1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the X86MCCodeEmitter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86BaseInfo.h" 15 #include "MCTargetDesc/X86FixupKinds.h" 16 #include "MCTargetDesc/X86MCTargetDesc.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/MC/MCCodeEmitter.h" 19 #include "llvm/MC/MCContext.h" 20 #include "llvm/MC/MCExpr.h" 21 #include "llvm/MC/MCFixup.h" 22 #include "llvm/MC/MCInst.h" 23 #include "llvm/MC/MCInstrDesc.h" 24 #include "llvm/MC/MCInstrInfo.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/MC/MCSubtargetInfo.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <cassert> 31 #include <cstdint> 32 #include <cstdlib> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "mccodeemitter" 37 38 namespace { 39 40 class X86MCCodeEmitter : public MCCodeEmitter { 41 const MCInstrInfo &MCII; 42 MCContext &Ctx; 43 44 public: 45 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) 46 : MCII(mcii), Ctx(ctx) { 47 } 48 X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; 49 X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; 50 ~X86MCCodeEmitter() override = default; 51 52 bool is64BitMode(const MCSubtargetInfo &STI) const { 53 return STI.getFeatureBits()[X86::Mode64Bit]; 54 } 55 56 bool is32BitMode(const MCSubtargetInfo &STI) const { 57 return STI.getFeatureBits()[X86::Mode32Bit]; 58 } 59 60 bool is16BitMode(const MCSubtargetInfo &STI) const { 61 return STI.getFeatureBits()[X86::Mode16Bit]; 62 } 63 64 /// Is16BitMemOperand - Return true if the specified instruction has 65 /// a 16-bit memory operand. Op specifies the operand # of the memoperand. 66 bool Is16BitMemOperand(const MCInst &MI, unsigned Op, 67 const MCSubtargetInfo &STI) const { 68 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); 69 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); 70 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); 71 72 if (is16BitMode(STI) && BaseReg.getReg() == 0 && 73 Disp.isImm() && Disp.getImm() < 0x10000) 74 return true; 75 if ((BaseReg.getReg() != 0 && 76 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || 77 (IndexReg.getReg() != 0 && 78 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) 79 return true; 80 return false; 81 } 82 83 unsigned GetX86RegNum(const MCOperand &MO) const { 84 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; 85 } 86 87 unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const { 88 return Ctx.getRegisterInfo()->getEncodingValue( 89 MI.getOperand(OpNum).getReg()); 90 } 91 92 // Does this register require a bit to be set in REX prefix. 93 bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const { 94 return (getX86RegEncoding(MI, OpNum) >> 3) & 1; 95 } 96 97 void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const { 98 OS << (char)C; 99 ++CurByte; 100 } 101 102 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, 103 raw_ostream &OS) const { 104 // Output the constant in little endian byte order. 105 for (unsigned i = 0; i != Size; ++i) { 106 EmitByte(Val & 255, CurByte, OS); 107 Val >>= 8; 108 } 109 } 110 111 void EmitImmediate(const MCOperand &Disp, SMLoc Loc, 112 unsigned ImmSize, MCFixupKind FixupKind, 113 unsigned &CurByte, raw_ostream &OS, 114 SmallVectorImpl<MCFixup> &Fixups, 115 int ImmOffset = 0) const; 116 117 static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { 118 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); 119 return RM | (RegOpcode << 3) | (Mod << 6); 120 } 121 122 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, 123 unsigned &CurByte, raw_ostream &OS) const { 124 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); 125 } 126 127 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, 128 unsigned &CurByte, raw_ostream &OS) const { 129 // SIB byte is in the same format as the ModRMByte. 130 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); 131 } 132 133 void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, 134 uint64_t TSFlags, bool Rex, unsigned &CurByte, 135 raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, 136 const MCSubtargetInfo &STI) const; 137 138 void encodeInstruction(const MCInst &MI, raw_ostream &OS, 139 SmallVectorImpl<MCFixup> &Fixups, 140 const MCSubtargetInfo &STI) const override; 141 142 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, 143 const MCInst &MI, const MCInstrDesc &Desc, 144 raw_ostream &OS) const; 145 146 void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand, 147 const MCInst &MI, raw_ostream &OS) const; 148 149 bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, 150 const MCInst &MI, const MCInstrDesc &Desc, 151 const MCSubtargetInfo &STI, raw_ostream &OS) const; 152 153 uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, 154 int MemOperand, const MCInstrDesc &Desc) const; 155 156 bool isPCRel32Branch(const MCInst &MI) const; 157 }; 158 159 } // end anonymous namespace 160 161 /// isDisp8 - Return true if this signed displacement fits in a 8-bit 162 /// sign-extended field. 163 static bool isDisp8(int Value) { 164 return Value == (int8_t)Value; 165 } 166 167 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit 168 /// compressed dispacement field. 169 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) { 170 assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) && 171 "Compressed 8-bit displacement is only valid for EVEX inst."); 172 173 unsigned CD8_Scale = 174 (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; 175 if (CD8_Scale == 0) { 176 CValue = Value; 177 return isDisp8(Value); 178 } 179 180 unsigned Mask = CD8_Scale - 1; 181 assert((CD8_Scale & Mask) == 0 && "Invalid memory object size."); 182 if (Value & Mask) // Unaligned offset 183 return false; 184 Value /= (int)CD8_Scale; 185 bool Ret = (Value == (int8_t)Value); 186 187 if (Ret) 188 CValue = Value; 189 return Ret; 190 } 191 192 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate 193 /// in an instruction with the specified TSFlags. 194 static MCFixupKind getImmFixupKind(uint64_t TSFlags) { 195 unsigned Size = X86II::getSizeOfImm(TSFlags); 196 bool isPCRel = X86II::isImmPCRel(TSFlags); 197 198 if (X86II::isImmSigned(TSFlags)) { 199 switch (Size) { 200 default: llvm_unreachable("Unsupported signed fixup size!"); 201 case 4: return MCFixupKind(X86::reloc_signed_4byte); 202 } 203 } 204 return MCFixup::getKindForSize(Size, isPCRel); 205 } 206 207 /// Is32BitMemOperand - Return true if the specified instruction has 208 /// a 32-bit memory operand. Op specifies the operand # of the memoperand. 