Home | History | Annotate | Download | only in Analysis
      1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Loops should be simplified before this analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
     15 #include "llvm/ADT/APInt.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/ADT/None.h"
     19 #include "llvm/ADT/SCCIterator.h"
     20 #include "llvm/Config/llvm-config.h"
     21 #include "llvm/IR/Function.h"
     22 #include "llvm/Support/BlockFrequency.h"
     23 #include "llvm/Support/BranchProbability.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/ScaledNumber.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 #include <cassert>
     31 #include <cstddef>
     32 #include <cstdint>
     33 #include <iterator>
     34 #include <list>
     35 #include <numeric>
     36 #include <utility>
     37 #include <vector>
     38 
     39 using namespace llvm;
     40 using namespace llvm::bfi_detail;
     41 
     42 #define DEBUG_TYPE "block-freq"
     43 
     44 ScaledNumber<uint64_t> BlockMass::toScaled() const {
     45   if (isFull())
     46     return ScaledNumber<uint64_t>(1, 0);
     47   return ScaledNumber<uint64_t>(getMass() + 1, -64);
     48 }
     49 
     50 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     51 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
     52 #endif
     53 
     54 static char getHexDigit(int N) {
     55   assert(N < 16);
     56   if (N < 10)
     57     return '0' + N;
     58   return 'a' + N - 10;
     59 }
     60 
     61 raw_ostream &BlockMass::print(raw_ostream &OS) const {
     62   for (int Digits = 0; Digits < 16; ++Digits)
     63     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
     64   return OS;
     65 }
     66 
     67 namespace {
     68 
     69 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
     70 using Distribution = BlockFrequencyInfoImplBase::Distribution;
     71 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
     72 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
     73 using LoopData = BlockFrequencyInfoImplBase::LoopData;
     74 using Weight = BlockFrequencyInfoImplBase::Weight;
     75 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
     76 
     77 /// Dithering mass distributer.
     78 ///
     79 /// This class splits up a single mass into portions by weight, dithering to
     80 /// spread out error.  No mass is lost.  The dithering precision depends on the
     81 /// precision of the product of \a BlockMass and \a BranchProbability.
     82 ///
     83 /// The distribution algorithm follows.
     84 ///
     85 ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
     86 ///     mass to distribute in \a RemMass.
     87 ///
     88 ///  2. For each portion:
     89 ///
     90 ///      1. Construct a branch probability, P, as the portion's weight divided
     91 ///         by the current value of \a RemWeight.
     92 ///      2. Calculate the portion's mass as \a RemMass times P.
     93 ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
     94 ///         the current portion's weight and mass.
     95 struct DitheringDistributer {
     96   uint32_t RemWeight;
     97   BlockMass RemMass;
     98 
     99   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
    100 
    101   BlockMass takeMass(uint32_t Weight);
    102 };
    103 
    104 } // end anonymous namespace
    105 
    106 DitheringDistributer::DitheringDistributer(Distribution &Dist,
    107                                            const BlockMass &Mass) {
    108   Dist.normalize();
    109   RemWeight = Dist.Total;
    110   RemMass = Mass;
    111 }
    112 
    113 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
    114   assert(Weight && "invalid weight");
    115   assert(Weight <= RemWeight);
    116   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
    117 
    118   // Decrement totals (dither).
    119   RemWeight -= Weight;
    120   RemMass -= Mass;
    121   return Mass;
    122 }
    123 
    124 void Distribution::add(const BlockNode &Node, uint64_t Amount,
    125                        Weight::DistType Type) {
    126   assert(Amount && "invalid weight of 0");
    127   uint64_t NewTotal = Total + Amount;
    128 
    129   // Check for overflow.  It should be impossible to overflow twice.
    130   bool IsOverflow = NewTotal < Total;
    131   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
    132   DidOverflow |= IsOverflow;
    133 
    134   // Update the total.
    135   Total = NewTotal;
    136 
    137   // Save the weight.
