Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86MCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MCTargetDesc/X86BaseInfo.h"
     15 #include "MCTargetDesc/X86FixupKinds.h"
     16 #include "MCTargetDesc/X86MCTargetDesc.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/MC/MCCodeEmitter.h"
     19 #include "llvm/MC/MCContext.h"
     20 #include "llvm/MC/MCExpr.h"
     21 #include "llvm/MC/MCFixup.h"
     22 #include "llvm/MC/MCInst.h"
     23 #include "llvm/MC/MCInstrDesc.h"
     24 #include "llvm/MC/MCInstrInfo.h"
     25 #include "llvm/MC/MCRegisterInfo.h"
     26 #include "llvm/MC/MCSubtargetInfo.h"
     27 #include "llvm/MC/MCSymbol.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include <cassert>
     31 #include <cstdint>
     32 #include <cstdlib>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "mccodeemitter"
     37 
     38 namespace {
     39 
     40 class X86MCCodeEmitter : public MCCodeEmitter {
     41   const MCInstrInfo &MCII;
     42   MCContext &Ctx;
     43 
     44 public:
     45   X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
     46     : MCII(mcii), Ctx(ctx) {
     47   }
     48   X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
     49   X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
     50   ~X86MCCodeEmitter() override = default;
     51 
     52   bool is64BitMode(const MCSubtargetInfo &STI) const {
     53     return STI.getFeatureBits()[X86::Mode64Bit];
     54   }
     55 
     56   bool is32BitMode(const MCSubtargetInfo &STI) const {
     57     return STI.getFeatureBits()[X86::Mode32Bit];
     58   }
     59 
     60   bool is16BitMode(const MCSubtargetInfo &STI) const {
     61     return STI.getFeatureBits()[X86::Mode16Bit];
     62   }
     63 
     64   /// Is16BitMemOperand - Return true if the specified instruction has
     65   /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
     66   bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
     67                          const MCSubtargetInfo &STI) const {
     68     const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
     69     const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
     70     const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
     71 
     72     if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
     73         Disp.isImm() && Disp.getImm() < 0x10000)
     74       return true;
     75     if ((BaseReg.getReg() != 0 &&
     76          X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
     77         (IndexReg.getReg() != 0 &&
     78          X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
     79       return true;
     80     return false;
     81   }
     82 
     83   unsigned GetX86RegNum(const MCOperand &MO) const {
     84     return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
     85   }
     86 
     87   unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
     88     return Ctx.getRegisterInfo()->getEncodingValue(
     89                                                  MI.getOperand(OpNum).getReg());
     90   }
     91 
     92   // Does this register require a bit to be set in REX prefix.
     93   bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
     94     return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
     95   }
     96 
     97   void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
     98     OS << (char)C;
     99     ++CurByte;
    100   }
    101 
    102   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
    103                     raw_ostream &OS) const {
    104     // Output the constant in little endian byte order.
    105     for (unsigned i = 0; i != Size; ++i) {
    106       EmitByte(Val & 255, CurByte, OS);
    107       Val >>= 8;
    108     }
    109   }
    110 
    111   void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
    112                      unsigned ImmSize, MCFixupKind FixupKind,
    113                      unsigned &CurByte, raw_ostream &OS,
    114                      SmallVectorImpl<MCFixup> &Fixups,
    115                      int ImmOffset = 0) const;
    116 
    117   static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
    118     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    119     return RM | (RegOpcode << 3) | (Mod << 6);
    120   }
    121 
    122   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
    123                         unsigned &CurByte, raw_ostream &OS) const {
    124     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
    125   }
    126 
    127   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
    128                    unsigned &CurByte, raw_ostream &OS) const {
    129     // SIB byte is in the same format as the ModRMByte.
    130     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
    131   }
    132 
    133   void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
    134                         uint64_t TSFlags, bool Rex, unsigned &CurByte,
    135                         raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
    136                         const MCSubtargetInfo &STI) const;
    137 
    138   void encodeInstruction(const MCInst &MI, raw_ostream &OS,
    139                          SmallVectorImpl<MCFixup> &Fixups,
    140                          const MCSubtargetInfo &STI) const override;
    141 
    142   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    143                            const MCInst &MI, const MCInstrDesc &Desc,
    144                            raw_ostream &OS) const;
    145 
    146   void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
    147                                  const MCInst &MI, raw_ostream &OS) const;
    148 
    149   bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    150                         const MCInst &MI, const MCInstrDesc &Desc,
    151                         const MCSubtargetInfo &STI, raw_ostream &OS) const;
    152 
    153   uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
    154                              int MemOperand, const MCInstrDesc &Desc) const;
    155 
    156   bool isPCRel32Branch(const MCInst &MI) const;
    157 };
    158 
    159 } // end anonymous namespace
    160 
    161 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    162 /// sign-extended field.
    163 static bool isDisp8(int Value) {
    164   return Value == (int8_t)Value;
    165 }
    166 
    167 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
    168 /// compressed dispacement field.
    169 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
    170   assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
    171          "Compressed 8-bit displacement is only valid for EVEX inst.");
    172 
    173   unsigned CD8_Scale =
    174     (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
    175   if (CD8_Scale == 0) {
    176     CValue = Value;
    177     return isDisp8(Value);
    178   }
    179 
    180   unsigned Mask = CD8_Scale - 1;
    181   assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
    182   if (Value & Mask) // Unaligned offset
    183     return false;
    184   Value /= (int)CD8_Scale;
    185   bool Ret = (Value == (int8_t)Value);
    186 
    187   if (Ret)
    188     CValue = Value;
    189   return Ret;
    190 }
    191 
    192 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
    193 /// in an instruction with the specified TSFlags.
    194 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
    195   unsigned Size = X86II::getSizeOfImm(TSFlags);
    196   bool isPCRel = X86II::isImmPCRel(TSFlags);
    197 
    198   if (X86II::isImmSigned(TSFlags)) {
    199     switch (Size) {
    200     default: llvm_unreachable("Unsupported signed fixup size!");
    201     case 4: return MCFixupKind(X86::reloc_signed_4byte);
    202     }
    203   }
    204   return MCFixup::getKindForSize(Size, isPCRel);
    205 }
    206 
    207 /// Is32BitMemOperand - Return true if the specified instruction has
    208 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    209 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
    210   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    211   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    212 
    213   if ((BaseReg.getReg() != 0 &&
    214        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    215       (IndexReg.getReg() != 0 &&
    216        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    217     return true;
    218   if (BaseReg.getReg() == X86::EIP) {
    219     assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
    220     return true;
    221   }
    222   if (IndexReg.getReg() == X86::EIZ)
    223     return true;
    224   return false;
    225 }
    226 
    227 /// Is64BitMemOperand - Return true if the specified instruction has
    228 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    229 #ifndef NDEBUG
    230 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
    231   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    232   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    233 
    234   if ((BaseReg.getReg() != 0 &&
    235        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    236       (IndexReg.getReg() != 0 &&
    237        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    238     return true;
    239   return false;
    240 }
    241 #endif
    242 
    243 /// StartsWithGlobalOffsetTable - Check if this expression starts with
    244 ///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
    245 ///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
    246 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
    247 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
    248 /// of a binary expression.
