463 if (IS_ERR(ubi)) { 2464 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2465 current->pid, name, (int)PTR_ERR(ubi)); 2466 return ERR_CAST(ubi); 2467 } 2468 2469 c = alloc_ubifs_info(ubi); 2470 if (!c) { 2471 err = -ENOMEM; 2472 goto out_close; 2473 } 2474 2475 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2476 2477 sb = sget(fs_type, sb_test, sb_set, flags, c); 2478 if (IS_ERR(sb)) { 2479 err = PTR_ERR(sb); 2480 kfree(c); 2481 goto out_close; 2482 } 2483 2484 if (sb->s_root) { 2485 struct ubifs_info *c1 = sb->s_fs_info; 2486 kfree(c); 2487 /* A new mount point for already mounted UBIFS */ 2488 dbg_gen("this ubi volume is already mounted"); 2489 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2490 err = -EBUSY; 2491 goto out_deact; 2492 } 2493 } else { 2494 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2495 if (err) 2496 goto out_deact; 2497 /* We do not support atime */ 2498 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2499 } 2500 2501 /* 'fill_super()' opens ubi again so we must close it here */ 2502 ubi_close_volume(ubi); 2503 2504 #ifdef __UBOOT__ 2505 ubifs_sb = sb; 2506 return 0; 2507 #else 2508 return dget(sb->s_root); 2509 #endif 2510 2511 out_deact: 2512 #ifndef __UBOOT__ 2513 deactivate_locked_super(sb); 2514 #endif 2515 out_close: 2516 ubi_close_volume(ubi); 2517 return ERR_PTR(err); 2518 } 2519 2520 static void kill_ubifs_super(struct super_block *s) 2521 { 2522 struct ubifs_info *c = s->s_fs_info; 2523 #ifndef __UBOOT__ 2524 kill_anon_super(s); 2525 #endif 2526 kfree(c); 2527 } 2528 2529 static struct file_system_type ubifs_fs_type = { 2530 .name = "ubifs", 2531 .owner = THIS_MODULE, 2532 .mount = ubifs_mount, 2533 .kill_sb = kill_ubifs_super, 2534 }; 2535 #ifndef __UBOOT__ 2536 MODULE_ALIAS_FS("ubifs"); 2537 2538 /* 2539 * Inode slab cache constructor. 2540 */ 2541 static void inode_slab_ctor(void *obj) 2542 { 2543 struct ubifs_inode *ui = obj; 2544 inode_init_once(&ui->vfs_inode); 2545 } 2546 2547 static int __init ubifs_init(void) 2548 #else 2549 int ubifs_init(void) 2550 #endif 2551 { 2552 int err; 2553 2554 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2555 2556 /* Make sure node sizes are 8-byte aligned */ 2557 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2558 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2559 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2560 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2561 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2562 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2563 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2564 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2565 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2566 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2567 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2568 2569 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2570 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2571 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2572 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2573 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2574 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2575 2576 /* Check min. node size */ 2577 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2578 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2579 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2580 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2581 2582 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2583 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2584 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2585 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2586 2587 /* Defined node sizes */ 2588 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2589 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2590 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2591 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2592 2593 /* 2594 * We use 2 bit wide bit-fields to store compression type, which should 2595 * be amended if more compressors are added. The bit-fields are: 2596 * @compr_type in 'struct ubifs_inode', @default_compr in 2597 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2598 */ 2599 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2600 2601 /* 2602 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2603 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2604 */ 2605 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2606 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2607 current->pid, (unsigned int)PAGE_CACHE_SIZE); 2608 return -EINVAL; 2609 } 2610 2611 #ifndef __UBOOT__ 2612 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2613 sizeof(struct ubifs_inode), 0, 2614 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2615 &inode_slab_ctor); 2616 if (!ubifs_inode_slab) 2617 return -ENOMEM; 2618 2619 err = register_shrinker(&ubifs_shrinker_info); 2620 if (err) 2621 goto out_slab; 2622 #endif 2623 2624 err = ubifs_compressors_init(); 2625 if (err) 2626 goto out_shrinker; 2627 2628 #ifndef __UBOOT__ 2629 err = dbg_debugfs_init(); 2630 if (err) 2631 goto out_compr; 2632 2633 err = register_filesystem(&ubifs_fs_type); 2634 if (err) { 2635 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2636 current->pid, err); 2637 goto out_dbg; 2638 } 2639 #endif 2640 return 0; 2641 2642 #ifndef __UBOOT__ 2643 out_dbg: 2644 dbg_debugfs_exit(); 2645 out_compr: 2646 ubifs_compressors_exit(); 2647 #endif 2648 out_shrinker: 2649 #ifndef __UBOOT__ 2650 unregister_shrinker(&ubifs_shrinker_info); 2651 out_slab: 2652 #endif 2653 kmem_cache_destroy(ubifs_inode_slab); 2654 return err; 2655 } 2656 /* late_initcall to let compressors initialize first */ 2657 late_initcall(ubifs_init); 2658 2659 #ifndef __UBOOT__ 2660 static void __exit ubifs_exit(void) 2661 { 2662 ubifs_assert(list_empty(&ubifs_infos)); 2663 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2664 2665 dbg_debugfs_exit(); 2666 ubifs_compressors_exit(); 2667 unregister_shrinker(&ubifs_shrinker_info); 2668 2669 /* 2670 * Make sure all delayed rcu free inodes are flushed before we 2671 * destroy cache. 2672 */ 2673 rcu_barrier(); 2674 kmem_cache_destroy(ubifs_inode_slab); 2675 unregister_filesystem(&ubifs_fs_type); 2676 } 2677 module_exit(ubifs_exit); 2678 2679 MODULE_LICENSE("GPL"); 2680 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2681 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2682 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2683 #else 2684 int uboot_ubifs_mount(char *vol_name) 2685 { 2686 struct dentry *ret; 2687 int flags; 2688 2689 /* 2690 * First unmount if allready mounted 2691 */ 2692 if (ubifs_sb) 2693 ubifs_umount(ubifs_sb->s_fs_info); 2694 2695 /* 2696 * Mount in read-only mode 2697 */ 2698 flags = MS_RDONLY; 2699 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); 2700 if (IS_ERR(ret)) { 2701 printf("Error reading superblock on volume '%s' " \ 2702 "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); 2703 return -1; 2704 } 2705 2706 return 0; 2707 } 2708 #endif 2709