1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Decl subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/ASTMutationListener.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/PrettyPrinter.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/IdentifierTable.h" 30 #include "clang/Basic/Module.h" 31 #include "clang/Basic/Specifiers.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include <algorithm> 36 37 using namespace clang; 38 39 Decl *clang::getPrimaryMergedDecl(Decl *D) { 40 return D->getASTContext().getPrimaryMergedDecl(D); 41 } 42 43 // Defined here so that it can be inlined into its direct callers. 44 bool Decl::isOutOfLine() const { 45 return !getLexicalDeclContext()->Equals(getDeclContext()); 46 } 47 48 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 49 : Decl(TranslationUnit, nullptr, SourceLocation()), 50 DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) { 51 Hidden = Ctx.getLangOpts().ModulesLocalVisibility; 52 } 53 54 //===----------------------------------------------------------------------===// 55 // NamedDecl Implementation 56 //===----------------------------------------------------------------------===// 57 58 // Visibility rules aren't rigorously externally specified, but here 59 // are the basic principles behind what we implement: 60 // 61 // 1. An explicit visibility attribute is generally a direct expression 62 // of the user's intent and should be honored. Only the innermost 63 // visibility attribute applies. If no visibility attribute applies, 64 // global visibility settings are considered. 65 // 66 // 2. There is one caveat to the above: on or in a template pattern, 67 // an explicit visibility attribute is just a default rule, and 68 // visibility can be decreased by the visibility of template 69 // arguments. But this, too, has an exception: an attribute on an 70 // explicit specialization or instantiation causes all the visibility 71 // restrictions of the template arguments to be ignored. 72 // 73 // 3. A variable that does not otherwise have explicit visibility can 74 // be restricted by the visibility of its type. 75 // 76 // 4. A visibility restriction is explicit if it comes from an 77 // attribute (or something like it), not a global visibility setting. 78 // When emitting a reference to an external symbol, visibility 79 // restrictions are ignored unless they are explicit. 80 // 81 // 5. When computing the visibility of a non-type, including a 82 // non-type member of a class, only non-type visibility restrictions 83 // are considered: the 'visibility' attribute, global value-visibility 84 // settings, and a few special cases like __private_extern. 85 // 86 // 6. When computing the visibility of a type, including a type member 87 // of a class, only type visibility restrictions are considered: 88 // the 'type_visibility' attribute and global type-visibility settings. 89 // However, a 'visibility' attribute counts as a 'type_visibility' 90 // attribute on any declaration that only has the former. 91 // 92 // The visibility of a "secondary" entity, like a template argument, 93 // is computed using the kind of that entity, not the kind of the 94 // primary entity for which we are computing visibility. For example, 95 // the visibility of a specialization of either of these templates: 96 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 97 // template <class T, bool (&compare)(T, X)> class matcher; 98 // is restricted according to the type visibility of the argument 'T', 99 // the type visibility of 'bool(&)(T,X)', and the value visibility of 100 // the argument function 'compare'. That 'has_match' is a value 101 // and 'matcher' is a type only matters when looking for attributes 102 // and settings from the immediate context. 103 104 const unsigned IgnoreExplicitVisibilityBit = 2; 105 const unsigned IgnoreAllVisibilityBit = 4; 106 107 /// Kinds of LV computation. The linkage side of the computation is 108 /// always the same, but different things can change how visibility is 109 /// computed. 110 enum LVComputationKind { 111 /// Do an LV computation for, ultimately, a type. 112 /// Visibility may be restricted by type visibility settings and 113 /// the visibility of template arguments. 114 LVForType = NamedDecl::VisibilityForType, 115 116 /// Do an LV computation for, ultimately, a non-type declaration. 117 /// Visibility may be restricted by value visibility settings and 118 /// the visibility of template arguments. 119 LVForValue = NamedDecl::VisibilityForValue, 120 121 /// Do an LV computation for, ultimately, a type that already has 122 /// some sort of explicit visibility. Visibility may only be 123 /// restricted by the visibility of template arguments. 124 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), 125 126 /// Do an LV computation for, ultimately, a non-type declaration 127 /// that already has some sort of explicit visibility. Visibility 128 /// may only be restricted by the visibility of template arguments. 129 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), 130 131 /// Do an LV computation when we only care about the linkage. 132 LVForLinkageOnly = 133 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit 134 }; 135 136 /// Does this computation kind permit us to consider additional 137 /// visibility settings from attributes and the like? 138 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 139 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); 140 } 141 142 /// Given an LVComputationKind, return one of the same type/value sort 143 /// that records that it already has explicit visibility. 144 static LVComputationKind 145 withExplicitVisibilityAlready(LVComputationKind oldKind) { 146 LVComputationKind newKind = 147 static_cast<LVComputationKind>(unsigned(oldKind) | 148 IgnoreExplicitVisibilityBit); 149 assert(oldKind != LVForType || newKind == LVForExplicitType); 150 assert(oldKind != LVForValue || newKind == LVForExplicitValue); 151 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); 152 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); 153 return newKind; 154 } 155 156 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 157 LVComputationKind kind) { 158 assert(!hasExplicitVisibilityAlready(kind) && 159 "asking for explicit visibility when we shouldn't be"); 160 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); 161 } 162 163 /// Is the given declaration a "type" or a "value" for the purposes of 164 /// visibility computation? 165 static bool usesTypeVisibility(const NamedDecl *D) { 166 return isa<TypeDecl>(D) || 167 isa<ClassTemplateDecl>(D) || 168 isa<ObjCInterfaceDecl>(D); 169 } 170 171 /// Does the given declaration have member specialization information, 172 /// and if so, is it an explicit specialization? 173 template <class T> static typename 174 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 175 isExplicitMemberSpecialization(const T *D) { 176 if (const MemberSpecializationInfo *member = 177 D->getMemberSpecializationInfo()) { 178 return member->isExplicitSpecialization(); 179 } 180 return false; 181 } 182 183 /// For templates, this question is easier: a member template can't be 184 /// explicitly instantiated, so there's a single bit indicating whether 185 /// or not this is an explicit member specialization. 186 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 187 return D->isMemberSpecialization(); 188 } 189 190 /// Given a visibility attribute, return the explicit visibility 191 /// associated with it. 192 template <class T> 193 static Visibility getVisibilityFromAttr(const T *attr) { 194 switch (attr->getVisibility()) { 195 case T::Default: 196 return DefaultVisibility; 197 case T::Hidden: 198 return HiddenVisibility; 199 case T::Protected: 200 return ProtectedVisibility; 201 } 202 llvm_unreachable("bad visibility kind"); 203 } 204 205 /// Return the explicit visibility of the given declaration. 206 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 207 NamedDecl::ExplicitVisibilityKind kind) { 208 // If we're ultimately computing the visibility of a type, look for 209 // a 'type_visibility' attribute before looking for 'visibility'. 210 if (kind == NamedDecl::VisibilityForType) { 211 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 212 return getVisibilityFromAttr(A); 213 } 214 } 215 216 // If this declaration has an explicit visibility attribute, use it. 217 if (const auto *A = D->getAttr<VisibilityAttr>()) { 218 return getVisibilityFromAttr(A); 219 } 220 221 // If we're on Mac OS X, an 'availability' for Mac OS X attribute 222 // implies visibility(default). 223 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { 224 for (const auto *A : D->specific_attrs<AvailabilityAttr>()) 225 if (A->getPlatform()->getName().equals("macos")) 226 return DefaultVisibility; 227 } 228 229 return None; 230 } 231 232 static LinkageInfo 233 getLVForType(const Type &T, LVComputationKind computation) { 234 if (computation == LVForLinkageOnly) 235 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 236 return T.getLinkageAndVisibility(); 237 } 238 239 /// \brief Get the most restrictive linkage for the types in the given 240 /// template parameter list. For visibility purposes, template 241 /// parameters are part of the signature of a template. 242 static LinkageInfo 243 getLVForTemplateParameterList(const TemplateParameterList *Params, 244 LVComputationKind computation) { 245 LinkageInfo LV; 246 for (const NamedDecl *P : *Params) { 247 // Template type parameters are the most common and never 248 // contribute to visibility, pack or not. 249 if (isa<TemplateTypeParmDecl>(P)) 250 continue; 251 252 // Non-type template parameters can be restricted by the value type, e.g. 253 // template <enum X> class A { ... }; 254 // We have to be careful here, though, because we can be dealing with 255 // dependent types. 256 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 257 // Handle the non-pack case first. 258 if (!NTTP->isExpandedParameterPack()) { 259 if (!NTTP->getType()->isDependentType()) { 260 LV.merge(getLVForType(*NTTP->getType(), computation)); 261 } 262 continue; 263 } 264 265 // Look at all the types in an expanded pack. 266 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 267 QualType type = NTTP->getExpansionType(i); 268 if (!type->isDependentType()) 269 LV.merge(type->getLinkageAndVisibility()); 270 } 271 continue; 272 } 273 274 // Template template parameters can be restricted by their 275 // template parameters, recursively. 276 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 277 278 // Handle the non-pack case first. 279 if (!TTP->isExpandedParameterPack()) { 280 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 281 computation)); 282 continue; 283 } 284 285 // Look at all expansions in an expanded pack. 286 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 287 i != n; ++i) { 288 LV.merge(getLVForTemplateParameterList( 289 TTP->getExpansionTemplateParameters(i), computation)); 290 } 291 } 292 293 return LV; 294 } 295 296 /// getLVForDecl - Get the linkage and visibility for the given declaration. 297 static LinkageInfo getLVForDecl(const NamedDecl *D, 298 LVComputationKind computation); 299 300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 301 const Decl *Ret = nullptr; 302 const DeclContext *DC = D->getDeclContext(); 303 while (DC->getDeclKind() != Decl::TranslationUnit) { 304 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 305 Ret = cast<Decl>(DC); 306 DC = DC->getParent(); 307 } 308 return Ret; 309 } 310 311 /// \brief Get the most restrictive linkage for the types and 312 /// declarations in the given template argument list. 313 /// 314 /// Note that we don't take an LVComputationKind because we always 315 /// want to honor the visibility of template arguments in the same way. 316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 317 LVComputationKind computation) { 318 LinkageInfo LV; 319 320 for (const TemplateArgument &Arg : Args) { 321 switch (Arg.getKind()) { 322 case TemplateArgument::Null: 323 case TemplateArgument::Integral: 324 case TemplateArgument::Expression: 325 continue; 326 327 case TemplateArgument::Type: 328 LV.merge(getLVForType(*Arg.getAsType(), computation)); 329 continue; 330 331 case TemplateArgument::Declaration: 332 if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) { 333 assert(!usesTypeVisibility(ND)); 334 LV.merge(getLVForDecl(ND, computation)); 335 } 336 continue; 337 338 case TemplateArgument::NullPtr: 339 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); 340 continue; 341 342 case TemplateArgument::Template: 343 case TemplateArgument::TemplateExpansion: 344 if (TemplateDecl *Template = 345 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 346 LV.merge(getLVForDecl(Template, computation)); 347 continue; 348 349 case TemplateArgument::Pack: 350 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 351 continue; 352 } 353 llvm_unreachable("bad template argument kind"); 354 } 355 356 return LV; 357 } 358 359 static LinkageInfo 360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 361 LVComputationKind computation) { 362 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 363 } 364 365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 366 const FunctionTemplateSpecializationInfo *specInfo) { 367 // Include visibility from the template parameters and arguments 368 // only if this is not an explicit instantiation or specialization 369 // with direct explicit visibility. (Implicit instantiations won't 370 // have a direct attribute.) 371 if (!specInfo->isExplicitInstantiationOrSpecialization()) 372 return true; 373 374 return !fn->hasAttr<VisibilityAttr>(); 375 } 376 377 /// Merge in template-related linkage and visibility for the given 378 /// function template specialization. 379 /// 380 /// We don't need a computation kind here because we can assume 381 /// LVForValue. 382 /// 383 /// \param[out] LV the computation to use for the parent 384 static void 385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, 386 const FunctionTemplateSpecializationInfo *specInfo, 387 LVComputationKind computation) { 388 bool considerVisibility = 389 shouldConsiderTemplateVisibility(fn, specInfo); 390 391 // Merge information from the template parameters. 392 FunctionTemplateDecl *temp = specInfo->getTemplate(); 393 LinkageInfo tempLV = 394 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 395 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 396 397 // Merge information from the template arguments. 398 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 399 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 400 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 401 } 402 403 /// Does the given declaration have a direct visibility attribute 404 /// that would match the given rules? 405 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 406 LVComputationKind computation) { 407 switch (computation) { 408 case LVForType: 409 case LVForExplicitType: 410 if (D->hasAttr<TypeVisibilityAttr>()) 411 return true; 412 // fallthrough 413 case LVForValue: 414 case LVForExplicitValue: 415 if (D->hasAttr<VisibilityAttr>()) 416 return true; 417 return false; 418 case LVForLinkageOnly: 419 return false; 420 } 421 llvm_unreachable("bad visibility computation kind"); 422 } 423 424 /// Should we consider visibility associated with the template 425 /// arguments and parameters of the given class template specialization? 426 static bool shouldConsiderTemplateVisibility( 427 const ClassTemplateSpecializationDecl *spec, 428 LVComputationKind computation) { 429 // Include visibility from the template parameters and arguments 430 // only if this is not an explicit instantiation or specialization 431 // with direct explicit visibility (and note that implicit 432 // instantiations won't have a direct attribute). 433 // 434 // Furthermore, we want to ignore template parameters and arguments 435 // for an explicit specialization when computing the visibility of a 436 // member thereof with explicit visibility. 437 // 438 // This is a bit complex; let's unpack it. 439 // 440 // An explicit class specialization is an independent, top-level 441 // declaration. As such, if it or any of its members has an 442 // explicit visibility attribute, that must directly express the 443 // user's intent, and we should honor it. The same logic applies to 444 // an explicit instantiation of a member of such a thing. 445 446 // Fast path: if this is not an explicit instantiation or 447 // specialization, we always want to consider template-related 448 // visibility restrictions. 449 if (!spec->isExplicitInstantiationOrSpecialization()) 450 return true; 451 452 // This is the 'member thereof' check. 453 if (spec->isExplicitSpecialization() && 454 hasExplicitVisibilityAlready(computation)) 455 return false; 456 457 return !hasDirectVisibilityAttribute(spec, computation); 458 } 459 460 /// Merge in template-related linkage and visibility for the given 461 /// class template specialization. 462 static void mergeTemplateLV(LinkageInfo &LV, 463 const ClassTemplateSpecializationDecl *spec, 464 LVComputationKind computation) { 465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 466 467 // Merge information from the template parameters, but ignore 468 // visibility if we're only considering template arguments. 469 470 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 471 LinkageInfo tempLV = 472 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 473 LV.mergeMaybeWithVisibility(tempLV, 474 considerVisibility && !hasExplicitVisibilityAlready(computation)); 475 476 // Merge information from the template arguments. We ignore 477 // template-argument visibility if we've got an explicit 478 // instantiation with a visibility attribute. 479 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 480 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 481 if (considerVisibility) 482 LV.mergeVisibility(argsLV); 483 LV.mergeExternalVisibility(argsLV); 484 } 485 486 /// Should we consider visibility associated with the template 487 /// arguments and parameters of the given variable template 488 /// specialization? As usual, follow class template specialization 489 /// logic up to initialization. 490 static bool shouldConsiderTemplateVisibility( 491 const VarTemplateSpecializationDecl *spec, 492 LVComputationKind computation) { 493 // Include visibility from the template parameters and arguments 494 // only if this is not an explicit instantiation or specialization 495 // with direct explicit visibility (and note that implicit 496 // instantiations won't have a direct attribute). 