    249 enum GlobalOffsetTableExprKind {
    250   GOT_None,
    251   GOT_Normal,
    252   GOT_SymDiff
    253 };
    254 static GlobalOffsetTableExprKind
    255 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
    256   const MCExpr *RHS = nullptr;
    257   if (Expr->getKind() == MCExpr::Binary) {
    258     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    259     Expr = BE->getLHS();
    260     RHS = BE->getRHS();
    261   }
    262 
    263   if (Expr->getKind() != MCExpr::SymbolRef)
    264     return GOT_None;
    265 
    266   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    267   const MCSymbol &S = Ref->getSymbol();
    268   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    269     return GOT_None;
    270   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    271     return GOT_SymDiff;
    272   return GOT_Normal;
    273 }
    274 
    275 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
    276   if (Expr->getKind() == MCExpr::SymbolRef) {
    277     const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    278     return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
    279   }
    280   return false;
    281 }
    282 
    283 bool X86MCCodeEmitter::isPCRel32Branch(const MCInst &MI) const {
    284   unsigned Opcode = MI.getOpcode();
    285   const MCInstrDesc &Desc = MCII.get(Opcode);
    286   if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) ||
    287       getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
    288     return false;
    289 
    290   unsigned CurOp = X86II::getOperandBias(Desc);
    291   const MCOperand &Op = MI.getOperand(CurOp);
    292   if (!Op.isExpr())
    293     return false;
    294 
    295   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
    296   return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
    297 }
    298 
    299 void X86MCCodeEmitter::
    300 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
    301               MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
    302               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
    303   const MCExpr *Expr = nullptr;
    304   if (DispOp.isImm()) {
    305     // If this is a simple integer displacement that doesn't require a
    306     // relocation, emit it now.
    307     if (FixupKind != FK_PCRel_1 &&
    308         FixupKind != FK_PCRel_2 &&
    309         FixupKind != FK_PCRel_4) {
    310       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    311       return;
    312     }
    313     Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
    314   } else {
    315     Expr = DispOp.getExpr();
    316   }
    317 
    318   // If we have an immoffset, add it to the expression.
    319   if ((FixupKind == FK_Data_4 ||
    320        FixupKind == FK_Data_8 ||
    321        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    322     GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
    323     if (Kind != GOT_None) {
    324       assert(ImmOffset == 0);
    325 
    326       if (Size == 8) {
    327         FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
    328       } else {
    329         assert(Size == 4);
    330         FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    331       }
    332 
    333       if (Kind == GOT_Normal)
    334         ImmOffset = CurByte;
    335     } else if (Expr->getKind() == MCExpr::SymbolRef) {
    336       if (HasSecRelSymbolRef(Expr)) {
    337         FixupKind = MCFixupKind(FK_SecRel_4);
    338       }
    339     } else if (Expr->getKind() == MCExpr::Binary) {
    340       const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
    341       if (HasSecRelSymbolRef(Bin->getLHS())
    342           || HasSecRelSymbolRef(Bin->getRHS())) {
    343         FixupKind = MCFixupKind(FK_SecRel_4);
    344       }
    345     }
    346   }
    347 
    348   // If the fixup is pc-relative, we need to bias the value to be relative to
    349   // the start of the field, not the end of the field.
    350   if (FixupKind == FK_PCRel_4 ||
    351       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
    352       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
    353       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
    354       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
    355       FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
    356     ImmOffset -= 4;
    357     // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
    358     // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
    359     // this needs to be a GOTPC32 relocation.
    360     if (StartsWithGlobalOffsetTable(Expr) != GOT_None)
    361       FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    362   }
    363   if (FixupKind == FK_PCRel_2)
    364     ImmOffset -= 2;
    365   if (FixupKind == FK_PCRel_1)
    366     ImmOffset -= 1;
    367 
    368   if (ImmOffset)
    369     Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
    370                                    Ctx);
    371 
    372   // Emit a symbolic constant as a fixup and 4 zeros.
    373   Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
    374   EmitConstant(0, Size, CurByte, OS);
    375 }
    376 
    377 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
    378                                         unsigned RegOpcodeField,
    379                                         uint64_t TSFlags, bool Rex,
    380                                         unsigned &CurByte, raw_ostream &OS,
    381                                         SmallVectorImpl<MCFixup> &Fixups,
    382                                         const MCSubtargetInfo &STI) const {
    383   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
    384   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
    385   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
    386   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    387   unsigned BaseReg = Base.getReg();
    388   bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
    389 
    390   // Handle %rip relative addressing.
    391   if (BaseReg == X86::RIP ||
    392       BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
    393     assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
    394     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    395     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    396 
    397     unsigned Opcode = MI.getOpcode();
    398     // movq loads are handled with a special relocation form which allows the
    399     // linker to eliminate some loads for GOT references which end up in the
    400     // same linkage unit.
    401     unsigned FixupKind = [=]() {
    402       switch (Opcode) {
    403       default:
    404         return X86::reloc_riprel_4byte;
    405       case X86::MOV64rm:
    406         assert(Rex);
    407         return X86::reloc_riprel_4byte_movq_load;
    408       case X86::CALL64m:
    409       case X86::JMP64m:
    410       case X86::TAILJMPm64:
    411       case X86::TEST64mr:
    412       case X86::ADC64rm:
    413       case X86::ADD64rm:
    414       case X86::AND64rm:
    415       case X86::CMP64rm:
    416       case X86::OR64rm:
    417       case X86::SBB64rm:
    418       case X86::SUB64rm:
    419       case X86::XOR64rm:
    420         return Rex ? X86::reloc_riprel_4byte_relax_rex
    421                    : X86::reloc_riprel_4byte_relax;
    422       }
    423     }();
    424 
    425     // rip-relative addressing is actually relative to the *next* instruction.
    426     // Since an immediate can follow the mod/rm byte for an instruction, this
    427     // means that we need to bias the displacement field of the instruction with
    428     // the size of the immediate field. If we have this case, add it into the
    429     // expression to emit.
    430     // Note: rip-relative addressing using immediate displacement values should
    431     // not be adjusted, assuming it was the user's intent.
    432     int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
    433                       ? X86II::getSizeOfImm(TSFlags)
    434                       : 0;
    435 
    436     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
    437                   CurByte, OS, Fixups, -ImmSize);
    438     return;
    439   }
    440 
    441   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
    442 
    443   // 16-bit addressing forms of the ModR/M byte have a different encoding for
    444   // the R/M field and are far more limited in which registers can be used.