    138   Weights.push_back(Weight(Type, Node, Amount));
    139 }
    140 
    141 static void combineWeight(Weight &W, const Weight &OtherW) {
    142   assert(OtherW.TargetNode.isValid());
    143   if (!W.Amount) {
    144     W = OtherW;
    145     return;
    146   }
    147   assert(W.Type == OtherW.Type);
    148   assert(W.TargetNode == OtherW.TargetNode);
    149   assert(OtherW.Amount && "Expected non-zero weight");
    150   if (W.Amount > W.Amount + OtherW.Amount)
    151     // Saturate on overflow.
    152     W.Amount = UINT64_MAX;
    153   else
    154     W.Amount += OtherW.Amount;
    155 }
    156 
    157 static void combineWeightsBySorting(WeightList &Weights) {
    158   // Sort so edges to the same node are adjacent.
    159   llvm::sort(Weights.begin(), Weights.end(),
    160              [](const Weight &L,
    161                 const Weight &R) { return L.TargetNode < R.TargetNode; });
    162 
    163   // Combine adjacent edges.
    164   WeightList::iterator O = Weights.begin();
    165   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
    166        ++O, (I = L)) {
    167     *O = *I;
    168 
    169     // Find the adjacent weights to the same node.
    170     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
    171       combineWeight(*O, *L);
    172   }
    173 
    174   // Erase extra entries.
    175   Weights.erase(O, Weights.end());
    176 }
    177 
    178 static void combineWeightsByHashing(WeightList &Weights) {
    179   // Collect weights into a DenseMap.
    180   using HashTable = DenseMap<BlockNode::IndexType, Weight>;
    181 
    182   HashTable Combined(NextPowerOf2(2 * Weights.size()));
    183   for (const Weight &W : Weights)
    184     combineWeight(Combined[W.TargetNode.Index], W);
    185 
    186   // Check whether anything changed.
    187   if (Weights.size() == Combined.size())
    188     return;
    189 
    190   // Fill in the new weights.
    191   Weights.clear();
    192   Weights.reserve(Combined.size());
    193   for (const auto &I : Combined)
    194     Weights.push_back(I.second);
    195 }
    196 
    197 static void combineWeights(WeightList &Weights) {
    198   // Use a hash table for many successors to keep this linear.
    199   if (Weights.size() > 128) {
    200     combineWeightsByHashing(Weights);
    201     return;
    202   }
    203 
    204   combineWeightsBySorting(Weights);
    205 }
    206 
    207 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
    208   assert(Shift >= 0);
    209   assert(Shift < 64);
    210   if (!Shift)
    211     return N;
    212   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
    213 }
    214 
    215 void Distribution::normalize() {
    216   // Early exit for termination nodes.
    217   if (Weights.empty())
    218     return;
    219 
    220   // Only bother if there are multiple successors.
    221   if (Weights.size() > 1)
    222     combineWeights(Weights);
    223 
    224   // Early exit when combined into a single successor.
    225   if (Weights.size() == 1) {
    226     Total = 1;
    227     Weights.front().Amount = 1;
    228     return;
    229   }
    230 
    231   // Determine how much to shift right so that the total fits into 32-bits.
    232   //
    233   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
    234   // for each weight can cause a 32-bit overflow.
    235   int Shift = 0;
    236   if (DidOverflow)
    237     Shift = 33;
    238   else if (Total > UINT32_MAX)
    239     Shift = 33 - countLeadingZeros(Total);
    240 
    241   // Early exit if nothing needs to be scaled.
    242   if (!Shift) {
    243     // If we didn't overflow then combineWeights() shouldn't have changed the
    244     // sum of the weights, but let's double-check.
    245     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
    246                                     [](uint64_t Sum, const Weight &W) {
    247                       return Sum + W.Amount;
    248                     }) &&
    249            "Expected total to be correct");
    250     return;
    251   }
    252 
    253   // Recompute the total through accumulation (rather than shifting it) so that
    254   // it's accurate after shifting and any changes combineWeights() made above.
