Home | History | Annotate | Download | only in mtl
      1 /*
      2 * Copyright 2018 Google Inc.
      3 *
      4 * Use of this source code is governed by a BSD-style license that can be
      5 * found in the LICENSE file.
      6 */
      7 
      8 #include "GrMtlUniformHandler.h"
      9 #include "GrTexture.h"
     10 #include "GrTexturePriv.h"
     11 #include "glsl/GrGLSLProgramBuilder.h"
     12 
     13 // TODO: this class is basically copy and pasted from GrVklUniformHandler so that we can have
     14 // some shaders working. The SkSL Metal code generator was written to work with GLSL generated for
     15 // the Ganesh Vulkan backend, so it should all work. There might be better ways to do things in
     16 // Metal and/or some Vulkan GLSLisms left in.
     17 
     18 // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
     19 // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
     20 // are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
     21 static uint32_t grsltype_to_alignment_mask(GrSLType type) {
     22     switch(type) {
     23         case kByte_GrSLType: // fall through
     24         case kUByte_GrSLType:
     25             return 0x0;
     26         case kByte2_GrSLType: // fall through
     27         case kUByte2_GrSLType:
     28             return 0x1;
     29         case kByte3_GrSLType: // fall through
     30         case kByte4_GrSLType:
     31         case kUByte3_GrSLType:
     32         case kUByte4_GrSLType:
     33             return 0x3;
     34         case kShort_GrSLType: // fall through
     35         case kUShort_GrSLType:
     36             return 0x1;
     37         case kShort2_GrSLType: // fall through
     38         case kUShort2_GrSLType:
     39             return 0x3;
     40         case kShort3_GrSLType: // fall through
     41         case kShort4_GrSLType:
     42         case kUShort3_GrSLType:
     43         case kUShort4_GrSLType:
     44             return 0x7;
     45         case kInt_GrSLType:
     46         case kUint_GrSLType:
     47             return 0x3;
     48         case kHalf_GrSLType: // fall through
     49         case kFloat_GrSLType:
     50             return 0x3;
     51         case kHalf2_GrSLType: // fall through
     52         case kFloat2_GrSLType:
     53             return 0x7;
     54         case kHalf3_GrSLType: // fall through
     55         case kFloat3_GrSLType:
     56             return 0xF;
     57         case kHalf4_GrSLType: // fall through
     58         case kFloat4_GrSLType:
     59             return 0xF;
     60         case kUint2_GrSLType:
     61             return 0x7;
     62         case kInt2_GrSLType:
     63             return 0x7;
     64         case kInt3_GrSLType:
     65             return 0xF;
     66         case kInt4_GrSLType:
     67             return 0xF;
     68         case kHalf2x2_GrSLType: // fall through
     69         case kFloat2x2_GrSLType:
     70             return 0x7;
     71         case kHalf3x3_GrSLType: // fall through
     72         case kFloat3x3_GrSLType:
     73             return 0xF;
     74         case kHalf4x4_GrSLType: // fall through
     75         case kFloat4x4_GrSLType:
     76             return 0xF;
     77 
     78         // This query is only valid for certain types.
     79         case kVoid_GrSLType:
     80         case kBool_GrSLType:
     81         case kTexture2DSampler_GrSLType:
     82         case kTextureExternalSampler_GrSLType:
     83         case kTexture2DRectSampler_GrSLType:
     84             break;
     85     }
     86     SK_ABORT("Unexpected type");
     87     return 0;
     88 }
     89 
     90 /** Returns the size in bytes taken up in Metal buffers for GrSLTypes. */
     91 static inline uint32_t grsltype_to_mtl_size(GrSLType type) {
     92     switch(type) {
     93         case kByte_GrSLType:
     94             return sizeof(int8_t);
     95         case kByte2_GrSLType:
     96             return 2 * sizeof(int8_t);
     97         case kByte3_GrSLType:
     98             return 4 * sizeof(int8_t);
     99         case kByte4_GrSLType:
    100             return 4 * sizeof(int8_t);
    101         case kUByte_GrSLType:
    102             return sizeof(uint8_t);
    103         case kUByte2_GrSLType:
    104             return 2 * sizeof(uint8_t);
    105         case kUByte3_GrSLType:
    106             return 4 * sizeof(uint8_t);
    107         case kUByte4_GrSLType:
    108             return 4 * sizeof(uint8_t);
    109         case kShort_GrSLType:
    110             return sizeof(int16_t);
    111         case kShort2_GrSLType:
    112             return 2 * sizeof(int16_t);
    113         case kShort3_GrSLType:
    114             return 4 * sizeof(int16_t);
    115         case kShort4_GrSLType:
    116             return 4 * sizeof(int16_t);
    117         case kUShort_GrSLType:
    118             return sizeof(uint16_t);
    119         case kUShort2_GrSLType:
    120             return 2 * sizeof(uint16_t);
    121         case kUShort3_GrSLType:
    122             return 4 * sizeof(uint16_t);
    123         case kUShort4_GrSLType:
    124             return 4 * sizeof(uint16_t);
    125         case kInt_GrSLType:
    126             return sizeof(int32_t);
    127         case kUint_GrSLType:
    128             return sizeof(int32_t);
    129         case kHalf_GrSLType: // fall through
    130         case kFloat_GrSLType:
    131             return sizeof(float);
    132         case kHalf2_GrSLType: // fall through
    133         case kFloat2_GrSLType:
    134             return 2 * sizeof(float);
    135         case kHalf3_GrSLType: // fall through
    136         case kFloat3_GrSLType:
    137             return 4 * sizeof(float);
    138         case kHalf4_GrSLType: // fall through
    139         case kFloat4_GrSLType:
    140             return 4 * sizeof(float);
    141         case kUint2_GrSLType:
    142             return 2 * sizeof(uint32_t);
    143         case kInt2_GrSLType:
    144             return 2 * sizeof(int32_t);
    145         case kInt3_GrSLType:
    146             return 4 * sizeof(int32_t);
    147         case kInt4_GrSLType:
    148             return 4 * sizeof(int32_t);
    149         case kHalf2x2_GrSLType: // fall through
    150         case kFloat2x2_GrSLType:
    151             //TODO: this will be 4 * szof(float) on std430.
