Home | History | Annotate | Download | only in CodeGen
      1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CriticalAntiDepBreaker class, which
     11 // implements register anti-dependence breaking along a blocks
     12 // critical path during post-RA scheduler.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "CriticalAntiDepBreaker.h"
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/BitVector.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/CodeGen/MachineBasicBlock.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineOperand.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/RegisterClassInfo.h"
     28 #include "llvm/CodeGen/ScheduleDAG.h"
     29 #include "llvm/CodeGen/TargetInstrInfo.h"
     30 #include "llvm/CodeGen/TargetRegisterInfo.h"
     31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     32 #include "llvm/MC/MCInstrDesc.h"
     33 #include "llvm/MC/MCRegisterInfo.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include <cassert>
     37 #include <map>
     38 #include <utility>
     39 #include <vector>
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "post-RA-sched"
     44 
     45 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
     46                                                const RegisterClassInfo &RCI)
     47     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
     48       TII(MF.getSubtarget().getInstrInfo()),
     49       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
     50       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
     51       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
     52 
     53 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
     54 
     55 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
     56   const unsigned BBSize = BB->size();
     57   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
     58     // Clear out the register class data.
     59     Classes[i] = nullptr;
     60 
     61     // Initialize the indices to indicate that no registers are live.
     62     KillIndices[i] = ~0u;
     63     DefIndices[i] = BBSize;
     64   }
     65 
     66   // Clear "do not change" set.
     67   KeepRegs.reset();
     68 
     69   bool IsReturnBlock = BB->isReturnBlock();
     70 
     71   // Examine the live-in regs of all successors.
     72   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
     73          SE = BB->succ_end(); SI != SE; ++SI)
     74     for (const auto &LI : (*SI)->liveins()) {
     75       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
     76         unsigned Reg = *AI;
     77         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     78         KillIndices[Reg] = BBSize;
     79         DefIndices[Reg] = ~0u;
     80       }
     81     }
     82 
     83   // Mark live-out callee-saved registers. In a return block this is
     84   // all callee-saved registers. In non-return this is any
     85   // callee-saved register that is not saved in the prolog.
     86   const MachineFrameInfo &MFI = MF.getFrameInfo();
     87   BitVector Pristine = MFI.getPristineRegs(MF);
     88   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
     89        ++I) {
     90     unsigned Reg = *I;
     91     if (!IsReturnBlock && !Pristine.test(Reg))
     92       continue;
     93     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
     94       unsigned Reg = *AI;
     95       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     96       KillIndices[Reg] = BBSize;
     97       DefIndices[Reg] = ~0u;
     98     }
     99   }
    100 }
    101 
    102 void CriticalAntiDepBreaker::FinishBlock() {
    103   RegRefs.clear();
    104   KeepRegs.reset();
    105 }
    106 
    107 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
    108                                      unsigned InsertPosIndex) {
    109   // Kill instructions can define registers but are really nops, and there might
    110   // be a real definition earlier that needs to be paired with uses dominated by
    111   // this kill.
    112 
    113   // FIXME: It may be possible to remove the isKill() restriction once PR18663
    114   // has been properly fixed. There can be value in processing kills as seen in
    115   // the AggressiveAntiDepBreaker class.
    116   if (MI.isDebugInstr() || MI.isKill())
    117     return;
    118   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    119 
    120   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    121     if (KillIndices[Reg] != ~0u) {
    122       // If Reg is currently live, then mark that it can't be renamed as
    123       // we don't know the extent of its live-range anymore (now that it
    124       // has been scheduled).
    125       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    126       KillIndices[Reg] = Count;
    127     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
    128       // Any register which was defined within the previous scheduling region
    129       // may have been rescheduled and its lifetime may overlap with registers
    130       // in ways not reflected in our current liveness state. For each such
    131       // register, adjust the liveness state to be conservatively correct.
    132       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    133 
    134       // Move the def index to the end of the previous region, to reflect
    135       // that the def could theoretically have been scheduled at the end.
    136       DefIndices[Reg] = InsertPosIndex;
    137     }
    138   }
    139 
    140   PrescanInstruction(MI);
    141   ScanInstruction(MI, Count);
    142 }
    143 
    144 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    145 /// critical path.
