Home | History | Annotate | Download | only in r600
      1 /*
      2  * Copyright 2010 Jerome Glisse <glisse (at) freedesktop.org>
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * on the rights to use, copy, modify, merge, publish, distribute, sub
      8  * license, and/or sell copies of the Software, and to permit persons to whom
      9  * the Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  */
     23 #include "r600_sq.h"
     24 #include "r600_opcodes.h"
     25 #include "r600_formats.h"
     26 #include "r600_shader.h"
     27 #include "r600d.h"
     28 
     29 #include <errno.h>
     30 #include "util/u_bitcast.h"
     31 #include "util/u_dump.h"
     32 #include "util/u_memory.h"
     33 #include "util/u_math.h"
     34 #include "pipe/p_shader_tokens.h"
     35 
     36 #include "sb/sb_public.h"
     37 
     38 #define NUM_OF_CYCLES 3
     39 #define NUM_OF_COMPONENTS 4
     40 
     41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
     42 {
     43 	return alu->dst.write || alu->is_op3;
     44 }
     45 
     46 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
     47 {
     48 	return r600_isa_alu(alu->op)->src_count;
     49 }
     50 
     51 static struct r600_bytecode_cf *r600_bytecode_cf(void)
     52 {
     53 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
     54 
     55 	if (!cf)
     56 		return NULL;
     57 	LIST_INITHEAD(&cf->list);
     58 	LIST_INITHEAD(&cf->alu);
     59 	LIST_INITHEAD(&cf->vtx);
     60 	LIST_INITHEAD(&cf->tex);
     61 	LIST_INITHEAD(&cf->gds);
     62 	return cf;
     63 }
     64 
     65 static struct r600_bytecode_alu *r600_bytecode_alu(void)
     66 {
     67 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
     68 
     69 	if (!alu)
     70 		return NULL;
     71 	LIST_INITHEAD(&alu->list);
     72 	return alu;
     73 }
     74 
     75 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
     76 {
     77 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
     78 
     79 	if (!vtx)
     80 		return NULL;
     81 	LIST_INITHEAD(&vtx->list);
     82 	return vtx;
     83 }
     84 
     85 static struct r600_bytecode_tex *r600_bytecode_tex(void)
     86 {
     87 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
     88 
     89 	if (!tex)
     90 		return NULL;
     91 	LIST_INITHEAD(&tex->list);
     92 	return tex;
     93 }
     94 
     95 static struct r600_bytecode_gds *r600_bytecode_gds(void)
     96 {
     97 	struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
     98 
     99 	if (gds == NULL)
    100 		return NULL;
    101 	LIST_INITHEAD(&gds->list);
    102 	return gds;
    103 }
    104 
    105 static unsigned stack_entry_size(enum radeon_family chip) {
    106 	/* Wavefront size:
    107 	 *   64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
    108 	 *       Aruba/Sumo/Sumo2/redwood/juniper
    109 	 *   32: R630/R730/R710/Palm/Cedar
    110 	 *   16: R610/Rs780
    111 	 *
    112 	 * Stack row size:
    113 	 * 	Wavefront Size                        16  32  48  64
    114 	 * 	Columns per Row (R6xx/R7xx/R8xx only)  8   8   4   4
    115 	 * 	Columns per Row (R9xx+)                8   4   4   4 */
    116 
    117 	switch (chip) {
    118 	/* FIXME: are some chips missing here? */
    119 	/* wavefront size 16 */
    120 	case CHIP_RV610:
    121 	case CHIP_RS780:
    122 	case CHIP_RV620:
    123 	case CHIP_RS880:
    124 	/* wavefront size 32 */
    125 	case CHIP_RV630:
    126 	case CHIP_RV635:
    127 	case CHIP_RV730:
    128 	case CHIP_RV710:
    129 	case CHIP_PALM:
    130 	case CHIP_CEDAR:
    131 		return 8;
    132 
    133 	/* wavefront size 64 */
    134 	default:
    135 		return 4;
    136 	}
    137 }
    138 
    139 void r600_bytecode_init(struct r600_bytecode *bc,
    140 			enum chip_class chip_class,
    141 			enum radeon_family family,
    142 			bool has_compressed_msaa_texturing)
    143 {
    144 	static unsigned next_shader_id = 0;
    145 
    146 	bc->debug_id = ++next_shader_id;
    147 
    148 	if ((chip_class == R600) &&
    149 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
    150 		bc->ar_handling = AR_HANDLE_RV6XX;
    151 		bc->r6xx_nop_after_rel_dst = 1;
    152 	} else {
    153 		bc->ar_handling = AR_HANDLE_NORMAL;
    154 		bc->r6xx_nop_after_rel_dst = 0;
    155 	}
    156 
    157 	LIST_INITHEAD(&bc->cf);
    158 	bc->chip_class = chip_class;
    159 	bc->family = family;
    160 	bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
    161 	bc->stack.entry_size = stack_entry_size(family);
    162 }
    163 
    164 int r600_bytecode_add_cf(struct r600_bytecode *bc)
    165 {
    166 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
    167 
    168 	if (!cf)
    169 		return -ENOMEM;
    170 	LIST_ADDTAIL(&cf->list, &bc->cf);
    171 	if (bc->cf_last) {
    172 		cf->id = bc->cf_last->id + 2;
    173 		if (bc->cf_last->eg_alu_extended) {
    174 			/* take into account extended alu size */
    175 			cf->id += 2;
    176 			bc->ndw += 2;
    177 		}
    178 	}
    179 	bc->cf_last = cf;
    180 	bc->ncf++;
    181 	bc->ndw += 2;
    182 	bc->force_add_cf = 0;
    183 	bc->ar_loaded = 0;
    184 	return 0;
    185 }
    186 
    187 int r600_bytecode_add_output(struct r600_bytecode *bc,
    188 		const struct r600_bytecode_output *output)
    189 {
    190 	int r;
    191 
    192 	if (output->gpr >= bc->ngpr)
    193 		bc->ngpr = output->gpr + 1;
    194 
    195 	if (bc->cf_last && (bc->cf_last->op == output->op ||
    196 		(bc->cf_last->op == CF_OP_EXPORT &&
    197 		output->op == CF_OP_EXPORT_DONE)) &&
    198 		output->type == bc->cf_last->output.type &&
    199 		output->elem_size == bc->cf_last->output.elem_size &&
    200 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
    201 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
    202 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
    203 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
    204 		output->comp_mask == bc->cf_last->output.comp_mask &&
    205 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
    206 
    207 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
    208 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
    209 
    210 			bc->cf_last->op = bc->cf_last->output.op = output->op;
    211 			bc->cf_last->output.gpr = output->gpr;
    212 			bc->cf_last->output.array_base = output->array_base;
    213 			bc->cf_last->output.burst_count += output->burst_count;
    214 			return 0;
    215 
    216 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
    217 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
    218 
    219 			bc->cf_last->op = bc->cf_last->output.op = output->op;
    220 			bc->cf_last->output.burst_count += output->burst_count;
    221 			return 0;
    222 		}
    223 	}
    224 
    225 	r = r600_bytecode_add_cf(bc);
    226 	if (r)
    227 		return r;
    228 	bc->cf_last->op = output->op;
    229 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
    230 	bc->cf_last->barrier = 1;
    231 	return 0;
    232 }
    233 
    234 /* alu instructions that can ony exits once per group */
    235 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
    236 {
    237 	return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
    238 }
    239 
    240 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
    241 {
    242 	return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
    243 			(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
    244 }
    245 
    246 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
    247 {
    248 	return r600_isa_alu(alu->op)->flags & AF_MOVA;
    249 }
    250 
    251 static int alu_uses_rel(struct r600_bytecode_alu *alu)
    252 {
    253 	unsigned num_src = r600_bytecode_get_num_operands(alu);
    254 	unsigned src;
    255 
    256 	if (alu->dst.rel) {
    257 		return 1;
    258 	}
    259 
    260 	for (src = 0; src < num_src; ++src) {
    261 		if (alu->src[src].rel) {
    262 			return 1;
    263 		}
    264 	}
    265 	return 0;
    266 }
    267 
    268 static int is_lds_read(int sel)
    269 {
    270   return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
    271 }
    272 
    273 static int alu_uses_lds(struct r600_bytecode_alu *alu)
    274 {
    275 	unsigned num_src = r600_bytecode_get_num_operands(alu);
    276 	unsigned src;
    277 
    278 	for (src = 0; src < num_src; ++src) {
    279 		if (is_lds_read(alu->src[src].sel)) {
    280 			return 1;
    281 		}
    282 	}
    283 	return 0;
    284 }
    285 
    286 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
    287 {
    288 	const struct alu_op_info *op = r600_isa_alu(alu->op);
    289 	return (op->flags & AF_64);
    290 }
    291 
    292 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
    293 {
    294 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
    295 	return !(slots & AF_S);
    296 }
    297 
    298 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
    299 {
    300 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
    301 	return !(slots & AF_V);
    302 }
    303 
    304 /* alu instructions that can execute on any unit */
    305 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
    306 {
    307 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
    308 	return slots == AF_VS;
    309 }
    310 
    311 static int is_nop_inst(struct r600_bytecode_alu *alu)
    312 {
    313 	return alu->op == ALU_OP0_NOP;
    314 }
    315 
    316 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
    317 			    struct r600_bytecode_alu *assignment[5])
    318 {
    319 	struct r600_bytecode_alu *alu;
    320 	unsigned i, chan, trans;
    321 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
    322 
    323 	for (i = 0; i < max_slots; i++)
    324 		assignment[i] = NULL;
    325 
    326 	for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
    327 		chan = alu->dst.chan;
    328 		if (max_slots == 4)
    329 			trans = 0;
    330 		else if (is_alu_trans_unit_inst(bc, alu))
    331 			trans = 1;
    332 		else if (is_alu_vec_unit_inst(bc, alu))
    333 			trans = 0;
    334 		else if (assignment[chan])
    335 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
    336 		else
    337 			trans = 0;
    338 
    339 		if (trans) {
    340 			if (assignment[4]) {
    341 				assert(0); /* ALU.Trans has already been allocated. */
    342 				return -1;
    343 			}
    344 			assignment[4] = alu;
    345 		} else {
    346 			if (assignment[chan]) {
    347 				assert(0); /* ALU.chan has already been allocated. */
    348 				return -1;
    349 			}
    350 			assignment[chan] = alu;
    351 		}
    352 
    353 		if (alu->last)
    354 			break;
    355 	}
    356 	return 0;
    357 }
    358 
    359 struct alu_bank_swizzle {
    360 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
    361 	int	hw_cfile_addr[4];
    362 	int	hw_cfile_elem[4];
    363 };
    364 
    365 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
    366 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
    367 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
    368 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
    369 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
    370 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
    371 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
    372 };
    373 
    374 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
    375 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
    376 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
    377 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
    378 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
    379 };
    380 
    381 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
    382 {
    383 	int i, cycle, component;