209 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) { 210 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); 211 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); 212 213 if ((BaseReg.getReg() != 0 && 214 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || 215 (IndexReg.getReg() != 0 && 216 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) 217 return true; 218 if (BaseReg.getReg() == X86::EIP) { 219 assert(IndexReg.getReg() == 0 && "Invalid eip-based address."); 220 return true; 221 } 222 if (IndexReg.getReg() == X86::EIZ) 223 return true; 224 return false; 225 } 226 227 /// Is64BitMemOperand - Return true if the specified instruction has 228 /// a 64-bit memory operand. Op specifies the operand # of the memoperand. 229 #ifndef NDEBUG 230 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) { 231 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); 232 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); 233 234 if ((BaseReg.getReg() != 0 && 235 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || 236 (IndexReg.getReg() != 0 && 237 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) 238 return true; 239 return false; 240 } 241 #endif 242 243 /// StartsWithGlobalOffsetTable - Check if this expression starts with 244 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form 245 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF 246 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that 247 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start 248 /// of a binary expression. 249 enum GlobalOffsetTableExprKind { 250 GOT_None, 251 GOT_Normal, 252 GOT_SymDiff 253 }; 254 static GlobalOffsetTableExprKind 255 StartsWithGlobalOffsetTable(const MCExpr *Expr) { 256 const MCExpr *RHS = nullptr; 257 if (Expr->getKind() == MCExpr::Binary) { 258 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); 259 Expr = BE->getLHS(); 260 RHS = BE->getRHS(); 261 } 262 263 if (Expr->getKind() != MCExpr::SymbolRef) 264 return GOT_None; 265 266 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); 267 const MCSymbol &S = Ref->getSymbol(); 268 if (S.getName() != "_GLOBAL_OFFSET_TABLE_") 269 return GOT_None; 270 if (RHS && RHS->getKind() == MCExpr::SymbolRef) 271 return GOT_SymDiff; 272 return GOT_Normal; 273 } 274 275 static bool HasSecRelSymbolRef(const MCExpr *Expr) { 276 if (Expr->getKind() == MCExpr::SymbolRef) { 277 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); 278 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; 279 } 280 return false; 281 } 282 283 bool X86MCCodeEmitter::isPCRel32Branch(const MCInst &MI) const { 284 unsigned Opcode = MI.getOpcode(); 285 const MCInstrDesc &Desc = MCII.get(Opcode); 286 if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) || 287 getImmFixupKind(Desc.TSFlags) != FK_PCRel_4) 288 return false; 289 290 unsigned CurOp = X86II::getOperandBias(Desc); 291 const MCOperand &Op = MI.getOperand(CurOp); 292 if (!Op.isExpr()) 293 return false; 294 295 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr()); 296 return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None; 297 } 298 299 void X86MCCodeEmitter:: 300 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size, 301 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS, 302 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { 303 const MCExpr *Expr = nullptr; 304 if (DispOp.isImm()) { 305 // If this is a simple integer displacement that doesn't require a 306 // relocation, emit it now. 307 if (FixupKind != FK_PCRel_1 && 308 FixupKind != FK_PCRel_2 && 309 FixupKind != FK_PCRel_4) { 310 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); 311 return; 312 } 313 Expr = MCConstantExpr::create(DispOp.getImm(), Ctx); 314 } else { 315 Expr = DispOp.getExpr(); 316 } 317 318 // If we have an immoffset, add it to the expression. 319 if ((FixupKind == FK_Data_4 || 320 FixupKind == FK_Data_8 || 321 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { 322 GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr); 323 if (Kind != GOT_None) { 324 assert(ImmOffset == 0); 325 326 if (Size == 8) { 327 FixupKind = MCFixupKind(X86::reloc_global_offset_table8); 328 } else { 329 assert(Size == 4); 330 FixupKind = MCFixupKind(X86::reloc_global_offset_table); 331 } 332 333 if (Kind == GOT_Normal) 334 ImmOffset = CurByte; 335 } else if (Expr->getKind() == MCExpr::SymbolRef) { 336 if (HasSecRelSymbolRef(Expr)) { 337 FixupKind = MCFixupKind(FK_SecRel_4); 338 } 339 } else if (Expr->getKind() == MCExpr::Binary) { 340 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr); 341 if (HasSecRelSymbolRef(Bin->getLHS()) 342 || HasSecRelSymbolRef(Bin->getRHS())) { 343 FixupKind = MCFixupKind(FK_SecRel_4); 344 } 345 } 346 } 347 348 // If the fixup is pc-relative, we need to bias the value to be relative to 349 // the start of the field, not the end of the field. 350 if (FixupKind == FK_PCRel_4 || 351 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || 352 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || 353 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || 354 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || 355 FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) { 356 ImmOffset -= 4; 357 // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: 358 // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 359 // this needs to be a GOTPC32 relocation. 360 if (StartsWithGlobalOffsetTable(Expr) != GOT_None) 361 FixupKind = MCFixupKind(X86::reloc_global_offset_table); 362 } 363 if (FixupKind == FK_PCRel_2) 364 ImmOffset -= 2; 365 if (FixupKind == FK_PCRel_1) 366 ImmOffset -= 1; 367 368 if (ImmOffset) 369 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx), 370 Ctx); 371 372 // Emit a symbolic constant as a fixup and 4 zeros. 373 Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc)); 374 EmitConstant(0, Size, CurByte, OS); 375 } 376 377 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op, 378 unsigned RegOpcodeField, 379 uint64_t TSFlags, bool Rex, 380 unsigned &CurByte, raw_ostream &OS, 381 SmallVectorImpl<MCFixup> &Fixups, 382 const MCSubtargetInfo &STI) const { 383 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); 384 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg); 385 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt); 386 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); 387 unsigned BaseReg = Base.getReg(); 388 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; 389 390 // Handle %rip relative addressing. 391 if (BaseReg == X86::RIP || 392 BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode 393 assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode"); 394 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); 395 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); 396 397 unsigned Opcode = MI.getOpcode(); 398 // movq loads are handled with a special relocation form which allows the 399 // linker to eliminate some loads for GOT references which end up in the 400 // same linkage unit. 401 unsigned FixupKind = [=]() { 402 switch (Opcode) { 403 default: 404 return X86::reloc_riprel_4byte; 405 case X86::MOV64rm: 406 assert(Rex); 407 return X86::reloc_riprel_4byte_movq_load; 408 case X86::CALL64m: 409 case X86::JMP64m: 410 case X86::TAILJMPm64: 411 case X86::TEST64mr: 412 case X86::ADC64rm: 413 case X86::ADD64rm: 414 case X86::AND64rm: 415 case X86::CMP64rm: 416 case X86::OR64rm: 417 case X86::SBB64rm: 418 case X86::SUB64rm: 419 case X86::XOR64rm: 420 return Rex ? X86::reloc_riprel_4byte_relax_rex 421 : X86::reloc_riprel_4byte_relax; 422 } 423 }(); 424 425 // rip-relative addressing is actually relative to the *next* instruction. 