497 if (!spec->isExplicitInstantiationOrSpecialization()) 498 return true; 499 500 // An explicit variable specialization is an independent, top-level 501 // declaration. As such, if it has an explicit visibility attribute, 502 // that must directly express the user's intent, and we should honor 503 // it. 504 if (spec->isExplicitSpecialization() && 505 hasExplicitVisibilityAlready(computation)) 506 return false; 507 508 return !hasDirectVisibilityAttribute(spec, computation); 509 } 510 511 /// Merge in template-related linkage and visibility for the given 512 /// variable template specialization. As usual, follow class template 513 /// specialization logic up to initialization. 514 static void mergeTemplateLV(LinkageInfo &LV, 515 const VarTemplateSpecializationDecl *spec, 516 LVComputationKind computation) { 517 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 518 519 // Merge information from the template parameters, but ignore 520 // visibility if we're only considering template arguments. 521 522 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 523 LinkageInfo tempLV = 524 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 525 LV.mergeMaybeWithVisibility(tempLV, 526 considerVisibility && !hasExplicitVisibilityAlready(computation)); 527 528 // Merge information from the template arguments. We ignore 529 // template-argument visibility if we've got an explicit 530 // instantiation with a visibility attribute. 531 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 532 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 533 if (considerVisibility) 534 LV.mergeVisibility(argsLV); 535 LV.mergeExternalVisibility(argsLV); 536 } 537 538 static bool useInlineVisibilityHidden(const NamedDecl *D) { 539 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 540 const LangOptions &Opts = D->getASTContext().getLangOpts(); 541 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 542 return false; 543 544 const auto *FD = dyn_cast<FunctionDecl>(D); 545 if (!FD) 546 return false; 547 548 TemplateSpecializationKind TSK = TSK_Undeclared; 549 if (FunctionTemplateSpecializationInfo *spec 550 = FD->getTemplateSpecializationInfo()) { 551 TSK = spec->getTemplateSpecializationKind(); 552 } else if (MemberSpecializationInfo *MSI = 553 FD->getMemberSpecializationInfo()) { 554 TSK = MSI->getTemplateSpecializationKind(); 555 } 556 557 const FunctionDecl *Def = nullptr; 558 // InlineVisibilityHidden only applies to definitions, and 559 // isInlined() only gives meaningful answers on definitions 560 // anyway. 561 return TSK != TSK_ExplicitInstantiationDeclaration && 562 TSK != TSK_ExplicitInstantiationDefinition && 563 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 564 } 565 566 template <typename T> static bool isFirstInExternCContext(T *D) { 567 const T *First = D->getFirstDecl(); 568 return First->isInExternCContext(); 569 } 570 571 static bool isSingleLineLanguageLinkage(const Decl &D) { 572 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 573 if (!SD->hasBraces()) 574 return true; 575 return false; 576 } 577 578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, 579 LVComputationKind computation) { 580 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 581 "Not a name having namespace scope"); 582 ASTContext &Context = D->getASTContext(); 583 584 // C++ [basic.link]p3: 585 // A name having namespace scope (3.3.6) has internal linkage if it 586 // is the name of 587 // - an object, reference, function or function template that is 588 // explicitly declared static; or, 589 // (This bullet corresponds to C99 6.2.2p3.) 590 if (const auto *Var = dyn_cast<VarDecl>(D)) { 591 // Explicitly declared static. 592 if (Var->getStorageClass() == SC_Static) 593 return LinkageInfo::internal(); 594 595 // - a non-inline, non-volatile object or reference that is explicitly 596 // declared const or constexpr and neither explicitly declared extern 597 // nor previously declared to have external linkage; or (there is no 598 // equivalent in C99) 599 if (Context.getLangOpts().CPlusPlus && 600 Var->getType().isConstQualified() && 601 !Var->getType().isVolatileQualified() && 602 !Var->isInline()) { 603 const VarDecl *PrevVar = Var->getPreviousDecl(); 604 if (PrevVar) 605 return getLVForDecl(PrevVar, computation); 606 607 if (Var->getStorageClass() != SC_Extern && 608 Var->getStorageClass() != SC_PrivateExtern && 609 !isSingleLineLanguageLinkage(*Var)) 610 return LinkageInfo::internal(); 611 } 612 613 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 614 PrevVar = PrevVar->getPreviousDecl()) { 615 if (PrevVar->getStorageClass() == SC_PrivateExtern && 616 Var->getStorageClass() == SC_None) 617 return PrevVar->getLinkageAndVisibility(); 618 // Explicitly declared static. 619 if (PrevVar->getStorageClass() == SC_Static) 620 return LinkageInfo::internal(); 621 } 622 } else if (const FunctionDecl *Function = D->getAsFunction()) { 623 // C++ [temp]p4: 624 // A non-member function template can have internal linkage; any 625 // other template name shall have external linkage. 626 627 // Explicitly declared static. 628 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 629 return LinkageInfo(InternalLinkage, DefaultVisibility, false); 630 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 631 // - a data member of an anonymous union. 632 const VarDecl *VD = IFD->getVarDecl(); 633 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 634 return getLVForNamespaceScopeDecl(VD, computation); 635 } 636 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 637 638 if (D->isInAnonymousNamespace()) { 639 const auto *Var = dyn_cast<VarDecl>(D); 640 const auto *Func = dyn_cast<FunctionDecl>(D); 641 // FIXME: In C++11 onwards, anonymous namespaces should give decls 642 // within them internal linkage, not unique external linkage. 643 if ((!Var || !isFirstInExternCContext(Var)) && 644 (!Func || !isFirstInExternCContext(Func))) 645 return LinkageInfo::uniqueExternal(); 646 } 647 648 // Set up the defaults. 649 650 // C99 6.2.2p5: 651 // If the declaration of an identifier for an object has file 652 // scope and no storage-class specifier, its linkage is 653 // external. 654 LinkageInfo LV; 655 656 if (!hasExplicitVisibilityAlready(computation)) { 657 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 658 LV.mergeVisibility(*Vis, true); 659 } else { 660 // If we're declared in a namespace with a visibility attribute, 661 // use that namespace's visibility, and it still counts as explicit. 662 for (const DeclContext *DC = D->getDeclContext(); 663 !isa<TranslationUnitDecl>(DC); 664 DC = DC->getParent()) { 665 const auto *ND = dyn_cast<NamespaceDecl>(DC); 666 if (!ND) continue; 667 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 668 LV.mergeVisibility(*Vis, true); 669 break; 670 } 671 } 672 } 673 674 // Add in global settings if the above didn't give us direct visibility. 675 if (!LV.isVisibilityExplicit()) { 676 // Use global type/value visibility as appropriate. 677 Visibility globalVisibility; 678 if (computation == LVForValue) { 679 globalVisibility = Context.getLangOpts().getValueVisibilityMode(); 680 } else { 681 assert(computation == LVForType); 682 globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); 683 } 684 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 685 686 // If we're paying attention to global visibility, apply 687 // -finline-visibility-hidden if this is an inline method. 688 if (useInlineVisibilityHidden(D)) 689 LV.mergeVisibility(HiddenVisibility, true); 690 } 691 } 692 693 // C++ [basic.link]p4: 694 695 // A name having namespace scope has external linkage if it is the 696 // name of 697 // 698 // - an object or reference, unless it has internal linkage; or 699 if (const auto *Var = dyn_cast<VarDecl>(D)) { 700 // GCC applies the following optimization to variables and static 701 // data members, but not to functions: 702 // 703 // Modify the variable's LV by the LV of its type unless this is 704 // C or extern "C". This follows from [basic.link]p9: 705 // A type without linkage shall not be used as the type of a 706 // variable or function with external linkage unless 707 // - the entity has C language linkage, or 708 // - the entity is declared within an unnamed namespace, or 709 // - the entity is not used or is defined in the same 710 // translation unit. 711 // and [basic.link]p10: 712 // ...the types specified by all declarations referring to a 713 // given variable or function shall be identical... 714 // C does not have an equivalent rule. 715 // 716 // Ignore this if we've got an explicit attribute; the user 717 // probably knows what they're doing. 718 // 719 // Note that we don't want to make the variable non-external 720 // because of this, but unique-external linkage suits us. 721 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { 722 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 723 if (TypeLV.getLinkage() != ExternalLinkage) 724 return LinkageInfo::uniqueExternal(); 725 if (!LV.isVisibilityExplicit()) 726 LV.mergeVisibility(TypeLV); 727 } 728 729 if (Var->getStorageClass() == SC_PrivateExtern) 730 LV.mergeVisibility(HiddenVisibility, true); 731 732 // Note that Sema::MergeVarDecl already takes care of implementing 733 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 734 // to do it here. 735 736 // As per function and class template specializations (below), 737 // consider LV for the template and template arguments. We're at file 738 // scope, so we do not need to worry about nested specializations. 739 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 740 mergeTemplateLV(LV, spec, computation); 741 } 742 743 // - a function, unless it has internal linkage; or 744 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 745 // In theory, we can modify the function's LV by the LV of its 746 // type unless it has C linkage (see comment above about variables 747 // for justification). In practice, GCC doesn't do this, so it's 748 // just too painful to make work. 749 750 if (Function->getStorageClass() == SC_PrivateExtern) 751 LV.mergeVisibility(HiddenVisibility, true); 752 753 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 754 // merging storage classes and visibility attributes, so we don't have to 755 // look at previous decls in here. 756 757 // In C++, then if the type of the function uses a type with 758 // unique-external linkage, it's not legally usable from outside 759 // this translation unit. However, we should use the C linkage 760 // rules instead for extern "C" declarations. 761 if (Context.getLangOpts().CPlusPlus && 762 !Function->isInExternCContext()) { 763 // Only look at the type-as-written. If this function has an auto-deduced 764 // return type, we can't compute the linkage of that type because it could 765 // require looking at the linkage of this function, and we don't need this 766 // for correctness because the type is not part of the function's 767 // signature. 768 // FIXME: This is a hack. We should be able to solve this circularity and 769 // the one in getLVForClassMember for Functions some other way. 770 QualType TypeAsWritten = Function->getType(); 771 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 772 TypeAsWritten = TSI->getType(); 773 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 774 return LinkageInfo::uniqueExternal(); 775 } 776 777 // Consider LV from the template and the template arguments. 778 // We're at file scope, so we do not need to worry about nested 779 // specializations. 780 if (FunctionTemplateSpecializationInfo *specInfo 781 = Function->getTemplateSpecializationInfo()) { 782 mergeTemplateLV(LV, Function, specInfo, computation); 783 } 784 785 // - a named class (Clause 9), or an unnamed class defined in a 786 // typedef declaration in which the class has the typedef name 787 // for linkage purposes (7.1.3); or 788 // - a named enumeration (7.2), or an unnamed enumeration 789 // defined in a typedef declaration in which the enumeration 790 // has the typedef name for linkage purposes (7.1.3); or 791 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 792 // Unnamed tags have no linkage. 793 if (!Tag->hasNameForLinkage()) 794 return LinkageInfo::none(); 795 796 // If this is a class template specialization, consider the 797 // linkage of the template and template arguments. We're at file 798 // scope, so we do not need to worry about nested specializations. 799 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 800 mergeTemplateLV(LV, spec, computation); 801 } 802 803 // - an enumerator belonging to an enumeration with external linkage; 804 } else if (isa<EnumConstantDecl>(D)) { 805 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 806 computation); 807 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 808 return LinkageInfo::none(); 809 LV.merge(EnumLV); 810 811 // - a template, unless it is a function template that has 812 // internal linkage (Clause 14); 813 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 814 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 815 LinkageInfo tempLV = 816 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 817 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 818 819 // - a namespace (7.3), unless it is declared within an unnamed 820 // namespace. 821 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { 822 return LV; 823 824 // By extension, we assign external linkage to Objective-C 825 // interfaces. 826 } else if (isa<ObjCInterfaceDecl>(D)) { 827 // fallout 828 829 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 830 // A typedef declaration has linkage if it gives a type a name for 831 // linkage purposes. 832 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 833 return LinkageInfo::none(); 834 835 // Everything not covered here has no linkage. 836 } else { 837 return LinkageInfo::none(); 838 } 839 840 // If we ended up with non-external linkage, visibility should 841 // always be default. 842 if (LV.getLinkage() != ExternalLinkage) 843 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 844 845 return LV; 846 } 847 848 static LinkageInfo getLVForClassMember(const NamedDecl *D, 849 LVComputationKind computation) { 850 // Only certain class members have linkage. Note that fields don't 851 // really have linkage, but it's convenient to say they do for the 852 // purposes of calculating linkage of pointer-to-data-member 853 // template arguments. 854 // 855 // Templates also don't officially have linkage, but since we ignore 856 // the C++ standard and look at template arguments when determining 857 // linkage and visibility of a template specialization, we might hit 858 // a template template argument that way. If we do, we need to 859 // consider its linkage. 860 if (!(isa<CXXMethodDecl>(D) || 861 isa<VarDecl>(D) || 862 isa<FieldDecl>(D) || 863 isa<IndirectFieldDecl>(D) || 864 isa<TagDecl>(D) || 865 isa<TemplateDecl>(D))) 866 return LinkageInfo::none(); 867 868 LinkageInfo LV; 869 870 // If we have an explicit visibility attribute, merge that in. 871 if (!hasExplicitVisibilityAlready(computation)) { 872 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 873 LV.mergeVisibility(*Vis, true); 874 // If we're paying attention to global visibility, apply 875 // -finline-visibility-hidden if this is an inline method. 876 // 877 // Note that we do this before merging information about 878 // the class visibility. 879 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 880 LV.mergeVisibility(HiddenVisibility, true); 881 } 882 883 // If this class member has an explicit visibility attribute, the only 884 // thing that can change its visibility is the template arguments, so 885 // only look for them when processing the class. 886 LVComputationKind classComputation = computation; 887 if (LV.isVisibilityExplicit()) 888 classComputation = withExplicitVisibilityAlready(computation); 889 890 LinkageInfo classLV = 891 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 892 // If the class already has unique-external linkage, we can't improve. 893 if (classLV.getLinkage() == UniqueExternalLinkage) 894 return LinkageInfo::uniqueExternal(); 895 896 if (!isExternallyVisible(classLV.getLinkage())) 897 return LinkageInfo::none(); 898 899 900 // Otherwise, don't merge in classLV yet, because in certain cases 901 // we need to completely ignore the visibility from it. 902 903 // Specifically, if this decl exists and has an explicit attribute. 904 const NamedDecl *explicitSpecSuppressor = nullptr; 905 906 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 907 // If the type of the function uses a type with unique-external 908 // linkage, it's not legally usable from outside this translation unit. 909 // But only look at the type-as-written. If this function has an 910 // auto-deduced return type, we can't compute the linkage of that type 911 // because it could require looking at the linkage of this function, and we 912 // don't need this for correctness because the type is not part of the 913 // function's signature. 914 // FIXME: This is a hack. We should be able to solve this circularity and 915 // the one in getLVForNamespaceScopeDecl for Functions some other way. 916 { 917 QualType TypeAsWritten = MD->getType(); 918 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 919 TypeAsWritten = TSI->getType(); 920 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 921 return LinkageInfo::uniqueExternal(); 922 } 923 // If this is a method template specialization, use the linkage for 924 // the template parameters and arguments. 925 if (FunctionTemplateSpecializationInfo *spec 926 = MD->getTemplateSpecializationInfo()) { 927 mergeTemplateLV(LV, MD, spec, computation); 928 if (spec->isExplicitSpecialization()) { 929 explicitSpecSuppressor = MD; 930 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 931 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 932 } 933 } else if (isExplicitMemberSpecialization(MD)) { 934 explicitSpecSuppressor = MD; 935 } 936 937 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 938 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 939 mergeTemplateLV(LV, spec, computation); 940 if (spec->isExplicitSpecialization()) { 941 explicitSpecSuppressor = spec; 942 } else { 943 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 944 if (isExplicitMemberSpecialization(temp)) { 945 explicitSpecSuppressor = temp->getTemplatedDecl(); 946 } 947 } 948 } else if (isExplicitMemberSpecialization(RD)) { 949 explicitSpecSuppressor = RD; 950 } 951 952 // Static data members. 953 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 954 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 955 mergeTemplateLV(LV, spec, computation); 956 957 // Modify the variable's linkage by its type, but ignore the 958 // type's visibility unless it's a definition. 959 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 960 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 961 LV.mergeVisibility(typeLV); 962 LV.mergeExternalVisibility(typeLV); 963 964 if (isExplicitMemberSpecialization(VD)) { 965 explicitSpecSuppressor = VD; 966 } 967 968 // Template members. 