    445   if (Is16BitMemOperand(MI, Op, STI)) {
    446     if (BaseReg) {
    447       // For 32-bit addressing, the row and column values in Table 2-2 are
    448       // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
    449       // some special cases. And GetX86RegNum reflects that numbering.
    450       // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
    451       // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
    452       // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
    453       // while values 0-3 indicate the allowed combinations (base+index) of
    454       // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
    455       //
    456       // R16Table[] is a lookup from the normal RegNo, to the row values from
    457       // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
    458       static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
    459       unsigned RMfield = R16Table[BaseRegNo];
    460 
    461       assert(RMfield && "invalid 16-bit base register");
    462 
    463       if (IndexReg.getReg()) {
    464         unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
    465 
    466         assert(IndexReg16 && "invalid 16-bit index register");
    467         // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
    468         assert(((IndexReg16 ^ RMfield) & 2) &&
    469                "invalid 16-bit base/index register combination");
    470         assert(Scale.getImm() == 1 &&
    471                "invalid scale for 16-bit memory reference");
    472 
    473         // Allow base/index to appear in either order (although GAS doesn't).
    474         if (IndexReg16 & 2)
    475           RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
    476         else
    477           RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
    478       }
    479 
    480       if (Disp.isImm() && isDisp8(Disp.getImm())) {
    481         if (Disp.getImm() == 0 && RMfield != 6) {
    482           // There is no displacement; just the register.
    483           EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
    484           return;
    485         }
    486         // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
    487         EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
    488         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    489         return;
    490       }
    491       // This is the [REG]+disp16 case.
    492       EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
    493     } else {
    494       // There is no BaseReg; this is the plain [disp16] case.
    495       EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
    496     }
    497 
    498     // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
    499     EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
    500     return;
    501   }
    502 
    503   // Determine whether a SIB byte is needed.
    504   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    505   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    506   // 2-7) and absolute references.
    507 
    508   if (// The SIB byte must be used if there is an index register.
    509       IndexReg.getReg() == 0 &&
    510       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    511       // encode to an R/M value of 4, which indicates that a SIB byte is
    512       // present.
    513       BaseRegNo != N86::ESP &&
    514       // If there is no base register and we're in 64-bit mode, we need a SIB
    515       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    516       (!is64BitMode(STI) || BaseReg != 0)) {
    517 
    518     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
    519       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    520       EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
    521       return;
    522     }
    523 
    524     // If the base is not EBP/ESP and there is no displacement, use simple
    525     // indirect register encoding, this handles addresses like [EAX].  The
    526     // encoding for [EBP] with no displacement means [disp32] so we handle it
    527     // by emitting a displacement of 0 below.
    528     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    529       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
    530       return;
    531     }
    532 
    533     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    534     if (Disp.isImm()) {
    535       if (!HasEVEX && isDisp8(Disp.getImm())) {
    536         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    537         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    538         return;
    539       }
    540       // Try EVEX compressed 8-bit displacement first; if failed, fall back to
    541       // 32-bit displacement.
    542       int CDisp8 = 0;
    543       if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    544         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    545         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
    546                       CDisp8 - Disp.getImm());
    547         return;
    548       }
    549     }
    550 
    551     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    552     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    553     unsigned Opcode = MI.getOpcode();
    554     unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
    555                                                 : X86::reloc_signed_4byte;
    556     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
    557                   Fixups);
    558     return;
    559   }
    560 
    561   // We need a SIB byte, so start by outputting the ModR/M byte first
    562   assert(IndexReg.getReg() != X86::ESP &&
    563          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    564 
    565   bool ForceDisp32 = false;
    566   bool ForceDisp8  = false;
    567   int CDisp8 = 0;
    568   int ImmOffset = 0;
    569   if (BaseReg == 0) {
    570     // If there is no base register, we emit the special case SIB byte with
    571     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    572     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    573     ForceDisp32 = true;
    574   } else if (!Disp.isImm()) {
    575     // Emit the normal disp32 encoding.
    576     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    577     ForceDisp32 = true;
    578   } else if (Disp.getImm() == 0 &&
    579              // Base reg can't be anything that ends up with '5' as the base
    580              // reg, it is the magic [*] nomenclature that indicates no base.
    581              BaseRegNo != N86::EBP) {
    582     // Emit no displacement ModR/M byte
    583     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    584   } else if (!HasEVEX && isDisp8(Disp.getImm())) {
    585     // Emit the disp8 encoding.
    586     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    587     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    588   } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    589     // Emit the disp8 encoding.
    590     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    591     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    592     ImmOffset = CDisp8 - Disp.getImm();
    593   } else {
    594     // Emit the normal disp32 encoding.
    595     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    596   }
    597 
    598   // Calculate what the SS field value should be...
    599   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    600   unsigned SS = SSTable[Scale.getImm()];
    601 
    602   if (BaseReg == 0) {
    603     // Handle the SIB byte for the case where there is no base, see Intel
    604     // Manual 2A, table 2-7. The displacement has already been output.
    605     unsigned IndexRegNo;
    606     if (IndexReg.getReg())
    607       IndexRegNo = GetX86RegNum(IndexReg);
    608     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    609       IndexRegNo = 4;
    610     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
    611   } else {
    612     unsigned IndexRegNo;
    613     if (IndexReg.getReg())
    614       IndexRegNo = GetX86RegNum(IndexReg);
    615     else
    616       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    617     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
    618   }
    619 
    620   // Do we need to output a displacement?
    621   if (ForceDisp8)
    622     EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
    623   else if (ForceDisp32 || Disp.getImm() != 0)
    624     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
    625                   CurByte, OS, Fixups);
    626 }
    627 
    628 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
    629 /// called VEX.
    630 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    631                                            int MemOperand, const MCInst &MI,
    632                                            const MCInstrDesc &Desc,
    633                                            raw_ostream &OS) const {
    634   assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
    635 
    636   uint64_t Encoding = TSFlags & X86II::EncodingMask;
    637   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
    638   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    639   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
    640 
    641   // VEX_R: opcode externsion equivalent to REX.R in
    642   // 1's complement (inverted) form
    643   //
    644   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    645   //  0: Same as REX_R=1 (64 bit mode only)
    646   //
    647   uint8_t VEX_R = 0x1;
    648   uint8_t EVEX_R2 = 0x1;
    649 
    650   // VEX_X: equivalent to REX.X, only used when a
    651   // register is used for index in SIB Byte.