    146 static const SDep *CriticalPathStep(const SUnit *SU) {
    147   const SDep *Next = nullptr;
    148   unsigned NextDepth = 0;
    149   // Find the predecessor edge with the greatest depth.
    150   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    151        P != PE; ++P) {
    152     const SUnit *PredSU = P->getSUnit();
    153     unsigned PredLatency = P->getLatency();
    154     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    155     // In the case of a latency tie, prefer an anti-dependency edge over
    156     // other types of edges.
    157     if (NextDepth < PredTotalLatency ||
    158         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    159       NextDepth = PredTotalLatency;
    160       Next = &*P;
    161     }
    162   }
    163   return Next;
    164 }
    165 
    166 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
    167   // It's not safe to change register allocation for source operands of
    168   // instructions that have special allocation requirements. Also assume all
    169   // registers used in a call must not be changed (ABI).
    170   // FIXME: The issue with predicated instruction is more complex. We are being
    171   // conservative here because the kill markers cannot be trusted after
    172   // if-conversion:
    173   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
    174   // ...
    175   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
    176   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
    177   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
    178   //
    179   // The first R6 kill is not really a kill since it's killed by a predicated
    180   // instruction which may not be executed. The second R6 def may or may not
    181   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    182   // changed.
    183   bool Special =
    184       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
    185 
    186   // Scan the register operands for this instruction and update
    187   // Classes and RegRefs.
    188   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    189     MachineOperand &MO = MI.getOperand(i);
    190     if (!MO.isReg()) continue;
    191     unsigned Reg = MO.getReg();
    192     if (Reg == 0) continue;
    193     const TargetRegisterClass *NewRC = nullptr;
    194 
    195     if (i < MI.getDesc().getNumOperands())
    196       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    197 
    198     // For now, only allow the register to be changed if its register
    199     // class is consistent across all uses.
    200     if (!Classes[Reg] && NewRC)
    201       Classes[Reg] = NewRC;
    202     else if (!NewRC || Classes[Reg] != NewRC)
    203       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    204 
    205     // Now check for aliases.
    206     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
    207       // If an alias of the reg is used during the live range, give up.
    208       // Note that this allows us to skip checking if AntiDepReg
    209       // overlaps with any of the aliases, among other things.
    210       unsigned AliasReg = *AI;
    211       if (Classes[AliasReg]) {
    212         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    213         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    214       }
    215     }
    216 
    217     // If we're still willing to consider this register, note the reference.
    218     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
    219       RegRefs.insert(std::make_pair(Reg, &MO));
    220 
    221     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
    222     // it or any of its sub or super regs. We need to use KeepRegs to mark the
    223     // reg because not all uses of the same reg within an instruction are
    224     // necessarily tagged as tied.
    225     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
    226     // def register but not the second (see PR20020 for details).
    227     // FIXME: can this check be relaxed to account for undef uses
    228     // of a register? In the above 'xor' example, the uses of %eax are undef, so
    229     // earlier instructions could still replace %eax even though the 'xor'
    230     // itself can't be changed.
    231     if (MI.isRegTiedToUseOperand(i) &&
    232         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
    233       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    234            SubRegs.isValid(); ++SubRegs) {
    235         KeepRegs.set(*SubRegs);
    236       }
    237       for (MCSuperRegIterator SuperRegs(Reg, TRI);
    238            SuperRegs.isValid(); ++SuperRegs) {
    239         KeepRegs.set(*SuperRegs);
    240       }
    241     }
    242 
    243     if (MO.isUse() && Special) {
    244       if (!KeepRegs.test(Reg)) {
    245         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
    246              SubRegs.isValid(); ++SubRegs)
    247           KeepRegs.set(*SubRegs);
    248       }
    249     }
    250   }
    251 }
    252 
    253 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
    254   // Update liveness.
    255   // Proceeding upwards, registers that are defed but not used in this
    256   // instruction are now dead.
    257   assert(!MI.isKill() && "Attempting to scan a kill instruction");
    258 
    259   if (!TII->isPredicated(MI)) {
    260     // Predicated defs are modeled as read + write, i.e. similar to two
    261     // address updates.