969 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 970 bool considerVisibility = 971 (!LV.isVisibilityExplicit() && 972 !classLV.isVisibilityExplicit() && 973 !hasExplicitVisibilityAlready(computation)); 974 LinkageInfo tempLV = 975 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 976 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 977 978 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 979 if (isExplicitMemberSpecialization(redeclTemp)) { 980 explicitSpecSuppressor = temp->getTemplatedDecl(); 981 } 982 } 983 } 984 985 // We should never be looking for an attribute directly on a template. 986 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 987 988 // If this member is an explicit member specialization, and it has 989 // an explicit attribute, ignore visibility from the parent. 990 bool considerClassVisibility = true; 991 if (explicitSpecSuppressor && 992 // optimization: hasDVA() is true only with explicit visibility. 993 LV.isVisibilityExplicit() && 994 classLV.getVisibility() != DefaultVisibility && 995 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 996 considerClassVisibility = false; 997 } 998 999 // Finally, merge in information from the class. 1000 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1001 return LV; 1002 } 1003 1004 void NamedDecl::anchor() { } 1005 1006 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1007 LVComputationKind computation); 1008 1009 bool NamedDecl::isLinkageValid() const { 1010 if (!hasCachedLinkage()) 1011 return true; 1012 1013 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == 1014 getCachedLinkage(); 1015 } 1016 1017 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1018 StringRef name = getName(); 1019 if (name.empty()) return SFF_None; 1020 1021 if (name.front() == 'C') 1022 if (name == "CFStringCreateWithFormat" || 1023 name == "CFStringCreateWithFormatAndArguments" || 1024 name == "CFStringAppendFormat" || 1025 name == "CFStringAppendFormatAndArguments") 1026 return SFF_CFString; 1027 return SFF_None; 1028 } 1029 1030 Linkage NamedDecl::getLinkageInternal() const { 1031 // We don't care about visibility here, so ask for the cheapest 1032 // possible visibility analysis. 1033 return getLVForDecl(this, LVForLinkageOnly).getLinkage(); 1034 } 1035 1036 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1037 LVComputationKind computation = 1038 (usesTypeVisibility(this) ? LVForType : LVForValue); 1039 return getLVForDecl(this, computation); 1040 } 1041 1042 static Optional<Visibility> 1043 getExplicitVisibilityAux(const NamedDecl *ND, 1044 NamedDecl::ExplicitVisibilityKind kind, 1045 bool IsMostRecent) { 1046 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1047 1048 // Check the declaration itself first. 1049 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1050 return V; 1051 1052 // If this is a member class of a specialization of a class template 1053 // and the corresponding decl has explicit visibility, use that. 1054 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1055 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1056 if (InstantiatedFrom) 1057 return getVisibilityOf(InstantiatedFrom, kind); 1058 } 1059 1060 // If there wasn't explicit visibility there, and this is a 1061 // specialization of a class template, check for visibility 1062 // on the pattern. 1063 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) 1064 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), 1065 kind); 1066 1067 // Use the most recent declaration. 1068 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1069 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1070 if (MostRecent != ND) 1071 return getExplicitVisibilityAux(MostRecent, kind, true); 1072 } 1073 1074 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1075 if (Var->isStaticDataMember()) { 1076 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1077 if (InstantiatedFrom) 1078 return getVisibilityOf(InstantiatedFrom, kind); 1079 } 1080 1081 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1082 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1083 kind); 1084 1085 return None; 1086 } 1087 // Also handle function template specializations. 1088 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1089 // If the function is a specialization of a template with an 1090 // explicit visibility attribute, use that. 1091 if (FunctionTemplateSpecializationInfo *templateInfo 1092 = fn->getTemplateSpecializationInfo()) 1093 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1094 kind); 1095 1096 // If the function is a member of a specialization of a class template 1097 // and the corresponding decl has explicit visibility, use that. 1098 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1099 if (InstantiatedFrom) 1100 return getVisibilityOf(InstantiatedFrom, kind); 1101 1102 return None; 1103 } 1104 1105 // The visibility of a template is stored in the templated decl. 1106 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1107 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1108 1109 return None; 1110 } 1111 1112 Optional<Visibility> 1113 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1114 return getExplicitVisibilityAux(this, kind, false); 1115 } 1116 1117 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, 1118 LVComputationKind computation) { 1119 // This lambda has its linkage/visibility determined by its owner. 1120 if (ContextDecl) { 1121 if (isa<ParmVarDecl>(ContextDecl)) 1122 DC = ContextDecl->getDeclContext()->getRedeclContext(); 1123 else 1124 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); 1125 } 1126 1127 if (const auto *ND = dyn_cast<NamedDecl>(DC)) 1128 return getLVForDecl(ND, computation); 1129 1130 return LinkageInfo::external(); 1131 } 1132 1133 static LinkageInfo getLVForLocalDecl(const NamedDecl *D, 1134 LVComputationKind computation) { 1135 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1136 if (Function->isInAnonymousNamespace() && 1137 !Function->isInExternCContext()) 1138 return LinkageInfo::uniqueExternal(); 1139 1140 // This is a "void f();" which got merged with a file static. 1141 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1142 return LinkageInfo::internal(); 1143 1144 LinkageInfo LV; 1145 if (!hasExplicitVisibilityAlready(computation)) { 1146 if (Optional<Visibility> Vis = 1147 getExplicitVisibility(Function, computation)) 1148 LV.mergeVisibility(*Vis, true); 1149 } 1150 1151 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1152 // merging storage classes and visibility attributes, so we don't have to 1153 // look at previous decls in here. 1154 1155 return LV; 1156 } 1157 1158 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1159 if (Var->hasExternalStorage()) { 1160 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) 1161 return LinkageInfo::uniqueExternal(); 1162 1163 LinkageInfo LV; 1164 if (Var->getStorageClass() == SC_PrivateExtern) 1165 LV.mergeVisibility(HiddenVisibility, true); 1166 else if (!hasExplicitVisibilityAlready(computation)) { 1167 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1168 LV.mergeVisibility(*Vis, true); 1169 } 1170 1171 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1172 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1173 if (PrevLV.getLinkage()) 1174 LV.setLinkage(PrevLV.getLinkage()); 1175 LV.mergeVisibility(PrevLV); 1176 } 1177 1178 return LV; 1179 } 1180 1181 if (!Var->isStaticLocal()) 1182 return LinkageInfo::none(); 1183 } 1184 1185 ASTContext &Context = D->getASTContext(); 1186 if (!Context.getLangOpts().CPlusPlus) 1187 return LinkageInfo::none(); 1188 1189 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1190 if (!OuterD || OuterD->isInvalidDecl()) 1191 return LinkageInfo::none(); 1192 1193 LinkageInfo LV; 1194 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1195 if (!BD->getBlockManglingNumber()) 1196 return LinkageInfo::none(); 1197 1198 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1199 BD->getBlockManglingContextDecl(), computation); 1200 } else { 1201 const auto *FD = cast<FunctionDecl>(OuterD); 1202 if (!FD->isInlined() && 1203 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1204 return LinkageInfo::none(); 1205 1206 LV = getLVForDecl(FD, computation); 1207 } 1208 if (!isExternallyVisible(LV.getLinkage())) 1209 return LinkageInfo::none(); 1210 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1211 LV.isVisibilityExplicit()); 1212 } 1213 1214 static inline const CXXRecordDecl* 1215 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1216 const CXXRecordDecl *Ret = Record; 1217 while (Record && Record->isLambda()) { 1218 Ret = Record; 1219 if (!Record->getParent()) break; 1220 // Get the Containing Class of this Lambda Class 1221 Record = dyn_cast_or_null<CXXRecordDecl>( 1222 Record->getParent()->getParent()); 1223 } 1224 return Ret; 1225 } 1226 1227 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1228 LVComputationKind computation) { 1229 // Internal_linkage attribute overrides other considerations. 1230 if (D->hasAttr<InternalLinkageAttr>()) 1231 return LinkageInfo::internal(); 1232 1233 // Objective-C: treat all Objective-C declarations as having external 1234 // linkage. 1235 switch (D->getKind()) { 1236 default: 1237 break; 1238 1239 // Per C++ [basic.link]p2, only the names of objects, references, 1240 // functions, types, templates, namespaces, and values ever have linkage. 1241 // 1242 // Note that the name of a typedef, namespace alias, using declaration, 1243 // and so on are not the name of the corresponding type, namespace, or 1244 // declaration, so they do *not* have linkage. 1245 case Decl::ImplicitParam: 1246 case Decl::Label: 1247 case Decl::NamespaceAlias: 1248 case Decl::ParmVar: 1249 case Decl::Using: 1250 case Decl::UsingShadow: 1251 case Decl::UsingDirective: 1252 return LinkageInfo::none(); 1253 1254 case Decl::EnumConstant: 1255 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1256 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1257 1258 case Decl::Typedef: 1259 case Decl::TypeAlias: 1260 // A typedef declaration has linkage if it gives a type a name for 1261 // linkage purposes. 1262 if (!D->getASTContext().getLangOpts().CPlusPlus || 1263 !cast<TypedefNameDecl>(D) 1264 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1265 return LinkageInfo::none(); 1266 break; 1267 1268 case Decl::TemplateTemplateParm: // count these as external 1269 case Decl::NonTypeTemplateParm: 1270 case Decl::ObjCAtDefsField: 1271 case Decl::ObjCCategory: 1272 case Decl::ObjCCategoryImpl: 1273 case Decl::ObjCCompatibleAlias: 1274 case Decl::ObjCImplementation: 1275 case Decl::ObjCMethod: 1276 case Decl::ObjCProperty: 1277 case Decl::ObjCPropertyImpl: 1278 case Decl::ObjCProtocol: 1279 return LinkageInfo::external(); 1280 1281 case Decl::CXXRecord: { 1282 const auto *Record = cast<CXXRecordDecl>(D); 1283 if (Record->isLambda()) { 1284 if (!Record->getLambdaManglingNumber()) { 1285 // This lambda has no mangling number, so it's internal. 1286 return LinkageInfo::internal(); 1287 } 1288 1289 // This lambda has its linkage/visibility determined: 1290 // - either by the outermost lambda if that lambda has no mangling 1291 // number. 1292 // - or by the parent of the outer most lambda 1293 // This prevents infinite recursion in settings such as nested lambdas 1294 // used in NSDMI's, for e.g. 1295 // struct L { 1296 // int t{}; 1297 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1298 // }; 1299 const CXXRecordDecl *OuterMostLambda = 1300 getOutermostEnclosingLambda(Record); 1301 if (!OuterMostLambda->getLambdaManglingNumber()) 1302 return LinkageInfo::internal(); 1303 1304 return getLVForClosure( 1305 OuterMostLambda->getDeclContext()->getRedeclContext(), 1306 OuterMostLambda->getLambdaContextDecl(), computation); 1307 } 1308 1309 break; 1310 } 1311 } 1312 1313 // Handle linkage for namespace-scope names. 1314 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1315 return getLVForNamespaceScopeDecl(D, computation); 1316 1317 // C++ [basic.link]p5: 1318 // In addition, a member function, static data member, a named 1319 // class or enumeration of class scope, or an unnamed class or 1320 // enumeration defined in a class-scope typedef declaration such 1321 // that the class or enumeration has the typedef name for linkage 1322 // purposes (7.1.3), has external linkage if the name of the class 1323 // has external linkage. 1324 if (D->getDeclContext()->isRecord()) 1325 return getLVForClassMember(D, computation); 1326 1327 // C++ [basic.link]p6: 1328 // The name of a function declared in block scope and the name of 1329 // an object declared by a block scope extern declaration have 1330 // linkage. If there is a visible declaration of an entity with 1331 // linkage having the same name and type, ignoring entities 1332 // declared outside the innermost enclosing namespace scope, the 1333 // block scope declaration declares that same entity and receives 1334 // the linkage of the previous declaration. If there is more than 1335 // one such matching entity, the program is ill-formed. Otherwise, 1336 // if no matching entity is found, the block scope entity receives 1337 // external linkage. 1338 if (D->getDeclContext()->isFunctionOrMethod()) 1339 return getLVForLocalDecl(D, computation); 1340 1341 // C++ [basic.link]p6: 1342 // Names not covered by these rules have no linkage. 1343 return LinkageInfo::none(); 1344 } 1345 1346 namespace clang { 1347 class LinkageComputer { 1348 public: 1349 static LinkageInfo getLVForDecl(const NamedDecl *D, 1350 LVComputationKind computation) { 1351 // Internal_linkage attribute overrides other considerations. 1352 if (D->hasAttr<InternalLinkageAttr>()) 1353 return LinkageInfo::internal(); 1354 1355 if (computation == LVForLinkageOnly && D->hasCachedLinkage()) 1356 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1357 1358 LinkageInfo LV = computeLVForDecl(D, computation); 1359 if (D->hasCachedLinkage()) 1360 assert(D->getCachedLinkage() == LV.getLinkage()); 1361 1362 D->setCachedLinkage(LV.getLinkage()); 1363 1364 #ifndef NDEBUG 1365 // In C (because of gnu inline) and in c++ with microsoft extensions an 1366 // static can follow an extern, so we can have two decls with different 1367 // linkages. 1368 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1369 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1370 return LV; 1371 1372 // We have just computed the linkage for this decl. By induction we know 1373 // that all other computed linkages match, check that the one we just 1374 // computed also does. 1375 NamedDecl *Old = nullptr; 1376 for (auto I : D->redecls()) { 1377 auto *T = cast<NamedDecl>(I); 1378 if (T == D) 1379 continue; 1380 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1381 Old = T; 1382 break; 1383 } 1384 } 1385 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1386 #endif 1387 1388 return LV; 1389 } 1390 }; 1391 } 1392 1393 static LinkageInfo getLVForDecl(const NamedDecl *D, 1394 LVComputationKind computation) { 1395 return clang::LinkageComputer::getLVForDecl(D, computation); 1396 } 1397 1398 std::string NamedDecl::getQualifiedNameAsString() const { 1399 std::string QualName; 1400 llvm::raw_string_ostream OS(QualName); 1401 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1402 return OS.str(); 1403 } 1404 1405 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1406 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1407 } 1408 1409 void NamedDecl::printQualifiedName(raw_ostream &OS, 1410 const PrintingPolicy &P) const { 1411 const DeclContext *Ctx = getDeclContext(); 1412 1413 if (Ctx->isFunctionOrMethod()) { 1414 printName(OS); 1415 return; 1416 } 1417 1418 typedef SmallVector<const DeclContext *, 8> ContextsTy; 1419 ContextsTy Contexts; 1420 1421 // Collect contexts. 1422 while (Ctx && isa<NamedDecl>(Ctx)) { 1423 Contexts.push_back(Ctx); 1424 Ctx = Ctx->getParent(); 1425 } 1426 1427 for (const DeclContext *DC : reverse(Contexts)) { 1428 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1429 OS << Spec->getName(); 1430 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1431 TemplateSpecializationType::PrintTemplateArgumentList( 1432 OS, TemplateArgs.asArray(), P); 1433 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1434 if (P.SuppressUnwrittenScope && 1435 (ND->isAnonymousNamespace() || ND->isInline())) 1436 continue; 1437 if (ND->isAnonymousNamespace()) { 1438 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1439 : "(anonymous namespace)"); 1440 } 1441 else 1442 OS << *ND; 1443 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1444 if (!RD->getIdentifier()) 1445 OS << "(anonymous " << RD->getKindName() << ')'; 1446 else 1447 OS << *RD; 1448 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1449 const FunctionProtoType *FT = nullptr; 1450 if (FD->hasWrittenPrototype()) 1451 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1452 1453 OS << *FD << '('; 1454 if (FT) { 1455 unsigned NumParams = FD->getNumParams(); 1456 for (unsigned i = 0; i < NumParams; ++i) { 1457 if (i) 1458 OS << ", "; 1459 OS << FD->getParamDecl(i)->getType().stream(P); 1460 } 1461 1462 if (FT->isVariadic()) { 1463 if (NumParams > 0) 1464 OS << ", "; 1465 OS << "..."; 1466 } 1467 } 1468 OS << ')'; 1469 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1470 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1471 // enumerator is declared in the scope that immediately contains 1472 // the enum-specifier. Each scoped enumerator is declared in the 1473 // scope of the enumeration. 1474 if (ED->isScoped() || ED->getIdentifier()) 1475 OS << *ED; 1476 else 1477 continue; 1478 } else { 1479 OS << *cast<NamedDecl>(DC); 1480 } 1481 OS << "::"; 1482 } 1483 1484 if (getDeclName()) 1485 OS << *this; 1486 else 1487 OS << "(anonymous)"; 1488 } 1489 1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1491 const PrintingPolicy &Policy, 1492 bool Qualified) const { 1493 if (Qualified) 1494 printQualifiedName(OS, Policy); 1495 else 1496 printName(OS); 1497 } 1498 1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1500 return true; 1501 } 1502 static bool isRedeclarableImpl(...) { return false; } 1503 static bool isRedeclarable(Decl::Kind K) { 1504 switch (K) { 1505 #define DECL(Type, Base) \ 1506 case Decl::Type: \ 1507 return isRedeclarableImpl((Type##Decl *)nullptr); 1508 #define ABSTRACT_DECL(DECL) 1509 #include "clang/AST/DeclNodes.inc" 1510 } 1511 llvm_unreachable("unknown decl kind"); 1512 } 1513 1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1515 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1516 1517 // Never replace one imported declaration with another; we need both results 1518 // when re-exporting. 1519 if (OldD->isFromASTFile() && isFromASTFile()) 1520 return false; 1521 1522 // A kind mismatch implies that the declaration is not replaced. 1523 if (OldD->getKind() != getKind()) 1524 return false; 1525 1526 // For method declarations, we never replace. (Why?) 1527 if (isa<ObjCMethodDecl>(this)) 1528 return false; 1529 1530 // For parameters, pick the newer one. This is either an error or (in 1531 // Objective-C) permitted as an extension. 