    652   //
    653   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    654   //  0: Same as REX.X=1 (64-bit mode only)
    655   uint8_t VEX_X = 0x1;
    656 
    657   // VEX_B:
    658   //
    659   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    660   //  0: Same as REX_B=1 (64 bit mode only)
    661   //
    662   uint8_t VEX_B = 0x1;
    663 
    664   // VEX_W: opcode specific (use like REX.W, or used for
    665   // opcode extension, or ignored, depending on the opcode byte)
    666   uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
    667 
    668   // VEX_5M (VEX m-mmmmm field):
    669   //
    670   //  0b00000: Reserved for future use
    671   //  0b00001: implied 0F leading opcode
    672   //  0b00010: implied 0F 38 leading opcode bytes
    673   //  0b00011: implied 0F 3A leading opcode bytes
    674   //  0b00100-0b11111: Reserved for future use
    675   //  0b01000: XOP map select - 08h instructions with imm byte
    676   //  0b01001: XOP map select - 09h instructions with no imm byte
    677   //  0b01010: XOP map select - 0Ah instructions with imm dword
    678   uint8_t VEX_5M;
    679   switch (TSFlags & X86II::OpMapMask) {
    680   default: llvm_unreachable("Invalid prefix!");
    681   case X86II::TB:   VEX_5M = 0x1; break; // 0F
    682   case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
    683   case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
    684   case X86II::XOP8: VEX_5M = 0x8; break;
    685   case X86II::XOP9: VEX_5M = 0x9; break;
    686   case X86II::XOPA: VEX_5M = 0xA; break;
    687   }
    688 
    689   // VEX_4V (VEX vvvv field): a register specifier
    690   // (in 1's complement form) or 1111 if unused.
    691   uint8_t VEX_4V = 0xf;
    692   uint8_t EVEX_V2 = 0x1;
    693 
    694   // EVEX_L2/VEX_L (Vector Length):
    695   //
    696   // L2 L
    697   //  0 0: scalar or 128-bit vector
    698   //  0 1: 256-bit vector
    699   //  1 0: 512-bit vector
    700   //
    701   uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
    702   uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
    703 
    704   // VEX_PP: opcode extension providing equivalent
    705   // functionality of a SIMD prefix
    706   //
    707   //  0b00: None
    708   //  0b01: 66
    709   //  0b10: F3
    710   //  0b11: F2
    711   //
    712   uint8_t VEX_PP = 0;
    713   switch (TSFlags & X86II::OpPrefixMask) {
    714   case X86II::PD: VEX_PP = 0x1; break; // 66
    715   case X86II::XS: VEX_PP = 0x2; break; // F3
    716   case X86II::XD: VEX_PP = 0x3; break; // F2
    717   }
    718 
    719   // EVEX_U
    720   uint8_t EVEX_U = 1; // Always '1' so far
    721 
    722   // EVEX_z
    723   uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
    724 
    725   // EVEX_b
    726   uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
    727 
    728   // EVEX_rc
    729   uint8_t EVEX_rc = 0;
    730 
    731   // EVEX_aaa
    732   uint8_t EVEX_aaa = 0;
    733 
    734   bool EncodeRC = false;
    735 
    736   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    737   unsigned NumOps = Desc.getNumOperands();
    738   unsigned CurOp = X86II::getOperandBias(Desc);
    739 
    740   switch (TSFlags & X86II::FormMask) {
    741   default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
    742   case X86II::RawFrm:
    743     break;
    744   case X86II::MRMDestMem: {
    745     // MRMDestMem instructions forms:
    746     //  MemAddr, src1(ModR/M)
    747     //  MemAddr, src1(VEX_4V), src2(ModR/M)
    748     //  MemAddr, src1(ModR/M), imm8
    749     //
    750     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    751     VEX_B = ~(BaseRegEnc >> 3) & 1;
    752     unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    753     VEX_X = ~(IndexRegEnc >> 3) & 1;
    754     if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
    755       EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
    756 
    757     CurOp += X86::AddrNumOperands;
    758 
    759     if (HasEVEX_K)
    760       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    761 
    762     if (HasVEX_4V) {
    763       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    764       VEX_4V = ~VRegEnc & 0xf;
    765       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    766     }
    767 
    768     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    769     VEX_R = ~(RegEnc >> 3) & 1;
    770     EVEX_R2 = ~(RegEnc >> 4) & 1;
    771     break;
    772   }
    773   case X86II::MRMSrcMem: {
    774     // MRMSrcMem instructions forms:
    775     //  src1(ModR/M), MemAddr
    776     //  src1(ModR/M), src2(VEX_4V), MemAddr
    777     //  src1(ModR/M), MemAddr, imm8
    778     //  src1(ModR/M), MemAddr, src2(Imm[7:4])
    779     //
    780     //  FMA4:
    781     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    782     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    783     VEX_R = ~(RegEnc >> 3) & 1;
    784     EVEX_R2 = ~(RegEnc >> 4) & 1;
    785 
    786     if (HasEVEX_K)
    787       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    788 
    789     if (HasVEX_4V) {
    790       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    791       VEX_4V = ~VRegEnc & 0xf;
    792       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    793     }
    794 
    795     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    796     VEX_B = ~(BaseRegEnc >> 3) & 1;
    797     unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    798     VEX_X = ~(IndexRegEnc >> 3) & 1;
    799     if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
    800       EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
    801 
    802     break;
    803   }
    804   case X86II::MRMSrcMem4VOp3: {
    805     // Instruction format for 4VOp3:
    806     //   src1(ModR/M), MemAddr, src3(VEX_4V)
    807     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    808     VEX_R = ~(RegEnc >> 3) & 1;
    809 
    810     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    811     VEX_B = ~(BaseRegEnc >> 3) & 1;
    812     unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    813     VEX_X = ~(IndexRegEnc >> 3) & 1;
    814 
    815     VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
    816     break;
    817   }
    818   case X86II::MRMSrcMemOp4: {
    819     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    820     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    821     VEX_R = ~(RegEnc >> 3) & 1;
    822 
    823     unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    824     VEX_4V = ~VRegEnc & 0xf;
    825 
    826     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    827     VEX_B = ~(BaseRegEnc >> 3) & 1;
    828     unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    829     VEX_X = ~(IndexRegEnc >> 3) & 1;
    830     break;
    831   }
    832   case X86II::MRM0m: case X86II::MRM1m:
    833   case X86II::MRM2m: case X86II::MRM3m:
    834   case X86II::MRM4m: case X86II::MRM5m:
    835   case X86II::MRM6m: case X86II::MRM7m: {
    836     // MRM[0-9]m instructions forms:
    837     //  MemAddr
    838     //  src1(VEX_4V), MemAddr
    839     if (HasVEX_4V) {
    840       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    841       VEX_4V = ~VRegEnc & 0xf;
    842       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    843     }