    255   Total = 0;
    256 
    257   // Sum the weights to each node and shift right if necessary.
    258   for (Weight &W : Weights) {
    259     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
    260     // can round here without concern about overflow.
    261     assert(W.TargetNode.isValid());
    262     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
    263     assert(W.Amount <= UINT32_MAX);
    264 
    265     // Update the total.
    266     Total += W.Amount;
    267   }
    268   assert(Total <= UINT32_MAX);
    269 }
    270 
    271 void BlockFrequencyInfoImplBase::clear() {
    272   // Swap with a default-constructed std::vector, since std::vector<>::clear()
    273   // does not actually clear heap storage.
    274   std::vector<FrequencyData>().swap(Freqs);
    275   IsIrrLoopHeader.clear();
    276   std::vector<WorkingData>().swap(Working);
    277   Loops.clear();
    278 }
    279 
    280 /// Clear all memory not needed downstream.
    281 ///
    282 /// Releases all memory not used downstream.  In particular, saves Freqs.
    283 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
    284   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
    285   SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
    286   BFI.clear();
    287   BFI.Freqs = std::move(SavedFreqs);
    288   BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
    289 }
    290 
    291 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
    292                                            const LoopData *OuterLoop,
    293                                            const BlockNode &Pred,
    294                                            const BlockNode &Succ,
    295                                            uint64_t Weight) {
    296   if (!Weight)
    297     Weight = 1;
    298 
    299   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
    300     return OuterLoop && OuterLoop->isHeader(Node);
    301   };
    302 
    303   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
    304 
    305 #ifndef NDEBUG
    306   auto debugSuccessor = [&](const char *Type) {
    307     dbgs() << "  =>"
    308            << " [" << Type << "] weight = " << Weight;
    309     if (!isLoopHeader(Resolved))
    310       dbgs() << ", succ = " << getBlockName(Succ);
    311     if (Resolved != Succ)
    312       dbgs() << ", resolved = " << getBlockName(Resolved);
    313     dbgs() << "\n";
    314   };
    315   (void)debugSuccessor;
    316 #endif
    317 
    318   if (isLoopHeader(Resolved)) {
    319     LLVM_DEBUG(debugSuccessor("backedge"));
    320     Dist.addBackedge(Resolved, Weight);
    321     return true;
    322   }
    323 
    324   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
    325     LLVM_DEBUG(debugSuccessor("  exit  "));
    326     Dist.addExit(Resolved, Weight);
    327     return true;
    328   }
    329 
    330   if (Resolved < Pred) {
    331     if (!isLoopHeader(Pred)) {
    332       // If OuterLoop is an irreducible loop, we can't actually handle this.
    333       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
    334              "unhandled irreducible control flow");
    335 
    336       // Irreducible backedge.  Abort.
    337       LLVM_DEBUG(debugSuccessor("abort!!!"));
    338       return false;
    339     }
    340 
    341     // If "Pred" is a loop header, then this isn't really a backedge; rather,
    342     // OuterLoop must be irreducible.  These false backedges can come only from
    343     // secondary loop headers.
    344     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
    345            "unhandled irreducible control flow");
    346   }
    347 
    348   LLVM_DEBUG(debugSuccessor(" local  "));
    349   Dist.addLocal(Resolved, Weight);
    350   return true;
    351 }
    352 
    353 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
    354     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
    355   // Copy the exit map into Dist.
    356   for (const auto &I : Loop.Exits)
    357     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
    358                    I.second.getMass()))
    359       // Irreducible backedge.
    360       return false;
    361 
    362   return true;
    363 }
    364 
    365 /// Compute the loop scale for a loop.
    366 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
    367   // Compute loop scale.
    368   LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
    369 
    370   // Infinite loops need special handling. If we give the back edge an infinite
    371   // mass, they may saturate all the other scales in the function down to 1,
    372   // making all the other region temperatures look exactly the same. Choose an
    373   // arbitrary scale to avoid these issues.