    384 	/* set up gpr use */
    385 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
    386 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
    387 			 bs->hw_gpr[cycle][component] = -1;
    388 	for (i = 0; i < 4; i++)
    389 		bs->hw_cfile_addr[i] = -1;
    390 	for (i = 0; i < 4; i++)
    391 		bs->hw_cfile_elem[i] = -1;
    392 }
    393 
    394 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
    395 {
    396 	if (bs->hw_gpr[cycle][chan] == -1)
    397 		bs->hw_gpr[cycle][chan] = sel;
    398 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
    399 		/* Another scalar operation has already used the GPR read port for the channel. */
    400 		return -1;
    401 	}
    402 	return 0;
    403 }
    404 
    405 static int reserve_cfile(const struct r600_bytecode *bc,
    406 			 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
    407 {
    408 	int res, num_res = 4;
    409 	if (bc->chip_class >= R700) {
    410 		num_res = 2;
    411 		chan /= 2;
    412 	}
    413 	for (res = 0; res < num_res; ++res) {
    414 		if (bs->hw_cfile_addr[res] == -1) {
    415 			bs->hw_cfile_addr[res] = sel;
    416 			bs->hw_cfile_elem[res] = chan;
    417 			return 0;
    418 		} else if (bs->hw_cfile_addr[res] == sel &&
    419 			bs->hw_cfile_elem[res] == chan)
    420 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
    421 	}
    422 	/* All cfile read ports are used, cannot reference vector element. */
    423 	return -1;
    424 }
    425 
    426 static int is_gpr(unsigned sel)
    427 {
    428 	return (sel <= 127);
    429 }
    430 
    431 /* CB constants start at 512, and get translated to a kcache index when ALU
    432  * clauses are constructed. Note that we handle kcache constants the same way
    433  * as (the now gone) cfile constants, is that really required? */
    434 static int is_cfile(unsigned sel)
    435 {
    436 	return (sel > 255 && sel < 512) ||
    437 		(sel > 511 && sel < 4607) || /* Kcache before translation. */
    438 		(sel > 127 && sel < 192); /* Kcache after translation. */
    439 }
    440 
    441 static int is_const(int sel)
    442 {
    443 	return is_cfile(sel) ||
    444 		(sel >= V_SQ_ALU_SRC_0 &&
    445 		sel <= V_SQ_ALU_SRC_LITERAL);
    446 }
    447 
    448 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
    449 			struct alu_bank_swizzle *bs, int bank_swizzle)
    450 {
    451 	int r, src, num_src, sel, elem, cycle;
    452 
    453 	num_src = r600_bytecode_get_num_operands(alu);
    454 	for (src = 0; src < num_src; src++) {
    455 		sel = alu->src[src].sel;
    456 		elem = alu->src[src].chan;
    457 		if (is_gpr(sel)) {
    458 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
    459 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
    460 				/* Nothing to do; special-case optimization,
    461 				 * second source uses first sources reservation. */
    462 				continue;
    463 			else {
    464 				r = reserve_gpr(bs, sel, elem, cycle);
    465 				if (r)
    466 					return r;
    467 			}
    468 		} else if (is_cfile(sel)) {
    469 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
    470 			if (r)
    471 				return r;
    472 		}
    473 		/* No restrictions on PV, PS, literal or special constants. */
    474 	}
    475 	return 0;
    476 }
    477 
    478 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
    479 			struct alu_bank_swizzle *bs, int bank_swizzle)
    480 {
    481 	int r, src, num_src, const_count, sel, elem, cycle;
    482 
    483 	num_src = r600_bytecode_get_num_operands(alu);
    484 	for (const_count = 0, src = 0; src < num_src; ++src) {
    485 		sel = alu->src[src].sel;
    486 		elem = alu->src[src].chan;
    487 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
    488 			if (const_count >= 2)
    489 				/* More than two references to a constant in
    490 				 * transcendental operation. */
    491 				return -1;
    492 			else
    493 				const_count++;
    494 		}
    495 		if (is_cfile(sel)) {
    496 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
    497 			if (r)
    498 				return r;
    499 		}
    500 	}
    501 	for (src = 0; src < num_src; ++src) {
    502 		sel = alu->src[src].sel;
    503 		elem = alu->src[src].chan;
    504 		if (is_gpr(sel)) {
    505 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
    506 			if (cycle < const_count)
    507 				/* Cycle for GPR load conflicts with
    508 				 * constant load in transcendental operation. */
    509 				return -1;
    510 			r = reserve_gpr(bs, sel, elem, cycle);
    511 			if (r)
    512 				return r;
    513 		}
    514 		/* PV PS restrictions */
    515 		if (const_count && (sel == 254 || sel == 255)) {
    516 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
    517 			if (cycle < const_count)
    518 				return -1;
    519 		}
    520 	}
    521 	return 0;
    522 }
    523 
    524 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
    525 				      struct r600_bytecode_alu *slots[5])
    526 {
    527 	struct alu_bank_swizzle bs;
    528 	int bank_swizzle[5];
    529 	int i, r = 0, forced = 1;
    530 	boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
    531 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
    532 
    533 	for (i = 0; i < max_slots; i++) {
    534 		if (slots[i]) {
    535 			if (slots[i]->bank_swizzle_force) {
    536 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
    537 			} else {
    538 				forced = 0;
    539 			}
    540 		}
    541 
    542 		if (i < 4 && slots[i])
    543 			scalar_only = false;
    544 	}
    545 	if (forced)
    546 		return 0;
    547 
    548 	/* Just check every possible combination of bank swizzle.
    549 	 * Not very efficent, but works on the first try in most of the cases. */
    550 	for (i = 0; i < 4; i++)
    551 		if (!slots[i] || !slots[i]->bank_swizzle_force)
    552 			bank_swizzle[i] = SQ_ALU_VEC_012;
    553 		else
    554 			bank_swizzle[i] = slots[i]->bank_swizzle;
    555 
    556 	bank_swizzle[4] = SQ_ALU_SCL_210;
    557 	while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
    558 
    559 		init_bank_swizzle(&bs);
    560 		if (scalar_only == false) {
    561 			for (i = 0; i < 4; i++) {
    562 				if (slots[i]) {
    563 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
    564 					if (r)
    565 						break;
    566 				}
    567 			}
    568 		} else
    569 			r = 0;
    570 
    571 		if (!r && max_slots == 5 && slots[4]) {
    572 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
    573 		}
    574 		if (!r) {
    575 			for (i = 0; i < max_slots; i++) {
    576 				if (slots[i])
    577 					slots[i]->bank_swizzle = bank_swizzle[i];
    578 			}
    579 			return 0;
    580 		}
    581 
    582 		if (scalar_only) {
    583 			bank_swizzle[4]++;
    584 		} else {
    585 			for (i = 0; i < max_slots; i++) {
    586 				if (!slots[i] || !slots[i]->bank_swizzle_force) {
    587 					bank_swizzle[i]++;
    588 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
    589 						break;
    590 					else if (i < max_slots - 1)
    591 						bank_swizzle[i] = SQ_ALU_VEC_012;
    592 					else
    593 						return -1;
    594 				}
    595 			}
    596 		}
    597 	}
    598 
    599 	/* Couldn't find a working swizzle. */
    600 	return -1;
    601 }
    602 
    603 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
    604 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
    605 {
    606 	struct r600_bytecode_alu *prev[5];
    607 	int gpr[5], chan[5];
    608 	int i, j, r, src, num_src;
    609 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
    610 
    611 	r = assign_alu_units(bc, alu_prev, prev);
    612 	if (r)
    613 		return r;
    614 
    615 	for (i = 0; i < max_slots; ++i) {
    616 		if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
    617 
    618 			if (is_alu_64bit_inst(prev[i])) {
    619 				gpr[i] = -1;
    620 				continue;
    621 			}
    622 
    623 			gpr[i] = prev[i]->dst.sel;
    624 			/* cube writes more than PV.X */
    625 			if (is_alu_reduction_inst(bc, prev[i]))
    626 				chan[i] = 0;
    627 			else
    628 				chan[i] = prev[i]->dst.chan;
    629 		} else
    630 			gpr[i] = -1;
    631 	}
    632 
    633 	for (i = 0; i < max_slots; ++i) {
    634 		struct r600_bytecode_alu *alu = slots[i];
    635 		if (!alu)
    636 			continue;
    637 
    638 		if (is_alu_64bit_inst(alu))
    639 			continue;
    640 		num_src = r600_bytecode_get_num_operands(alu);
    641 		for (src = 0; src < num_src; ++src) {
    642 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
    643 				continue;
    644 
    645 			if (bc->chip_class < CAYMAN) {
    646 				if (alu->src[src].sel == gpr[4] &&
    647 				    alu->src[src].chan == chan[4] &&
    648 				    alu_prev->pred_sel == alu->pred_sel) {
    649 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
    650 					alu->src[src].chan = 0;
    651 					continue;
    652 				}
    653 			}
    654 
    655 			for (j = 0; j < 4; ++j) {
    656 				if (alu->src[src].sel == gpr[j] &&
    657 					alu->src[src].chan == j &&
    658 				      alu_prev->pred_sel == alu->pred_sel) {
    659 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
    660 					alu->src[src].chan = chan[j];
    661 					break;
    662 				}
    663 			}
    664 		}
    665 	}
    666 
    667 	return 0;
    668 }
    669 
    670 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
    671 {
    672 	switch(value) {
    673 	case 0:
    674 		*sel = V_SQ_ALU_SRC_0;
    675 		break;
    676 	case 1:
    677 		*sel = V_SQ_ALU_SRC_1_INT;
    678 		break;
    679 	case -1:
    680 		*sel = V_SQ_ALU_SRC_M_1_INT;
    681 		break;
    682 	case 0x3F800000: /* 1.0f */
    683 		*sel = V_SQ_ALU_SRC_1;
    684 		break;
    685 	case 0x3F000000: /* 0.5f */
    686 		*sel = V_SQ_ALU_SRC_0_5;
    687 		break;
    688 	case 0xBF800000: /* -1.0f */
    689 		*sel = V_SQ_ALU_SRC_1;
    690 		*neg ^= !abs;
    691 		break;
    692 	case 0xBF000000: /* -0.5f */
    693 		*sel = V_SQ_ALU_SRC_0_5;
    694 		*neg ^= !abs;
    695 		break;
    696 	default:
    697 		*sel = V_SQ_ALU_SRC_LITERAL;
    698 		break;
    699 	}
    700 }
    701 
    702 /* compute how many literal are needed */
    703 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
    704 				 uint32_t literal[4], unsigned *nliteral)
    705 {
    706 	unsigned num_src = r600_bytecode_get_num_operands(alu);
    707 	unsigned i, j;
    708 
    709 	for (i = 0; i < num_src; ++i) {
    710 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
    711 			uint32_t value = alu->src[i].value;
    712 			unsigned found = 0;
    713 			for (j = 0; j < *nliteral; ++j) {
    714 				if (literal[j] == value) {
    715 					found = 1;
    716 					break;
    717 				}
    718 			}
    719 			if (!found) {
    720 				if (*nliteral >= 4)
    721 					return -EINVAL;
    722 				literal[(*nliteral)++] = value;
    723 			}
    724 		}
    725 	}
    726 	return 0;
    727 }
    728 
    729 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
    730 					      uint32_t literal[4], unsigned nliteral)
    731 {
    732 	unsigned num_src = r600_bytecode_get_num_operands(alu);
    733 	unsigned i, j;
    734 
    735 	for (i = 0; i < num_src; ++i) {
    736 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
    737 			uint32_t value = alu->src[i].value;
    738 			for (j = 0; j < nliteral; ++j) {
    739 				if (literal[j] == value) {
    740 					alu->src[i].chan = j;
    741 					break;
    742 				}
    743 			}
    744 		}
    745 	}
    746 }
    747 
    748 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
    749 			     struct r600_bytecode_alu *alu_prev)
    750 {
    751 	struct r600_bytecode_alu *prev[5];
    752 	struct r600_bytecode_alu *result[5] = { NULL };
    753 