    844 
    845     if (HasEVEX_K)
    846       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    847 
    848     unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    849     VEX_B = ~(BaseRegEnc >> 3) & 1;
    850     unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
    851     VEX_X = ~(IndexRegEnc >> 3) & 1;
    852     break;
    853   }
    854   case X86II::MRMSrcReg: {
    855     // MRMSrcReg instructions forms:
    856     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    857     //  dst(ModR/M), src1(ModR/M)
    858     //  dst(ModR/M), src1(ModR/M), imm8
    859     //
    860     //  FMA4:
    861     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    862     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    863     VEX_R = ~(RegEnc >> 3) & 1;
    864     EVEX_R2 = ~(RegEnc >> 4) & 1;
    865 
    866     if (HasEVEX_K)
    867       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    868 
    869     if (HasVEX_4V) {
    870       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    871       VEX_4V = ~VRegEnc & 0xf;
    872       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    873     }
    874 
    875     RegEnc = getX86RegEncoding(MI, CurOp++);
    876     VEX_B = ~(RegEnc >> 3) & 1;
    877     VEX_X = ~(RegEnc >> 4) & 1;
    878 
    879     if (EVEX_b) {
    880       if (HasEVEX_RC) {
    881         unsigned RcOperand = NumOps-1;
    882         assert(RcOperand >= CurOp);
    883         EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
    884       }
    885       EncodeRC = true;
    886     }
    887     break;
    888   }
    889   case X86II::MRMSrcReg4VOp3: {
    890     // Instruction format for 4VOp3:
    891     //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
    892     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    893     VEX_R = ~(RegEnc >> 3) & 1;
    894 
    895     RegEnc = getX86RegEncoding(MI, CurOp++);
    896     VEX_B = ~(RegEnc >> 3) & 1;
    897 
    898     VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
    899     break;
    900   }
    901   case X86II::MRMSrcRegOp4: {
    902     //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    903     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    904     VEX_R = ~(RegEnc >> 3) & 1;
    905 
    906     unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    907     VEX_4V = ~VRegEnc & 0xf;
    908 
    909     // Skip second register source (encoded in Imm[7:4])
    910     ++CurOp;
    911 
    912     RegEnc = getX86RegEncoding(MI, CurOp++);
    913     VEX_B = ~(RegEnc >> 3) & 1;
    914     VEX_X = ~(RegEnc >> 4) & 1;
    915     break;
    916   }
    917   case X86II::MRMDestReg: {
    918     // MRMDestReg instructions forms:
    919     //  dst(ModR/M), src(ModR/M)
    920     //  dst(ModR/M), src(ModR/M), imm8
    921     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    922     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    923     VEX_B = ~(RegEnc >> 3) & 1;
    924     VEX_X = ~(RegEnc >> 4) & 1;
    925 
    926     if (HasEVEX_K)
    927       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    928 
    929     if (HasVEX_4V) {
    930       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    931       VEX_4V = ~VRegEnc & 0xf;
    932       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    933     }
    934 
    935     RegEnc = getX86RegEncoding(MI, CurOp++);
    936     VEX_R = ~(RegEnc >> 3) & 1;
    937     EVEX_R2 = ~(RegEnc >> 4) & 1;
    938     if (EVEX_b)
    939       EncodeRC = true;
    940     break;
    941   }
    942   case X86II::MRM0r: case X86II::MRM1r:
    943   case X86II::MRM2r: case X86II::MRM3r:
    944   case X86II::MRM4r: case X86II::MRM5r:
    945   case X86II::MRM6r: case X86II::MRM7r: {
    946     // MRM0r-MRM7r instructions forms:
    947     //  dst(VEX_4V), src(ModR/M), imm8
    948     if (HasVEX_4V) {
    949       unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    950       VEX_4V = ~VRegEnc & 0xf;
    951       EVEX_V2 = ~(VRegEnc >> 4) & 1;
    952     }
    953     if (HasEVEX_K)
    954       EVEX_aaa = getX86RegEncoding(MI, CurOp++);
    955 
    956     unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    957     VEX_B = ~(RegEnc >> 3) & 1;
    958     VEX_X = ~(RegEnc >> 4) & 1;
    959     break;
    960   }
    961   }
    962 
    963   if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
    964     // VEX opcode prefix can have 2 or 3 bytes
    965     //
    966     //  3 bytes:
    967     //    +-----+ +--------------+ +-------------------+
    968     //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    969     //    +-----+ +--------------+ +-------------------+
    970     //  2 bytes:
    971     //    +-----+ +-------------------+
    972     //    | C5h | | R | vvvv | L | pp |
    973     //    +-----+ +-------------------+
    974     //
    975     //  XOP uses a similar prefix:
    976     //    +-----+ +--------------+ +-------------------+
    977     //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
    978     //    +-----+ +--------------+ +-------------------+
    979     uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
    980 
    981     // Can we use the 2 byte VEX prefix?
    982     if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
    983       EmitByte(0xC5, CurByte, OS);
    984       EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    985       return;
    986     }
    987 
    988     // 3 byte VEX prefix
    989     EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
    990     EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    991     EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
    992   } else {
    993     assert(Encoding == X86II::EVEX && "unknown encoding!");
    994     // EVEX opcode prefix can have 4 bytes
    995     //
    996     // +-----+ +--------------+ +-------------------+ +------------------------+
    997     // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
    998     // +-----+ +--------------+ +-------------------+ +------------------------+
    999     assert((VEX_5M & 0x3) == VEX_5M
   1000            && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
   1001 
   1002     EmitByte(0x62, CurByte, OS);
   1003     EmitByte((VEX_R   << 7) |
   1004              (VEX_X   << 6) |
   1005              (VEX_B   << 5) |
   1006              (EVEX_R2 << 4) |
   1007              VEX_5M, CurByte, OS);
   1008     EmitByte((VEX_W   << 7) |
   1009              (VEX_4V  << 3) |
   1010              (EVEX_U  << 2) |
   1011              VEX_PP, CurByte, OS);
   1012     if (EncodeRC)
   1013       EmitByte((EVEX_z  << 7) |
   1014                (EVEX_rc << 5) |
   1015                (EVEX_b  << 4) |
   1016                (EVEX_V2 << 3) |
   1017                EVEX_aaa, CurByte, OS);
   1018     else
   1019       EmitByte((EVEX_z  << 7) |
   1020                (EVEX_L2 << 6) |
   1021                (VEX_L   << 5) |
   1022                (EVEX_b  << 4) |
   1023                (EVEX_V2 << 3) |
   1024                EVEX_aaa, CurByte, OS);
   1025   }
   1026 }
   1027 
   1028 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
   1029 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
   1030 /// size, and 3) use of X86-64 extended registers.