1532 if (isa<ParmVarDecl>(this)) 1533 return true; 1534 1535 // Inline namespaces can give us two declarations with the same 1536 // name and kind in the same scope but different contexts; we should 1537 // keep both declarations in this case. 1538 if (!this->getDeclContext()->getRedeclContext()->Equals( 1539 OldD->getDeclContext()->getRedeclContext())) 1540 return false; 1541 1542 // Using declarations can be replaced if they import the same name from the 1543 // same context. 1544 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1545 ASTContext &Context = getASTContext(); 1546 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1547 Context.getCanonicalNestedNameSpecifier( 1548 cast<UsingDecl>(OldD)->getQualifier()); 1549 } 1550 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1551 ASTContext &Context = getASTContext(); 1552 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1553 Context.getCanonicalNestedNameSpecifier( 1554 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1555 } 1556 1557 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. 1558 // They can be replaced if they nominate the same namespace. 1559 // FIXME: Is this true even if they have different module visibility? 1560 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this)) 1561 return UD->getNominatedNamespace()->getOriginalNamespace() == 1562 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() 1563 ->getOriginalNamespace(); 1564 1565 if (isRedeclarable(getKind())) { 1566 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1567 return false; 1568 1569 if (IsKnownNewer) 1570 return true; 1571 1572 // Check whether this is actually newer than OldD. We want to keep the 1573 // newer declaration. This loop will usually only iterate once, because 1574 // OldD is usually the previous declaration. 1575 for (auto D : redecls()) { 1576 if (D == OldD) 1577 break; 1578 1579 // If we reach the canonical declaration, then OldD is not actually older 1580 // than this one. 1581 // 1582 // FIXME: In this case, we should not add this decl to the lookup table. 1583 if (D->isCanonicalDecl()) 1584 return false; 1585 } 1586 1587 // It's a newer declaration of the same kind of declaration in the same 1588 // scope: we want this decl instead of the existing one. 1589 return true; 1590 } 1591 1592 // In all other cases, we need to keep both declarations in case they have 1593 // different visibility. Any attempt to use the name will result in an 1594 // ambiguity if more than one is visible. 1595 return false; 1596 } 1597 1598 bool NamedDecl::hasLinkage() const { 1599 return getFormalLinkage() != NoLinkage; 1600 } 1601 1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1603 NamedDecl *ND = this; 1604 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1605 ND = UD->getTargetDecl(); 1606 1607 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1608 return AD->getClassInterface(); 1609 1610 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1611 return AD->getNamespace(); 1612 1613 return ND; 1614 } 1615 1616 bool NamedDecl::isCXXInstanceMember() const { 1617 if (!isCXXClassMember()) 1618 return false; 1619 1620 const NamedDecl *D = this; 1621 if (isa<UsingShadowDecl>(D)) 1622 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1623 1624 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1625 return true; 1626 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1627 return MD->isInstance(); 1628 return false; 1629 } 1630 1631 //===----------------------------------------------------------------------===// 1632 // DeclaratorDecl Implementation 1633 //===----------------------------------------------------------------------===// 1634 1635 template <typename DeclT> 1636 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1637 if (decl->getNumTemplateParameterLists() > 0) 1638 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1639 else 1640 return decl->getInnerLocStart(); 1641 } 1642 1643 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1644 TypeSourceInfo *TSI = getTypeSourceInfo(); 1645 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1646 return SourceLocation(); 1647 } 1648 1649 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1650 if (QualifierLoc) { 1651 // Make sure the extended decl info is allocated. 1652 if (!hasExtInfo()) { 1653 // Save (non-extended) type source info pointer. 1654 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1655 // Allocate external info struct. 1656 DeclInfo = new (getASTContext()) ExtInfo; 1657 // Restore savedTInfo into (extended) decl info. 1658 getExtInfo()->TInfo = savedTInfo; 1659 } 1660 // Set qualifier info. 1661 getExtInfo()->QualifierLoc = QualifierLoc; 1662 } else { 1663 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1664 if (hasExtInfo()) { 1665 if (getExtInfo()->NumTemplParamLists == 0) { 1666 // Save type source info pointer. 1667 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1668 // Deallocate the extended decl info. 1669 getASTContext().Deallocate(getExtInfo()); 1670 // Restore savedTInfo into (non-extended) decl info. 1671 DeclInfo = savedTInfo; 1672 } 1673 else 1674 getExtInfo()->QualifierLoc = QualifierLoc; 1675 } 1676 } 1677 } 1678 1679 void DeclaratorDecl::setTemplateParameterListsInfo( 1680 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1681 assert(!TPLists.empty()); 1682 // Make sure the extended decl info is allocated. 1683 if (!hasExtInfo()) { 1684 // Save (non-extended) type source info pointer. 1685 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1686 // Allocate external info struct. 1687 DeclInfo = new (getASTContext()) ExtInfo; 1688 // Restore savedTInfo into (extended) decl info. 1689 getExtInfo()->TInfo = savedTInfo; 1690 } 1691 // Set the template parameter lists info. 1692 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1693 } 1694 1695 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1696 return getTemplateOrInnerLocStart(this); 1697 } 1698 1699 namespace { 1700 1701 // Helper function: returns true if QT is or contains a type 1702 // having a postfix component. 1703 bool typeIsPostfix(clang::QualType QT) { 1704 while (true) { 1705 const Type* T = QT.getTypePtr(); 1706 switch (T->getTypeClass()) { 1707 default: 1708 return false; 1709 case Type::Pointer: 1710 QT = cast<PointerType>(T)->getPointeeType(); 1711 break; 1712 case Type::BlockPointer: 1713 QT = cast<BlockPointerType>(T)->getPointeeType(); 1714 break; 1715 case Type::MemberPointer: 1716 QT = cast<MemberPointerType>(T)->getPointeeType(); 1717 break; 1718 case Type::LValueReference: 1719 case Type::RValueReference: 1720 QT = cast<ReferenceType>(T)->getPointeeType(); 1721 break; 1722 case Type::PackExpansion: 1723 QT = cast<PackExpansionType>(T)->getPattern(); 1724 break; 1725 case Type::Paren: 1726 case Type::ConstantArray: 1727 case Type::DependentSizedArray: 1728 case Type::IncompleteArray: 1729 case Type::VariableArray: 1730 case Type::FunctionProto: 1731 case Type::FunctionNoProto: 1732 return true; 1733 } 1734 } 1735 } 1736 1737 } // namespace 1738 1739 SourceRange DeclaratorDecl::getSourceRange() const { 1740 SourceLocation RangeEnd = getLocation(); 1741 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1742 // If the declaration has no name or the type extends past the name take the 1743 // end location of the type. 1744 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1745 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1746 } 1747 return SourceRange(getOuterLocStart(), RangeEnd); 1748 } 1749 1750 void QualifierInfo::setTemplateParameterListsInfo( 1751 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1752 // Free previous template parameters (if any). 1753 if (NumTemplParamLists > 0) { 1754 Context.Deallocate(TemplParamLists); 1755 TemplParamLists = nullptr; 1756 NumTemplParamLists = 0; 1757 } 1758 // Set info on matched template parameter lists (if any). 1759 if (!TPLists.empty()) { 1760 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1761 NumTemplParamLists = TPLists.size(); 1762 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1763 } 1764 } 1765 1766 //===----------------------------------------------------------------------===// 1767 // VarDecl Implementation 1768 //===----------------------------------------------------------------------===// 1769 1770 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1771 switch (SC) { 1772 case SC_None: break; 1773 case SC_Auto: return "auto"; 1774 case SC_Extern: return "extern"; 1775 case SC_PrivateExtern: return "__private_extern__"; 1776 case SC_Register: return "register"; 1777 case SC_Static: return "static"; 1778 } 1779 1780 llvm_unreachable("Invalid storage class"); 1781 } 1782 1783 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1784 SourceLocation StartLoc, SourceLocation IdLoc, 1785 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1786 StorageClass SC) 1787 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1788 redeclarable_base(C), Init() { 1789 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1790 "VarDeclBitfields too large!"); 1791 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1792 "ParmVarDeclBitfields too large!"); 1793 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1794 "NonParmVarDeclBitfields too large!"); 1795 AllBits = 0; 1796 VarDeclBits.SClass = SC; 1797 // Everything else is implicitly initialized to false. 1798 } 1799 1800 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1801 SourceLocation StartL, SourceLocation IdL, 1802 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1803 StorageClass S) { 1804 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1805 } 1806 1807 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1808 return new (C, ID) 1809 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1810 QualType(), nullptr, SC_None); 1811 } 1812 1813 void VarDecl::setStorageClass(StorageClass SC) { 1814 assert(isLegalForVariable(SC)); 1815 VarDeclBits.SClass = SC; 1816 } 1817 1818 VarDecl::TLSKind VarDecl::getTLSKind() const { 1819 switch (VarDeclBits.TSCSpec) { 1820 case TSCS_unspecified: 1821 if (!hasAttr<ThreadAttr>() && 1822 !(getASTContext().getLangOpts().OpenMPUseTLS && 1823 getASTContext().getTargetInfo().isTLSSupported() && 1824 hasAttr<OMPThreadPrivateDeclAttr>())) 1825 return TLS_None; 1826 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 1827 LangOptions::MSVC2015)) || 1828 hasAttr<OMPThreadPrivateDeclAttr>()) 1829 ? TLS_Dynamic 1830 : TLS_Static; 1831 case TSCS___thread: // Fall through. 1832 case TSCS__Thread_local: 1833 return TLS_Static; 1834 case TSCS_thread_local: 1835 return TLS_Dynamic; 1836 } 1837 llvm_unreachable("Unknown thread storage class specifier!"); 1838 } 1839 1840 SourceRange VarDecl::getSourceRange() const { 1841 if (const Expr *Init = getInit()) { 1842 SourceLocation InitEnd = Init->getLocEnd(); 1843 // If Init is implicit, ignore its source range and fallback on 1844 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1845 if (InitEnd.isValid() && InitEnd != getLocation()) 1846 return SourceRange(getOuterLocStart(), InitEnd); 1847 } 1848 return DeclaratorDecl::getSourceRange(); 1849 } 1850 1851 template<typename T> 1852 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1853 // C++ [dcl.link]p1: All function types, function names with external linkage, 1854 // and variable names with external linkage have a language linkage. 1855 if (!D.hasExternalFormalLinkage()) 1856 return NoLanguageLinkage; 1857 1858 // Language linkage is a C++ concept, but saying that everything else in C has 1859 // C language linkage fits the implementation nicely. 1860 ASTContext &Context = D.getASTContext(); 1861 if (!Context.getLangOpts().CPlusPlus) 1862 return CLanguageLinkage; 1863 1864 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1865 // language linkage of the names of class members and the function type of 1866 // class member functions. 1867 const DeclContext *DC = D.getDeclContext(); 1868 if (DC->isRecord()) 1869 return CXXLanguageLinkage; 1870 1871 // If the first decl is in an extern "C" context, any other redeclaration 1872 // will have C language linkage. If the first one is not in an extern "C" 1873 // context, we would have reported an error for any other decl being in one. 1874 if (isFirstInExternCContext(&D)) 1875 return CLanguageLinkage; 1876 return CXXLanguageLinkage; 1877 } 1878 1879 template<typename T> 1880 static bool isDeclExternC(const T &D) { 1881 // Since the context is ignored for class members, they can only have C++ 1882 // language linkage or no language linkage. 1883 const DeclContext *DC = D.getDeclContext(); 1884 if (DC->isRecord()) { 1885 assert(D.getASTContext().getLangOpts().CPlusPlus); 1886 return false; 1887 } 1888 1889 return D.getLanguageLinkage() == CLanguageLinkage; 1890 } 1891 1892 LanguageLinkage VarDecl::getLanguageLinkage() const { 1893 return getDeclLanguageLinkage(*this); 1894 } 1895 1896 bool VarDecl::isExternC() const { 1897 return isDeclExternC(*this); 1898 } 1899 1900 bool VarDecl::isInExternCContext() const { 1901 return getLexicalDeclContext()->isExternCContext(); 1902 } 1903 1904 bool VarDecl::isInExternCXXContext() const { 1905 return getLexicalDeclContext()->isExternCXXContext(); 1906 } 1907 1908 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 1909 1910 VarDecl::DefinitionKind 1911 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 1912 // C++ [basic.def]p2: 1913 // A declaration is a definition unless [...] it contains the 'extern' 1914 // specifier or a linkage-specification and neither an initializer [...], 1915 // it declares a non-inline static data member in a class declaration [...], 1916 // it declares a static data member outside a class definition and the variable 1917 // was defined within the class with the constexpr specifier [...], 1918 // C++1y [temp.expl.spec]p15: 1919 // An explicit specialization of a static data member or an explicit 1920 // specialization of a static data member template is a definition if the 1921 // declaration includes an initializer; otherwise, it is a declaration. 1922 // 1923 // FIXME: How do you declare (but not define) a partial specialization of 1924 // a static data member template outside the containing class? 1925 if (isStaticDataMember()) { 1926 if (isOutOfLine() && 1927 !(getCanonicalDecl()->isInline() && 1928 getCanonicalDecl()->isConstexpr()) && 1929 (hasInit() || 1930 // If the first declaration is out-of-line, this may be an 1931 // instantiation of an out-of-line partial specialization of a variable 1932 // template for which we have not yet instantiated the initializer. 1933 (getFirstDecl()->isOutOfLine() 1934 ? getTemplateSpecializationKind() == TSK_Undeclared 1935 : getTemplateSpecializationKind() != 1936 TSK_ExplicitSpecialization) || 1937 isa<VarTemplatePartialSpecializationDecl>(this))) 1938 return Definition; 1939 else if (!isOutOfLine() && isInline()) 1940 return Definition; 1941 else 1942 return DeclarationOnly; 1943 } 1944 // C99 6.7p5: 1945 // A definition of an identifier is a declaration for that identifier that 1946 // [...] causes storage to be reserved for that object. 1947 // Note: that applies for all non-file-scope objects. 1948 // C99 6.9.2p1: 1949 // If the declaration of an identifier for an object has file scope and an 1950 // initializer, the declaration is an external definition for the identifier 1951 if (hasInit()) 1952 return Definition; 1953 1954 if (hasDefiningAttr()) 1955 return Definition; 1956 1957 if (const auto *SAA = getAttr<SelectAnyAttr>()) 1958 if (!SAA->isInherited()) 1959 return Definition; 1960 1961 // A variable template specialization (other than a static data member 1962 // template or an explicit specialization) is a declaration until we 1963 // instantiate its initializer. 1964 if (isa<VarTemplateSpecializationDecl>(this) && 1965 getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 1966 return DeclarationOnly; 1967 1968 if (hasExternalStorage()) 1969 return DeclarationOnly; 1970 1971 // [dcl.link] p7: 1972 // A declaration directly contained in a linkage-specification is treated 1973 // as if it contains the extern specifier for the purpose of determining 1974 // the linkage of the declared name and whether it is a definition. 1975 if (isSingleLineLanguageLinkage(*this)) 1976 return DeclarationOnly; 1977 1978 // C99 6.9.2p2: 1979 // A declaration of an object that has file scope without an initializer, 1980 // and without a storage class specifier or the scs 'static', constitutes 1981 // a tentative definition. 1982 // No such thing in C++. 1983 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 1984 return TentativeDefinition; 1985 1986 // What's left is (in C, block-scope) declarations without initializers or 1987 // external storage. These are definitions. 1988 return Definition; 1989 } 1990 1991 VarDecl *VarDecl::getActingDefinition() { 1992 DefinitionKind Kind = isThisDeclarationADefinition(); 1993 if (Kind != TentativeDefinition) 1994 return nullptr; 1995 1996 VarDecl *LastTentative = nullptr; 1997 VarDecl *First = getFirstDecl(); 1998 for (auto I : First->redecls()) { 1999 Kind = I->isThisDeclarationADefinition(); 2000 if (Kind == Definition) 2001 return nullptr; 2002 else if (Kind == TentativeDefinition) 2003 LastTentative = I; 2004 } 2005 return LastTentative; 2006 } 2007 2008 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2009 VarDecl *First = getFirstDecl(); 2010 for (auto I : First->redecls()) { 2011 if (I->isThisDeclarationADefinition(C) == Definition) 2012 return I; 2013 } 2014 return nullptr; 2015 } 2016 2017 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2018 DefinitionKind Kind = DeclarationOnly; 2019 2020 const VarDecl *First = getFirstDecl(); 2021 for (auto I : First->redecls()) { 2022 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2023 if (Kind == Definition) 2024 break; 2025 } 2026 2027 return Kind; 2028 } 2029 2030 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2031 for (auto I : redecls()) { 2032 if (auto Expr = I->getInit()) { 2033 D = I; 2034 return Expr; 2035 } 2036 } 2037 return nullptr; 2038 } 2039 2040 bool VarDecl::hasInit() const { 2041 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2042 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2043 return false; 2044 2045 return !Init.isNull(); 2046 } 2047 2048 Expr *VarDecl::getInit() { 2049 if (!hasInit()) 2050 return nullptr; 2051 2052 if (auto *S = Init.dyn_cast<Stmt *>()) 2053 return cast<Expr>(S); 2054 2055 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2056 } 2057 2058 Stmt **VarDecl::getInitAddress() { 2059 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2060 return &ES->Value; 2061 2062 return Init.getAddrOfPtr1(); 2063 } 2064 2065 bool VarDecl::isOutOfLine() const { 2066 if (Decl::isOutOfLine()) 2067 return true; 2068 2069 if (!isStaticDataMember()) 2070 return false; 2071 2072 // If this static data member was instantiated from a static data member of 2073 // a class template, check whether that static data member was defined 2074 // out-of-line. 2075 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2076 return VD->isOutOfLine(); 2077 2078 return false; 2079 } 2080 2081 void VarDecl::setInit(Expr *I) { 2082 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2083 Eval->~EvaluatedStmt(); 2084 getASTContext().Deallocate(Eval); 2085 } 2086 2087 Init = I; 2088 } 2089 2090 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 2091 const LangOptions &Lang = C.getLangOpts(); 2092 2093 if (!Lang.CPlusPlus) 2094 return false; 2095 2096 // In C++11, any variable of reference type can be used in a constant 2097 // expression if it is initialized by a constant expression. 