    152             return 8 * sizeof(float);
    153         case kHalf3x3_GrSLType: // fall through
    154         case kFloat3x3_GrSLType:
    155             return 12 * sizeof(float);
    156         case kHalf4x4_GrSLType: // fall through
    157         case kFloat4x4_GrSLType:
    158             return 16 * sizeof(float);
    159 
    160         // This query is only valid for certain types.
    161         case kVoid_GrSLType:
    162         case kBool_GrSLType:
    163         case kTexture2DSampler_GrSLType:
    164         case kTextureExternalSampler_GrSLType:
    165         case kTexture2DRectSampler_GrSLType:
    166             break;
    167     }
    168     SK_ABORT("Unexpected type");
    169     return 0;
    170 }
    171 
    172 // Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
    173 // taking into consideration all alignment requirements. The uniformOffset is set to the offset for
    174 // the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
    175 static void get_ubo_aligned_offset(uint32_t* uniformOffset,
    176                                    uint32_t* currentOffset,
    177                                    uint32_t* maxAlignment,
    178                                    GrSLType type,
    179                                    int arrayCount) {
    180     uint32_t alignmentMask = grsltype_to_alignment_mask(type);
    181     if (alignmentMask > *maxAlignment) {
    182         *maxAlignment = alignmentMask;
    183     }
    184     uint32_t offsetDiff = *currentOffset & alignmentMask;
    185     if (offsetDiff != 0) {
    186         offsetDiff = alignmentMask - offsetDiff + 1;
    187     }
    188     *uniformOffset = *currentOffset + offsetDiff;
    189     SkASSERT(sizeof(float) == 4);
    190     if (arrayCount) {
    191         uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_mtl_size(type));
    192         SkASSERT(0 == (elementSize & 0xF));
    193         *currentOffset = *uniformOffset + elementSize * arrayCount;
    194     } else {
    195         *currentOffset = *uniformOffset + grsltype_to_mtl_size(type);
    196     }
    197 }
    198 
    199 GrGLSLUniformHandler::UniformHandle GrMtlUniformHandler::internalAddUniformArray(
    200                                                                             uint32_t visibility,
    201                                                                             GrSLType type,
    202                                                                             const char* name,
    203                                                                             bool mangleName,
    204                                                                             int arrayCount,
    205                                                                             const char** outName) {
    206     SkASSERT(name && strlen(name));
    207     // For now asserting the the visibility is either geometry types (vertex, tesselation, geometry,
    208     // etc.) or only fragment.
    209     SkASSERT(kVertex_GrShaderFlag == visibility ||
    210              kGeometry_GrShaderFlag == visibility ||
    211              (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility ||
    212              kFragment_GrShaderFlag == visibility);
    213     GrSLTypeIsFloatType(type);
    214 
    215     UniformInfo& uni = fUniforms.push_back();
    216     uni.fVariable.setType(type);
    217     // TODO this is a bit hacky, lets think of a better way.  Basically we need to be able to use
    218     // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
    219     // exactly what name it wants to use for the uniform view matrix.  If we prefix anythings, then
    220     // the names will mismatch.  I think the correct solution is to have all GPs which need the
    221     // uniform view matrix, they should upload the view matrix in their setData along with regular
    222     // uniforms.
    223     char prefix = 'u';
    224     if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
    225         prefix = '\0';
    226     }
    227     fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
    228     uni.fVariable.setArrayCount(arrayCount);
    229     uni.fVisibility = visibility;
    230     // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
    231     // we set the modifier to none for all uniforms declared inside the block.