   1031 uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
   1032                                              int MemOperand,
   1033                                              const MCInstrDesc &Desc) const {
   1034   uint8_t REX = 0;
   1035   bool UsesHighByteReg = false;
   1036 
   1037   if (TSFlags & X86II::REX_W)
   1038     REX |= 1 << 3; // set REX.W
   1039 
   1040   if (MI.getNumOperands() == 0) return REX;
   1041 
   1042   unsigned NumOps = MI.getNumOperands();
   1043   unsigned CurOp = X86II::getOperandBias(Desc);
   1044 
   1045   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
   1046   for (unsigned i = CurOp; i != NumOps; ++i) {
   1047     const MCOperand &MO = MI.getOperand(i);
   1048     if (!MO.isReg()) continue;
   1049     unsigned Reg = MO.getReg();
   1050     if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
   1051       UsesHighByteReg = true;
   1052     if (X86II::isX86_64NonExtLowByteReg(Reg))
   1053       // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
   1054       // that returns non-zero.
   1055       REX |= 0x40; // REX fixed encoding prefix
   1056   }
   1057 
   1058   switch (TSFlags & X86II::FormMask) {
   1059   case X86II::AddRegFrm:
   1060     REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
   1061     break;
   1062   case X86II::MRMSrcReg:
   1063     REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
   1064     REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
   1065     break;
   1066   case X86II::MRMSrcMem: {
   1067     REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
   1068     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
   1069     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
   1070     CurOp += X86::AddrNumOperands;
   1071     break;
   1072   }
   1073   case X86II::MRMDestReg:
   1074     REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
   1075     REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
   1076     break;
   1077   case X86II::MRMDestMem:
   1078     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
   1079     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
   1080     CurOp += X86::AddrNumOperands;
   1081     REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
   1082     break;
   1083   case X86II::MRMXm:
   1084   case X86II::MRM0m: case X86II::MRM1m:
   1085   case X86II::MRM2m: case X86II::MRM3m:
   1086   case X86II::MRM4m: case X86II::MRM5m:
   1087   case X86II::MRM6m: case X86II::MRM7m:
   1088     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
   1089     REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
   1090     break;
   1091   case X86II::MRMXr:
   1092   case X86II::MRM0r: case X86II::MRM1r:
   1093   case X86II::MRM2r: case X86II::MRM3r:
   1094   case X86II::MRM4r: case X86II::MRM5r:
   1095   case X86II::MRM6r: case X86II::MRM7r:
   1096     REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
   1097     break;
   1098   }
   1099   if (REX && UsesHighByteReg)
   1100     report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
   1101 
   1102   return REX;
   1103 }
   1104 
   1105 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
   1106 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
   1107                                                  unsigned SegOperand,
   1108                                                  const MCInst &MI,
   1109                                                  raw_ostream &OS) const {
   1110   // Check for explicit segment override on memory operand.
   1111   switch (MI.getOperand(SegOperand).getReg()) {
   1112   default: llvm_unreachable("Unknown segment register!");
   1113   case 0: break;
   1114   case X86::CS: EmitByte(0x2E, CurByte, OS); break;
   1115   case X86::SS: EmitByte(0x36, CurByte, OS); break;
   1116   case X86::DS: EmitByte(0x3E, CurByte, OS); break;
   1117   case X86::ES: EmitByte(0x26, CurByte, OS); break;
   1118   case X86::FS: EmitByte(0x64, CurByte, OS); break;
   1119   case X86::GS: EmitByte(0x65, CurByte, OS); break;
   1120   }
   1121 }
   1122 
   1123 /// Emit all instruction prefixes prior to the opcode.
   1124 ///
   1125 /// MemOperand is the operand # of the start of a memory operand if present.  If
   1126 /// Not present, it is -1.
   1127 ///
   1128 /// Returns true if a REX prefix was used.
   1129 bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
   1130                                         int MemOperand, const MCInst &MI,
   1131                                         const MCInstrDesc &Desc,
   1132                                         const MCSubtargetInfo &STI,
   1133                                         raw_ostream &OS) const {
   1134   bool Ret = false;
   1135   // Emit the operand size opcode prefix as needed.
   1136   if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
   1137                                                          : X86II::OpSize16))
   1138     EmitByte(0x66, CurByte, OS);
   1139 
   1140   // Emit the LOCK opcode prefix.
   1141   if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
   1142     EmitByte(0xF0, CurByte, OS);
   1143 
   1144   // Emit the NOTRACK opcode prefix.
   1145   if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
   1146     EmitByte(0x3E, CurByte, OS);
   1147 
   1148   switch (TSFlags & X86II::OpPrefixMask) {
   1149   case X86II::PD:   // 66
   1150     EmitByte(0x66, CurByte, OS);
   1151     break;
   1152   case X86II::XS:   // F3
   1153     EmitByte(0xF3, CurByte, OS);
   1154     break;
   1155   case X86II::XD:   // F2
   1156     EmitByte(0xF2, CurByte, OS);
   1157     break;
   1158   }
   1159 
   1160   // Handle REX prefix.
   1161   // FIXME: Can this come before F2 etc to simplify emission?
   1162   if (is64BitMode(STI)) {
   1163     if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
   1164       EmitByte(0x40 | REX, CurByte, OS);
   1165       Ret = true;
   1166     }
   1167   } else {
   1168     assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
   1169   }
   1170 
   1171   // 0x0F escape code must be emitted just before the opcode.
   1172   switch (TSFlags & X86II::OpMapMask) {
   1173   case X86II::TB:         // Two-byte opcode map
   1174   case X86II::T8:         // 0F 38
   1175   case X86II::TA:         // 0F 3A
   1176   case X86II::ThreeDNow:  // 0F 0F, second 0F emitted by caller.
   1177     EmitByte(0x0F, CurByte, OS);
   1178     break;
   1179   }
   1180 
   1181   switch (TSFlags & X86II::OpMapMask) {
   1182   case X86II::T8:    // 0F 38
   1183     EmitByte(0x38, CurByte, OS);
   1184     break;
   1185   case X86II::TA:    // 0F 3A
   1186     EmitByte(0x3A, CurByte, OS);
   1187     break;
   1188   }
   1189   return Ret;
   1190 }
   1191 
   1192 void X86MCCodeEmitter::
   1193 encodeInstruction(const MCInst &MI, raw_ostream &OS,
   1194                   SmallVectorImpl<MCFixup> &Fixups,
   1195                   const MCSubtargetInfo &STI) const {
   1196   unsigned Opcode = MI.getOpcode();
   1197   const MCInstrDesc &Desc = MCII.get(Opcode);
   1198   uint64_t TSFlags = Desc.TSFlags;
   1199   unsigned Flags = MI.getFlags();
   1200 
   1201   // Pseudo instructions don't get encoded.