    754 	uint32_t literal[4], prev_literal[4];
    755 	unsigned nliteral = 0, prev_nliteral = 0;
    756 
    757 	int i, j, r, src, num_src;
    758 	int num_once_inst = 0;
    759 	int have_mova = 0, have_rel = 0;
    760 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
    761 
    762 	r = assign_alu_units(bc, alu_prev, prev);
    763 	if (r)
    764 		return r;
    765 
    766 	for (i = 0; i < max_slots; ++i) {
    767 		if (prev[i]) {
    768 		      if (prev[i]->pred_sel)
    769 			      return 0;
    770 		      if (is_alu_once_inst(prev[i]))
    771 			      return 0;
    772 		}
    773 		if (slots[i]) {
    774 			if (slots[i]->pred_sel)
    775 				return 0;
    776 			if (is_alu_once_inst(slots[i]))
    777 				return 0;
    778 		}
    779 	}
    780 
    781 	for (i = 0; i < max_slots; ++i) {
    782 		struct r600_bytecode_alu *alu;
    783 
    784 		if (num_once_inst > 0)
    785 		   return 0;
    786 
    787 		/* check number of literals */
    788 		if (prev[i]) {
    789 			if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
    790 				return 0;
    791 			if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
    792 				return 0;
    793 			if (is_alu_mova_inst(prev[i])) {
    794 				if (have_rel)
    795 					return 0;
    796 				have_mova = 1;
    797 			}
    798 
    799 			if (alu_uses_rel(prev[i])) {
    800 				if (have_mova) {
    801 					return 0;
    802 				}
    803 				have_rel = 1;
    804 			}
    805 			if (alu_uses_lds(prev[i]))
    806 				return 0;
    807 
    808 			num_once_inst += is_alu_once_inst(prev[i]);
    809 		}
    810 		if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
    811 			return 0;
    812 
    813 		/* Let's check used slots. */
    814 		if (prev[i] && !slots[i]) {
    815 			result[i] = prev[i];
    816 			continue;
    817 		} else if (prev[i] && slots[i]) {
    818 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
    819 				/* Trans unit is still free try to use it. */
    820 				if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
    821 					result[i] = prev[i];
    822 					result[4] = slots[i];
    823 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
    824 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
    825 					    alu_writes(slots[i]) &&
    826 					    alu_writes(prev[i]))
    827 						return 0;
    828 
    829 					result[i] = slots[i];
    830 					result[4] = prev[i];
    831 				} else
    832 					return 0;
    833 			} else
    834 				return 0;
    835 		} else if(!slots[i]) {
    836 			continue;
    837 		} else {
    838 			if (max_slots == 5 && slots[i] && prev[4] &&
    839 					slots[i]->dst.sel == prev[4]->dst.sel &&
    840 					slots[i]->dst.chan == prev[4]->dst.chan &&
    841 					alu_writes(slots[i]) &&
    842 					alu_writes(prev[4]))
    843 				return 0;
    844 
    845 			result[i] = slots[i];
    846 		}
    847 
    848 		alu = slots[i];
    849 		num_once_inst += is_alu_once_inst(alu);
    850 
    851 		/* don't reschedule NOPs */
    852 		if (is_nop_inst(alu))
    853 			return 0;
    854 
    855 		if (is_alu_mova_inst(alu)) {
    856 			if (have_rel) {
    857 				return 0;
    858 			}
    859 			have_mova = 1;
    860 		}
    861 
    862 		if (alu_uses_rel(alu)) {
    863 			if (have_mova) {
    864 				return 0;
    865 			}
    866 			have_rel = 1;
    867 		}
    868 
    869 		if (alu->op == ALU_OP0_SET_CF_IDX0 ||
    870 			alu->op == ALU_OP0_SET_CF_IDX1)
    871 			return 0; /* data hazard with MOVA */
    872 
    873 		/* Let's check source gprs */
    874 		num_src = r600_bytecode_get_num_operands(alu);
    875 		for (src = 0; src < num_src; ++src) {
    876 
    877 			/* Constants don't matter. */
    878 			if (!is_gpr(alu->src[src].sel))
    879 				continue;
    880 
    881 			for (j = 0; j < max_slots; ++j) {
    882 				if (!prev[j] || !alu_writes(prev[j]))
    883 					continue;
    884 
    885 				/* If it's relative then we can't determin which gpr is really used. */
    886 				if (prev[j]->dst.chan == alu->src[src].chan &&
    887 					(prev[j]->dst.sel == alu->src[src].sel ||
    888 					prev[j]->dst.rel || alu->src[src].rel))
    889 					return 0;
    890 			}
    891 		}
    892 	}
    893 
    894 	/* more than one PRED_ or KILL_ ? */
    895 	if (num_once_inst > 1)
    896 		return 0;
    897 
    898 	/* check if the result can still be swizzlet */
    899 	r = check_and_set_bank_swizzle(bc, result);
    900 	if (r)
    901 		return 0;
    902 
    903 	/* looks like everything worked out right, apply the changes */
    904 
    905 	/* undo adding previus literals */
    906 	bc->cf_last->ndw -= align(prev_nliteral, 2);
    907 
    908 	/* sort instructions */
    909 	for (i = 0; i < max_slots; ++i) {
    910 		slots[i] = result[i];
    911 		if (result[i]) {
    912 			LIST_DEL(&result[i]->list);
    913 			result[i]->last = 0;
    914 			LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
    915 		}
    916 	}
    917 
    918 	/* determine new last instruction */
    919 	LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
    920 
    921 	/* determine new first instruction */
    922 	for (i = 0; i < max_slots; ++i) {
    923 		if (result[i]) {
    924 			bc->cf_last->curr_bs_head = result[i];
    925 			break;
    926 		}
    927 	}
    928 
    929 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
    930 	bc->cf_last->prev2_bs_head = NULL;
    931 
    932 	return 0;
    933 }
    934 
    935 /* we'll keep kcache sets sorted by bank & addr */
    936 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
    937 		struct r600_bytecode_kcache *kcache,
    938 		unsigned bank, unsigned line, unsigned index_mode)
    939 {
    940 	int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
    941 
    942 	for (i = 0; i < kcache_banks; i++) {
    943 		if (kcache[i].mode) {
    944 			int d;
    945 
    946 			if (kcache[i].bank < bank)
    947 				continue;
    948 
    949 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
    950 					kcache[i].bank > bank) {
    951 				/* try to insert new line */
    952 				if (kcache[kcache_banks-1].mode) {
    953 					/* all sets are in use */
    954 					return -ENOMEM;
    955 				}
    956 
    957 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
    958 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
    959 				kcache[i].bank = bank;
    960 				kcache[i].addr = line;
    961 				kcache[i].index_mode = index_mode;
    962 				return 0;
    963 			}
    964 
    965 			d = line - kcache[i].addr;
    966 
    967 			if (d == -1) {
    968 				kcache[i].addr--;
    969 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
    970 					/* we are prepending the line to the current set,
    971 					 * discarding the existing second line,
    972 					 * so we'll have to insert line+2 after it */
    973 					line += 2;
    974 					continue;
    975 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
    976 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
    977 					return 0;
    978 				} else {
    979 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
    980 					return -ENOMEM;
    981 				}
    982 			} else if (d == 1) {
    983 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
    984 				return 0;
    985 			} else if (d == 0)
    986 				return 0;
    987 		} else { /* free kcache set - use it */
    988 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
    989 			kcache[i].bank = bank;
    990 			kcache[i].addr = line;
    991 			kcache[i].index_mode = index_mode;
    992 			return 0;
    993 		}
    994 	}
    995 	return -ENOMEM;
    996 }
    997 
    998 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
    999 		struct r600_bytecode_kcache *kcache,
   1000 		struct r600_bytecode_alu *alu)
   1001 {
   1002 	int i, r;
   1003 
   1004 	for (i = 0; i < 3; i++) {
   1005 		unsigned bank, line, sel = alu->src[i].sel, index_mode;
   1006 
   1007 		if (sel < 512)
   1008 			continue;
   1009 
   1010 		bank = alu->src[i].kc_bank;
   1011 		assert(bank < R600_MAX_HW_CONST_BUFFERS);
   1012 		line = (sel-512)>>4;
   1013 		index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
   1014 
   1015 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
   1016 			return r;
   1017 	}
   1018 	return 0;
   1019 }
   1020 
   1021 static int r600_bytecode_assign_kcache_banks(
   1022 		struct r600_bytecode_alu *alu,
   1023 		struct r600_bytecode_kcache * kcache)
   1024 {
   1025 	int i, j;
   1026 
   1027 	/* Alter the src operands to refer to the kcache. */
   1028 	for (i = 0; i < 3; ++i) {
   1029 		static const unsigned int base[] = {128, 160, 256, 288};
   1030 		unsigned int line, sel = alu->src[i].sel, found = 0;
   1031 
   1032 		if (sel < 512)
   1033 			continue;
   1034 
   1035 		sel -= 512;
   1036 		line = sel>>4;
   1037 
   1038 		for (j = 0; j < 4 && !found; ++j) {
   1039 			switch (kcache[j].mode) {
   1040 			case V_SQ_CF_KCACHE_NOP:
   1041 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
   1042 				R600_ERR("unexpected kcache line mode\n");
   1043 				return -ENOMEM;
   1044 			default:
   1045 				if (kcache[j].bank == alu->src[i].kc_bank &&
   1046 						kcache[j].addr <= line &&
   1047 						line < kcache[j].addr + kcache[j].mode) {
   1048 					alu->src[i].sel = sel - (kcache[j].addr<<4);
   1049 					alu->src[i].sel += base[j];
   1050 					found=1;
   1051 			    }
   1052 			}
   1053 		}
   1054 	}
   1055 	return 0;
   1056 }
   1057 
   1058 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
   1059 		struct r600_bytecode_alu *alu,
   1060 		unsigned type)
   1061 {
   1062 	struct r600_bytecode_kcache kcache_sets[4];
   1063 	struct r600_bytecode_kcache *kcache = kcache_sets;
   1064 	int r;
   1065 
   1066 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
   1067 
   1068 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
   1069 		/* can't alloc, need to start new clause */
   1070 		if ((r = r600_bytecode_add_cf(bc))) {
   1071 			return r;
   1072 		}
   1073 		bc->cf_last->op = type;
   1074 
   1075 		/* retry with the new clause */
   1076 		kcache = bc->cf_last->kcache;
   1077 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
   1078 			/* can't alloc again- should never happen */
   1079 			return r;
   1080 		}
   1081 	} else {
   1082 		/* update kcache sets */
   1083 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
   1084 	}
   1085 
   1086 	/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
   1087 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
   1088 		kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
   1089 		if (bc->chip_class < EVERGREEN)
   1090 			return -ENOMEM;
   1091 		bc->cf_last->eg_alu_extended = 1;
   1092 	}
   1093 
   1094 	return 0;
   1095 }
   1096 
   1097 static int insert_nop_r6xx(struct r600_bytecode *bc)
   1098 {
   1099 	struct r600_bytecode_alu alu;
   1100 	int r, i;
   1101 
   1102 	for (i = 0; i < 4; i++) {
   1103 		memset(&alu, 0, sizeof(alu));
   1104 		alu.op = ALU_OP0_NOP;
   1105 		alu.src[0].chan = i;
   1106 		alu.dst.chan = i;
   1107 		alu.last = (i == 3);
   1108 		r = r600_bytecode_add_alu(bc, &alu);
   1109 		if (r)
   1110 			return r;
   1111 	}
   1112 	return 0;
   1113 }
   1114 
   1115 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
   1116 static int load_ar_r6xx(struct r600_bytecode *bc)
   1117 {
   1118 	struct r600_bytecode_alu alu;
   1119 	int r;
   1120 
   1121 	if (bc->ar_loaded)
   1122 		return 0;
   1123 
   1124 	/* hack to avoid making MOVA the last instruction in the clause */
   1125 	if ((bc->cf_last->ndw>>1) >= 110)
   1126 		bc->force_add_cf = 1;
   1127 
   1128 	memset(&alu, 0, sizeof(alu));
   1129 	alu.op = ALU_OP1_MOVA_GPR_INT;
   1130 	alu.src[0].sel = bc->ar_reg;