426 // Since an immediate can follow the mod/rm byte for an instruction, this 427 // means that we need to bias the displacement field of the instruction with 428 // the size of the immediate field. If we have this case, add it into the 429 // expression to emit. 430 // Note: rip-relative addressing using immediate displacement values should 431 // not be adjusted, assuming it was the user's intent. 432 int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) 433 ? X86II::getSizeOfImm(TSFlags) 434 : 0; 435 436 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), 437 CurByte, OS, Fixups, -ImmSize); 438 return; 439 } 440 441 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; 442 443 // 16-bit addressing forms of the ModR/M byte have a different encoding for 444 // the R/M field and are far more limited in which registers can be used. 445 if (Is16BitMemOperand(MI, Op, STI)) { 446 if (BaseReg) { 447 // For 32-bit addressing, the row and column values in Table 2-2 are 448 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with 449 // some special cases. And GetX86RegNum reflects that numbering. 450 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, 451 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only 452 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, 453 // while values 0-3 indicate the allowed combinations (base+index) of 454 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. 455 // 456 // R16Table[] is a lookup from the normal RegNo, to the row values from 457 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. 458 static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 }; 459 unsigned RMfield = R16Table[BaseRegNo]; 460 461 assert(RMfield && "invalid 16-bit base register"); 462 463 if (IndexReg.getReg()) { 464 unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)]; 465 466 assert(IndexReg16 && "invalid 16-bit index register"); 467 // We must have one of SI/DI (4,5), and one of BP/BX (6,7). 468 assert(((IndexReg16 ^ RMfield) & 2) && 469 "invalid 16-bit base/index register combination"); 470 assert(Scale.getImm() == 1 && 471 "invalid scale for 16-bit memory reference"); 472 473 // Allow base/index to appear in either order (although GAS doesn't). 474 if (IndexReg16 & 2) 475 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); 476 else 477 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); 478 } 479 480 if (Disp.isImm() && isDisp8(Disp.getImm())) { 481 if (Disp.getImm() == 0 && RMfield != 6) { 482 // There is no displacement; just the register. 483 EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS); 484 return; 485 } 486 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. 487 EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS); 488 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); 489 return; 490 } 491 // This is the [REG]+disp16 case. 492 EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS); 493 } else { 494 // There is no BaseReg; this is the plain [disp16] case. 495 EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS); 496 } 497 498 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. 499 EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups); 500 return; 501 } 502 503 // Determine whether a SIB byte is needed. 504 // If no BaseReg, issue a RIP relative instruction only if the MCE can 505 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table 506 // 2-7) and absolute references. 507 508 if (// The SIB byte must be used if there is an index register. 509 IndexReg.getReg() == 0 && 510 // The SIB byte must be used if the base is ESP/RSP/R12, all of which 511 // encode to an R/M value of 4, which indicates that a SIB byte is 512 // present. 513 BaseRegNo != N86::ESP && 514 // If there is no base register and we're in 64-bit mode, we need a SIB 515 // byte to emit an addr that is just 'disp32' (the non-RIP relative form). 516 (!is64BitMode(STI) || BaseReg != 0)) { 517 518 if (BaseReg == 0) { // [disp32] in X86-32 mode 519 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); 520 EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups); 521 return; 522 } 523 524 // If the base is not EBP/ESP and there is no displacement, use simple 525 // indirect register encoding, this handles addresses like [EAX]. The 526 // encoding for [EBP] with no displacement means [disp32] so we handle it 527 // by emitting a displacement of 0 below. 528 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { 529 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); 530 return; 531 } 532 533 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. 534 if (Disp.isImm()) { 535 if (!HasEVEX && isDisp8(Disp.getImm())) { 536 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); 537 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); 538 return; 539 } 540 // Try EVEX compressed 8-bit displacement first; if failed, fall back to 541 // 32-bit displacement. 542 int CDisp8 = 0; 543 if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { 544 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); 545 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, 546 CDisp8 - Disp.getImm()); 547 return; 548 } 549 } 550 551 // Otherwise, emit the most general non-SIB encoding: [REG+disp32] 552 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); 553 unsigned Opcode = MI.getOpcode(); 554 unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax 555 : X86::reloc_signed_4byte; 556 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS, 557 Fixups); 558 return; 559 } 560 561 // We need a SIB byte, so start by outputting the ModR/M byte first 562 assert(IndexReg.getReg() != X86::ESP && 563 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); 564 565 bool ForceDisp32 = false; 566 bool ForceDisp8 = false; 567 int CDisp8 = 0; 568 int ImmOffset = 0; 569 if (BaseReg == 0) { 570 // If there is no base register, we emit the special case SIB byte with 571 // MOD=0, BASE=5, to JUST get the index, scale, and displacement. 572 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); 573 ForceDisp32 = true; 574 } else if (!Disp.isImm()) { 575 // Emit the normal disp32 encoding. 