2098 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2099 return true; 2100 2101 // Only const objects can be used in constant expressions in C++. C++98 does 2102 // not require the variable to be non-volatile, but we consider this to be a 2103 // defect. 2104 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2105 return false; 2106 2107 // In C++, const, non-volatile variables of integral or enumeration types 2108 // can be used in constant expressions. 2109 if (getType()->isIntegralOrEnumerationType()) 2110 return true; 2111 2112 // Additionally, in C++11, non-volatile constexpr variables can be used in 2113 // constant expressions. 2114 return Lang.CPlusPlus11 && isConstexpr(); 2115 } 2116 2117 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2118 /// form, which contains extra information on the evaluated value of the 2119 /// initializer. 2120 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2121 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2122 if (!Eval) { 2123 // Note: EvaluatedStmt contains an APValue, which usually holds 2124 // resources not allocated from the ASTContext. We need to do some 2125 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2126 // where we can detect whether there's anything to clean up or not. 2127 Eval = new (getASTContext()) EvaluatedStmt; 2128 Eval->Value = Init.get<Stmt *>(); 2129 Init = Eval; 2130 } 2131 return Eval; 2132 } 2133 2134 APValue *VarDecl::evaluateValue() const { 2135 SmallVector<PartialDiagnosticAt, 8> Notes; 2136 return evaluateValue(Notes); 2137 } 2138 2139 namespace { 2140 // Destroy an APValue that was allocated in an ASTContext. 2141 void DestroyAPValue(void* UntypedValue) { 2142 static_cast<APValue*>(UntypedValue)->~APValue(); 2143 } 2144 } // namespace 2145 2146 APValue *VarDecl::evaluateValue( 2147 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2148 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2149 2150 // We only produce notes indicating why an initializer is non-constant the 2151 // first time it is evaluated. FIXME: The notes won't always be emitted the 2152 // first time we try evaluation, so might not be produced at all. 2153 if (Eval->WasEvaluated) 2154 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2155 2156 const auto *Init = cast<Expr>(Eval->Value); 2157 assert(!Init->isValueDependent()); 2158 2159 if (Eval->IsEvaluating) { 2160 // FIXME: Produce a diagnostic for self-initialization. 2161 Eval->CheckedICE = true; 2162 Eval->IsICE = false; 2163 return nullptr; 2164 } 2165 2166 Eval->IsEvaluating = true; 2167 2168 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2169 this, Notes); 2170 2171 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2172 // or that it's empty (so that there's nothing to clean up) if evaluation 2173 // failed. 2174 if (!Result) 2175 Eval->Evaluated = APValue(); 2176 else if (Eval->Evaluated.needsCleanup()) 2177 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); 2178 2179 Eval->IsEvaluating = false; 2180 Eval->WasEvaluated = true; 2181 2182 // In C++11, we have determined whether the initializer was a constant 2183 // expression as a side-effect. 2184 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2185 Eval->CheckedICE = true; 2186 Eval->IsICE = Result && Notes.empty(); 2187 } 2188 2189 return Result ? &Eval->Evaluated : nullptr; 2190 } 2191 2192 APValue *VarDecl::getEvaluatedValue() const { 2193 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2194 if (Eval->WasEvaluated) 2195 return &Eval->Evaluated; 2196 2197 return nullptr; 2198 } 2199 2200 bool VarDecl::isInitKnownICE() const { 2201 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2202 return Eval->CheckedICE; 2203 2204 return false; 2205 } 2206 2207 bool VarDecl::isInitICE() const { 2208 assert(isInitKnownICE() && 2209 "Check whether we already know that the initializer is an ICE"); 2210 return Init.get<EvaluatedStmt *>()->IsICE; 2211 } 2212 2213 bool VarDecl::checkInitIsICE() const { 2214 // Initializers of weak variables are never ICEs. 2215 if (isWeak()) 2216 return false; 2217 2218 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2219 if (Eval->CheckedICE) 2220 // We have already checked whether this subexpression is an 2221 // integral constant expression. 2222 return Eval->IsICE; 2223 2224 const auto *Init = cast<Expr>(Eval->Value); 2225 assert(!Init->isValueDependent()); 2226 2227 // In C++11, evaluate the initializer to check whether it's a constant 2228 // expression. 2229 if (getASTContext().getLangOpts().CPlusPlus11) { 2230 SmallVector<PartialDiagnosticAt, 8> Notes; 2231 evaluateValue(Notes); 2232 return Eval->IsICE; 2233 } 2234 2235 // It's an ICE whether or not the definition we found is 2236 // out-of-line. See DR 721 and the discussion in Clang PR 2237 // 6206 for details. 2238 2239 if (Eval->CheckingICE) 2240 return false; 2241 Eval->CheckingICE = true; 2242 2243 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2244 Eval->CheckingICE = false; 2245 Eval->CheckedICE = true; 2246 return Eval->IsICE; 2247 } 2248 2249 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2250 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2251 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2252 2253 return nullptr; 2254 } 2255 2256 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2257 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2258 return Spec->getSpecializationKind(); 2259 2260 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2261 return MSI->getTemplateSpecializationKind(); 2262 2263 return TSK_Undeclared; 2264 } 2265 2266 SourceLocation VarDecl::getPointOfInstantiation() const { 2267 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2268 return Spec->getPointOfInstantiation(); 2269 2270 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2271 return MSI->getPointOfInstantiation(); 2272 2273 return SourceLocation(); 2274 } 2275 2276 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2277 return getASTContext().getTemplateOrSpecializationInfo(this) 2278 .dyn_cast<VarTemplateDecl *>(); 2279 } 2280 2281 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2282 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2283 } 2284 2285 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2286 if (isStaticDataMember()) 2287 // FIXME: Remove ? 2288 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2289 return getASTContext().getTemplateOrSpecializationInfo(this) 2290 .dyn_cast<MemberSpecializationInfo *>(); 2291 return nullptr; 2292 } 2293 2294 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2295 SourceLocation PointOfInstantiation) { 2296 assert((isa<VarTemplateSpecializationDecl>(this) || 2297 getMemberSpecializationInfo()) && 2298 "not a variable or static data member template specialization"); 2299 2300 if (VarTemplateSpecializationDecl *Spec = 2301 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2302 Spec->setSpecializationKind(TSK); 2303 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2304 Spec->getPointOfInstantiation().isInvalid()) 2305 Spec->setPointOfInstantiation(PointOfInstantiation); 2306 } 2307 2308 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2309 MSI->setTemplateSpecializationKind(TSK); 2310 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2311 MSI->getPointOfInstantiation().isInvalid()) 2312 MSI->setPointOfInstantiation(PointOfInstantiation); 2313 } 2314 } 2315 2316 void 2317 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2318 TemplateSpecializationKind TSK) { 2319 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2320 "Previous template or instantiation?"); 2321 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2322 } 2323 2324 //===----------------------------------------------------------------------===// 2325 // ParmVarDecl Implementation 2326 //===----------------------------------------------------------------------===// 2327 2328 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2329 SourceLocation StartLoc, 2330 SourceLocation IdLoc, IdentifierInfo *Id, 2331 QualType T, TypeSourceInfo *TInfo, 2332 StorageClass S, Expr *DefArg) { 2333 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2334 S, DefArg); 2335 } 2336 2337 QualType ParmVarDecl::getOriginalType() const { 2338 TypeSourceInfo *TSI = getTypeSourceInfo(); 2339 QualType T = TSI ? TSI->getType() : getType(); 2340 if (const auto *DT = dyn_cast<DecayedType>(T)) 2341 return DT->getOriginalType(); 2342 return T; 2343 } 2344 2345 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2346 return new (C, ID) 2347 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2348 nullptr, QualType(), nullptr, SC_None, nullptr); 2349 } 2350 2351 SourceRange ParmVarDecl::getSourceRange() const { 2352 if (!hasInheritedDefaultArg()) { 2353 SourceRange ArgRange = getDefaultArgRange(); 2354 if (ArgRange.isValid()) 2355 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2356 } 2357 2358 // DeclaratorDecl considers the range of postfix types as overlapping with the 2359 // declaration name, but this is not the case with parameters in ObjC methods. 2360 if (isa<ObjCMethodDecl>(getDeclContext())) 2361 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2362 2363 return DeclaratorDecl::getSourceRange(); 2364 } 2365 2366 Expr *ParmVarDecl::getDefaultArg() { 2367 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2368 assert(!hasUninstantiatedDefaultArg() && 2369 "Default argument is not yet instantiated!"); 2370 2371 Expr *Arg = getInit(); 2372 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2373 return E->getSubExpr(); 2374 2375 return Arg; 2376 } 2377 2378 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2379 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2380 Init = defarg; 2381 } 2382 2383 SourceRange ParmVarDecl::getDefaultArgRange() const { 2384 switch (ParmVarDeclBits.DefaultArgKind) { 2385 case DAK_None: 2386 case DAK_Unparsed: 2387 // Nothing we can do here. 2388 return SourceRange(); 2389 2390 case DAK_Uninstantiated: 2391 return getUninstantiatedDefaultArg()->getSourceRange(); 2392 2393 case DAK_Normal: 2394 if (const Expr *E = getInit()) 2395 return E->getSourceRange(); 2396 2397 // Missing an actual expression, may be invalid. 2398 return SourceRange(); 2399 } 2400 llvm_unreachable("Invalid default argument kind."); 2401 } 2402 2403 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2404 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2405 Init = arg; 2406 } 2407 2408 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2409 assert(hasUninstantiatedDefaultArg() && 2410 "Wrong kind of initialization expression!"); 2411 return cast_or_null<Expr>(Init.get<Stmt *>()); 2412 } 2413 2414 bool ParmVarDecl::hasDefaultArg() const { 2415 // FIXME: We should just return false for DAK_None here once callers are 2416 // prepared for the case that we encountered an invalid default argument and 2417 // were unable to even build an invalid expression. 2418 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2419 !Init.isNull(); 2420 } 2421 2422 bool ParmVarDecl::isParameterPack() const { 2423 return isa<PackExpansionType>(getType()); 2424 } 2425 2426 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2427 getASTContext().setParameterIndex(this, parameterIndex); 2428 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2429 } 2430 2431 unsigned ParmVarDecl::getParameterIndexLarge() const { 2432 return getASTContext().getParameterIndex(this); 2433 } 2434 2435 //===----------------------------------------------------------------------===// 2436 // FunctionDecl Implementation 2437 //===----------------------------------------------------------------------===// 2438 2439 void FunctionDecl::getNameForDiagnostic( 2440 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2441 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2442 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2443 if (TemplateArgs) 2444 TemplateSpecializationType::PrintTemplateArgumentList( 2445 OS, TemplateArgs->asArray(), Policy); 2446 } 2447 2448 bool FunctionDecl::isVariadic() const { 2449 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2450 return FT->isVariadic(); 2451 return false; 2452 } 2453 2454 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2455 for (auto I : redecls()) { 2456 if (I->Body || I->IsLateTemplateParsed) { 2457 Definition = I; 2458 return true; 2459 } 2460 } 2461 2462 return false; 2463 } 2464 2465 bool FunctionDecl::hasTrivialBody() const 2466 { 2467 Stmt *S = getBody(); 2468 if (!S) { 2469 // Since we don't have a body for this function, we don't know if it's 2470 // trivial or not. 2471 return false; 2472 } 2473 2474 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2475 return true; 2476 return false; 2477 } 2478 2479 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2480 for (auto I : redecls()) { 2481 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || 2482 I->hasDefiningAttr()) { 2483 Definition = I->IsDeleted ? I->getCanonicalDecl() : I; 2484 return true; 2485 } 2486 } 2487 2488 return false; 2489 } 2490 2491 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2492 if (!hasBody(Definition)) 2493 return nullptr; 2494 2495 if (Definition->Body) 2496 return Definition->Body.get(getASTContext().getExternalSource()); 2497 2498 return nullptr; 2499 } 2500 2501 void FunctionDecl::setBody(Stmt *B) { 2502 Body = B; 2503 if (B) 2504 EndRangeLoc = B->getLocEnd(); 2505 } 2506 2507 void FunctionDecl::setPure(bool P) { 2508 IsPure = P; 2509 if (P) 2510 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2511 Parent->markedVirtualFunctionPure(); 2512 } 2513 2514 template<std::size_t Len> 2515 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2516 IdentifierInfo *II = ND->getIdentifier(); 2517 return II && II->isStr(Str); 2518 } 2519 2520 bool FunctionDecl::isMain() const { 2521 const TranslationUnitDecl *tunit = 2522 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2523 return tunit && 2524 !tunit->getASTContext().getLangOpts().Freestanding && 2525 isNamed(this, "main"); 2526 } 2527 2528 bool FunctionDecl::isMSVCRTEntryPoint() const { 2529 const TranslationUnitDecl *TUnit = 2530 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2531 if (!TUnit) 2532 return false; 2533 2534 // Even though we aren't really targeting MSVCRT if we are freestanding, 2535 // semantic analysis for these functions remains the same. 2536 2537 // MSVCRT entry points only exist on MSVCRT targets. 2538 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2539 return false; 2540 2541 // Nameless functions like constructors cannot be entry points. 2542 if (!getIdentifier()) 2543 return false; 2544 2545 return llvm::StringSwitch<bool>(getName()) 2546 .Cases("main", // an ANSI console app 2547 "wmain", // a Unicode console App 2548 "WinMain", // an ANSI GUI app 2549 "wWinMain", // a Unicode GUI app 2550 "DllMain", // a DLL 2551 true) 2552 .Default(false); 2553 } 2554 2555 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2556 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2557 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2558 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2559 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2560 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2561 2562 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2563 return false; 2564 2565 const auto *proto = getType()->castAs<FunctionProtoType>(); 2566 if (proto->getNumParams() != 2 || proto->isVariadic()) 2567 return false; 2568 2569 ASTContext &Context = 2570 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2571 ->getASTContext(); 2572 2573 // The result type and first argument type are constant across all 2574 // these operators. The second argument must be exactly void*. 2575 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2576 } 2577 2578 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { 2579 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2580 return false; 2581 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2582 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2583 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2584 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2585 return false; 2586 2587 if (isa<CXXRecordDecl>(getDeclContext())) 2588 return false; 2589 2590 // This can only fail for an invalid 'operator new' declaration. 2591 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2592 return false; 2593 2594 const auto *FPT = getType()->castAs<FunctionProtoType>(); 2595 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic()) 2596 return false; 2597 2598 // If this is a single-parameter function, it must be a replaceable global 2599 // allocation or deallocation function. 2600 if (FPT->getNumParams() == 1) 2601 return true; 2602 2603 // Otherwise, we're looking for a second parameter whose type is 2604 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. 2605 QualType Ty = FPT->getParamType(1); 2606 ASTContext &Ctx = getASTContext(); 2607 if (Ctx.getLangOpts().SizedDeallocation && 2608 Ctx.hasSameType(Ty, Ctx.getSizeType())) 2609 return true; 2610 if (!Ty->isReferenceType()) 2611 return false; 2612 Ty = Ty->getPointeeType(); 2613 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2614 return false; 2615 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2616 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace(); 2617 } 2618 2619 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2620 return getDeclLanguageLinkage(*this); 2621 } 2622 2623 bool FunctionDecl::isExternC() const { 2624 return isDeclExternC(*this); 2625 } 2626 2627 bool FunctionDecl::isInExternCContext() const { 2628 return getLexicalDeclContext()->isExternCContext(); 2629 } 2630 2631 bool FunctionDecl::isInExternCXXContext() const { 2632 return getLexicalDeclContext()->isExternCXXContext(); 2633 } 2634 2635 bool FunctionDecl::isGlobal() const { 2636 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 2637 return Method->isStatic(); 2638 2639 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2640 return false; 2641 2642 for (const DeclContext *DC = getDeclContext(); 2643 DC->isNamespace(); 2644 DC = DC->getParent()) { 2645 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 2646 if (!Namespace->getDeclName()) 2647 return false; 2648 break; 2649 } 2650 } 2651 2652 return true; 2653 } 2654 2655 bool FunctionDecl::isNoReturn() const { 2656 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2657 hasAttr<C11NoReturnAttr>() || 2658 getType()->getAs<FunctionType>()->getNoReturnAttr(); 2659 } 2660 2661 void 2662 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2663 redeclarable_base::setPreviousDecl(PrevDecl); 2664 2665 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2666 FunctionTemplateDecl *PrevFunTmpl 2667 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2668 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2669 FunTmpl->setPreviousDecl(PrevFunTmpl); 2670 } 2671 2672 if (PrevDecl && PrevDecl->IsInline) 2673 IsInline = true; 2674 } 2675 2676 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2677 2678 /// \brief Returns a value indicating whether this function 2679 /// corresponds to a builtin function. 