   1131 	alu.src[0].chan = bc->ar_chan;
   1132 	alu.last = 1;
   1133 	alu.index_mode = INDEX_MODE_LOOP;
   1134 	r = r600_bytecode_add_alu(bc, &alu);
   1135 	if (r)
   1136 		return r;
   1137 
   1138 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
   1139 	bc->ar_loaded = 1;
   1140 	return 0;
   1141 }
   1142 
   1143 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
   1144 static int load_ar(struct r600_bytecode *bc)
   1145 {
   1146 	struct r600_bytecode_alu alu;
   1147 	int r;
   1148 
   1149 	if (bc->ar_handling)
   1150 		return load_ar_r6xx(bc);
   1151 
   1152 	if (bc->ar_loaded)
   1153 		return 0;
   1154 
   1155 	/* hack to avoid making MOVA the last instruction in the clause */
   1156 	if ((bc->cf_last->ndw>>1) >= 110)
   1157 		bc->force_add_cf = 1;
   1158 
   1159 	memset(&alu, 0, sizeof(alu));
   1160 	alu.op = ALU_OP1_MOVA_INT;
   1161 	alu.src[0].sel = bc->ar_reg;
   1162 	alu.src[0].chan = bc->ar_chan;
   1163 	alu.last = 1;
   1164 	r = r600_bytecode_add_alu(bc, &alu);
   1165 	if (r)
   1166 		return r;
   1167 
   1168 	bc->cf_last->r6xx_uses_waterfall = 1;
   1169 	bc->ar_loaded = 1;
   1170 	return 0;
   1171 }
   1172 
   1173 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
   1174 		const struct r600_bytecode_alu *alu, unsigned type)
   1175 {
   1176 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
   1177 	struct r600_bytecode_alu *lalu;
   1178 	int i, r;
   1179 
   1180 	if (!nalu)
   1181 		return -ENOMEM;
   1182 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
   1183 
   1184 	if (alu->is_op3) {
   1185 		/* will fail later since alu does not support it. */
   1186 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
   1187 	}
   1188 
   1189 	if (bc->cf_last != NULL && bc->cf_last->op != type) {
   1190 		/* check if we could add it anyway */
   1191 		if (bc->cf_last->op == CF_OP_ALU &&
   1192 			type == CF_OP_ALU_PUSH_BEFORE) {
   1193 			LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
   1194 				if (lalu->execute_mask) {
   1195 					bc->force_add_cf = 1;
   1196 					break;
   1197 				}
   1198 			}
   1199 		} else
   1200 			bc->force_add_cf = 1;
   1201 	}
   1202 
   1203 	/* cf can contains only alu or only vtx or only tex */
   1204 	if (bc->cf_last == NULL || bc->force_add_cf) {
   1205 		r = r600_bytecode_add_cf(bc);
   1206 		if (r) {
   1207 			free(nalu);
   1208 			return r;
   1209 		}
   1210 	}
   1211 	bc->cf_last->op = type;
   1212 
   1213 	/* Load index register if required */
   1214 	if (bc->chip_class >= EVERGREEN) {
   1215 		for (i = 0; i < 3; i++)
   1216 			if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
   1217 				egcm_load_index_reg(bc, 0, true);
   1218 	}
   1219 
   1220 	/* Check AR usage and load it if required */
   1221 	for (i = 0; i < 3; i++)
   1222 		if (nalu->src[i].rel && !bc->ar_loaded)
   1223 			load_ar(bc);
   1224 
   1225 	if (nalu->dst.rel && !bc->ar_loaded)
   1226 		load_ar(bc);
   1227 
   1228 	/* Setup the kcache for this ALU instruction. This will start a new
   1229 	 * ALU clause if needed. */
   1230 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
   1231 		free(nalu);
   1232 		return r;
   1233 	}
   1234 
   1235 	if (!bc->cf_last->curr_bs_head) {
   1236 		bc->cf_last->curr_bs_head = nalu;
   1237 	}
   1238 	/* number of gpr == the last gpr used in any alu */
   1239 	for (i = 0; i < 3; i++) {
   1240 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
   1241 			bc->ngpr = nalu->src[i].sel + 1;
   1242 		}
   1243 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
   1244 			r600_bytecode_special_constants(nalu->src[i].value,
   1245 				&nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
   1246 	}
   1247 	if (nalu->dst.sel >= bc->ngpr) {
   1248 		bc->ngpr = nalu->dst.sel + 1;
   1249 	}
   1250 	LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
   1251 	/* each alu use 2 dwords */
   1252 	bc->cf_last->ndw += 2;
   1253 	bc->ndw += 2;
   1254 
   1255 	/* process cur ALU instructions for bank swizzle */
   1256 	if (nalu->last) {
   1257 		uint32_t literal[4];
   1258 		unsigned nliteral;
   1259 		struct r600_bytecode_alu *slots[5];
   1260 		int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
   1261 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
   1262 		if (r)
   1263 			return r;
   1264 
   1265 		if (bc->cf_last->prev_bs_head) {
   1266 			r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
   1267 			if (r)
   1268 				return r;
   1269 		}
   1270 
   1271 		if (bc->cf_last->prev_bs_head) {
   1272 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
   1273 			if (r)
   1274 				return r;
   1275 		}
   1276 
   1277 		r = check_and_set_bank_swizzle(bc, slots);
   1278 		if (r)
   1279 			return r;
   1280 
   1281 		for (i = 0, nliteral = 0; i < max_slots; i++) {
   1282 			if (slots[i]) {
   1283 				r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
   1284 				if (r)
   1285 					return r;
   1286 			}
   1287 		}
   1288 		bc->cf_last->ndw += align(nliteral, 2);
   1289 
   1290 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
   1291 		 * worst case */
   1292 		if ((bc->cf_last->ndw >> 1) >= 120) {
   1293 			bc->force_add_cf = 1;
   1294 		}
   1295 
   1296 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
   1297 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
   1298 		bc->cf_last->curr_bs_head = NULL;
   1299 	}
   1300 
   1301 	if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
   1302 		insert_nop_r6xx(bc);
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
   1308 {
   1309 	return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
   1310 }
   1311 
   1312 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
   1313 {
   1314 	switch (bc->chip_class) {
   1315 	case R600:
   1316 		return 8;
   1317 
   1318 	case R700:
   1319 	case EVERGREEN:
   1320 	case CAYMAN:
   1321 		return 16;
   1322 
   1323 	default:
   1324 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
   1325 		return 8;
   1326 	}
   1327 }
   1328 
   1329 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
   1330 {
   1331 	return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
   1332 		 bc->cf_last->op != CF_OP_GDS &&
   1333 		 (bc->chip_class == CAYMAN ||
   1334 		  bc->cf_last->op != CF_OP_TEX));
   1335 }
   1336 
   1337 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
   1338 					  bool use_tc)
   1339 {
   1340 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
   1341 	int r;
   1342 
   1343 	if (!nvtx)
   1344 		return -ENOMEM;
   1345 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
   1346 
   1347 	/* Load index register if required */
   1348 	if (bc->chip_class >= EVERGREEN) {
   1349 		if (vtx->buffer_index_mode)
   1350 			egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
   1351 	}
   1352 
   1353 	/* cf can contains only alu or only vtx or only tex */
   1354 	if (bc->cf_last == NULL ||
   1355 	    last_inst_was_not_vtx_fetch(bc) ||
   1356 	    bc->force_add_cf) {
   1357 		r = r600_bytecode_add_cf(bc);
   1358 		if (r) {
   1359 			free(nvtx);
   1360 			return r;
   1361 		}
   1362 		switch (bc->chip_class) {
   1363 		case R600:
   1364 		case R700:
   1365 			bc->cf_last->op = CF_OP_VTX;
   1366 			break;
   1367 		case EVERGREEN:
   1368 			if (use_tc)
   1369 				bc->cf_last->op = CF_OP_TEX;
   1370 			else
   1371 				bc->cf_last->op = CF_OP_VTX;
   1372 			break;
   1373 		case CAYMAN:
   1374 			bc->cf_last->op = CF_OP_TEX;
   1375 			break;
   1376 		default:
   1377 			R600_ERR("Unknown chip class %d.\n", bc->chip_class);
   1378 			free(nvtx);
   1379 			return -EINVAL;
   1380 		}
   1381 	}
   1382 	LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
   1383 	/* each fetch use 4 dwords */
   1384 	bc->cf_last->ndw += 4;
   1385 	bc->ndw += 4;
   1386 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
   1387 		bc->force_add_cf = 1;
   1388 
   1389 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
   1390 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
   1396 {
   1397 	return r600_bytecode_add_vtx_internal(bc, vtx, false);
   1398 }
   1399 
   1400 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
   1401 {
   1402 	return r600_bytecode_add_vtx_internal(bc, vtx, true);
   1403 }
   1404 
   1405 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
   1406 {
   1407 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
   1408 	int r;
   1409 
   1410 	if (!ntex)
   1411 		return -ENOMEM;
   1412 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
   1413 
   1414 	/* Load index register if required */
   1415 	if (bc->chip_class >= EVERGREEN) {
   1416 		if (tex->sampler_index_mode || tex->resource_index_mode)
   1417 			egcm_load_index_reg(bc, 1, false);
   1418 	}
   1419 
   1420 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
   1421 	if (bc->cf_last != NULL &&
   1422 		bc->cf_last->op == CF_OP_TEX) {
   1423 		struct r600_bytecode_tex *ttex;
   1424 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
   1425 			if (ttex->dst_gpr == ntex->src_gpr) {
   1426 				bc->force_add_cf = 1;
   1427 				break;
   1428 			}
   1429 		}
   1430 		/* slight hack to make gradients always go into same cf */
   1431 		if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
   1432 			bc->force_add_cf = 1;
   1433 	}
   1434 
   1435 	/* cf can contains only alu or only vtx or only tex */
   1436 	if (bc->cf_last == NULL ||
   1437 		bc->cf_last->op != CF_OP_TEX ||
   1438 	        bc->force_add_cf) {
   1439 		r = r600_bytecode_add_cf(bc);
   1440 		if (r) {
   1441 			free(ntex);
   1442 			return r;
   1443 		}
   1444 		bc->cf_last->op = CF_OP_TEX;
   1445 	}
   1446 	if (ntex->src_gpr >= bc->ngpr) {
   1447 		bc->ngpr = ntex->src_gpr + 1;
   1448 	}
   1449 	if (ntex->dst_gpr >= bc->ngpr) {
   1450 		bc->ngpr = ntex->dst_gpr + 1;
   1451 	}
   1452 	LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
   1453 	/* each texture fetch use 4 dwords */
   1454 	bc->cf_last->ndw += 4;
   1455 	bc->ndw += 4;
   1456 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
   1457 		bc->force_add_cf = 1;
   1458 	return 0;
   1459 }
   1460 
   1461 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
   1462 {
   1463 	struct r600_bytecode_gds *ngds = r600_bytecode_gds();
   1464 	int r;
   1465 
   1466 	if (ngds == NULL)
   1467 		return -ENOMEM;
   1468 	memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
   1469 
   1470 	if (bc->chip_class >= EVERGREEN) {
   1471 		if (gds->uav_index_mode)
   1472 			egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
   1473 	}
   1474 
   1475 	if (bc->cf_last == NULL ||
   1476 	    bc->cf_last->op != CF_OP_GDS ||
   1477 	    bc->force_add_cf) {
   1478 		r = r600_bytecode_add_cf(bc);
   1479 		if (r) {
   1480 			free(ngds);
   1481 			return r;
   1482 		}
   1483 		bc->cf_last->op = CF_OP_GDS;
   1484 	}
   1485 
   1486 	LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
   1487 	bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
   1488 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
   1489 		bc->force_add_cf = 1;
   1490 	return 0;
   1491 }
   1492 
   1493 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
   1494 {
   1495 	int r;
   1496 	r = r600_bytecode_add_cf(bc);
   1497 	if (r)
   1498 		return r;
   1499 
   1500 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
   1501 	bc->cf_last->op = op;
   1502 	return 0;
   1503 }
   1504 
   1505 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
   1506 {
   1507 	return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
   1508 }
   1509 
   1510 /* common to all 3 families */
   1511 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
   1512 {
   1513 	bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(vtx->op) |