    232     uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier);
    233 
    234     uint32_t* currentOffset;
    235     uint32_t* maxAlignment;
    236     uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag;
    237     if (geomStages & visibility) {
    238         currentOffset = &fCurrentGeometryUBOOffset;
    239         maxAlignment = &fCurrentGeometryUBOMaxAlignment;
    240     } else {
    241         SkASSERT(kFragment_GrShaderFlag == visibility);
    242         currentOffset = &fCurrentFragmentUBOOffset;
    243         maxAlignment = &fCurrentFragmentUBOMaxAlignment;
    244     }
    245     get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, maxAlignment, type, arrayCount);
    246 
    247     SkString layoutQualifier;
    248     layoutQualifier.appendf("offset=%d", uni.fUBOffset);
    249     uni.fVariable.addLayoutQualifier(layoutQualifier.c_str());
    250 
    251     if (outName) {
    252         *outName = uni.fVariable.c_str();
    253     }
    254 
    255     return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
    256 }
    257 
    258 GrGLSLUniformHandler::SamplerHandle GrMtlUniformHandler::addSampler(const GrTexture* texture,
    259                                                                     const GrSamplerState&,
    260                                                                     const char* name,
    261                                                                     const GrShaderCaps* caps) {
    262     SkASSERT(name && strlen(name));
    263     SkString mangleName;
    264     char prefix = 'u';
    265     fProgramBuilder->nameVariable(&mangleName, prefix, name, true);
    266 
    267     GrSwizzle swizzle = caps->configTextureSwizzle(texture->config());
    268     GrTextureType type = texture->texturePriv().textureType();
    269 
    270     UniformInfo& info = fSamplers.push_back();
    271     info.fVariable.setType(GrSLCombinedSamplerTypeForTextureType(type));
    272     info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
    273     info.fVariable.setName(mangleName);
    274     SkString layoutQualifier;
    275     layoutQualifier.appendf("binding=%d", fSamplers.count() - 1);
    276     info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
    277     info.fVisibility = kFragment_GrShaderFlag;
    278     info.fUBOffset = 0;
    279     fSamplerSwizzles.push_back(swizzle);
    280     SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
    281     return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
    282 }
    283 
    284 void GrMtlUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
    285     SkASSERT(kVertex_GrShaderFlag == visibility ||
    286              kGeometry_GrShaderFlag == visibility ||
    287              kFragment_GrShaderFlag == visibility);
    288 
    289     for (int i = 0; i < fSamplers.count(); ++i) {
    290         const UniformInfo& sampler = fSamplers[i];
    291         SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType);
    292         if (visibility == sampler.fVisibility) {
    293             sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
    294             out->append(";\n");
    295         }
    296     }
    297 
    298 #ifdef SK_DEBUG
    299     bool firstGeomOffsetCheck = false;
    300     bool firstFragOffsetCheck = false;
    301     for (int i = 0; i < fUniforms.count(); ++i) {
    302         const UniformInfo& localUniform = fUniforms[i];
    303         if (kVertex_GrShaderFlag == localUniform.fVisibility ||
    304             kGeometry_GrShaderFlag == localUniform.fVisibility ||
    305             (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) {
    306             if (!firstGeomOffsetCheck) {
    307                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
    308                 // set on each variable in the uniform block is valid.
    309                 SkASSERT(0 == localUniform.fUBOffset);
    310                 firstGeomOffsetCheck = true;
    311             }
    312         } else {
    313             SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility);
    314             if (!firstFragOffsetCheck) {
    315                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
    316                 // set on each variable in the uniform block is valid.
    317                 SkASSERT(0 == localUniform.fUBOffset);
    318                 firstFragOffsetCheck = true;
    319             }
    320         }
    321     }
    322 #endif
    323 
    324     SkString uniformsString;
    325     for (int i = 0; i < fUniforms.count(); ++i) {
    326         const UniformInfo& localUniform = fUniforms[i];
    327         if (visibility & localUniform.fVisibility) {
    328             if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
    329                 localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
    330                 uniformsString.append(";\n");
    331             }
    332         }
    333     }
    334 
    335     if (!uniformsString.isEmpty()) {
    336         uint32_t uniformBinding;
    337         const char* stage;
    338         if (kVertex_GrShaderFlag == visibility) {
    339             uniformBinding = kGeometryBinding;
    340             stage = "vertex";
    341         } else if (kGeometry_GrShaderFlag == visibility) {
    342             uniformBinding = kGeometryBinding;
    343             stage = "geometry";
    344         } else {
    345             SkASSERT(kFragment_GrShaderFlag == visibility);
    346             uniformBinding = kFragBinding;
    347             stage = "fragment";
    348         }
    349         out->appendf("layout (binding=%d) uniform %sUniformBuffer\n{\n", uniformBinding, stage);
    350         out->appendf("%s\n};\n", uniformsString.c_str());
    351     }
    352 }
    353