    374   //
    375   // FIXME: An alternate way would be to select a symbolic scale which is later
    376   // replaced to be the maximum of all computed scales plus 1. This would
    377   // appropriately describe the loop as having a large scale, without skewing
    378   // the final frequency computation.
    379   const Scaled64 InfiniteLoopScale(1, 12);
    380 
    381   // LoopScale == 1 / ExitMass
    382   // ExitMass == HeadMass - BackedgeMass
    383   BlockMass TotalBackedgeMass;
    384   for (auto &Mass : Loop.BackedgeMass)
    385     TotalBackedgeMass += Mass;
    386   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
    387 
    388   // Block scale stores the inverse of the scale. If this is an infinite loop,
    389   // its exit mass will be zero. In this case, use an arbitrary scale for the
    390   // loop scale.
    391   Loop.Scale =
    392       ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
    393 
    394   LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
    395                     << BlockMass::getFull() << " - " << TotalBackedgeMass
    396                     << ")\n"
    397                     << " - scale = " << Loop.Scale << "\n");
    398 }
    399 
    400 /// Package up a loop.
    401 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
    402   LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
    403 
    404   // Clear the subloop exits to prevent quadratic memory usage.
    405   for (const BlockNode &M : Loop.Nodes) {
    406     if (auto *Loop = Working[M.Index].getPackagedLoop())
    407       Loop->Exits.clear();
    408     LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
    409   }
    410   Loop.IsPackaged = true;
    411 }
    412 
    413 #ifndef NDEBUG
    414 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
    415                         const DitheringDistributer &D, const BlockNode &T,
    416                         const BlockMass &M, const char *Desc) {
    417   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
    418   if (Desc)
    419     dbgs() << " [" << Desc << "]";
    420   if (T.isValid())
    421     dbgs() << " to " << BFI.getBlockName(T);
    422   dbgs() << "\n";
    423 }
    424 #endif
    425 
    426 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
    427                                                 LoopData *OuterLoop,
    428                                                 Distribution &Dist) {
    429   BlockMass Mass = Working[Source.Index].getMass();
    430   LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
    431 
    432   // Distribute mass to successors as laid out in Dist.
    433   DitheringDistributer D(Dist, Mass);
    434 
    435   for (const Weight &W : Dist.Weights) {
    436     // Check for a local edge (non-backedge and non-exit).
    437     BlockMass Taken = D.takeMass(W.Amount);
    438     if (W.Type == Weight::Local) {
    439       Working[W.TargetNode.Index].getMass() += Taken;
    440       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
    441       continue;
    442     }
    443 
    444     // Backedges and exits only make sense if we're processing a loop.
    445     assert(OuterLoop && "backedge or exit outside of loop");
    446 
    447     // Check for a backedge.
    448     if (W.Type == Weight::Backedge) {
    449       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
    450       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
    451       continue;
    452     }
    453 
    454     // This must be an exit.
    455     assert(W.Type == Weight::Exit);
    456     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
    457     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
    458   }
    459 }
    460 
    461 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
    462                                      const Scaled64 &Min, const Scaled64 &Max) {
    463   // Scale the Factor to a size that creates integers.  Ideally, integers would
    464   // be scaled so that Max == UINT64_MAX so that they can be best
    465   // differentiated.  However, in the presence of large frequency values, small
    466   // frequencies are scaled down to 1, making it impossible to differentiate
    467   // small, unequal numbers. When the spread between Min and Max frequencies
    468   // fits well within MaxBits, we make the scale be at least 8.
    469   const unsigned MaxBits = 64;
    470   const unsigned SpreadBits = (Max / Min).lg();
    471   Scaled64 ScalingFactor;
    472   if (SpreadBits <= MaxBits - 3) {
    473     // If the values are small enough, make the scaling factor at least 8 to
    474     // allow distinguishing small values.
    475     ScalingFactor = Min.inverse();
    476     ScalingFactor <<= 3;
    477   } else {
    478     // If the values need more than MaxBits to be represented, saturate small
    479     // frequency values down to 1 by using a scaling factor that benefits large
    480     // frequency values.