2680 /// 2681 /// The function corresponds to a built-in function if it is 2682 /// declared at translation scope or within an extern "C" block and 2683 /// its name matches with the name of a builtin. The returned value 2684 /// will be 0 for functions that do not correspond to a builtin, a 2685 /// value of type \c Builtin::ID if in the target-independent range 2686 /// \c [1,Builtin::First), or a target-specific builtin value. 2687 unsigned FunctionDecl::getBuiltinID() const { 2688 if (!getIdentifier()) 2689 return 0; 2690 2691 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2692 if (!BuiltinID) 2693 return 0; 2694 2695 ASTContext &Context = getASTContext(); 2696 if (Context.getLangOpts().CPlusPlus) { 2697 const auto *LinkageDecl = 2698 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 2699 // In C++, the first declaration of a builtin is always inside an implicit 2700 // extern "C". 2701 // FIXME: A recognised library function may not be directly in an extern "C" 2702 // declaration, for instance "extern "C" { namespace std { decl } }". 2703 if (!LinkageDecl) { 2704 if (BuiltinID == Builtin::BI__GetExceptionInfo && 2705 Context.getTargetInfo().getCXXABI().isMicrosoft()) 2706 return Builtin::BI__GetExceptionInfo; 2707 return 0; 2708 } 2709 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2710 return 0; 2711 } 2712 2713 // If the function is marked "overloadable", it has a different mangled name 2714 // and is not the C library function. 2715 if (hasAttr<OverloadableAttr>()) 2716 return 0; 2717 2718 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2719 return BuiltinID; 2720 2721 // This function has the name of a known C library 2722 // function. Determine whether it actually refers to the C library 2723 // function or whether it just has the same name. 2724 2725 // If this is a static function, it's not a builtin. 2726 if (getStorageClass() == SC_Static) 2727 return 0; 2728 2729 // OpenCL v1.2 s6.9.f - The library functions defined in 2730 // the C99 standard headers are not available. 2731 if (Context.getLangOpts().OpenCL && 2732 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2733 return 0; 2734 2735 return BuiltinID; 2736 } 2737 2738 2739 /// getNumParams - Return the number of parameters this function must have 2740 /// based on its FunctionType. This is the length of the ParamInfo array 2741 /// after it has been created. 2742 unsigned FunctionDecl::getNumParams() const { 2743 const auto *FPT = getType()->getAs<FunctionProtoType>(); 2744 return FPT ? FPT->getNumParams() : 0; 2745 } 2746 2747 void FunctionDecl::setParams(ASTContext &C, 2748 ArrayRef<ParmVarDecl *> NewParamInfo) { 2749 assert(!ParamInfo && "Already has param info!"); 2750 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2751 2752 // Zero params -> null pointer. 2753 if (!NewParamInfo.empty()) { 2754 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2755 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2756 } 2757 } 2758 2759 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { 2760 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); 2761 2762 if (!NewDecls.empty()) { 2763 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; 2764 std::copy(NewDecls.begin(), NewDecls.end(), A); 2765 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size()); 2766 // Move declarations introduced in prototype to the function context. 2767 for (auto I : NewDecls) { 2768 DeclContext *DC = I->getDeclContext(); 2769 // Forward-declared reference to an enumeration is not added to 2770 // declaration scope, so skip declaration that is absent from its 2771 // declaration contexts. 2772 if (DC->containsDecl(I)) { 2773 DC->removeDecl(I); 2774 I->setDeclContext(this); 2775 addDecl(I); 2776 } 2777 } 2778 } 2779 } 2780 2781 /// getMinRequiredArguments - Returns the minimum number of arguments 2782 /// needed to call this function. This may be fewer than the number of 2783 /// function parameters, if some of the parameters have default 2784 /// arguments (in C++) or are parameter packs (C++11). 2785 unsigned FunctionDecl::getMinRequiredArguments() const { 2786 if (!getASTContext().getLangOpts().CPlusPlus) 2787 return getNumParams(); 2788 2789 unsigned NumRequiredArgs = 0; 2790 for (auto *Param : parameters()) 2791 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2792 ++NumRequiredArgs; 2793 return NumRequiredArgs; 2794 } 2795 2796 /// \brief The combination of the extern and inline keywords under MSVC forces 2797 /// the function to be required. 2798 /// 2799 /// Note: This function assumes that we will only get called when isInlined() 2800 /// would return true for this FunctionDecl. 2801 bool FunctionDecl::isMSExternInline() const { 2802 assert(isInlined() && "expected to get called on an inlined function!"); 2803 2804 const ASTContext &Context = getASTContext(); 2805 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 2806 !hasAttr<DLLExportAttr>()) 2807 return false; 2808 2809 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 2810 FD = FD->getPreviousDecl()) 2811 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2812 return true; 2813 2814 return false; 2815 } 2816 2817 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 2818 if (Redecl->getStorageClass() != SC_Extern) 2819 return false; 2820 2821 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 2822 FD = FD->getPreviousDecl()) 2823 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2824 return false; 2825 2826 return true; 2827 } 2828 2829 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 2830 // Only consider file-scope declarations in this test. 2831 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 2832 return false; 2833 2834 // Only consider explicit declarations; the presence of a builtin for a 2835 // libcall shouldn't affect whether a definition is externally visible. 2836 if (Redecl->isImplicit()) 2837 return false; 2838 2839 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 2840 return true; // Not an inline definition 2841 2842 return false; 2843 } 2844 2845 /// \brief For a function declaration in C or C++, determine whether this 2846 /// declaration causes the definition to be externally visible. 2847 /// 2848 /// For instance, this determines if adding the current declaration to the set 2849 /// of redeclarations of the given functions causes 2850 /// isInlineDefinitionExternallyVisible to change from false to true. 2851 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 2852 assert(!doesThisDeclarationHaveABody() && 2853 "Must have a declaration without a body."); 2854 2855 ASTContext &Context = getASTContext(); 2856 2857 if (Context.getLangOpts().MSVCCompat) { 2858 const FunctionDecl *Definition; 2859 if (hasBody(Definition) && Definition->isInlined() && 2860 redeclForcesDefMSVC(this)) 2861 return true; 2862 } 2863 2864 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2865 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 2866 // an externally visible definition. 2867 // 2868 // FIXME: What happens if gnu_inline gets added on after the first 2869 // declaration? 2870 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 2871 return false; 2872 2873 const FunctionDecl *Prev = this; 2874 bool FoundBody = false; 2875 while ((Prev = Prev->getPreviousDecl())) { 2876 FoundBody |= Prev->Body.isValid(); 2877 2878 if (Prev->Body) { 2879 // If it's not the case that both 'inline' and 'extern' are 2880 // specified on the definition, then it is always externally visible. 2881 if (!Prev->isInlineSpecified() || 2882 Prev->getStorageClass() != SC_Extern) 2883 return false; 2884 } else if (Prev->isInlineSpecified() && 2885 Prev->getStorageClass() != SC_Extern) { 2886 return false; 2887 } 2888 } 2889 return FoundBody; 2890 } 2891 2892 if (Context.getLangOpts().CPlusPlus) 2893 return false; 2894 2895 // C99 6.7.4p6: 2896 // [...] If all of the file scope declarations for a function in a 2897 // translation unit include the inline function specifier without extern, 2898 // then the definition in that translation unit is an inline definition. 2899 if (isInlineSpecified() && getStorageClass() != SC_Extern) 2900 return false; 2901 const FunctionDecl *Prev = this; 2902 bool FoundBody = false; 2903 while ((Prev = Prev->getPreviousDecl())) { 2904 FoundBody |= Prev->Body.isValid(); 2905 if (RedeclForcesDefC99(Prev)) 2906 return false; 2907 } 2908 return FoundBody; 2909 } 2910 2911 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 2912 const TypeSourceInfo *TSI = getTypeSourceInfo(); 2913 if (!TSI) 2914 return SourceRange(); 2915 FunctionTypeLoc FTL = 2916 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 2917 if (!FTL) 2918 return SourceRange(); 2919 2920 // Skip self-referential return types. 2921 const SourceManager &SM = getASTContext().getSourceManager(); 2922 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 2923 SourceLocation Boundary = getNameInfo().getLocStart(); 2924 if (RTRange.isInvalid() || Boundary.isInvalid() || 2925 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 2926 return SourceRange(); 2927 2928 return RTRange; 2929 } 2930 2931 const Attr *FunctionDecl::getUnusedResultAttr() const { 2932 QualType RetType = getReturnType(); 2933 if (RetType->isRecordType()) { 2934 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl(); 2935 const auto *MD = dyn_cast<CXXMethodDecl>(this); 2936 if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) { 2937 if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>()) 2938 return R; 2939 } 2940 } else if (const auto *ET = RetType->getAs<EnumType>()) { 2941 if (const EnumDecl *ED = ET->getDecl()) { 2942 if (const auto *R = ED->getAttr<WarnUnusedResultAttr>()) 2943 return R; 2944 } 2945 } 2946 return getAttr<WarnUnusedResultAttr>(); 2947 } 2948 2949 /// \brief For an inline function definition in C, or for a gnu_inline function 2950 /// in C++, determine whether the definition will be externally visible. 2951 /// 2952 /// Inline function definitions are always available for inlining optimizations. 2953 /// However, depending on the language dialect, declaration specifiers, and 2954 /// attributes, the definition of an inline function may or may not be 2955 /// "externally" visible to other translation units in the program. 2956 /// 2957 /// In C99, inline definitions are not externally visible by default. However, 2958 /// if even one of the global-scope declarations is marked "extern inline", the 2959 /// inline definition becomes externally visible (C99 6.7.4p6). 2960 /// 2961 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 2962 /// definition, we use the GNU semantics for inline, which are nearly the 2963 /// opposite of C99 semantics. In particular, "inline" by itself will create 2964 /// an externally visible symbol, but "extern inline" will not create an 2965 /// externally visible symbol. 2966 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 2967 assert(doesThisDeclarationHaveABody() && "Must have the function definition"); 2968 assert(isInlined() && "Function must be inline"); 2969 ASTContext &Context = getASTContext(); 2970 2971 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2972 // Note: If you change the logic here, please change 2973 // doesDeclarationForceExternallyVisibleDefinition as well. 2974 // 2975 // If it's not the case that both 'inline' and 'extern' are 2976 // specified on the definition, then this inline definition is 2977 // externally visible. 2978 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 2979 return true; 2980 2981 // If any declaration is 'inline' but not 'extern', then this definition 2982 // is externally visible. 2983 for (auto Redecl : redecls()) { 2984 if (Redecl->isInlineSpecified() && 2985 Redecl->getStorageClass() != SC_Extern) 2986 return true; 2987 } 2988 2989 return false; 2990 } 2991 2992 // The rest of this function is C-only. 2993 assert(!Context.getLangOpts().CPlusPlus && 2994 "should not use C inline rules in C++"); 2995 2996 // C99 6.7.4p6: 2997 // [...] If all of the file scope declarations for a function in a 2998 // translation unit include the inline function specifier without extern, 2999 // then the definition in that translation unit is an inline definition. 3000 for (auto Redecl : redecls()) { 3001 if (RedeclForcesDefC99(Redecl)) 3002 return true; 3003 } 3004 3005 // C99 6.7.4p6: 3006 // An inline definition does not provide an external definition for the 3007 // function, and does not forbid an external definition in another 3008 // translation unit. 3009 return false; 3010 } 3011 3012 /// getOverloadedOperator - Which C++ overloaded operator this 3013 /// function represents, if any. 3014 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3015 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3016 return getDeclName().getCXXOverloadedOperator(); 3017 else 3018 return OO_None; 3019 } 3020 3021 /// getLiteralIdentifier - The literal suffix identifier this function 3022 /// represents, if any. 3023 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3024 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3025 return getDeclName().getCXXLiteralIdentifier(); 3026 else 3027 return nullptr; 3028 } 3029 3030 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3031 if (TemplateOrSpecialization.isNull()) 3032 return TK_NonTemplate; 3033 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3034 return TK_FunctionTemplate; 3035 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3036 return TK_MemberSpecialization; 3037 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3038 return TK_FunctionTemplateSpecialization; 3039 if (TemplateOrSpecialization.is 3040 <DependentFunctionTemplateSpecializationInfo*>()) 3041 return TK_DependentFunctionTemplateSpecialization; 3042 3043 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3044 } 3045 3046 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3047 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3048 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3049 3050 return nullptr; 3051 } 3052 3053 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3054 return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>(); 3055 } 3056 3057 void 3058 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3059 FunctionDecl *FD, 3060 TemplateSpecializationKind TSK) { 3061 assert(TemplateOrSpecialization.isNull() && 3062 "Member function is already a specialization"); 3063 MemberSpecializationInfo *Info 3064 = new (C) MemberSpecializationInfo(FD, TSK); 3065 TemplateOrSpecialization = Info; 3066 } 3067 3068 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3069 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3070 } 3071 3072 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3073 TemplateOrSpecialization = Template; 3074 } 3075 3076 bool FunctionDecl::isImplicitlyInstantiable() const { 3077 // If the function is invalid, it can't be implicitly instantiated. 3078 if (isInvalidDecl()) 3079 return false; 3080 3081 switch (getTemplateSpecializationKind()) { 3082 case TSK_Undeclared: 3083 case TSK_ExplicitInstantiationDefinition: 3084 return false; 3085 3086 case TSK_ImplicitInstantiation: 3087 return true; 3088 3089 // It is possible to instantiate TSK_ExplicitSpecialization kind 3090 // if the FunctionDecl has a class scope specialization pattern. 3091 case TSK_ExplicitSpecialization: 3092 return getClassScopeSpecializationPattern() != nullptr; 3093 3094 case TSK_ExplicitInstantiationDeclaration: 3095 // Handled below. 3096 break; 3097 } 3098 3099 // Find the actual template from which we will instantiate. 3100 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3101 bool HasPattern = false; 3102 if (PatternDecl) 3103 HasPattern = PatternDecl->hasBody(PatternDecl); 3104 3105 // C++0x [temp.explicit]p9: 3106 // Except for inline functions, other explicit instantiation declarations 3107 // have the effect of suppressing the implicit instantiation of the entity 3108 // to which they refer. 3109 if (!HasPattern || !PatternDecl) 3110 return true; 3111 3112 return PatternDecl->isInlined(); 3113 } 3114 3115 bool FunctionDecl::isTemplateInstantiation() const { 3116 switch (getTemplateSpecializationKind()) { 3117 case TSK_Undeclared: 3118 case TSK_ExplicitSpecialization: 3119 return false; 3120 case TSK_ImplicitInstantiation: 3121 case TSK_ExplicitInstantiationDeclaration: 3122 case TSK_ExplicitInstantiationDefinition: 3123 return true; 3124 } 3125 llvm_unreachable("All TSK values handled."); 3126 } 3127 3128 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3129 // Handle class scope explicit specialization special case. 3130 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 3131 return getClassScopeSpecializationPattern(); 3132 3133 // If this is a generic lambda call operator specialization, its 3134 // instantiation pattern is always its primary template's pattern 3135 // even if its primary template was instantiated from another 3136 // member template (which happens with nested generic lambdas). 3137 // Since a lambda's call operator's body is transformed eagerly, 3138 // we don't have to go hunting for a prototype definition template 3139 // (i.e. instantiated-from-member-template) to use as an instantiation 3140 // pattern. 3141 3142 if (isGenericLambdaCallOperatorSpecialization( 3143 dyn_cast<CXXMethodDecl>(this))) { 3144 assert(getPrimaryTemplate() && "A generic lambda specialization must be " 3145 "generated from a primary call operator " 3146 "template"); 3147 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && 3148 "A generic lambda call operator template must always have a body - " 3149 "even if instantiated from a prototype (i.e. as written) member " 3150 "template"); 3151 return getPrimaryTemplate()->getTemplatedDecl(); 3152 } 3153 3154 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3155 while (Primary->getInstantiatedFromMemberTemplate()) { 3156 // If we have hit a point where the user provided a specialization of 3157 // this template, we're done looking. 