576 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); 577 ForceDisp32 = true; 578 } else if (Disp.getImm() == 0 && 579 // Base reg can't be anything that ends up with '5' as the base 580 // reg, it is the magic [*] nomenclature that indicates no base. 581 BaseRegNo != N86::EBP) { 582 // Emit no displacement ModR/M byte 583 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); 584 } else if (!HasEVEX && isDisp8(Disp.getImm())) { 585 // Emit the disp8 encoding. 586 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); 587 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP 588 } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { 589 // Emit the disp8 encoding. 590 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); 591 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP 592 ImmOffset = CDisp8 - Disp.getImm(); 593 } else { 594 // Emit the normal disp32 encoding. 595 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); 596 } 597 598 // Calculate what the SS field value should be... 599 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; 600 unsigned SS = SSTable[Scale.getImm()]; 601 602 if (BaseReg == 0) { 603 // Handle the SIB byte for the case where there is no base, see Intel 604 // Manual 2A, table 2-7. The displacement has already been output. 605 unsigned IndexRegNo; 606 if (IndexReg.getReg()) 607 IndexRegNo = GetX86RegNum(IndexReg); 608 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) 609 IndexRegNo = 4; 610 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); 611 } else { 612 unsigned IndexRegNo; 613 if (IndexReg.getReg()) 614 IndexRegNo = GetX86RegNum(IndexReg); 615 else 616 IndexRegNo = 4; // For example [ESP+1*<noreg>+4] 617 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); 618 } 619 620 // Do we need to output a displacement? 621 if (ForceDisp8) 622 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset); 623 else if (ForceDisp32 || Disp.getImm() != 0) 624 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), 625 CurByte, OS, Fixups); 626 } 627 628 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix 629 /// called VEX. 630 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, 631 int MemOperand, const MCInst &MI, 632 const MCInstrDesc &Desc, 633 raw_ostream &OS) const { 634 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX."); 635 636 uint64_t Encoding = TSFlags & X86II::EncodingMask; 637 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 638 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 639 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; 640 641 // VEX_R: opcode externsion equivalent to REX.R in 642 // 1's complement (inverted) form 643 // 644 // 1: Same as REX_R=0 (must be 1 in 32-bit mode) 645 // 0: Same as REX_R=1 (64 bit mode only) 646 // 647 uint8_t VEX_R = 0x1; 648 uint8_t EVEX_R2 = 0x1; 649 650 // VEX_X: equivalent to REX.X, only used when a 651 // register is used for index in SIB Byte. 652 // 653 // 1: Same as REX.X=0 (must be 1 in 32-bit mode) 654 // 0: Same as REX.X=1 (64-bit mode only) 655 uint8_t VEX_X = 0x1; 656 657 // VEX_B: 658 // 659 // 1: Same as REX_B=0 (ignored in 32-bit mode) 660 // 0: Same as REX_B=1 (64 bit mode only) 661 // 662 uint8_t VEX_B = 0x1; 663 664 // VEX_W: opcode specific (use like REX.W, or used for 665 // opcode extension, or ignored, depending on the opcode byte) 666 uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0; 667 668 // VEX_5M (VEX m-mmmmm field): 669 // 670 // 0b00000: Reserved for future use 671 // 0b00001: implied 0F leading opcode 672 // 0b00010: implied 0F 38 leading opcode bytes 673 // 0b00011: implied 0F 3A leading opcode bytes 674 // 0b00100-0b11111: Reserved for future use 675 // 0b01000: XOP map select - 08h instructions with imm byte 676 // 0b01001: XOP map select - 09h instructions with no imm byte 677 // 0b01010: XOP map select - 0Ah instructions with imm dword 678 uint8_t VEX_5M; 679 switch (TSFlags & X86II::OpMapMask) { 680 default: llvm_unreachable("Invalid prefix!"); 681 case X86II::TB: VEX_5M = 0x1; break; // 0F 682 case X86II::T8: VEX_5M = 0x2; break; // 0F 38 683 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A 684 case X86II::XOP8: VEX_5M = 0x8; break; 685 case X86II::XOP9: VEX_5M = 0x9; break; 686 case X86II::XOPA: VEX_5M = 0xA; break; 687 } 688 689 // VEX_4V (VEX vvvv field): a register specifier 690 // (in 1's complement form) or 1111 if unused. 691 uint8_t VEX_4V = 0xf; 692 uint8_t EVEX_V2 = 0x1; 693 694 // EVEX_L2/VEX_L (Vector Length): 695 // 696 // L2 L 697 // 0 0: scalar or 128-bit vector 698 // 0 1: 256-bit vector 699 // 1 0: 512-bit vector 700 // 701 uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0; 702 uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0; 703 704 // VEX_PP: opcode extension providing equivalent 705 // functionality of a SIMD prefix 706 // 707 // 0b00: None 708 // 0b01: 66 709 // 0b10: F3 710 // 0b11: F2 711 // 712 uint8_t VEX_PP = 0; 713 switch (TSFlags & X86II::OpPrefixMask) { 714 case X86II::PD: VEX_PP = 0x1; break; // 66 715 case X86II::XS: VEX_PP = 0x2; break; // F3 716 case X86II::XD: VEX_PP = 0x3; break; // F2 717 } 718 719 // EVEX_U 720 uint8_t EVEX_U = 1; // Always '1' so far 721 722 // EVEX_z 723 uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0; 724 725 // EVEX_b 726 uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0; 727 728 // EVEX_rc 729 uint8_t EVEX_rc = 0; 730 731 // EVEX_aaa 732 uint8_t EVEX_aaa = 0; 733 734 bool EncodeRC = false; 735 736 // Classify VEX_B, VEX_4V, VEX_R, VEX_X 737 unsigned NumOps = Desc.getNumOperands(); 738 unsigned CurOp = X86II::getOperandBias(Desc); 739 740 switch (TSFlags & X86II::FormMask) { 741 default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!"); 742 case X86II::RawFrm: 743 break; 744 case X86II::MRMDestMem: { 745 // MRMDestMem instructions forms: 746 // MemAddr, src1(ModR/M) 747 // MemAddr, src1(VEX_4V), src2(ModR/M) 748 // MemAddr, src1(ModR/M), imm8 749 // 750 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 751 VEX_B = ~(BaseRegEnc >> 3) & 1; 752 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg); 753 VEX_X = ~(IndexRegEnc >> 3) & 1; 754 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. 755 EVEX_V2 = ~(IndexRegEnc >> 4) & 1; 756 757 CurOp += X86::AddrNumOperands; 758 759 if (HasEVEX_K) 760 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 761 762 if (HasVEX_4V) { 763 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 764 VEX_4V = ~VRegEnc & 0xf; 765 EVEX_V2 = ~(VRegEnc >> 4) & 1; 766 } 767 768 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 769 VEX_R = ~(RegEnc >> 3) & 1; 770 EVEX_R2 = ~(RegEnc >> 4) & 1; 771 break; 772 } 773 case X86II::MRMSrcMem: { 774 // MRMSrcMem instructions forms: 775 // src1(ModR/M), MemAddr 776 // src1(ModR/M), src2(VEX_4V), MemAddr 777 // src1(ModR/M), MemAddr, imm8 778 // src1(ModR/M), MemAddr, src2(Imm[7:4]) 779 // 780 // FMA4: 781 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) 782 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 783 VEX_R = ~(RegEnc >> 3) & 1; 784 EVEX_R2 = ~(RegEnc >> 4) & 1; 785 786 if (HasEVEX_K) 787 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 788 789 if (HasVEX_4V) { 790 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 791 VEX_4V = ~VRegEnc & 0xf; 792 EVEX_V2 = ~(VRegEnc >> 4) & 1; 793 } 794 795 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 796 VEX_B = ~(BaseRegEnc >> 3) & 1; 797 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg); 798 VEX_X = ~(IndexRegEnc >> 3) & 1; 799 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. 