    481     ScalingFactor = Scaled64(1, MaxBits) / Max;
    482   }
    483 
    484   // Translate the floats to integers.
    485   LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
    486                     << ", factor = " << ScalingFactor << "\n");
    487   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
    488     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
    489     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
    490     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
    491                       << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
    492                       << ", int = " << BFI.Freqs[Index].Integer << "\n");
    493   }
    494 }
    495 
    496 /// Unwrap a loop package.
    497 ///
    498 /// Visits all the members of a loop, adjusting their BlockData according to
    499 /// the loop's pseudo-node.
    500 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
    501   LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
    502                     << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
    503                     << "\n");
    504   Loop.Scale *= Loop.Mass.toScaled();
    505   Loop.IsPackaged = false;
    506   LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
    507 
    508   // Propagate the head scale through the loop.  Since members are visited in
    509   // RPO, the head scale will be updated by the loop scale first, and then the
    510   // final head scale will be used for updated the rest of the members.
    511   for (const BlockNode &N : Loop.Nodes) {
    512     const auto &Working = BFI.Working[N.Index];
    513     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
    514                                        : BFI.Freqs[N.Index].Scaled;
    515     Scaled64 New = Loop.Scale * F;
    516     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
    517                       << New << "\n");
    518     F = New;
    519   }
    520 }
    521 
    522 void BlockFrequencyInfoImplBase::unwrapLoops() {
    523   // Set initial frequencies from loop-local masses.
    524   for (size_t Index = 0; Index < Working.size(); ++Index)
    525     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
    526 
    527   for (LoopData &Loop : Loops)
    528     unwrapLoop(*this, Loop);
    529 }
    530 
    531 void BlockFrequencyInfoImplBase::finalizeMetrics() {
    532   // Unwrap loop packages in reverse post-order, tracking min and max
    533   // frequencies.
    534   auto Min = Scaled64::getLargest();
    535   auto Max = Scaled64::getZero();
    536   for (size_t Index = 0; Index < Working.size(); ++Index) {
    537     // Update min/max scale.
    538     Min = std::min(Min, Freqs[Index].Scaled);
    539     Max = std::max(Max, Freqs[Index].Scaled);
    540   }
    541 
    542   // Convert to integers.
    543   convertFloatingToInteger(*this, Min, Max);
    544 
    545   // Clean up data structures.
    546   cleanup(*this);
    547 
    548   // Print out the final stats.
    549   LLVM_DEBUG(dump());
    550 }
    551 
    552 BlockFrequency
    553 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
    554   if (!Node.isValid())
    555     return 0;
    556   return Freqs[Node.Index].Integer;
    557 }
    558 
    559 Optional<uint64_t>
    560 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
    561                                                  const BlockNode &Node) const {
    562   return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency());
    563 }
    564 
    565 Optional<uint64_t>
    566 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
    567                                                     uint64_t Freq) const {
    568   auto EntryCount = F.getEntryCount();
    569   if (!EntryCount)
    570     return None;
    571   // Use 128 bit APInt to do the arithmetic to avoid overflow.