   1514 			S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
   1515 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
   1516 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
   1517 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
   1518 	if (bc->chip_class < CAYMAN)
   1519 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
   1520 	id++;
   1521 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
   1522 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
   1523 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
   1524 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
   1525 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
   1526 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
   1527 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
   1528 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
   1529 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
   1530 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
   1531 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
   1532 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
   1533 	if (bc->chip_class >= EVERGREEN)
   1534 		bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
   1535 	if (bc->chip_class < CAYMAN)
   1536 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
   1537 	id++;
   1538 	bc->bytecode[id++] = 0;
   1539 	return 0;
   1540 }
   1541 
   1542 /* common to all 3 families */
   1543 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
   1544 {
   1545 	bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
   1546 					r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
   1547 			    EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
   1548 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
   1549 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
   1550 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
   1551 	if (bc->chip_class >= EVERGREEN)
   1552 		bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
   1553 				((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
   1554 	id++;
   1555 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
   1556 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
   1557 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
   1558 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
   1559 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
   1560 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
   1561 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
   1562 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
   1563 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
   1564 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
   1565 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
   1566 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
   1567 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
   1568 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
   1569 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
   1570 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
   1571 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
   1572 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
   1573 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
   1574 	bc->bytecode[id++] = 0;
   1575 	return 0;
   1576 }
   1577 
   1578 /* r600 only, r700/eg bits in r700_asm.c */
   1579 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
   1580 {
   1581 	unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
   1582 
   1583 	/* don't replace gpr by pv or ps for destination register */
   1584 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
   1585 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
   1586 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
   1587 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
   1588 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
   1589 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
   1590 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
   1591 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
   1592 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
   1593 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
   1594 				S_SQ_ALU_WORD0_LAST(alu->last);
   1595 
   1596 	if (alu->is_op3) {
   1597 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
   1598 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
   1599 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
   1600 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
   1601 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
   1602 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
   1603 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
   1604 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
   1605 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
   1606 					S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
   1607 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
   1608 	} else {
   1609 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
   1610 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
   1611 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
   1612 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
   1613 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
   1614 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
   1615 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
   1616 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
   1617 					S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
   1618 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
   1619 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
   1620 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
   1621 	}
   1622 	return 0;
   1623 }
   1624 
   1625 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
   1626 {
   1627 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
   1628 	*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
   1629 			S_SQ_CF_WORD1_BARRIER(1) |
   1630 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
   1631 			S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
   1632 }
   1633 
   1634 /* common for r600/r700 - eg in eg_asm.c */
   1635 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
   1636 {
   1637 	unsigned id = cf->id;
   1638 	const struct cf_op_info *cfop = r600_isa_cf(cf->op);
   1639 	unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
   1640 
   1641 
   1642 	if (cf->op == CF_NATIVE) {
   1643 		bc->bytecode[id++] = cf->isa[0];
   1644 		bc->bytecode[id++] = cf->isa[1];
   1645 	} else if (cfop->flags & CF_ALU) {
   1646 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
   1647 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
   1648 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
   1649 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
   1650 
   1651 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
   1652 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
   1653 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
   1654 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
   1655 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
   1656 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
   1657 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
   1658 	} else if (cfop->flags & CF_FETCH) {
   1659 		if (bc->chip_class == R700)
   1660 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
   1661 		else
   1662 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
   1663 	} else if (cfop->flags & CF_EXP) {
   1664 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
   1665 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
   1666 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
   1667 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
   1668 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
   1669 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
   1670 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
   1671 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
   1672 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
   1673 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
   1674 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
   1675 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
   1676 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
   1677 	} else if (cfop->flags & CF_MEM) {
   1678 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
   1679 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
   1680 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
   1681 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
   1682 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
   1683 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
   1684 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
   1685 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
   1686 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
   1687 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
   1688 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
   1689 	} else {
   1690 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
   1691 		bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
   1692 					S_SQ_CF_WORD1_BARRIER(1) |
   1693 			                S_SQ_CF_WORD1_COND(cf->cond) |
   1694 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
   1695 					S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
   1696 	}
   1697 	return 0;
   1698 }
   1699 
   1700 int r600_bytecode_build(struct r600_bytecode *bc)
   1701 {
   1702 	struct r600_bytecode_cf *cf;
   1703 	struct r600_bytecode_alu *alu;
   1704 	struct r600_bytecode_vtx *vtx;
   1705 	struct r600_bytecode_tex *tex;
   1706 	struct r600_bytecode_gds *gds;
   1707 	uint32_t literal[4];
   1708 	unsigned nliteral;
   1709 	unsigned addr;
   1710 	int i, r;
   1711 
   1712 	if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
   1713 		if (bc->stack.max_entries)
   1714 			bc->nstack = bc->stack.max_entries;
   1715 		else if (bc->type == PIPE_SHADER_VERTEX ||
   1716 			 bc->type == PIPE_SHADER_TESS_EVAL ||
   1717 			 bc->type == PIPE_SHADER_TESS_CTRL)
   1718 			bc->nstack = 1;
   1719 	}
   1720 
   1721 	/* first path compute addr of each CF block */
   1722 	/* addr start after all the CF instructions */
   1723 	addr = bc->cf_last->id + 2;
   1724 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
   1725 		if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
   1726 			addr += 3;
   1727 			addr &= 0xFFFFFFFCUL;
   1728 		}
   1729 		cf->addr = addr;
   1730 		addr += cf->ndw;
   1731 		bc->ndw = cf->addr + cf->ndw;
   1732 	}
   1733 	free(bc->bytecode);
   1734 	bc->bytecode = calloc(4, bc->ndw);
   1735 	if (bc->bytecode == NULL)
   1736 		return -ENOMEM;
   1737 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
   1738 		const struct cf_op_info *cfop = r600_isa_cf(cf->op);
   1739 		addr = cf->addr;
   1740 		if (bc->chip_class >= EVERGREEN)
   1741 			r = eg_bytecode_cf_build(bc, cf);
   1742 		else
   1743 			r = r600_bytecode_cf_build(bc, cf);
   1744 		if (r)
   1745 			return r;
   1746 		if (cfop->flags & CF_ALU) {
   1747 			nliteral = 0;
   1748 			memset(literal, 0, sizeof(literal));
   1749 			LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
   1750 				r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
   1751 				if (r)
   1752 					return r;
   1753 				r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
   1754 				r600_bytecode_assign_kcache_banks(alu, cf->kcache);
   1755 
   1756 				switch(bc->chip_class) {
   1757 				case R600:
   1758 					r = r600_bytecode_alu_build(bc, alu, addr);
   1759 					break;
   1760 				case R700:
   1761 					r = r700_bytecode_alu_build(bc, alu, addr);
   1762 					break;
   1763 				case EVERGREEN:
   1764 				case CAYMAN:
   1765 					r = eg_bytecode_alu_build(bc, alu, addr);
   1766 					break;
   1767 				default:
   1768 					R600_ERR("unknown chip class %d.\n", bc->chip_class);
   1769 					return -EINVAL;
   1770 				}
   1771 				if (r)
   1772 					return r;
   1773 				addr += 2;
   1774 				if (alu->last) {
   1775 					for (i = 0; i < align(nliteral, 2); ++i) {
   1776 						bc->bytecode[addr++] = literal[i];
   1777 					}
   1778 					nliteral = 0;
   1779 					memset(literal, 0, sizeof(literal));
   1780 				}
   1781 			}
   1782 		} else if (cf->op == CF_OP_VTX) {
   1783 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
   1784 				r = r600_bytecode_vtx_build(bc, vtx, addr);
   1785 				if (r)
   1786 					return r;
   1787 				addr += 4;
   1788 			}
   1789 		} else if (cf->op == CF_OP_GDS) {
   1790 			assert(bc->chip_class >= EVERGREEN);
   1791 			LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
   1792 				r = eg_bytecode_gds_build(bc, gds, addr);
   1793 				if (r)
   1794 					return r;
   1795 				addr += 4;
   1796 			}
   1797 		} else if (cf->op == CF_OP_TEX) {
   1798 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
   1799 				assert(bc->chip_class >= EVERGREEN);
   1800 				r = r600_bytecode_vtx_build(bc, vtx, addr);
   1801 				if (r)
   1802 					return r;
   1803 				addr += 4;
   1804 			}
   1805 			LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
   1806 				r = r600_bytecode_tex_build(bc, tex, addr);
   1807 				if (r)
   1808 					return r;
   1809 				addr += 4;
   1810 			}
   1811 		}
   1812 	}
   1813 	return 0;
   1814 }
   1815 
   1816 void r600_bytecode_clear(struct r600_bytecode *bc)
   1817 {
   1818 	struct r600_bytecode_cf *cf = NULL, *next_cf;
   1819 
   1820 	free(bc->bytecode);
   1821 	bc->bytecode = NULL;
   1822 
   1823 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
   1824 		struct r600_bytecode_alu *alu = NULL, *next_alu;
   1825 		struct r600_bytecode_tex *tex = NULL, *next_tex;
   1826 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
   1827 		struct r600_bytecode_gds *gds = NULL, *next_gds;
   1828 
   1829 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
   1830 			free(alu);
   1831 		}
   1832 
   1833 		LIST_INITHEAD(&cf->alu);
   1834 
   1835 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
   1836 			free(tex);
   1837 		}
   1838 
   1839 		LIST_INITHEAD(&cf->tex);
   1840 
   1841 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
   1842 			free(vtx);
   1843 		}
   1844 
   1845 		LIST_INITHEAD(&cf->vtx);
   1846 
   1847 		LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
   1848 			free(gds);
   1849 		}
   1850 
   1851 		LIST_INITHEAD(&cf->gds);
   1852 
   1853 		free(cf);
   1854 	}
   1855 
   1856 	LIST_INITHEAD(&cf->list);
   1857 }
   1858 
   1859 static int print_swizzle(unsigned swz)
   1860 {
   1861 	const char * swzchars = "xyzw01?_";
   1862 	assert(swz<8 && swz != 6);
   1863 	return fprintf(stderr, "%c", swzchars[swz]);
   1864 }
   1865 
   1866 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
   1867 		unsigned need_brackets)
   1868 {
   1869 	int o = 0;
   1870 	if (rel && index_mode >= 5 && sel < 128)
   1871 		o += fprintf(stderr, "G");
   1872 	if (rel || need_brackets) {
   1873 		o += fprintf(stderr, "[");
   1874 	}
   1875 	o += fprintf(stderr, "%d", sel);
   1876 	if (rel) {
   1877 		if (index_mode == 0 || index_mode == 6)
   1878 			o += fprintf(stderr, "+AR");
   1879 		else if (index_mode == 4)
   1880 			o += fprintf(stderr, "+AL");
   1881 	}
   1882 	if (rel || need_brackets) {
   1883 		o += fprintf(stderr, "]");
   1884 	}
   1885 	return o;
   1886 }
   1887 
   1888 static int print_dst(struct r600_bytecode_alu *alu)
   1889 {
   1890 	int o = 0;
   1891 	unsigned sel = alu->dst.sel;
   1892 	char reg_char = 'R';
   1893 	if (sel > 128 - 4) { /* clause temporary gpr */
   1894 		sel -= 128 - 4;
   1895 		reg_char = 'T';
   1896 	}
   1897 
   1898 	if (alu_writes(alu)) {
   1899 		o += fprintf(stderr, "%c", reg_char);
   1900 		o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
   1901 	} else {
   1902 		o += fprintf(stderr, "__");
   1903 	}
   1904 	o += fprintf(stderr, ".");
   1905 	o += print_swizzle(alu->dst.chan);
   1906 	return o;
   1907 }
   1908 
   1909 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
   1910 {
   1911 	int o = 0;
   1912 	struct r600_bytecode_alu_src *src = &alu->src[idx];
   1913 	unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
   1914 
   1915 	if (src->neg)
   1916 		o += fprintf(stderr,"-");
   1917 	if (src->abs)
   1918 		o += fprintf(stderr,"|");
   1919 
   1920 	if (sel < 128 - 4) {
   1921 		o += fprintf(stderr, "R");
   1922 	} else if (sel < 128) {
   1923 		o += fprintf(stderr, "T");
   1924 		sel -= 128 - 4;
   1925 	} else if (sel < 160) {
   1926 		o += fprintf(stderr, "KC0");
   1927 		need_brackets = 1;
   1928 		sel -= 128;
   1929 	} else if (sel < 192) {
   1930 		o += fprintf(stderr, "KC1");
   1931 		need_brackets = 1;
   1932 		sel -= 160;
   1933 	} else if (sel >= 512) {
   1934 		o += fprintf(stderr, "C%d", src->kc_bank);
   1935 		need_brackets = 1;
   1936 		sel -= 512;
   1937 	} else if (sel >= 448) {
   1938 		o += fprintf(stderr, "Param");
   1939 		sel -= 448;
   1940 		need_chan = 0;
   1941 	} else if (sel >= 288) {
   1942 		o += fprintf(stderr, "KC3");
   1943 		need_brackets = 1;
   1944 		sel -= 288;
   1945 	} else if (sel >= 256) {
   1946 		o += fprintf(stderr, "KC2");
   1947 		need_brackets = 1;
   1948 		sel -= 256;
   1949 	} else {
   1950 		need_sel = 0;
   1951 		need_chan = 0;
   1952 		switch (sel) {
   1953 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
   1954 			o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
   1955 			break;
   1956 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
   1957 			o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
   1958 			break;
   1959 		case EG_V_SQ_ALU_SRC_LDS_OQ_A:
   1960 			o += fprintf(stderr, "LDS_OQ_A");
   1961 			need_chan = 1;
   1962 			break;
   1963 		case EG_V_SQ_ALU_SRC_LDS_OQ_B:
   1964 			o += fprintf(stderr, "LDS_OQ_B");
   1965 			need_chan = 1;
   1966 			break;
   1967 		case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
   1968 			o += fprintf(stderr, "LDS_OQ_A_POP");
   1969 			need_chan = 1;
   1970 			break;
   1971 		case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
   1972 			o += fprintf(stderr, "LDS_OQ_B_POP");
   1973 			need_chan = 1;
   1974 			break;
   1975 		case EG_V_SQ_ALU_SRC_SE_ID:
   1976 			o += fprintf(stderr, "SE_ID");
   1977 			break;
   1978 		case EG_V_SQ_ALU_SRC_SIMD_ID:
   1979 			o += fprintf(stderr, "SIMD_ID");
   1980 			break;
   1981 		case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
   1982 			o += fprintf(stderr, "HW_WAVE_ID");
   1983 			break;
   1984 		case V_SQ_ALU_SRC_PS:
   1985 			o += fprintf(stderr, "PS");
   1986 			break;
   1987 		case V_SQ_ALU_SRC_PV:
   1988 			o += fprintf(stderr, "PV");
   1989 			need_chan = 1;
   1990 			break;
   1991 		case V_SQ_ALU_SRC_LITERAL:
   1992 			o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
   1993 			break;
   1994 		case V_SQ_ALU_SRC_0_5:
   1995 			o += fprintf(stderr, "0.5");
   1996 			break;
   1997 		case V_SQ_ALU_SRC_M_1_INT:
   1998 			o += fprintf(stderr, "-1");
   1999 			break;
   2000 		case V_SQ_ALU_SRC_1_INT:
   2001 			o += fprintf(stderr, "1");
   2002 			break;
   2003 		case V_SQ_ALU_SRC_1:
   2004 			o += fprintf(stderr, "1.0");
   2005 			break;
   2006 		case V_SQ_ALU_SRC_0:
   2007 			o += fprintf(stderr, "0");
   2008 			break;
   2009 		default:
   2010 			o += fprintf(stderr, "??IMM_%d", sel);
   2011 			break;
   2012 		}
   2013 	}
   2014 
   2015 	if (need_sel)
   2016 		o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
   2017 
   2018 	if (need_chan) {
   2019 		o += fprintf(stderr, ".");
   2020 		o += print_swizzle(src->chan);
   2021 	}
   2022 
   2023 	if (src->abs)
   2024 		o += fprintf(stderr,"|");
   2025 
   2026 	return o;
   2027 }
   2028 
   2029 static int print_indent(int p, int c)
   2030 {
   2031 	int o = 0;
   2032 	while (p++ < c)
   2033 		o += fprintf(stderr, " ");
   2034 	return o;
   2035 }
   2036 
   2037 void r600_bytecode_disasm(struct r600_bytecode *bc)
   2038 {
   2039 	const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
   2040 	static int index = 0;
   2041 	struct r600_bytecode_cf *cf = NULL;
   2042 	struct r600_bytecode_alu *alu = NULL;
   2043 	struct r600_bytecode_vtx *vtx = NULL;
   2044 	struct r600_bytecode_tex *tex = NULL;
   2045 	struct r600_bytecode_gds *gds = NULL;
   2046 
   2047 	unsigned i, id, ngr = 0, last;
   2048 	uint32_t literal[4];
   2049 	unsigned nliteral;
   2050 	char chip = '6';
   2051 
   2052 	switch (bc->chip_class) {
   2053 	case R700:
   2054 		chip = '7';
   2055 		break;
   2056 	case EVERGREEN:
   2057 		chip = 'E';
   2058 		break;
   2059 	case CAYMAN:
   2060 		chip = 'C';
   2061 		break;
   2062 	case R600:
   2063 	default:
   2064 		chip = '6';
   2065 		break;
   2066 	}
   2067 	fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
   2068 	        bc->ndw, bc->ngpr, bc->nstack);
   2069 	fprintf(stderr, "shader %d -- %c\n", index++, chip);
   2070 
   2071 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
   2072 		id = cf->id;
   2073 		if (cf->op == CF_NATIVE) {
   2074 			fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
   2075 					bc->bytecode[id + 1]);
   2076 		} else {
   2077 			const struct cf_op_info *cfop = r600_isa_cf(cf->op);
   2078 			if (cfop->flags & CF_ALU) {
   2079 				if (cf->eg_alu_extended) {
   2080 					fprintf(stderr, "%04d %08X %08X  %s\n", id, bc->bytecode[id],
   2081 							bc->bytecode[id + 1], "ALU_EXT");
   2082 					id += 2;
   2083 				}
   2084 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
   2085 						bc->bytecode[id + 1], cfop->name);
   2086 				fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
   2087 				for (i = 0; i < 4; ++i) {
   2088 					if (cf->kcache[i].mode) {
   2089 						int c_start = (cf->kcache[i].addr << 4);
   2090 						int c_end = c_start + (cf->kcache[i].mode << 4);
   2091 						fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
   2092 						        i, cf->kcache[i].bank, c_start, c_end,
   2093 						        cf->kcache[i].index_mode ? " " : "",
   2094 						        cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
   2095 					}
   2096 				}
   2097 				fprintf(stderr, "\n");
   2098 			} else if (cfop->flags & CF_FETCH) {
   2099 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
   2100 						bc->bytecode[id + 1], cfop->name);
   2101 				fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
   2102 				fprintf(stderr, "\n");
   2103 				if (cf->end_of_program)
   2104 					fprintf(stderr, "EOP ");
   2105 			} else if (cfop->flags & CF_EXP) {
   2106 				int o = 0;
   2107 				const char *exp_type[] = {"PIXEL", "POS  ", "PARAM"};
   2108 				o += fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
   2109 						bc->bytecode[id + 1], cfop->name);
   2110 				o += print_indent(o, 43);
   2111 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
   2112 				if (cf->output.burst_count > 1) {
   2113 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
   2114 							cf->output.array_base + cf->output.burst_count - 1);
   2115 
   2116 					o += print_indent(o, 55);
   2117 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
   2118 							cf->output.gpr + cf->output.burst_count - 1);
   2119 				} else {
   2120 					o += fprintf(stderr, "%d ", cf->output.array_base);
   2121 					o += print_indent(o, 55);
   2122 					o += fprintf(stderr, "R%d.", cf->output.gpr);