800 EVEX_V2 = ~(IndexRegEnc >> 4) & 1; 801 802 break; 803 } 804 case X86II::MRMSrcMem4VOp3: { 805 // Instruction format for 4VOp3: 806 // src1(ModR/M), MemAddr, src3(VEX_4V) 807 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 808 VEX_R = ~(RegEnc >> 3) & 1; 809 810 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 811 VEX_B = ~(BaseRegEnc >> 3) & 1; 812 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg); 813 VEX_X = ~(IndexRegEnc >> 3) & 1; 814 815 VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf; 816 break; 817 } 818 case X86II::MRMSrcMemOp4: { 819 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 820 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 821 VEX_R = ~(RegEnc >> 3) & 1; 822 823 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 824 VEX_4V = ~VRegEnc & 0xf; 825 826 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 827 VEX_B = ~(BaseRegEnc >> 3) & 1; 828 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg); 829 VEX_X = ~(IndexRegEnc >> 3) & 1; 830 break; 831 } 832 case X86II::MRM0m: case X86II::MRM1m: 833 case X86II::MRM2m: case X86II::MRM3m: 834 case X86II::MRM4m: case X86II::MRM5m: 835 case X86II::MRM6m: case X86II::MRM7m: { 836 // MRM[0-9]m instructions forms: 837 // MemAddr 838 // src1(VEX_4V), MemAddr 839 if (HasVEX_4V) { 840 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 841 VEX_4V = ~VRegEnc & 0xf; 842 EVEX_V2 = ~(VRegEnc >> 4) & 1; 843 } 844 845 if (HasEVEX_K) 846 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 847 848 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 849 VEX_B = ~(BaseRegEnc >> 3) & 1; 850 unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg); 851 VEX_X = ~(IndexRegEnc >> 3) & 1; 852 break; 853 } 854 case X86II::MRMSrcReg: { 855 // MRMSrcReg instructions forms: 856 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) 857 // dst(ModR/M), src1(ModR/M) 858 // dst(ModR/M), src1(ModR/M), imm8 859 // 860 // FMA4: 861 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 862 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 863 VEX_R = ~(RegEnc >> 3) & 1; 864 EVEX_R2 = ~(RegEnc >> 4) & 1; 865 866 if (HasEVEX_K) 867 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 868 869 if (HasVEX_4V) { 870 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 871 VEX_4V = ~VRegEnc & 0xf; 872 EVEX_V2 = ~(VRegEnc >> 4) & 1; 873 } 874 875 RegEnc = getX86RegEncoding(MI, CurOp++); 876 VEX_B = ~(RegEnc >> 3) & 1; 877 VEX_X = ~(RegEnc >> 4) & 1; 878 879 if (EVEX_b) { 880 if (HasEVEX_RC) { 881 unsigned RcOperand = NumOps-1; 882 assert(RcOperand >= CurOp); 883 EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3; 884 } 885 EncodeRC = true; 886 } 887 break; 888 } 889 case X86II::MRMSrcReg4VOp3: { 890 // Instruction format for 4VOp3: 891 // src1(ModR/M), src2(ModR/M), src3(VEX_4V) 892 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 893 VEX_R = ~(RegEnc >> 3) & 1; 894 895 RegEnc = getX86RegEncoding(MI, CurOp++); 896 VEX_B = ~(RegEnc >> 3) & 1; 897 898 VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf; 899 break; 900 } 901 case X86II::MRMSrcRegOp4: { 902 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 903 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 904 VEX_R = ~(RegEnc >> 3) & 1; 905 906 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 907 VEX_4V = ~VRegEnc & 0xf; 908 909 // Skip second register source (encoded in Imm[7:4]) 910 ++CurOp; 911 912 RegEnc = getX86RegEncoding(MI, CurOp++); 913 VEX_B = ~(RegEnc >> 3) & 1; 914 VEX_X = ~(RegEnc >> 4) & 1; 915 break; 916 } 917 case X86II::MRMDestReg: { 918 // MRMDestReg instructions forms: 919 // dst(ModR/M), src(ModR/M) 920 // dst(ModR/M), src(ModR/M), imm8 921 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) 922 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 923 VEX_B = ~(RegEnc >> 3) & 1; 924 VEX_X = ~(RegEnc >> 4) & 1; 925 926 if (HasEVEX_K) 927 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 928 929 if (HasVEX_4V) { 930 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 931 VEX_4V = ~VRegEnc & 0xf; 932 EVEX_V2 = ~(VRegEnc >> 4) & 1; 933 } 934 935 RegEnc = getX86RegEncoding(MI, CurOp++); 936 VEX_R = ~(RegEnc >> 3) & 1; 937 EVEX_R2 = ~(RegEnc >> 4) & 1; 938 if (EVEX_b) 939 EncodeRC = true; 940 break; 941 } 942 case X86II::MRM0r: case X86II::MRM1r: 943 case X86II::MRM2r: case X86II::MRM3r: 944 case X86II::MRM4r: case X86II::MRM5r: 945 case X86II::MRM6r: case X86II::MRM7r: { 946 // MRM0r-MRM7r instructions forms: 947 // dst(VEX_4V), src(ModR/M), imm8 948 if (HasVEX_4V) { 949 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 950 VEX_4V = ~VRegEnc & 0xf; 951 EVEX_V2 = ~(VRegEnc >> 4) & 1; 952 } 953 if (HasEVEX_K) 954 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 955 956 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 957 VEX_B = ~(RegEnc >> 3) & 1; 958 VEX_X = ~(RegEnc >> 4) & 1; 959 break; 960 } 961 } 962 963 if (Encoding == X86II::VEX || Encoding == X86II::XOP) { 964 // VEX opcode prefix can have 2 or 3 bytes 965 // 966 // 3 bytes: 967 // +-----+ +--------------+ +-------------------+ 968 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | 969 // +-----+ +--------------+ +-------------------+ 970 // 2 bytes: 971 // +-----+ +-------------------+ 972 // | C5h | | R | vvvv | L | pp | 973 // +-----+ +-------------------+ 974 // 975 // XOP uses a similar prefix: 976 // +-----+ +--------------+ +-------------------+ 977 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | 978 // +-----+ +--------------+ +-------------------+ 979 uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); 980 981 // Can we use the 2 byte VEX prefix? 