3158 if (Primary->isMemberSpecialization()) 3159 break; 3160 Primary = Primary->getInstantiatedFromMemberTemplate(); 3161 } 3162 3163 return Primary->getTemplatedDecl(); 3164 } 3165 3166 return getInstantiatedFromMemberFunction(); 3167 } 3168 3169 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3170 if (FunctionTemplateSpecializationInfo *Info 3171 = TemplateOrSpecialization 3172 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3173 return Info->Template.getPointer(); 3174 } 3175 return nullptr; 3176 } 3177 3178 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 3179 return getASTContext().getClassScopeSpecializationPattern(this); 3180 } 3181 3182 FunctionTemplateSpecializationInfo * 3183 FunctionDecl::getTemplateSpecializationInfo() const { 3184 return TemplateOrSpecialization 3185 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3186 } 3187 3188 const TemplateArgumentList * 3189 FunctionDecl::getTemplateSpecializationArgs() const { 3190 if (FunctionTemplateSpecializationInfo *Info 3191 = TemplateOrSpecialization 3192 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3193 return Info->TemplateArguments; 3194 } 3195 return nullptr; 3196 } 3197 3198 const ASTTemplateArgumentListInfo * 3199 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3200 if (FunctionTemplateSpecializationInfo *Info 3201 = TemplateOrSpecialization 3202 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3203 return Info->TemplateArgumentsAsWritten; 3204 } 3205 return nullptr; 3206 } 3207 3208 void 3209 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3210 FunctionTemplateDecl *Template, 3211 const TemplateArgumentList *TemplateArgs, 3212 void *InsertPos, 3213 TemplateSpecializationKind TSK, 3214 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3215 SourceLocation PointOfInstantiation) { 3216 assert(TSK != TSK_Undeclared && 3217 "Must specify the type of function template specialization"); 3218 FunctionTemplateSpecializationInfo *Info 3219 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3220 if (!Info) 3221 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3222 TemplateArgs, 3223 TemplateArgsAsWritten, 3224 PointOfInstantiation); 3225 TemplateOrSpecialization = Info; 3226 Template->addSpecialization(Info, InsertPos); 3227 } 3228 3229 void 3230 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3231 const UnresolvedSetImpl &Templates, 3232 const TemplateArgumentListInfo &TemplateArgs) { 3233 assert(TemplateOrSpecialization.isNull()); 3234 DependentFunctionTemplateSpecializationInfo *Info = 3235 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3236 TemplateArgs); 3237 TemplateOrSpecialization = Info; 3238 } 3239 3240 DependentFunctionTemplateSpecializationInfo * 3241 FunctionDecl::getDependentSpecializationInfo() const { 3242 return TemplateOrSpecialization 3243 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3244 } 3245 3246 DependentFunctionTemplateSpecializationInfo * 3247 DependentFunctionTemplateSpecializationInfo::Create( 3248 ASTContext &Context, const UnresolvedSetImpl &Ts, 3249 const TemplateArgumentListInfo &TArgs) { 3250 void *Buffer = Context.Allocate( 3251 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3252 TArgs.size(), Ts.size())); 3253 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3254 } 3255 3256 DependentFunctionTemplateSpecializationInfo:: 3257 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3258 const TemplateArgumentListInfo &TArgs) 3259 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3260 3261 NumTemplates = Ts.size(); 3262 NumArgs = TArgs.size(); 3263 3264 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3265 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3266 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3267 3268 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3269 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3270 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3271 } 3272 3273 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3274 // For a function template specialization, query the specialization 3275 // information object. 3276 FunctionTemplateSpecializationInfo *FTSInfo 3277 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3278 if (FTSInfo) 3279 return FTSInfo->getTemplateSpecializationKind(); 3280 3281 MemberSpecializationInfo *MSInfo 3282 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3283 if (MSInfo) 3284 return MSInfo->getTemplateSpecializationKind(); 3285 3286 return TSK_Undeclared; 3287 } 3288 3289 void 3290 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3291 SourceLocation PointOfInstantiation) { 3292 if (FunctionTemplateSpecializationInfo *FTSInfo 3293 = TemplateOrSpecialization.dyn_cast< 3294 FunctionTemplateSpecializationInfo*>()) { 3295 FTSInfo->setTemplateSpecializationKind(TSK); 3296 if (TSK != TSK_ExplicitSpecialization && 3297 PointOfInstantiation.isValid() && 3298 FTSInfo->getPointOfInstantiation().isInvalid()) 3299 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3300 } else if (MemberSpecializationInfo *MSInfo 3301 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3302 MSInfo->setTemplateSpecializationKind(TSK); 3303 if (TSK != TSK_ExplicitSpecialization && 3304 PointOfInstantiation.isValid() && 3305 MSInfo->getPointOfInstantiation().isInvalid()) 3306 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3307 } else 3308 llvm_unreachable("Function cannot have a template specialization kind"); 3309 } 3310 3311 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3312 if (FunctionTemplateSpecializationInfo *FTSInfo 3313 = TemplateOrSpecialization.dyn_cast< 3314 FunctionTemplateSpecializationInfo*>()) 3315 return FTSInfo->getPointOfInstantiation(); 3316 else if (MemberSpecializationInfo *MSInfo 3317 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3318 return MSInfo->getPointOfInstantiation(); 3319 3320 return SourceLocation(); 3321 } 3322 3323 bool FunctionDecl::isOutOfLine() const { 3324 if (Decl::isOutOfLine()) 3325 return true; 3326 3327 // If this function was instantiated from a member function of a 3328 // class template, check whether that member function was defined out-of-line. 3329 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3330 const FunctionDecl *Definition; 3331 if (FD->hasBody(Definition)) 3332 return Definition->isOutOfLine(); 3333 } 3334 3335 // If this function was instantiated from a function template, 3336 // check whether that function template was defined out-of-line. 3337 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3338 const FunctionDecl *Definition; 3339 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3340 return Definition->isOutOfLine(); 3341 } 3342 3343 return false; 3344 } 3345 3346 SourceRange FunctionDecl::getSourceRange() const { 3347 return SourceRange(getOuterLocStart(), EndRangeLoc); 3348 } 3349 3350 unsigned FunctionDecl::getMemoryFunctionKind() const { 3351 IdentifierInfo *FnInfo = getIdentifier(); 3352 3353 if (!FnInfo) 3354 return 0; 3355 3356 // Builtin handling. 3357 switch (getBuiltinID()) { 3358 case Builtin::BI__builtin_memset: 3359 case Builtin::BI__builtin___memset_chk: 3360 case Builtin::BImemset: 3361 return Builtin::BImemset; 3362 3363 case Builtin::BI__builtin_memcpy: 3364 case Builtin::BI__builtin___memcpy_chk: 3365 case Builtin::BImemcpy: 3366 return Builtin::BImemcpy; 3367 3368 case Builtin::BI__builtin_memmove: 3369 case Builtin::BI__builtin___memmove_chk: 3370 case Builtin::BImemmove: 3371 return Builtin::BImemmove; 3372 3373 case Builtin::BIstrlcpy: 3374 case Builtin::BI__builtin___strlcpy_chk: 3375 return Builtin::BIstrlcpy; 3376 3377 case Builtin::BIstrlcat: 3378 case Builtin::BI__builtin___strlcat_chk: 3379 return Builtin::BIstrlcat; 3380 3381 case Builtin::BI__builtin_memcmp: 3382 case Builtin::BImemcmp: 3383 return Builtin::BImemcmp; 3384 3385 case Builtin::BI__builtin_strncpy: 3386 case Builtin::BI__builtin___strncpy_chk: 3387 case Builtin::BIstrncpy: 3388 return Builtin::BIstrncpy; 3389 3390 case Builtin::BI__builtin_strncmp: 3391 case Builtin::BIstrncmp: 3392 return Builtin::BIstrncmp; 3393 3394 case Builtin::BI__builtin_strncasecmp: 3395 case Builtin::BIstrncasecmp: 3396 return Builtin::BIstrncasecmp; 3397 3398 case Builtin::BI__builtin_strncat: 3399 case Builtin::BI__builtin___strncat_chk: 3400 case Builtin::BIstrncat: 3401 return Builtin::BIstrncat; 3402 3403 case Builtin::BI__builtin_strndup: 3404 case Builtin::BIstrndup: 3405 return Builtin::BIstrndup; 3406 3407 case Builtin::BI__builtin_strlen: 3408 case Builtin::BIstrlen: 3409 return Builtin::BIstrlen; 3410 3411 default: 3412 if (isExternC()) { 3413 if (FnInfo->isStr("memset")) 3414 return Builtin::BImemset; 3415 else if (FnInfo->isStr("memcpy")) 3416 return Builtin::BImemcpy; 3417 else if (FnInfo->isStr("memmove")) 3418 return Builtin::BImemmove; 3419 else if (FnInfo->isStr("memcmp")) 3420 return Builtin::BImemcmp; 3421 else if (FnInfo->isStr("strncpy")) 3422 return Builtin::BIstrncpy; 3423 else if (FnInfo->isStr("strncmp")) 3424 return Builtin::BIstrncmp; 3425 else if (FnInfo->isStr("strncasecmp")) 3426 return Builtin::BIstrncasecmp; 3427 else if (FnInfo->isStr("strncat")) 3428 return Builtin::BIstrncat; 3429 else if (FnInfo->isStr("strndup")) 3430 return Builtin::BIstrndup; 3431 else if (FnInfo->isStr("strlen")) 3432 return Builtin::BIstrlen; 3433 } 3434 break; 3435 } 3436 return 0; 3437 } 3438 3439 //===----------------------------------------------------------------------===// 3440 // FieldDecl Implementation 3441 //===----------------------------------------------------------------------===// 3442 3443 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3444 SourceLocation StartLoc, SourceLocation IdLoc, 3445 IdentifierInfo *Id, QualType T, 3446 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3447 InClassInitStyle InitStyle) { 3448 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3449 BW, Mutable, InitStyle); 3450 } 3451 3452 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3453 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3454 SourceLocation(), nullptr, QualType(), nullptr, 3455 nullptr, false, ICIS_NoInit); 3456 } 3457 3458 bool FieldDecl::isAnonymousStructOrUnion() const { 3459 if (!isImplicit() || getDeclName()) 3460 return false; 3461 3462 if (const auto *Record = getType()->getAs<RecordType>()) 3463 return Record->getDecl()->isAnonymousStructOrUnion(); 3464 3465 return false; 3466 } 3467 3468 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3469 assert(isBitField() && "not a bitfield"); 3470 auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer()); 3471 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); 3472 } 3473 3474 unsigned FieldDecl::getFieldIndex() const { 3475 const FieldDecl *Canonical = getCanonicalDecl(); 3476 if (Canonical != this) 3477 return Canonical->getFieldIndex(); 3478 3479 if (CachedFieldIndex) return CachedFieldIndex - 1; 3480 3481 unsigned Index = 0; 3482 const RecordDecl *RD = getParent(); 3483 3484 for (auto *Field : RD->fields()) { 3485 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3486 ++Index; 3487 } 3488 3489 assert(CachedFieldIndex && "failed to find field in parent"); 3490 return CachedFieldIndex - 1; 3491 } 3492 3493 SourceRange FieldDecl::getSourceRange() const { 3494 switch (InitStorage.getInt()) { 3495 // All three of these cases store an optional Expr*. 3496 case ISK_BitWidthOrNothing: 3497 case ISK_InClassCopyInit: 3498 case ISK_InClassListInit: 3499 if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer())) 3500 return SourceRange(getInnerLocStart(), E->getLocEnd()); 3501 // FALLTHROUGH 3502 3503 case ISK_CapturedVLAType: 3504 return DeclaratorDecl::getSourceRange(); 3505 } 3506 llvm_unreachable("bad init storage kind"); 3507 } 3508 3509 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 3510 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 3511 "capturing type in non-lambda or captured record."); 3512 assert(InitStorage.getInt() == ISK_BitWidthOrNothing && 3513 InitStorage.getPointer() == nullptr && 3514 "bit width, initializer or captured type already set"); 3515 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 3516 ISK_CapturedVLAType); 3517 } 3518 3519 //===----------------------------------------------------------------------===// 3520 // TagDecl Implementation 3521 //===----------------------------------------------------------------------===// 3522 3523 SourceLocation TagDecl::getOuterLocStart() const { 3524 return getTemplateOrInnerLocStart(this); 3525 } 3526 3527 SourceRange TagDecl::getSourceRange() const { 3528 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3529 return SourceRange(getOuterLocStart(), E); 3530 } 3531 3532 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3533 3534 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3535 TypedefNameDeclOrQualifier = TDD; 3536 if (const Type *T = getTypeForDecl()) { 3537 (void)T; 3538 assert(T->isLinkageValid()); 3539 } 3540 assert(isLinkageValid()); 3541 } 3542 3543 void TagDecl::startDefinition() { 3544 IsBeingDefined = true; 3545 3546 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 3547 struct CXXRecordDecl::DefinitionData *Data = 3548 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3549 for (auto I : redecls()) 3550 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3551 } 3552 } 3553 3554 void TagDecl::completeDefinition() { 3555 assert((!isa<CXXRecordDecl>(this) || 3556 cast<CXXRecordDecl>(this)->hasDefinition()) && 3557 "definition completed but not started"); 3558 3559 IsCompleteDefinition = true; 3560 IsBeingDefined = false; 3561 3562 if (ASTMutationListener *L = getASTMutationListener()) 3563 L->CompletedTagDefinition(this); 3564 } 3565 3566 TagDecl *TagDecl::getDefinition() const { 3567 if (isCompleteDefinition()) 3568 return const_cast<TagDecl *>(this); 3569 3570 // If it's possible for us to have an out-of-date definition, check now. 3571 if (MayHaveOutOfDateDef) { 3572 if (IdentifierInfo *II = getIdentifier()) { 3573 if (II->isOutOfDate()) { 3574 updateOutOfDate(*II); 3575 } 3576 } 3577 } 3578 3579 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3580 return CXXRD->getDefinition(); 3581 3582 for (auto R : redecls()) 3583 if (R->isCompleteDefinition()) 3584 return R; 3585 3586 return nullptr; 3587 } 3588 3589 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3590 if (QualifierLoc) { 3591 // Make sure the extended qualifier info is allocated. 3592 if (!hasExtInfo()) 3593 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3594 // Set qualifier info. 3595 getExtInfo()->QualifierLoc = QualifierLoc; 3596 } else { 3597 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3598 if (hasExtInfo()) { 3599 if (getExtInfo()->NumTemplParamLists == 0) { 3600 getASTContext().Deallocate(getExtInfo()); 3601 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 3602 } 3603 else 3604 getExtInfo()->QualifierLoc = QualifierLoc; 3605 } 3606 } 3607 } 3608 3609 void TagDecl::setTemplateParameterListsInfo( 3610 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 3611 assert(!TPLists.empty()); 3612 // Make sure the extended decl info is allocated. 3613 if (!hasExtInfo()) 3614 // Allocate external info struct. 3615 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3616 // Set the template parameter lists info. 3617 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 3618 } 3619 3620 //===----------------------------------------------------------------------===// 3621 // EnumDecl Implementation 3622 //===----------------------------------------------------------------------===// 3623 3624 void EnumDecl::anchor() { } 3625 3626 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3627 SourceLocation StartLoc, SourceLocation IdLoc, 3628 IdentifierInfo *Id, 3629 EnumDecl *PrevDecl, bool IsScoped, 3630 bool IsScopedUsingClassTag, bool IsFixed) { 3631 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3632 IsScoped, IsScopedUsingClassTag, IsFixed); 3633 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3634 C.getTypeDeclType(Enum, PrevDecl); 3635 return Enum; 3636 } 3637 3638 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3639 EnumDecl *Enum = 3640 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3641 nullptr, nullptr, false, false, false); 3642 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3643 return Enum; 3644 } 3645 3646 SourceRange EnumDecl::getIntegerTypeRange() const { 3647 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3648 return TI->getTypeLoc().getSourceRange(); 3649 return SourceRange(); 3650 } 3651 3652 void EnumDecl::completeDefinition(QualType NewType, 3653 QualType NewPromotionType, 3654 unsigned NumPositiveBits, 3655 unsigned NumNegativeBits) { 3656 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3657 if (!IntegerType) 3658 IntegerType = NewType.getTypePtr(); 3659 PromotionType = NewPromotionType; 3660 setNumPositiveBits(NumPositiveBits); 3661 setNumNegativeBits(NumNegativeBits); 3662 TagDecl::completeDefinition(); 3663 } 3664 3665 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3666 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3667 return MSI->getTemplateSpecializationKind(); 3668 3669 return TSK_Undeclared; 3670 } 3671 3672 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3673 SourceLocation PointOfInstantiation) { 3674 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3675 assert(MSI && "Not an instantiated member enumeration?"); 3676 MSI->setTemplateSpecializationKind(TSK); 3677 if (TSK != TSK_ExplicitSpecialization && 3678 PointOfInstantiation.isValid() && 3679 MSI->getPointOfInstantiation().isInvalid()) 3680 MSI->setPointOfInstantiation(PointOfInstantiation); 3681 } 3682 3683 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 3684 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 3685 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 3686 EnumDecl *ED = getInstantiatedFromMemberEnum(); 3687 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 3688 ED = NewED; 3689 return ED; 3690 } 3691 } 3692 3693 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 3694 "couldn't find pattern for enum instantiation"); 3695 return nullptr; 3696 } 3697 3698 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3699 if (SpecializationInfo) 3700 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3701 3702 return nullptr; 3703 } 3704 3705 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3706 TemplateSpecializationKind TSK) { 3707 assert(!SpecializationInfo && "Member enum is already a specialization"); 3708 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3709 } 3710 3711 //===----------------------------------------------------------------------===// 3712 // RecordDecl Implementation 3713 //===----------------------------------------------------------------------===// 3714 3715 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3716 DeclContext *DC, SourceLocation StartLoc, 3717 SourceLocation IdLoc, IdentifierInfo *Id, 3718 RecordDecl *PrevDecl) 3719 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 3720 HasFlexibleArrayMember = false; 3721 AnonymousStructOrUnion = false; 3722 HasObjectMember = false; 3723 HasVolatileMember = false; 3724 LoadedFieldsFromExternalStorage = false; 3725 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3726 } 3727 3728 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3729 SourceLocation StartLoc, SourceLocation IdLoc, 3730 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3731 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3732 StartLoc, IdLoc, Id, PrevDecl); 3733 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3734 3735 C.getTypeDeclType(R, PrevDecl); 3736 return R; 3737 } 3738 3739 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3740 RecordDecl *R = 3741 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3742 SourceLocation(), nullptr, nullptr); 3743 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3744 return R; 3745 } 3746 3747 bool RecordDecl::isInjectedClassName() const { 3748 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3749 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3750 } 3751 3752 bool RecordDecl::isLambda() const { 3753 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 3754 return RD->isLambda(); 3755 return false; 3756 } 3757 3758 bool RecordDecl::isCapturedRecord() const { 3759 return hasAttr<CapturedRecordAttr>(); 3760 } 3761 3762 void RecordDecl::setCapturedRecord() { 3763 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 3764 } 3765 3766 RecordDecl::field_iterator RecordDecl::field_begin() const { 3767 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 3768 LoadFieldsFromExternalStorage(); 3769 3770 return field_iterator(decl_iterator(FirstDecl)); 3771 } 3772 3773 /// completeDefinition - Notes that the definition of this type is now 3774 /// complete. 