    572   APInt BlockCount(128, EntryCount.getCount());
    573   APInt BlockFreq(128, Freq);
    574   APInt EntryFreq(128, getEntryFreq());
    575   BlockCount *= BlockFreq;
    576   BlockCount = BlockCount.udiv(EntryFreq);
    577   return BlockCount.getLimitedValue();
    578 }
    579 
    580 bool
    581 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
    582   if (!Node.isValid())
    583     return false;
    584   return IsIrrLoopHeader.test(Node.Index);
    585 }
    586 
    587 Scaled64
    588 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
    589   if (!Node.isValid())
    590     return Scaled64::getZero();
    591   return Freqs[Node.Index].Scaled;
    592 }
    593 
    594 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
    595                                               uint64_t Freq) {
    596   assert(Node.isValid() && "Expected valid node");
    597   assert(Node.Index < Freqs.size() && "Expected legal index");
    598   Freqs[Node.Index].Integer = Freq;
    599 }
    600 
    601 std::string
    602 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
    603   return {};
    604 }
    605 
    606 std::string
    607 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
    608   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
    609 }
    610 
    611 raw_ostream &
    612 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
    613                                            const BlockNode &Node) const {
    614   return OS << getFloatingBlockFreq(Node);
    615 }
    616 
    617 raw_ostream &
    618 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
    619                                            const BlockFrequency &Freq) const {
    620   Scaled64 Block(Freq.getFrequency(), 0);
    621   Scaled64 Entry(getEntryFreq(), 0);
    622 
    623   return OS << Block / Entry;
    624 }
    625 
    626 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
    627   Start = OuterLoop.getHeader();
    628   Nodes.reserve(OuterLoop.Nodes.size());
    629   for (auto N : OuterLoop.Nodes)
    630     addNode(N);
    631   indexNodes();
    632 }
    633 
    634 void IrreducibleGraph::addNodesInFunction() {
    635   Start = 0;
    636   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    637     if (!BFI.Working[Index].isPackaged())
    638       addNode(Index);
    639   indexNodes();
    640 }
    641 
    642 void IrreducibleGraph::indexNodes() {
    643   for (auto &I : Nodes)
    644     Lookup[I.Node.Index] = &I;
    645 }
    646 
    647 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
    648                                const BFIBase::LoopData *OuterLoop) {
    649   if (OuterLoop && OuterLoop->isHeader(Succ))
    650     return;
    651   auto L = Lookup.find(Succ.Index);
    652   if (L == Lookup.end())
    653     return;
    654   IrrNode &SuccIrr = *L->second;
    655   Irr.Edges.push_back(&SuccIrr);
    656   SuccIrr.Edges.push_front(&Irr);
    657   ++SuccIrr.NumIn;
    658 }
    659 
    660 namespace llvm {
    661 
    662 template <> struct GraphTraits<IrreducibleGraph> {
    663   using GraphT = bfi_detail::IrreducibleGraph;
    664   using NodeRef = const GraphT::IrrNode *;
    665   using ChildIteratorType = GraphT::IrrNode::iterator;
    666 
    667   static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
    668   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
    669   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
    670 };
    671 
    672 } // end namespace llvm
    673 
    674 /// Find extra irreducible headers.
    675 ///
    676 /// Find entry blocks and other blocks with backedges, which exist when \c G
    677 /// contains irreducible sub-SCCs.
    678 static void findIrreducibleHeaders(
    679     const BlockFrequencyInfoImplBase &BFI,
    680     const IrreducibleGraph &G,
    681     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
    682     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
    683   // Map from nodes in the SCC to whether it's an entry block.
    684   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
    685 
    686   // InSCC also acts the set of nodes in the graph.  Seed it.
    687   for (const auto *I : SCC)
    688     InSCC[I] = false;
    689 
    690   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
    691     auto &Irr = *I->first;
    692     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
    693       if (InSCC.count(P))
    694         continue;
    695 
    696       // This is an entry block.
    697       I->second = true;
    698       Headers.push_back(Irr.Node);
    699       LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node)
    700                         << "\n");
    701       break;
    702     }
    703   }
    704   assert(Headers.size() >= 2 &&
    705          "Expected irreducible CFG; -loop-info is likely invalid");
    706   if (Headers.size() == InSCC.size()) {
    707     // Every block is a header.
    708     llvm::sort(Headers.begin(), Headers.end());
    709     return;
    710   }
    711 
    712   // Look for extra headers from irreducible sub-SCCs.
    713   for (const auto &I : InSCC) {
    714     // Entry blocks are already headers.
    715     if (I.second)
    716       continue;
    717 
    718     auto &Irr = *I.first;
    719     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
    720       // Skip forward edges.
    721       if (P->Node < Irr.Node)
    722         continue;
    723 
    724       // Skip predecessors from entry blocks.  These can have inverted
    725       // ordering.