982 if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { 983 EmitByte(0xC5, CurByte, OS); 984 EmitByte(LastByte | (VEX_R << 7), CurByte, OS); 985 return; 986 } 987 988 // 3 byte VEX prefix 989 EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS); 990 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); 991 EmitByte(LastByte | (VEX_W << 7), CurByte, OS); 992 } else { 993 assert(Encoding == X86II::EVEX && "unknown encoding!"); 994 // EVEX opcode prefix can have 4 bytes 995 // 996 // +-----+ +--------------+ +-------------------+ +------------------------+ 997 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | 998 // +-----+ +--------------+ +-------------------+ +------------------------+ 999 assert((VEX_5M & 0x3) == VEX_5M 1000 && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!"); 1001 1002 EmitByte(0x62, CurByte, OS); 1003 EmitByte((VEX_R << 7) | 1004 (VEX_X << 6) | 1005 (VEX_B << 5) | 1006 (EVEX_R2 << 4) | 1007 VEX_5M, CurByte, OS); 1008 EmitByte((VEX_W << 7) | 1009 (VEX_4V << 3) | 1010 (EVEX_U << 2) | 1011 VEX_PP, CurByte, OS); 1012 if (EncodeRC) 1013 EmitByte((EVEX_z << 7) | 1014 (EVEX_rc << 5) | 1015 (EVEX_b << 4) | 1016 (EVEX_V2 << 3) | 1017 EVEX_aaa, CurByte, OS); 1018 else 1019 EmitByte((EVEX_z << 7) | 1020 (EVEX_L2 << 6) | 1021 (VEX_L << 5) | 1022 (EVEX_b << 4) | 1023 (EVEX_V2 << 3) | 1024 EVEX_aaa, CurByte, OS); 1025 } 1026 } 1027 1028 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 1029 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand 1030 /// size, and 3) use of X86-64 extended registers. 1031 uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, 1032 int MemOperand, 1033 const MCInstrDesc &Desc) const { 1034 uint8_t REX = 0; 1035 bool UsesHighByteReg = false; 1036 1037 if (TSFlags & X86II::REX_W) 1038 REX |= 1 << 3; // set REX.W 1039 1040 if (MI.getNumOperands() == 0) return REX; 1041 1042 unsigned NumOps = MI.getNumOperands(); 1043 unsigned CurOp = X86II::getOperandBias(Desc); 1044 1045 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. 1046 for (unsigned i = CurOp; i != NumOps; ++i) { 1047 const MCOperand &MO = MI.getOperand(i); 1048 if (!MO.isReg()) continue; 1049 unsigned Reg = MO.getReg(); 1050 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) 1051 UsesHighByteReg = true; 1052 if (X86II::isX86_64NonExtLowByteReg(Reg)) 1053 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything 1054 // that returns non-zero. 1055 REX |= 0x40; // REX fixed encoding prefix 1056 } 1057 1058 switch (TSFlags & X86II::FormMask) { 1059 case X86II::AddRegFrm: 1060 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1061 break; 1062 case X86II::MRMSrcReg: 1063 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1064 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1065 break; 1066 case X86II::MRMSrcMem: { 1067 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1068 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B 1069 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X 1070 CurOp += X86::AddrNumOperands; 1071 break; 1072 } 1073 case X86II::MRMDestReg: 1074 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1075 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1076 break; 1077 case X86II::MRMDestMem: 1078 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B 1079 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X 1080 CurOp += X86::AddrNumOperands; 1081 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1082 break; 1083 case X86II::MRMXm: 1084 case X86II::MRM0m: case X86II::MRM1m: 1085 case X86II::MRM2m: case X86II::MRM3m: 1086 case X86II::MRM4m: case X86II::MRM5m: 1087 case X86II::MRM6m: case X86II::MRM7m: 1088 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B 1089 REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X 1090 break; 1091 case X86II::MRMXr: 1092 case X86II::MRM0r: case X86II::MRM1r: 1093 case X86II::MRM2r: case X86II::MRM3r: 1094 case X86II::MRM4r: case X86II::MRM5r: 1095 case X86II::MRM6r: case X86II::MRM7r: 1096 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1097 break; 1098 } 1099 if (REX && UsesHighByteReg) 1100 report_fatal_error("Cannot encode high byte register in REX-prefixed instruction"); 1101 1102 return REX; 1103 } 1104 1105 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed 1106 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte, 1107 unsigned SegOperand, 1108 const MCInst &MI, 1109 raw_ostream &OS) const { 1110 // Check for explicit segment override on memory operand. 1111 switch (MI.getOperand(SegOperand).getReg()) { 1112 default: llvm_unreachable("Unknown segment register!"); 1113 case 0: break; 1114 case X86::CS: EmitByte(0x2E, CurByte, OS); break; 1115 case X86::SS: EmitByte(0x36, CurByte, OS); break; 1116 case X86::DS: EmitByte(0x3E, CurByte, OS); break; 1117 case X86::ES: EmitByte(0x26, CurByte, OS); break; 1118 case X86::FS: EmitByte(0x64, CurByte, OS); break; 1119 case X86::GS: EmitByte(0x65, CurByte, OS); break; 1120 } 1121 } 1122 1123 /// Emit all instruction prefixes prior to the opcode. 1124 /// 1125 /// MemOperand is the operand # of the start of a memory operand if present. If 1126 /// Not present, it is -1. 1127 /// 1128 /// Returns true if a REX prefix was used. 1129 bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, 1130 int MemOperand, const MCInst &MI, 1131 const MCInstrDesc &Desc, 1132 const MCSubtargetInfo &STI, 1133 raw_ostream &OS) const { 1134 bool Ret = false; 1135 // Emit the operand size opcode prefix as needed. 1136 if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32 1137 : X86II::OpSize16)) 1138 EmitByte(0x66, CurByte, OS); 1139 1140 // Emit the LOCK opcode prefix. 1141 if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) 1142 EmitByte(0xF0, CurByte, OS); 1143 1144 // Emit the NOTRACK opcode prefix. 1145 if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) 1146 EmitByte(0x3E, CurByte, OS); 1147 1148 switch (TSFlags & X86II::OpPrefixMask) { 1149 case X86II::PD: // 66 1150 EmitByte(0x66, CurByte, OS); 1151 break; 1152 case X86II::XS: // F3 1153 EmitByte(0xF3, CurByte, OS); 1154 break; 1155 case X86II::XD: // F2 1156 EmitByte(0xF2, CurByte, OS); 1157 break; 1158 } 1159 1160 // Handle REX prefix. 1161 // FIXME: Can this come before F2 etc to simplify emission? 1162 if (is64BitMode(STI)) { 1163 if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) { 1164 EmitByte(0x40 | REX, CurByte, OS); 1165 Ret = true; 1166 } 1167 } else { 1168 assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode."); 1169 } 1170 1171 // 0x0F escape code must be emitted just before the opcode. 1172 switch (TSFlags & X86II::OpMapMask) { 1173 case X86II::TB: // Two-byte opcode map 1174 case X86II::T8: // 0F 38 1175 case X86II::TA: // 0F 3A 1176 case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. 1177 EmitByte(0x0F, CurByte, OS); 1178 break; 1179 } 1180 1181 switch (TSFlags & X86II::OpMapMask) { 1182 case X86II::T8: // 0F 38 1183 EmitByte(0x38, CurByte, OS); 1184 break; 1185 case X86II::TA: // 0F 3A 1186 EmitByte(0x3A, CurByte, OS); 1187 break; 1188 } 1189 return Ret; 1190 } 1191 1192 void X86MCCodeEmitter:: 1193 encodeInstruction(const MCInst &MI, raw_ostream &OS, 1194 SmallVectorImpl<MCFixup> &Fixups, 1195 const MCSubtargetInfo &STI) const { 1196 unsigned Opcode = MI.getOpcode(); 1197 const MCInstrDesc &Desc = MCII.get(Opcode); 1198 uint64_t TSFlags = Desc.TSFlags; 1199 unsigned Flags = MI.getFlags(); 1200 1201 // Pseudo instructions don't get encoded. 