3775 void RecordDecl::completeDefinition() { 3776 assert(!isCompleteDefinition() && "Cannot redefine record!"); 3777 TagDecl::completeDefinition(); 3778 } 3779 3780 /// isMsStruct - Get whether or not this record uses ms_struct layout. 3781 /// This which can be turned on with an attribute, pragma, or the 3782 /// -mms-bitfields command-line option. 3783 bool RecordDecl::isMsStruct(const ASTContext &C) const { 3784 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 3785 } 3786 3787 void RecordDecl::LoadFieldsFromExternalStorage() const { 3788 ExternalASTSource *Source = getASTContext().getExternalSource(); 3789 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 3790 3791 // Notify that we have a RecordDecl doing some initialization. 3792 ExternalASTSource::Deserializing TheFields(Source); 3793 3794 SmallVector<Decl*, 64> Decls; 3795 LoadedFieldsFromExternalStorage = true; 3796 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 3797 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 3798 }, Decls); 3799 3800 #ifndef NDEBUG 3801 // Check that all decls we got were FieldDecls. 3802 for (unsigned i=0, e=Decls.size(); i != e; ++i) 3803 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 3804 #endif 3805 3806 if (Decls.empty()) 3807 return; 3808 3809 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 3810 /*FieldsAlreadyLoaded=*/false); 3811 } 3812 3813 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 3814 ASTContext &Context = getASTContext(); 3815 if (!Context.getLangOpts().Sanitize.hasOneOf( 3816 SanitizerKind::Address | SanitizerKind::KernelAddress) || 3817 !Context.getLangOpts().SanitizeAddressFieldPadding) 3818 return false; 3819 const auto &Blacklist = Context.getSanitizerBlacklist(); 3820 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 3821 // We may be able to relax some of these requirements. 3822 int ReasonToReject = -1; 3823 if (!CXXRD || CXXRD->isExternCContext()) 3824 ReasonToReject = 0; // is not C++. 3825 else if (CXXRD->hasAttr<PackedAttr>()) 3826 ReasonToReject = 1; // is packed. 3827 else if (CXXRD->isUnion()) 3828 ReasonToReject = 2; // is a union. 3829 else if (CXXRD->isTriviallyCopyable()) 3830 ReasonToReject = 3; // is trivially copyable. 3831 else if (CXXRD->hasTrivialDestructor()) 3832 ReasonToReject = 4; // has trivial destructor. 3833 else if (CXXRD->isStandardLayout()) 3834 ReasonToReject = 5; // is standard layout. 3835 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding")) 3836 ReasonToReject = 6; // is in a blacklisted file. 3837 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(), 3838 "field-padding")) 3839 ReasonToReject = 7; // is blacklisted. 3840 3841 if (EmitRemark) { 3842 if (ReasonToReject >= 0) 3843 Context.getDiagnostics().Report( 3844 getLocation(), 3845 diag::remark_sanitize_address_insert_extra_padding_rejected) 3846 << getQualifiedNameAsString() << ReasonToReject; 3847 else 3848 Context.getDiagnostics().Report( 3849 getLocation(), 3850 diag::remark_sanitize_address_insert_extra_padding_accepted) 3851 << getQualifiedNameAsString(); 3852 } 3853 return ReasonToReject < 0; 3854 } 3855 3856 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 3857 for (const auto *I : fields()) { 3858 if (I->getIdentifier()) 3859 return I; 3860 3861 if (const auto *RT = I->getType()->getAs<RecordType>()) 3862 if (const FieldDecl *NamedDataMember = 3863 RT->getDecl()->findFirstNamedDataMember()) 3864 return NamedDataMember; 3865 } 3866 3867 // We didn't find a named data member. 3868 return nullptr; 3869 } 3870 3871 3872 //===----------------------------------------------------------------------===// 3873 // BlockDecl Implementation 3874 //===----------------------------------------------------------------------===// 3875 3876 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 3877 assert(!ParamInfo && "Already has param info!"); 3878 3879 // Zero params -> null pointer. 3880 if (!NewParamInfo.empty()) { 3881 NumParams = NewParamInfo.size(); 3882 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 3883 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3884 } 3885 } 3886 3887 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 3888 bool CapturesCXXThis) { 3889 this->CapturesCXXThis = CapturesCXXThis; 3890 this->NumCaptures = Captures.size(); 3891 3892 if (Captures.empty()) { 3893 this->Captures = nullptr; 3894 return; 3895 } 3896 3897 this->Captures = Captures.copy(Context).data(); 3898 } 3899 3900 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 3901 for (const auto &I : captures()) 3902 // Only auto vars can be captured, so no redeclaration worries. 3903 if (I.getVariable() == variable) 3904 return true; 3905 3906 return false; 3907 } 3908 3909 SourceRange BlockDecl::getSourceRange() const { 3910 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 3911 } 3912 3913 //===----------------------------------------------------------------------===// 3914 // Other Decl Allocation/Deallocation Method Implementations 3915 //===----------------------------------------------------------------------===// 3916 3917 void TranslationUnitDecl::anchor() { } 3918 3919 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 3920 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 3921 } 3922 3923 void PragmaCommentDecl::anchor() { } 3924 3925 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 3926 TranslationUnitDecl *DC, 3927 SourceLocation CommentLoc, 3928 PragmaMSCommentKind CommentKind, 3929 StringRef Arg) { 3930 PragmaCommentDecl *PCD = 3931 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 3932 PragmaCommentDecl(DC, CommentLoc, CommentKind); 3933 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 3934 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 3935 return PCD; 3936 } 3937 3938 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 3939 unsigned ID, 3940 unsigned ArgSize) { 3941 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 3942 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 3943 } 3944 3945 void PragmaDetectMismatchDecl::anchor() { } 3946 3947 PragmaDetectMismatchDecl * 3948 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 3949 SourceLocation Loc, StringRef Name, 3950 StringRef Value) { 3951 size_t ValueStart = Name.size() + 1; 3952 PragmaDetectMismatchDecl *PDMD = 3953 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 3954 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 3955 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 3956 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 3957 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 3958 Value.size()); 3959 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 3960 return PDMD; 3961 } 3962 3963 PragmaDetectMismatchDecl * 3964 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3965 unsigned NameValueSize) { 3966 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 3967 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 3968 } 3969 3970 void ExternCContextDecl::anchor() { } 3971 3972 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 3973 TranslationUnitDecl *DC) { 3974 return new (C, DC) ExternCContextDecl(DC); 3975 } 3976 3977 void LabelDecl::anchor() { } 3978 3979 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3980 SourceLocation IdentL, IdentifierInfo *II) { 3981 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 3982 } 3983 3984 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3985 SourceLocation IdentL, IdentifierInfo *II, 3986 SourceLocation GnuLabelL) { 3987 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 3988 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 3989 } 3990 3991 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3992 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 3993 SourceLocation()); 3994 } 3995 3996 void LabelDecl::setMSAsmLabel(StringRef Name) { 3997 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 3998 memcpy(Buffer, Name.data(), Name.size()); 3999 Buffer[Name.size()] = '\0'; 4000 MSAsmName = Buffer; 4001 } 4002 4003 void ValueDecl::anchor() { } 4004 4005 bool ValueDecl::isWeak() const { 4006 for (const auto *I : attrs()) 4007 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 4008 return true; 4009 4010 return isWeakImported(); 4011 } 4012 4013 void ImplicitParamDecl::anchor() { } 4014 4015 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4016 SourceLocation IdLoc, 4017 IdentifierInfo *Id, 4018 QualType Type) { 4019 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type); 4020 } 4021 4022 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4023 unsigned ID) { 4024 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr, 4025 QualType()); 4026 } 4027 4028 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4029 SourceLocation StartLoc, 4030 const DeclarationNameInfo &NameInfo, 4031 QualType T, TypeSourceInfo *TInfo, 4032 StorageClass SC, 4033 bool isInlineSpecified, 4034 bool hasWrittenPrototype, 4035 bool isConstexprSpecified) { 4036 FunctionDecl *New = 4037 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4038 SC, isInlineSpecified, isConstexprSpecified); 4039 New->HasWrittenPrototype = hasWrittenPrototype; 4040 return New; 4041 } 4042 4043 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4044 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 4045 DeclarationNameInfo(), QualType(), nullptr, 4046 SC_None, false, false); 4047 } 4048 4049 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4050 return new (C, DC) BlockDecl(DC, L); 4051 } 4052 4053 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4054 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4055 } 4056 4057 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4058 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4059 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4060 4061 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4062 unsigned NumParams) { 4063 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4064 CapturedDecl(DC, NumParams); 4065 } 4066 4067 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4068 unsigned NumParams) { 4069 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4070 CapturedDecl(nullptr, NumParams); 4071 } 4072 4073 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4074 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4075 4076 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4077 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4078 4079 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4080 SourceLocation L, 4081 IdentifierInfo *Id, QualType T, 4082 Expr *E, const llvm::APSInt &V) { 4083 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4084 } 4085 4086 EnumConstantDecl * 4087 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4088 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4089 QualType(), nullptr, llvm::APSInt()); 4090 } 4091 4092 void IndirectFieldDecl::anchor() { } 4093 4094 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4095 SourceLocation L, DeclarationName N, 4096 QualType T, 4097 MutableArrayRef<NamedDecl *> CH) 4098 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4099 ChainingSize(CH.size()) { 4100 // In C++, indirect field declarations conflict with tag declarations in the 4101 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4102 if (C.getLangOpts().CPlusPlus) 4103 IdentifierNamespace |= IDNS_Tag; 4104 } 4105 4106 IndirectFieldDecl * 4107 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4108 IdentifierInfo *Id, QualType T, 4109 llvm::MutableArrayRef<NamedDecl *> CH) { 4110 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4111 } 4112 4113 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4114 unsigned ID) { 4115 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4116 DeclarationName(), QualType(), None); 4117 } 4118 4119 SourceRange EnumConstantDecl::getSourceRange() const { 4120 SourceLocation End = getLocation(); 4121 if (Init) 4122 End = Init->getLocEnd(); 4123 return SourceRange(getLocation(), End); 4124 } 4125 4126 void TypeDecl::anchor() { } 4127 4128 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4129 SourceLocation StartLoc, SourceLocation IdLoc, 4130 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4131 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4132 } 4133 4134 void TypedefNameDecl::anchor() { } 4135 4136 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4137 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4138 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4139 auto *ThisTypedef = this; 4140 if (AnyRedecl && OwningTypedef) { 4141 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4142 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4143 } 4144 if (OwningTypedef == ThisTypedef) 4145 return TT->getDecl(); 4146 } 4147 4148 return nullptr; 4149 } 4150 4151 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4152 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4153 nullptr, nullptr); 4154 } 4155 4156 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4157 SourceLocation StartLoc, 4158 SourceLocation IdLoc, IdentifierInfo *Id, 4159 TypeSourceInfo *TInfo) { 4160 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4161 } 4162 4163 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4164 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 4165 SourceLocation(), nullptr, nullptr); 4166 } 4167 4168 SourceRange TypedefDecl::getSourceRange() const { 4169 SourceLocation RangeEnd = getLocation(); 4170 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 4171 if (typeIsPostfix(TInfo->getType())) 4172 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4173 } 4174 return SourceRange(getLocStart(), RangeEnd); 4175 } 4176 4177 SourceRange TypeAliasDecl::getSourceRange() const { 4178 SourceLocation RangeEnd = getLocStart(); 4179 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 4180 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4181 return SourceRange(getLocStart(), RangeEnd); 4182 } 4183 4184 void FileScopeAsmDecl::anchor() { } 4185 4186 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 4187 StringLiteral *Str, 4188 SourceLocation AsmLoc, 4189 SourceLocation RParenLoc) { 4190 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 4191 } 4192 4193 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4194 unsigned ID) { 4195 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4196 SourceLocation()); 4197 } 4198 4199 void EmptyDecl::anchor() {} 4200 4201 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4202 return new (C, DC) EmptyDecl(DC, L); 4203 } 4204 4205 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4206 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4207 } 4208 4209 //===----------------------------------------------------------------------===// 4210 // ImportDecl Implementation 4211 //===----------------------------------------------------------------------===// 4212 4213 /// \brief Retrieve the number of module identifiers needed to name the given 4214 /// module. 4215 static unsigned getNumModuleIdentifiers(Module *Mod) { 4216 unsigned Result = 1; 4217 while (Mod->Parent) { 4218 Mod = Mod->Parent; 4219 ++Result; 4220 } 4221 return Result; 4222 } 4223 4224 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4225 Module *Imported, 4226 ArrayRef<SourceLocation> IdentifierLocs) 4227 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), 4228 NextLocalImport() 4229 { 4230 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4231 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4232 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4233 StoredLocs); 4234 } 4235 4236 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4237 Module *Imported, SourceLocation EndLoc) 4238 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), 4239 NextLocalImport() 4240 { 4241 *getTrailingObjects<SourceLocation>() = EndLoc; 4242 } 4243 4244 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4245 SourceLocation StartLoc, Module *Imported, 4246 ArrayRef<SourceLocation> IdentifierLocs) { 4247 return new (C, DC, 4248 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4249 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4250 } 4251 4252 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4253 SourceLocation StartLoc, 4254 Module *Imported, 4255 SourceLocation EndLoc) { 4256 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4257 ImportDecl(DC, StartLoc, Imported, EndLoc); 4258 Import->setImplicit(); 4259 return Import; 4260 } 4261 4262 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4263 unsigned NumLocations) { 4264 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4265 ImportDecl(EmptyShell()); 4266 } 4267 4268 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4269 if (!ImportedAndComplete.getInt()) 4270 return None; 4271 4272 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4273 return llvm::makeArrayRef(StoredLocs, 4274 getNumModuleIdentifiers(getImportedModule())); 4275 } 4276 4277 SourceRange ImportDecl::getSourceRange() const { 4278 if (!ImportedAndComplete.getInt()) 4279 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4280 4281 return SourceRange(getLocation(), getIdentifierLocs().back()); 4282 } 4283