   1202   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
   1203     return;
   1204 
   1205   unsigned NumOps = Desc.getNumOperands();
   1206   unsigned CurOp = X86II::getOperandBias(Desc);
   1207 
   1208   // Keep track of the current byte being emitted.
   1209   unsigned CurByte = 0;
   1210 
   1211   // Encoding type for this instruction.
   1212   uint64_t Encoding = TSFlags & X86II::EncodingMask;
   1213 
   1214   // It uses the VEX.VVVV field?
   1215   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
   1216   bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
   1217 
   1218   // It uses the EVEX.aaa field?
   1219   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
   1220   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
   1221 
   1222   // Used if a register is encoded in 7:4 of immediate.
   1223   unsigned I8RegNum = 0;
   1224 
   1225   // Determine where the memory operand starts, if present.
   1226   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
   1227   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1228 
   1229   // Emit segment override opcode prefix as needed.
   1230   if (MemoryOperand >= 0)
   1231     EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
   1232                               MI, OS);
   1233 
   1234   // Emit the repeat opcode prefix as needed.
   1235   if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
   1236     EmitByte(0xF3, CurByte, OS);
   1237   if (Flags & X86::IP_HAS_REPEAT_NE)
   1238     EmitByte(0xF2, CurByte, OS);
   1239 
   1240   // Emit the address size opcode prefix as needed.
   1241   bool need_address_override;
   1242   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
   1243   if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
   1244       (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
   1245       (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
   1246     need_address_override = true;
   1247   } else if (MemoryOperand < 0) {
   1248     need_address_override = false;
   1249   } else if (is64BitMode(STI)) {
   1250     assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
   1251     need_address_override = Is32BitMemOperand(MI, MemoryOperand);
   1252   } else if (is32BitMode(STI)) {
   1253     assert(!Is64BitMemOperand(MI, MemoryOperand));
   1254     need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
   1255   } else {
   1256     assert(is16BitMode(STI));
   1257     assert(!Is64BitMemOperand(MI, MemoryOperand));
   1258     need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
   1259   }
   1260 
   1261   if (need_address_override)
   1262     EmitByte(0x67, CurByte, OS);
   1263 
   1264   bool Rex = false;
   1265   if (Encoding == 0)
   1266     Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
   1267   else
   1268     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1269 
   1270   uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
   1271 
   1272   if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
   1273     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
   1274 
   1275   uint64_t Form = TSFlags & X86II::FormMask;
   1276   switch (Form) {
   1277   default: errs() << "FORM: " << Form << "\n";
   1278     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
   1279   case X86II::Pseudo:
   1280     llvm_unreachable("Pseudo instruction shouldn't be emitted");
   1281   case X86II::RawFrmDstSrc: {
   1282     unsigned siReg = MI.getOperand(1).getReg();
   1283     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
   1284             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
   1285             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
   1286            "SI and DI register sizes do not match");
   1287     // Emit segment override opcode prefix as needed (not for %ds).
   1288     if (MI.getOperand(2).getReg() != X86::DS)
   1289       EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
   1290     // Emit AdSize prefix as needed.
   1291     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
   1292         (is32BitMode(STI) && siReg == X86::SI))
   1293       EmitByte(0x67, CurByte, OS);
   1294     CurOp += 3; // Consume operands.
   1295     EmitByte(BaseOpcode, CurByte, OS);
   1296     break;
   1297   }
   1298   case X86II::RawFrmSrc: {
   1299     unsigned siReg = MI.getOperand(0).getReg();
   1300     // Emit segment override opcode prefix as needed (not for %ds).
   1301     if (MI.getOperand(1).getReg() != X86::DS)
   1302       EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
   1303     // Emit AdSize prefix as needed.
   1304     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
   1305         (is32BitMode(STI) && siReg == X86::SI))
   1306       EmitByte(0x67, CurByte, OS);
   1307     CurOp += 2; // Consume operands.
   1308     EmitByte(BaseOpcode, CurByte, OS);
   1309     break;
   1310   }
   1311   case X86II::RawFrmDst: {
   1312     unsigned siReg = MI.getOperand(0).getReg();
   1313     // Emit AdSize prefix as needed.
   1314     if ((!is32BitMode(STI) && siReg == X86::EDI) ||
   1315         (is32BitMode(STI) && siReg == X86::DI))
   1316       EmitByte(0x67, CurByte, OS);
   1317     ++CurOp; // Consume operand.
   1318     EmitByte(BaseOpcode, CurByte, OS);
   1319     break;
   1320   }
   1321   case X86II::RawFrm: {
   1322     EmitByte(BaseOpcode, CurByte, OS);
   1323 
   1324     if (!is64BitMode(STI) || !isPCRel32Branch(MI))
   1325       break;
   1326 
   1327     const MCOperand &Op = MI.getOperand(CurOp++);
   1328     EmitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
   1329                   MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS,
   1330                   Fixups);
   1331     break;
   1332   }
   1333   case X86II::RawFrmMemOffs:
   1334     // Emit segment override opcode prefix as needed.