1202 if ((TSFlags & X86II::FormMask) == X86II::Pseudo) 1203 return; 1204 1205 unsigned NumOps = Desc.getNumOperands(); 1206 unsigned CurOp = X86II::getOperandBias(Desc); 1207 1208 // Keep track of the current byte being emitted. 1209 unsigned CurByte = 0; 1210 1211 // Encoding type for this instruction. 1212 uint64_t Encoding = TSFlags & X86II::EncodingMask; 1213 1214 // It uses the VEX.VVVV field? 1215 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 1216 bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; 1217 1218 // It uses the EVEX.aaa field? 1219 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 1220 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; 1221 1222 // Used if a register is encoded in 7:4 of immediate. 1223 unsigned I8RegNum = 0; 1224 1225 // Determine where the memory operand starts, if present. 1226 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); 1227 if (MemoryOperand != -1) MemoryOperand += CurOp; 1228 1229 // Emit segment override opcode prefix as needed. 1230 if (MemoryOperand >= 0) 1231 EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg, 1232 MI, OS); 1233 1234 // Emit the repeat opcode prefix as needed. 1235 if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) 1236 EmitByte(0xF3, CurByte, OS); 1237 if (Flags & X86::IP_HAS_REPEAT_NE) 1238 EmitByte(0xF2, CurByte, OS); 1239 1240 // Emit the address size opcode prefix as needed. 1241 bool need_address_override; 1242 uint64_t AdSize = TSFlags & X86II::AdSizeMask; 1243 if ((is16BitMode(STI) && AdSize == X86II::AdSize32) || 1244 (is32BitMode(STI) && AdSize == X86II::AdSize16) || 1245 (is64BitMode(STI) && AdSize == X86II::AdSize32)) { 1246 need_address_override = true; 1247 } else if (MemoryOperand < 0) { 1248 need_address_override = false; 1249 } else if (is64BitMode(STI)) { 1250 assert(!Is16BitMemOperand(MI, MemoryOperand, STI)); 1251 need_address_override = Is32BitMemOperand(MI, MemoryOperand); 1252 } else if (is32BitMode(STI)) { 1253 assert(!Is64BitMemOperand(MI, MemoryOperand)); 1254 need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI); 1255 } else { 1256 assert(is16BitMode(STI)); 1257 assert(!Is64BitMemOperand(MI, MemoryOperand)); 1258 need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI); 1259 } 1260 1261 if (need_address_override) 1262 EmitByte(0x67, CurByte, OS); 1263 1264 bool Rex = false; 1265 if (Encoding == 0) 1266 Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS); 1267 else 1268 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); 1269 1270 uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); 1271 1272 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) 1273 BaseOpcode = 0x0F; // Weird 3DNow! encoding. 1274 1275 uint64_t Form = TSFlags & X86II::FormMask; 1276 switch (Form) { 1277 default: errs() << "FORM: " << Form << "\n"; 1278 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); 1279 case X86II::Pseudo: 1280 llvm_unreachable("Pseudo instruction shouldn't be emitted"); 1281 case X86II::RawFrmDstSrc: { 1282 unsigned siReg = MI.getOperand(1).getReg(); 1283 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) || 1284 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) || 1285 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) && 1286 "SI and DI register sizes do not match"); 1287 // Emit segment override opcode prefix as needed (not for %ds). 1288 if (MI.getOperand(2).getReg() != X86::DS) 1289 EmitSegmentOverridePrefix(CurByte, 2, MI, OS); 1290 // Emit AdSize prefix as needed. 1291 if ((!is32BitMode(STI) && siReg == X86::ESI) || 1292 (is32BitMode(STI) && siReg == X86::SI)) 1293 EmitByte(0x67, CurByte, OS); 1294 CurOp += 3; // Consume operands. 1295 EmitByte(BaseOpcode, CurByte, OS); 1296 break; 1297 } 1298 case X86II::RawFrmSrc: { 1299 unsigned siReg = MI.getOperand(0).getReg(); 1300 // Emit segment override opcode prefix as needed (not for %ds). 1301 if (MI.getOperand(1).getReg() != X86::DS) 1302 EmitSegmentOverridePrefix(CurByte, 1, MI, OS); 1303 // Emit AdSize prefix as needed. 1304 if ((!is32BitMode(STI) && siReg == X86::ESI) || 1305 (is32BitMode(STI) && siReg == X86::SI)) 1306 EmitByte(0x67, CurByte, OS); 1307 CurOp += 2; // Consume operands. 1308 EmitByte(BaseOpcode, CurByte, OS); 1309 break; 1310 } 1311 case X86II::RawFrmDst: { 1312 unsigned siReg = MI.getOperand(0).getReg(); 1313 // Emit AdSize prefix as needed. 1314 if ((!is32BitMode(STI) && siReg == X86::EDI) || 1315 (is32BitMode(STI) && siReg == X86::DI)) 1316 EmitByte(0x67, CurByte, OS); 1317 ++CurOp; // Consume operand. 1318 EmitByte(BaseOpcode, CurByte, OS); 1319 break; 1320 } 1321 case X86II::RawFrm: { 1322 EmitByte(BaseOpcode, CurByte, OS); 1323 1324 if (!is64BitMode(STI) || !isPCRel32Branch(MI)) 1325 break; 1326 1327 const MCOperand &Op = MI.getOperand(CurOp++); 1328 EmitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags), 1329 MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS, 1330 Fixups); 1331 break; 1332 } 1333 case X86II::RawFrmMemOffs: 1334 // Emit segment override opcode prefix as needed. 1335 EmitSegmentOverridePrefix(CurByte, 1, MI, OS); 1336 EmitByte(BaseOpcode, CurByte, OS); 1337 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1338 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1339 CurByte, OS, Fixups); 1340 ++CurOp; // skip segment operand 1341 break; 1342 case X86II::RawFrmImm8: 1343 EmitByte(BaseOpcode, CurByte, OS); 1344 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1345 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1346 CurByte, OS, Fixups); 1347 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte, 1348 OS, Fixups); 1349 break; 1350 case X86II::RawFrmImm16: 1351 EmitByte(BaseOpcode, CurByte, OS); 1352 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1353 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1354 CurByte, OS, Fixups); 1355 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte, 1356 OS, Fixups); 1357 break; 1358 1359 case X86II::AddRegFrm: 1360 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); 1361 break; 1362 1363 case X86II::MRMDestReg: { 1364 EmitByte(BaseOpcode, CurByte, OS); 1365 unsigned SrcRegNum = CurOp + 1; 1366 1367 if (HasEVEX_K) // Skip writemask 1368 ++SrcRegNum; 1369 1370 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1371 ++SrcRegNum; 1372 1373 EmitRegModRMByte(MI.getOperand(CurOp), 1374 GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS); 1375 CurOp = SrcRegNum + 1; 1376 break; 1377 } 1378 case X86II::MRMDestMem: { 1379 EmitByte(BaseOpcode, CurByte, OS); 1380 unsigned SrcRegNum = CurOp + X86::AddrNumOperands; 1381 1382 if (HasEVEX_K) // Skip writemask 1383 ++SrcRegNum; 1384 1385 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1386 ++SrcRegNum; 1387 1388 emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags, 