    726       if (InSCC.lookup(P))
    727         continue;
    728 
    729       // Store the extra header.
    730       Headers.push_back(Irr.Node);
    731       LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node)
    732                         << "\n");
    733       break;
    734     }
    735     if (Headers.back() == Irr.Node)
    736       // Added this as a header.
    737       continue;
    738 
    739     // This is not a header.
    740     Others.push_back(Irr.Node);
    741     LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
    742   }
    743   llvm::sort(Headers.begin(), Headers.end());
    744   llvm::sort(Others.begin(), Others.end());
    745 }
    746 
    747 static void createIrreducibleLoop(
    748     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
    749     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
    750     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
    751   // Translate the SCC into RPO.
    752   LLVM_DEBUG(dbgs() << " - found-scc\n");
    753 
    754   LoopData::NodeList Headers;
    755   LoopData::NodeList Others;
    756   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
    757 
    758   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
    759                                 Headers.end(), Others.begin(), Others.end());
    760 
    761   // Update loop hierarchy.
    762   for (const auto &N : Loop->Nodes)
    763     if (BFI.Working[N.Index].isLoopHeader())
    764       BFI.Working[N.Index].Loop->Parent = &*Loop;
    765     else
    766       BFI.Working[N.Index].Loop = &*Loop;
    767 }
    768 
    769 iterator_range<std::list<LoopData>::iterator>
    770 BlockFrequencyInfoImplBase::analyzeIrreducible(
    771     const IrreducibleGraph &G, LoopData *OuterLoop,
    772     std::list<LoopData>::iterator Insert) {
    773   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
    774   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
    775 
    776   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
    777     if (I->size() < 2)
    778       continue;
    779 
    780     // Translate the SCC into RPO.
    781     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
    782   }
    783 
    784   if (OuterLoop)
    785     return make_range(std::next(Prev), Insert);
    786   return make_range(Loops.begin(), Insert);
    787 }
    788 
    789 void
    790 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
    791   OuterLoop.Exits.clear();
    792   for (auto &Mass : OuterLoop.BackedgeMass)
    793     Mass = BlockMass::getEmpty();
    794   auto O = OuterLoop.Nodes.begin() + 1;
    795   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
    796     if (!Working[I->Index].isPackaged())
    797       *O++ = *I;
    798   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
    799 }
    800 
    801 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
    802   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
    803 
    804   // Since the loop has more than one header block, the mass flowing back into
    805   // each header will be different. Adjust the mass in each header loop to
    806   // reflect the masses flowing through back edges.
    807   //
    808   // To do this, we distribute the initial mass using the backedge masses
    809   // as weights for the distribution.
    810   BlockMass LoopMass = BlockMass::getFull();
    811   Distribution Dist;
    812 
    813   LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
    814   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
    815     auto &HeaderNode = Loop.Nodes[H];
    816     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
    817     LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
    818                       << getBlockName(HeaderNode) << ": " << BackedgeMass
    819                       << "\n");
    820     if (BackedgeMass.getMass() > 0)
    821       Dist.addLocal(HeaderNode, BackedgeMass.getMass());
    822     else
    823       LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
    824   }
    825 
    826   DitheringDistributer D(Dist, LoopMass);
    827 
    828   LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
    829                     << " to headers using above weights\n");
    830   for (const Weight &W : Dist.Weights) {
    831     BlockMass Taken = D.takeMass(W.Amount);
    832     assert(W.Type == Weight::Local && "all weights should be local");
    833     Working[W.TargetNode.Index].getMass() = Taken;
    834     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
    835   }
    836 }
    837 
    838 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
    839   BlockMass LoopMass = BlockMass::getFull();
    840   DitheringDistributer D(Dist, LoopMass);
    841   for (const Weight &W : Dist.Weights) {
    842     BlockMass Taken = D.takeMass(W.Amount);
    843     assert(W.Type == Weight::Local && "all weights should be local");
    844     Working[W.TargetNode.Index].getMass() = Taken;
    845     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
    846   }
    847 }
    848