   2123 				}
   2124 
   2125 				o += print_swizzle(cf->output.swizzle_x);
   2126 				o += print_swizzle(cf->output.swizzle_y);
   2127 				o += print_swizzle(cf->output.swizzle_z);
   2128 				o += print_swizzle(cf->output.swizzle_w);
   2129 
   2130 				print_indent(o, 67);
   2131 
   2132 				fprintf(stderr, " ES:%X ", cf->output.elem_size);
   2133 				if (cf->mark)
   2134 					fprintf(stderr, "MARK ");
   2135 				if (!cf->barrier)
   2136 					fprintf(stderr, "NO_BARRIER ");
   2137 				if (cf->end_of_program)
   2138 					fprintf(stderr, "EOP ");
   2139 				fprintf(stderr, "\n");
   2140 			} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
   2141 				int o = 0;
   2142 				const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
   2143 						"WRITE_IND_ACK"};
   2144 				o += fprintf(stderr, "%04d %08X %08X  %s ", id,
   2145 						bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
   2146 				o += print_indent(o, 43);
   2147 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
   2148 
   2149 				if (r600_isa_cf(cf->op)->flags & CF_RAT) {
   2150 					o += fprintf(stderr, "RAT%d", cf->rat.id);
   2151 					if (cf->rat.index_mode) {
   2152 						o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
   2153 					}
   2154 					o += fprintf(stderr, " INST: %d ", cf->rat.inst);
   2155 				}
   2156 
   2157 				if (cf->output.burst_count > 1) {
   2158 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
   2159 							cf->output.array_base + cf->output.burst_count - 1);
   2160 					o += print_indent(o, 55);
   2161 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
   2162 							cf->output.gpr + cf->output.burst_count - 1);
   2163 				} else {
   2164 					o += fprintf(stderr, "%d ", cf->output.array_base);
   2165 					o += print_indent(o, 55);
   2166 					o += fprintf(stderr, "R%d.", cf->output.gpr);
   2167 				}
   2168 				for (i = 0; i < 4; ++i) {
   2169 					if (cf->output.comp_mask & (1 << i))
   2170 						o += print_swizzle(i);
   2171 					else
   2172 						o += print_swizzle(7);
   2173 				}
   2174 
   2175 				if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
   2176 				    cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
   2177 					o += fprintf(stderr, " R%d", cf->output.index_gpr);
   2178 
   2179 				o += print_indent(o, 67);
   2180 
   2181 				fprintf(stderr, " ES:%i ", cf->output.elem_size);
   2182 				if (cf->output.array_size != 0xFFF)
   2183 					fprintf(stderr, "AS:%i ", cf->output.array_size);
   2184 				if (cf->mark)
   2185 					fprintf(stderr, "MARK ");
   2186 				if (!cf->barrier)
   2187 					fprintf(stderr, "NO_BARRIER ");
   2188 				if (cf->end_of_program)
   2189 					fprintf(stderr, "EOP ");
   2190 				fprintf(stderr, "\n");
   2191 			} else {
   2192 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
   2193 						bc->bytecode[id + 1], cfop->name);
   2194 				fprintf(stderr, "@%d ", cf->cf_addr);
   2195 				if (cf->cond)
   2196 					fprintf(stderr, "CND:%X ", cf->cond);
   2197 				if (cf->pop_count)
   2198 					fprintf(stderr, "POP:%X ", cf->pop_count);
   2199 				if (cf->count && (cfop->flags & CF_EMIT))
   2200 					fprintf(stderr, "STREAM%d ", cf->count);
   2201 				if (cf->end_of_program)
   2202 					fprintf(stderr, "EOP ");
   2203 				fprintf(stderr, "\n");
   2204 			}
   2205 		}
   2206 
   2207 		id = cf->addr;
   2208 		nliteral = 0;
   2209 		last = 1;
   2210 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
   2211 			const char *omod_str[] = {"","*2","*4","/2"};
   2212 			const struct alu_op_info *aop = r600_isa_alu(alu->op);
   2213 			int o = 0;
   2214 
   2215 			r600_bytecode_alu_nliterals(alu, literal, &nliteral);
   2216 			o += fprintf(stderr, " %04d %08X %08X  ", id, bc->bytecode[id], bc->bytecode[id+1]);
   2217 			if (last)
   2218 				o += fprintf(stderr, "%4d ", ++ngr);
   2219 			else
   2220 				o += fprintf(stderr, "     ");
   2221 			o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
   2222 					alu->update_pred ? 'P':' ',
   2223 					alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
   2224 
   2225 			o += fprintf(stderr, "%s%s%s ", aop->name,
   2226 					omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
   2227 
   2228 			o += print_indent(o,60);
   2229 			o += print_dst(alu);
   2230 			for (i = 0; i < aop->src_count; ++i) {
   2231 				o += fprintf(stderr, i == 0 ? ",  ": ", ");
   2232 				o += print_src(alu, i);
   2233 			}
   2234 
   2235 			if (alu->bank_swizzle) {
   2236 				o += print_indent(o,75);
   2237 				o += fprintf(stderr, "  BS:%d", alu->bank_swizzle);
   2238 			}
   2239 
   2240 			fprintf(stderr, "\n");
   2241 			id += 2;
   2242 
   2243 			if (alu->last) {
   2244 				for (i = 0; i < nliteral; i++, id++) {
   2245 					float *f = (float*)(bc->bytecode + id);
   2246 					o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
   2247 					print_indent(o, 60);
   2248 					fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
   2249 				}
   2250 				id += nliteral & 1;
   2251 				nliteral = 0;
   2252 			}
   2253 			last = alu->last;
   2254 		}
   2255 
   2256 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
   2257 			int o = 0;
   2258 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
   2259 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
   2260 
   2261 			o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
   2262 
   2263 			o += print_indent(o, 50);
   2264 
   2265 			o += fprintf(stderr, "R%d.", tex->dst_gpr);
   2266 			o += print_swizzle(tex->dst_sel_x);
   2267 			o += print_swizzle(tex->dst_sel_y);
   2268 			o += print_swizzle(tex->dst_sel_z);
   2269 			o += print_swizzle(tex->dst_sel_w);
   2270 
   2271 			o += fprintf(stderr, ", R%d.", tex->src_gpr);
   2272 			o += print_swizzle(tex->src_sel_x);
   2273 			o += print_swizzle(tex->src_sel_y);
   2274 			o += print_swizzle(tex->src_sel_z);
   2275 			o += print_swizzle(tex->src_sel_w);
   2276 
   2277 			o += fprintf(stderr, ",  RID:%d", tex->resource_id);
   2278 			o += fprintf(stderr, ", SID:%d  ", tex->sampler_id);
   2279 
   2280 			if (tex->sampler_index_mode)
   2281 				fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
   2282 
   2283 			if (tex->lod_bias)
   2284 				fprintf(stderr, "LB:%d ", tex->lod_bias);
   2285 
   2286 			fprintf(stderr, "CT:%c%c%c%c ",
   2287 					tex->coord_type_x ? 'N' : 'U',
   2288 					tex->coord_type_y ? 'N' : 'U',
   2289 					tex->coord_type_z ? 'N' : 'U',
   2290 					tex->coord_type_w ? 'N' : 'U');
   2291 
   2292 			if (tex->offset_x)
   2293 				fprintf(stderr, "OX:%d ", tex->offset_x);
   2294 			if (tex->offset_y)
   2295 				fprintf(stderr, "OY:%d ", tex->offset_y);
   2296 			if (tex->offset_z)
   2297 				fprintf(stderr, "OZ:%d ", tex->offset_z);
   2298 
   2299 			id += 4;
   2300 			fprintf(stderr, "\n");
   2301 		}
   2302 
   2303 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
   2304 			int o = 0;
   2305 			const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
   2306 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
   2307 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
   2308 
   2309 			o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
   2310 
   2311 			o += print_indent(o, 50);
   2312 
   2313 			o += fprintf(stderr, "R%d.", vtx->dst_gpr);
   2314 			o += print_swizzle(vtx->dst_sel_x);
   2315 			o += print_swizzle(vtx->dst_sel_y);
   2316 			o += print_swizzle(vtx->dst_sel_z);
   2317 			o += print_swizzle(vtx->dst_sel_w);
   2318 
   2319 			o += fprintf(stderr, ", R%d.", vtx->src_gpr);
   2320 			o += print_swizzle(vtx->src_sel_x);
   2321 
   2322 			if (vtx->offset)
   2323 				fprintf(stderr, " +%db", vtx->offset);
   2324 
   2325 			o += print_indent(o, 55);
   2326 
   2327 			fprintf(stderr, ",  RID:%d ", vtx->buffer_id);
   2328 
   2329 			fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
   2330 
   2331 			if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
   2332 				fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
   2333 
   2334 			if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
   2335 				fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
   2336 
   2337 			fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
   2338 			fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
   2339 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
   2340 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
   2341 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
   2342 
   2343 			id += 4;
   2344 		}
   2345 
   2346 		LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
   2347 			int o = 0;
   2348 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
   2349 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
   2350 
   2351 			o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
   2352 
   2353 			if (gds->op != FETCH_OP_TF_WRITE) {
   2354 				o += fprintf(stderr, "R%d.", gds->dst_gpr);
   2355 				o += print_swizzle(gds->dst_sel_x);
   2356 				o += print_swizzle(gds->dst_sel_y);
   2357 				o += print_swizzle(gds->dst_sel_z);
   2358 				o += print_swizzle(gds->dst_sel_w);
   2359 			}
   2360 
   2361 			o += fprintf(stderr, ", R%d.", gds->src_gpr);
   2362 			o += print_swizzle(gds->src_sel_x);
   2363 			o += print_swizzle(gds->src_sel_y);
   2364 			o += print_swizzle(gds->src_sel_z);
   2365 
   2366 			if (gds->op != FETCH_OP_TF_WRITE) {
   2367 				o += fprintf(stderr, ", R%d.", gds->src_gpr2);
   2368 			}
   2369 			if (gds->alloc_consume) {
   2370 				o += fprintf(stderr, " UAV: %d", gds->uav_id);
   2371 				if (gds->uav_index_mode)
   2372 					o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
   2373 			}
   2374 			fprintf(stderr, "\n");
   2375 			id += 4;
   2376 		}
   2377 	}
   2378 
   2379 	fprintf(stderr, "--------------------------------------\n");
   2380 }
   2381 
   2382 void r600_vertex_data_type(enum pipe_format pformat,
   2383 				  unsigned *format,
   2384 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
   2385 {
   2386 	const struct util_format_description *desc;
   2387 	unsigned i;
   2388 
   2389 	*format = 0;
   2390 	*num_format = 0;
   2391 	*format_comp = 0;
   2392 	*endian = ENDIAN_NONE;
   2393 
   2394 	if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
   2395 		*format = FMT_10_11_11_FLOAT;
   2396 		*endian = r600_endian_swap(32);
   2397 		return;
   2398 	}
   2399 
   2400 	if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
   2401 		*format = FMT_5_6_5;
   2402 		*endian = r600_endian_swap(16);
   2403 		return;
   2404 	}
   2405 
   2406 	if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
   2407 		*format = FMT_1_5_5_5;
   2408 		*endian = r600_endian_swap(16);
   2409 		return;
   2410 	}
   2411 
   2412 	desc = util_format_description(pformat);
   2413 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
   2414 		goto out_unknown;
   2415 	}
   2416 
   2417 	/* Find the first non-VOID channel. */
   2418 	for (i = 0; i < 4; i++) {
   2419 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
   2420 			break;
   2421 		}
   2422 	}
   2423 
   2424 	*endian = r600_endian_swap(desc->channel[i].size);
   2425 
   2426 	switch (desc->channel[i].type) {
   2427 	/* Half-floats, floats, ints */
   2428 	case UTIL_FORMAT_TYPE_FLOAT:
   2429 		switch (desc->channel[i].size) {
   2430 		case 16:
   2431 			switch (desc->nr_channels) {
   2432 			case 1:
   2433 				*format = FMT_16_FLOAT;
   2434 				break;
   2435 			case 2:
   2436 				*format = FMT_16_16_FLOAT;
   2437 				break;
   2438 			case 3:
   2439 			case 4:
   2440 				*format = FMT_16_16_16_16_FLOAT;
   2441 				break;
   2442 			}
   2443 			break;
   2444 		case 32:
   2445 			switch (desc->nr_channels) {
   2446 			case 1:
   2447 				*format = FMT_32_FLOAT;
   2448 				break;
   2449 			case 2:
   2450 				*format = FMT_32_32_FLOAT;
   2451 				break;
   2452 			case 3:
   2453 				*format = FMT_32_32_32_FLOAT;
   2454 				break;
   2455 			case 4:
   2456 				*format = FMT_32_32_32_32_FLOAT;
   2457 				break;
   2458 			}
   2459 			break;
   2460 		default:
   2461 			goto out_unknown;
   2462 		}
   2463 		break;
   2464 		/* Unsigned ints */
   2465 	case UTIL_FORMAT_TYPE_UNSIGNED:
   2466 		/* Signed ints */
   2467 	case UTIL_FORMAT_TYPE_SIGNED:
   2468 		switch (desc->channel[i].size) {
   2469 		case 8:
   2470 			switch (desc->nr_channels) {
   2471 			case 1:
   2472 				*format = FMT_8;
   2473 				break;
   2474 			case 2:
   2475 				*format = FMT_8_8;
   2476 				break;
   2477 			case 3:
   2478 			case 4:
   2479 				*format = FMT_8_8_8_8;
   2480 				break;
   2481 			}
   2482 			break;
   2483 		case 10:
   2484 			if (desc->nr_channels != 4)
   2485 				goto out_unknown;
   2486 
   2487 			*format = FMT_2_10_10_10;
   2488 			break;
   2489 		case 16:
   2490 			switch (desc->nr_channels) {
   2491 			case 1:
   2492 				*format = FMT_16;
   2493 				break;
   2494 			case 2:
   2495 				*format = FMT_16_16;
   2496 				break;
   2497 			case 3:
   2498 			case 4:
   2499 				*format = FMT_16_16_16_16;
   2500 				break;
   2501 			}
   2502 			break;
   2503 		case 32:
   2504 			switch (desc->nr_channels) {
   2505 			case 1:
   2506 				*format = FMT_32;
   2507 				break;
   2508 			case 2:
   2509 				*format = FMT_32_32;
   2510 				break;
   2511 			case 3:
   2512 				*format = FMT_32_32_32;
   2513 				break;
   2514 			case 4:
   2515 				*format = FMT_32_32_32_32;
   2516 				break;
   2517 			}
   2518 			break;
   2519 		default:
   2520 			goto out_unknown;
   2521 		}
   2522 		break;
   2523 	default:
   2524 		goto out_unknown;
   2525 	}
   2526 
   2527 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
   2528 		*format_comp = 1;
   2529 	}
   2530 
   2531 	*num_format = 0;
   2532 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
   2533 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
   2534 		if (!desc->channel[i].normalized) {
   2535 			if (desc->channel[i].pure_integer)
   2536 				*num_format = 1;
   2537 			else
   2538 				*num_format = 2;
   2539 		}
   2540 	}
   2541 	return;
   2542 out_unknown:
   2543 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
   2544 }
   2545 
   2546 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
   2547 				      unsigned count,
   2548 				      const struct pipe_vertex_element *elements)
   2549 {
   2550 	struct r600_context *rctx = (struct r600_context *)ctx;
   2551 	struct r600_bytecode bc;
   2552 	struct r600_bytecode_vtx vtx;
   2553 	const struct util_format_description *desc;
   2554 	unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
   2555 	unsigned format, num_format, format_comp, endian;
   2556 	uint32_t *bytecode;
   2557 	int i, j, r, fs_size;
   2558 	struct r600_fetch_shader *shader;
   2559 	unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
   2560 	unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
   2561 
   2562 	assert(count < 32);
   2563 
   2564 	memset(&bc, 0, sizeof(bc));
   2565 	r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
   2566 			   rctx->screen->has_compressed_msaa_texturing);
   2567 
   2568 	bc.isa = rctx->isa;
   2569 
   2570 	for (i = 0; i < count; i++) {
   2571 		if (elements[i].instance_divisor > 1) {
   2572 			if (rctx->b.chip_class == CAYMAN) {
   2573 				for (j = 0; j < 4; j++) {
   2574 					struct r600_bytecode_alu alu;
   2575 					memset(&alu, 0, sizeof(alu));
   2576 					alu.op = ALU_OP2_MULHI_UINT;
   2577 					alu.src[0].sel = 0;
   2578 					alu.src[0].chan = 3;
   2579 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
   2580 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
   2581 					alu.dst.sel = i + 1;
   2582 					alu.dst.chan = j;
   2583 					alu.dst.write = j == 3;
   2584 					alu.last = j == 3;
   2585 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
   2586 						r600_bytecode_clear(&bc);
   2587 						return NULL;
   2588 					}
   2589 				}
   2590 			} else {
   2591 				struct r600_bytecode_alu alu;
   2592 				memset(&alu, 0, sizeof(alu));
   2593 				alu.op = ALU_OP2_MULHI_UINT;
   2594 				alu.src[0].sel = 0;
   2595 				alu.src[0].chan = 3;
   2596 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
   2597 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
   2598 				alu.dst.sel = i + 1;
   2599 				alu.dst.chan = 3;
   2600 				alu.dst.write = 1;
   2601 				alu.last = 1;
   2602 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
   2603 					r600_bytecode_clear(&bc);
   2604 					return NULL;
   2605 				}
   2606 			}
   2607 		}
   2608 	}
   2609 
   2610 	for (i = 0; i < count; i++) {
   2611 		r600_vertex_data_type(elements[i].src_format,
   2612 				      &format, &num_format, &format_comp, &endian);
   2613 
   2614 		desc = util_format_description(elements[i].src_format);
   2615 		if (!desc) {
   2616 			r600_bytecode_clear(&bc);
   2617 			R600_ERR("unknown format %d\n", elements[i].src_format);
   2618 			return NULL;
   2619 		}
   2620 
   2621 		if (elements[i].src_offset > 65535) {
   2622 			r600_bytecode_clear(&bc);
   2623 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
   2624 			return NULL;
   2625 		}
   2626 
   2627 		memset(&vtx, 0, sizeof(vtx));
   2628 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
   2629 		vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
   2630 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
   2631 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
   2632 		vtx.mega_fetch_count = 0x1F;
   2633 		vtx.dst_gpr = i + 1;
   2634 		vtx.dst_sel_x = desc->swizzle[0];
   2635 		vtx.dst_sel_y = desc->swizzle[1];
   2636 		vtx.dst_sel_z = desc->swizzle[2];
   2637 		vtx.dst_sel_w = desc->swizzle[3];
   2638 		vtx.data_format = format;
   2639 		vtx.num_format_all = num_format;
   2640 		vtx.format_comp_all = format_comp;
   2641 		vtx.offset = elements[i].src_offset;
   2642 		vtx.endian = endian;
   2643 
   2644 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
   2645 			r600_bytecode_clear(&bc);
   2646 			return NULL;
   2647 		}
   2648 	}
   2649 
   2650 	r600_bytecode_add_cfinst(&bc, CF_OP_RET);
   2651 
   2652 	if ((r = r600_bytecode_build(&bc))) {
   2653 		r600_bytecode_clear(&bc);
   2654 		return NULL;
   2655 	}
   2656 
   2657 	if (rctx->screen->b.debug_flags & DBG_FS) {
   2658 		fprintf(stderr, "--------------------------------------------------------------\n");
   2659 		fprintf(stderr, "Vertex elements state:\n");
   2660 		for (i = 0; i < count; i++) {
   2661 			fprintf(stderr, "   ");
   2662 			util_dump_vertex_element(stderr, elements+i);
   2663 			fprintf(stderr, "\n");
   2664 		}
   2665 
   2666 		if (!sb_disasm) {
   2667 			r600_bytecode_disasm(&bc);
   2668 
   2669 			fprintf(stderr, "______________________________________________________________\n");
   2670 		} else {
   2671 			r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
   2672 		}
   2673 	}
   2674 
   2675 	fs_size = bc.ndw*4;
   2676 
   2677 	/* Allocate the CSO. */
   2678 	shader = CALLOC_STRUCT(r600_fetch_shader);
   2679 	if (!shader) {
   2680 		r600_bytecode_clear(&bc);
   2681 		return NULL;
   2682 	}
   2683 
   2684 	u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
   2685 			     &shader->offset,
   2686 			     (struct pipe_resource**)&shader->buffer);
   2687 	if (!shader->buffer) {
   2688 		r600_bytecode_clear(&bc);
   2689 		FREE(shader);
   2690 		return NULL;
   2691 	}
   2692 
   2693 	bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
   2694 	bytecode += shader->offset / 4;
   2695 
   2696 	if (R600_BIG_ENDIAN) {
   2697 		for (i = 0; i < fs_size / 4; ++i) {
   2698 			bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
   2699 		}
   2700 	} else {
   2701 		memcpy(bytecode, bc.bytecode, fs_size);
   2702 	}
   2703 	rctx->b.ws->buffer_unmap(shader->buffer->buf);
   2704 
   2705 	r600_bytecode_clear(&bc);
   2706 	return shader;
   2707 }
   2708 
   2709 void r600_bytecode_alu_read(struct r600_bytecode *bc,
   2710 		struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
   2711 {
   2712 	/* WORD0 */
   2713 	alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
   2714 	alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
   2715 	alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
   2716 	alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
   2717 	alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
   2718 	alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
   2719 	alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
   2720 	alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
   2721 	alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
   2722 	alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
   2723 	alu->last = G_SQ_ALU_WORD0_LAST(word0);
   2724 
   2725 	/* WORD1 */
   2726 	alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
   2727 	if (alu->bank_swizzle)
   2728 		alu->bank_swizzle_force = alu->bank_swizzle;
   2729 	alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
   2730 	alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
   2731 	alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
   2732 	alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
   2733 	if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
   2734 	{
   2735 		alu->is_op3 = 1;
   2736 		alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
   2737 		alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
   2738 		alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
   2739 		alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
   2740 		alu->op = r600_isa_alu_by_opcode(bc->isa,
   2741 				G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
   2742 
   2743 	}
   2744 	else /*ALU_DWORD1_OP2*/
   2745 	{
   2746 		alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
   2747 		alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
   2748 		alu->op = r600_isa_alu_by_opcode(bc->isa,
   2749 				G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
   2750 		alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
   2751 		alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
   2752 		alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
   2753 		alu->execute_mask =
   2754 			G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
   2755 	}
   2756 }
   2757 
   2758 #if 0
   2759 void r600_bytecode_export_read(struct r600_bytecode *bc,
   2760 		struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
   2761 {
   2762 	output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
   2763 	output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
   2764 	output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
   2765 	output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
   2766 
   2767 	output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
   2768 	output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
   2769 	output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
   2770 	output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
   2771 	output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
   2772 	output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
   2773     output->op = r600_isa_cf_by_opcode(bc->isa,
   2774 			G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
   2775 	output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
   2776 	output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
   2777 	output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
   2778 }
   2779 #endif
   2780