1389 Rex, CurByte, OS, Fixups, STI); 1390 CurOp = SrcRegNum + 1; 1391 break; 1392 } 1393 case X86II::MRMSrcReg: { 1394 EmitByte(BaseOpcode, CurByte, OS); 1395 unsigned SrcRegNum = CurOp + 1; 1396 1397 if (HasEVEX_K) // Skip writemask 1398 ++SrcRegNum; 1399 1400 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1401 ++SrcRegNum; 1402 1403 EmitRegModRMByte(MI.getOperand(SrcRegNum), 1404 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); 1405 CurOp = SrcRegNum + 1; 1406 if (HasVEX_I8Reg) 1407 I8RegNum = getX86RegEncoding(MI, CurOp++); 1408 // do not count the rounding control operand 1409 if (HasEVEX_RC) 1410 --NumOps; 1411 break; 1412 } 1413 case X86II::MRMSrcReg4VOp3: { 1414 EmitByte(BaseOpcode, CurByte, OS); 1415 unsigned SrcRegNum = CurOp + 1; 1416 1417 EmitRegModRMByte(MI.getOperand(SrcRegNum), 1418 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); 1419 CurOp = SrcRegNum + 1; 1420 ++CurOp; // Encoded in VEX.VVVV 1421 break; 1422 } 1423 case X86II::MRMSrcRegOp4: { 1424 EmitByte(BaseOpcode, CurByte, OS); 1425 unsigned SrcRegNum = CurOp + 1; 1426 1427 // Skip 1st src (which is encoded in VEX_VVVV) 1428 ++SrcRegNum; 1429 1430 // Capture 2nd src (which is encoded in Imm[7:4]) 1431 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); 1432 I8RegNum = getX86RegEncoding(MI, SrcRegNum++); 1433 1434 EmitRegModRMByte(MI.getOperand(SrcRegNum), 1435 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); 1436 CurOp = SrcRegNum + 1; 1437 break; 1438 } 1439 case X86II::MRMSrcMem: { 1440 unsigned FirstMemOp = CurOp+1; 1441 1442 if (HasEVEX_K) // Skip writemask 1443 ++FirstMemOp; 1444 1445 if (HasVEX_4V) 1446 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). 1447 1448 EmitByte(BaseOpcode, CurByte, OS); 1449 1450 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), 1451 TSFlags, Rex, CurByte, OS, Fixups, STI); 1452 CurOp = FirstMemOp + X86::AddrNumOperands; 1453 if (HasVEX_I8Reg) 1454 I8RegNum = getX86RegEncoding(MI, CurOp++); 1455 break; 1456 } 1457 case X86II::MRMSrcMem4VOp3: { 1458 unsigned FirstMemOp = CurOp+1; 1459 1460 EmitByte(BaseOpcode, CurByte, OS); 1461 1462 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), 1463 TSFlags, Rex, CurByte, OS, Fixups, STI); 1464 CurOp = FirstMemOp + X86::AddrNumOperands; 1465 ++CurOp; // Encoded in VEX.VVVV. 1466 break; 1467 } 1468 case X86II::MRMSrcMemOp4: { 1469 unsigned FirstMemOp = CurOp+1; 1470 1471 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). 1472 1473 // Capture second register source (encoded in Imm[7:4]) 1474 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); 1475 I8RegNum = getX86RegEncoding(MI, FirstMemOp++); 1476 1477 EmitByte(BaseOpcode, CurByte, OS); 1478 1479 emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), 1480 TSFlags, Rex, CurByte, OS, Fixups, STI); 1481 CurOp = FirstMemOp + X86::AddrNumOperands; 1482 break; 1483 } 1484 1485 case X86II::MRMXr: 1486 case X86II::MRM0r: case X86II::MRM1r: 1487 case X86II::MRM2r: case X86II::MRM3r: 1488 case X86II::MRM4r: case X86II::MRM5r: 1489 case X86II::MRM6r: case X86II::MRM7r: 1490 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). 1491 ++CurOp; 1492 if (HasEVEX_K) // Skip writemask 1493 ++CurOp; 1494 EmitByte(BaseOpcode, CurByte, OS); 1495 EmitRegModRMByte(MI.getOperand(CurOp++), 1496 (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r, 1497 CurByte, OS); 1498 break; 1499 1500 case X86II::MRMXm: 1501 case X86II::MRM0m: case X86II::MRM1m: 1502 case X86II::MRM2m: case X86II::MRM3m: 1503 case X86II::MRM4m: case X86II::MRM5m: 1504 case X86II::MRM6m: case X86II::MRM7m: 1505 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). 1506 ++CurOp; 1507 if (HasEVEX_K) // Skip writemask 1508 ++CurOp; 1509 EmitByte(BaseOpcode, CurByte, OS); 1510 emitMemModRMByte(MI, CurOp, 1511 (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, 1512 Rex, CurByte, OS, Fixups, STI); 1513 CurOp += X86::AddrNumOperands; 1514 break; 1515 1516 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: 1517 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: 1518 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: 1519 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: 1520 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: 1521 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: 1522 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: 1523 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: 1524 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: 1525 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: 1526 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: 1527 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: 1528 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: 1529 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: 1530 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: 1531 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: 1532 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: 1533 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: 1534 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: 1535 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: 1536 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: 1537 case X86II::MRM_FF: 1538 EmitByte(BaseOpcode, CurByte, OS); 1539 EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS); 1540 break; 1541 } 1542 1543 if (HasVEX_I8Reg) { 1544 // The last source register of a 4 operand instruction in AVX is encoded 1545 // in bits[7:4] of a immediate byte. 1546 assert(I8RegNum < 16 && "Register encoding out of range"); 1547 I8RegNum <<= 4; 1548 if (CurOp != NumOps) { 1549 unsigned Val = MI.getOperand(CurOp++).getImm(); 1550 assert(Val < 16 && "Immediate operand value out of range"); 1551 I8RegNum |= Val; 1552 } 1553 EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1, 1554 CurByte, OS, Fixups); 1555 } else { 1556 // If there is a remaining operand, it must be a trailing immediate. Emit it 1557 // according to the right size for the instruction. Some instructions 1558 // (SSE4a extrq and insertq) have two trailing immediates. 1559 while (CurOp != NumOps && NumOps - CurOp <= 2) { 1560 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1561 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1562 CurByte, OS, Fixups); 1563 } 1564 } 1565 1566 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) 1567 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); 1568 1569 #ifndef NDEBUG 1570 // FIXME: Verify. 1571 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { 1572 errs() << "Cannot encode all operands of: "; 1573 MI.dump(); 1574 errs() << '\n'; 1575 abort(); 1576 } 1577 #endif 1578 } 1579 1580 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, 1581 const MCRegisterInfo &MRI, 1582 MCContext &Ctx) { 1583 return new X86MCCodeEmitter(MCII, Ctx); 1584 } 1585