   1335     EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
   1336     EmitByte(BaseOpcode, CurByte, OS);
   1337     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1338                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1339                   CurByte, OS, Fixups);
   1340     ++CurOp; // skip segment operand
   1341     break;
   1342   case X86II::RawFrmImm8:
   1343     EmitByte(BaseOpcode, CurByte, OS);
   1344     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1345                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1346                   CurByte, OS, Fixups);
   1347     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
   1348                   OS, Fixups);
   1349     break;
   1350   case X86II::RawFrmImm16:
   1351     EmitByte(BaseOpcode, CurByte, OS);
   1352     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1353                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1354                   CurByte, OS, Fixups);
   1355     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
   1356                   OS, Fixups);
   1357     break;
   1358 
   1359   case X86II::AddRegFrm:
   1360     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
   1361     break;
   1362 
   1363   case X86II::MRMDestReg: {
   1364     EmitByte(BaseOpcode, CurByte, OS);
   1365     unsigned SrcRegNum = CurOp + 1;
   1366 
   1367     if (HasEVEX_K) // Skip writemask
   1368       ++SrcRegNum;
   1369 
   1370     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1371       ++SrcRegNum;
   1372 
   1373     EmitRegModRMByte(MI.getOperand(CurOp),
   1374                      GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
   1375     CurOp = SrcRegNum + 1;
   1376     break;
   1377   }
   1378   case X86II::MRMDestMem: {
   1379     EmitByte(BaseOpcode, CurByte, OS);
   1380     unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
   1381 
   1382     if (HasEVEX_K) // Skip writemask
   1383       ++SrcRegNum;
   1384 
   1385     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1386       ++SrcRegNum;
   1387 
   1388     emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
   1389                      Rex, CurByte, OS, Fixups, STI);
   1390     CurOp = SrcRegNum + 1;
   1391     break;
   1392   }
   1393   case X86II::MRMSrcReg: {
   1394     EmitByte(BaseOpcode, CurByte, OS);
   1395     unsigned SrcRegNum = CurOp + 1;
   1396 
   1397     if (HasEVEX_K) // Skip writemask
   1398       ++SrcRegNum;
   1399 
   1400     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1401       ++SrcRegNum;
   1402 
   1403     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1404                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1405     CurOp = SrcRegNum + 1;
   1406     if (HasVEX_I8Reg)
   1407       I8RegNum = getX86RegEncoding(MI, CurOp++);
   1408     // do not count the rounding control operand
   1409     if (HasEVEX_RC)
   1410       --NumOps;
   1411     break;
   1412   }
   1413   case X86II::MRMSrcReg4VOp3: {
   1414     EmitByte(BaseOpcode, CurByte, OS);
   1415     unsigned SrcRegNum = CurOp + 1;
   1416 
   1417     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1418                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1419     CurOp = SrcRegNum + 1;
   1420     ++CurOp; // Encoded in VEX.VVVV
   1421     break;
   1422   }
   1423   case X86II::MRMSrcRegOp4: {
   1424     EmitByte(BaseOpcode, CurByte, OS);
   1425     unsigned SrcRegNum = CurOp + 1;
   1426 
   1427     // Skip 1st src (which is encoded in VEX_VVVV)
   1428     ++SrcRegNum;
   1429 
   1430     // Capture 2nd src (which is encoded in Imm[7:4])
   1431     assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
   1432     I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
   1433 
   1434     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1435                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1436     CurOp = SrcRegNum + 1;
   1437     break;
   1438   }
   1439   case X86II::MRMSrcMem: {
   1440     unsigned FirstMemOp = CurOp+1;
   1441 
   1442     if (HasEVEX_K) // Skip writemask
   1443       ++FirstMemOp;
   1444 
   1445     if (HasVEX_4V)
   1446       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1447 
   1448     EmitByte(BaseOpcode, CurByte, OS);
   1449 
   1450     emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1451                      TSFlags, Rex, CurByte, OS, Fixups, STI);
   1452     CurOp = FirstMemOp + X86::AddrNumOperands;
   1453     if (HasVEX_I8Reg)
   1454       I8RegNum = getX86RegEncoding(MI, CurOp++);
   1455     break;
   1456   }
   1457   case X86II::MRMSrcMem4VOp3: {
   1458     unsigned FirstMemOp = CurOp+1;
   1459 
   1460     EmitByte(BaseOpcode, CurByte, OS);
   1461 
   1462     emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1463                      TSFlags, Rex, CurByte, OS, Fixups, STI);
   1464     CurOp = FirstMemOp + X86::AddrNumOperands;
   1465     ++CurOp; // Encoded in VEX.VVVV.
   1466     break;
   1467   }
   1468   case X86II::MRMSrcMemOp4: {
   1469     unsigned FirstMemOp = CurOp+1;
   1470 
   1471     ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1472 
   1473     // Capture second register source (encoded in Imm[7:4])
   1474     assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
   1475     I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
   1476 
   1477     EmitByte(BaseOpcode, CurByte, OS);
   1478 
   1479     emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1480                      TSFlags, Rex, CurByte, OS, Fixups, STI);
   1481     CurOp = FirstMemOp + X86::AddrNumOperands;
   1482     break;
   1483   }
   1484 
   1485   case X86II::MRMXr:
   1486   case X86II::MRM0r: case X86II::MRM1r:
   1487   case X86II::MRM2r: case X86II::MRM3r:
   1488   case X86II::MRM4r: case X86II::MRM5r:
   1489   case X86II::MRM6r: case X86II::MRM7r:
   1490     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1491       ++CurOp;
   1492     if (HasEVEX_K) // Skip writemask
   1493       ++CurOp;
   1494     EmitByte(BaseOpcode, CurByte, OS);
   1495     EmitRegModRMByte(MI.getOperand(CurOp++),
   1496                      (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
   1497                      CurByte, OS);
   1498     break;
   1499 
   1500   case X86II::MRMXm:
   1501   case X86II::MRM0m: case X86II::MRM1m:
   1502   case X86II::MRM2m: case X86II::MRM3m:
   1503   case X86II::MRM4m: case X86II::MRM5m:
   1504   case X86II::MRM6m: case X86II::MRM7m:
   1505     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1506       ++CurOp;
   1507     if (HasEVEX_K) // Skip writemask
   1508       ++CurOp;
   1509     EmitByte(BaseOpcode, CurByte, OS);
   1510     emitMemModRMByte(MI, CurOp,
   1511                      (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
   1512                      Rex, CurByte, OS, Fixups, STI);
   1513     CurOp += X86::AddrNumOperands;
   1514     break;
   1515 
   1516   case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
   1517   case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
   1518   case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
   1519   case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
   1520   case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
   1521   case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
   1522   case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
   1523   case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
   1524   case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
   1525   case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
   1526   case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
   1527   case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
   1528   case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
   1529   case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
   1530   case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
   1531   case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
   1532   case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
   1533   case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
   1534   case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
   1535   case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
   1536   case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
   1537   case X86II::MRM_FF:
   1538     EmitByte(BaseOpcode, CurByte, OS);
   1539     EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
   1540     break;
   1541   }
   1542 
   1543   if (HasVEX_I8Reg) {
   1544     // The last source register of a 4 operand instruction in AVX is encoded
   1545     // in bits[7:4] of a immediate byte.
   1546     assert(I8RegNum < 16 && "Register encoding out of range");
   1547     I8RegNum <<= 4;
   1548     if (CurOp != NumOps) {
   1549       unsigned Val = MI.getOperand(CurOp++).getImm();
   1550       assert(Val < 16 && "Immediate operand value out of range");
   1551       I8RegNum |= Val;
   1552     }
   1553     EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
   1554                   CurByte, OS, Fixups);
   1555   } else {
   1556     // If there is a remaining operand, it must be a trailing immediate. Emit it
   1557     // according to the right size for the instruction. Some instructions
   1558     // (SSE4a extrq and insertq) have two trailing immediates.
   1559     while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1560       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1561                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1562                     CurByte, OS, Fixups);
   1563     }
   1564   }
   1565 
   1566   if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
   1567     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
   1568 
   1569 #ifndef NDEBUG
   1570   // FIXME: Verify.
   1571   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
   1572     errs() << "Cannot encode all operands of: ";
   1573     MI.dump();
   1574     errs() << '\n';
   1575     abort();
   1576   }
   1577 #endif
   1578 }
   1579 
   1580 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
   1581                                             const MCRegisterInfo &MRI,
   1582                                             MCContext &Ctx) {
   1583   return new X86MCCodeEmitter(MCII, Ctx);
   1584 }
   1585