    262     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    263       MachineOperand &MO = MI.getOperand(i);
    264 
    265       if (MO.isRegMask())
    266         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    267           if (MO.clobbersPhysReg(i)) {
    268             DefIndices[i] = Count;
    269             KillIndices[i] = ~0u;
    270             KeepRegs.reset(i);
    271             Classes[i] = nullptr;
    272             RegRefs.erase(i);
    273           }
    274 
    275       if (!MO.isReg()) continue;
    276       unsigned Reg = MO.getReg();
    277       if (Reg == 0) continue;
    278       if (!MO.isDef()) continue;
    279 
    280       // Ignore two-addr defs.
    281       if (MI.isRegTiedToUseOperand(i))
    282         continue;
    283 
    284       // If we've already marked this reg as unchangeable, don't remove
    285       // it or any of its subregs from KeepRegs.
    286       bool Keep = KeepRegs.test(Reg);
    287 
    288       // For the reg itself and all subregs: update the def to current;
    289       // reset the kill state, any restrictions, and references.
    290       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
    291         unsigned SubregReg = *SRI;
    292         DefIndices[SubregReg] = Count;
    293         KillIndices[SubregReg] = ~0u;
    294         Classes[SubregReg] = nullptr;
    295         RegRefs.erase(SubregReg);
    296         if (!Keep)
    297           KeepRegs.reset(SubregReg);
    298       }
    299       // Conservatively mark super-registers as unusable.
    300       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
    301         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
    302     }
    303   }
    304   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    305     MachineOperand &MO = MI.getOperand(i);
    306     if (!MO.isReg()) continue;
    307     unsigned Reg = MO.getReg();
    308     if (Reg == 0) continue;
    309     if (!MO.isUse()) continue;
    310 
    311     const TargetRegisterClass *NewRC = nullptr;
    312     if (i < MI.getDesc().getNumOperands())
    313       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
    314 
    315     // For now, only allow the register to be changed if its register
    316     // class is consistent across all uses.
    317     if (!Classes[Reg] && NewRC)
    318       Classes[Reg] = NewRC;
    319     else if (!NewRC || Classes[Reg] != NewRC)
    320       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    321 
    322     RegRefs.insert(std::make_pair(Reg, &MO));
    323 
    324     // It wasn't previously live but now it is, this is a kill.
    325     // Repeat for all aliases.
    326     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    327       unsigned AliasReg = *AI;
    328       if (KillIndices[AliasReg] == ~0u) {
    329         KillIndices[AliasReg] = Count;
    330         DefIndices[AliasReg] = ~0u;
    331       }
    332     }
    333   }
    334 }
    335 
    336 // Check all machine operands that reference the antidependent register and must
    337 // be replaced by NewReg. Return true if any of their parent instructions may
    338 // clobber the new register.
    339 //
    340 // Note: AntiDepReg may be referenced by a two-address instruction such that
    341 // it's use operand is tied to a def operand. We guard against the case in which
    342 // the two-address instruction also defines NewReg, as may happen with
    343 // pre/postincrement loads. In this case, both the use and def operands are in
    344 // RegRefs because the def is inserted by PrescanInstruction and not erased
    345 // during ScanInstruction. So checking for an instruction with definitions of
    346 // both NewReg and AntiDepReg covers it.
    347 bool
    348 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
    349                                                 RegRefIter RegRefEnd,
    350                                                 unsigned NewReg) {
    351   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    352     MachineOperand *RefOper = I->second;
    353 
    354     // Don't allow the instruction defining AntiDepReg to earlyclobber its
    355     // operands, in case they may be assigned to NewReg. In this case antidep
    356     // breaking must fail, but it's too rare to bother optimizing.
    357     if (RefOper->isDef() && RefOper->isEarlyClobber())
    358       return true;
    359 
    360     // Handle cases in which this instruction defines NewReg.
    361     MachineInstr *MI = RefOper->getParent();
    362     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    363       const MachineOperand &CheckOper = MI->getOperand(i);
    364 
    365       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
    366         return true;
    367 
    368       if (!CheckOper.isReg() || !CheckOper.isDef() ||
    369           CheckOper.getReg() != NewReg)
    370         continue;
    371 
    372       // Don't allow the instruction to define NewReg and AntiDepReg.
    373       // When AntiDepReg is renamed it will be an illegal op.
    374       if (RefOper->isDef())
    375         return true;
    376 
    377       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
    378       // NewReg.
    379       if (CheckOper.isEarlyClobber())
    380         return true;
    381 
    382       // Don't allow inline asm to define NewReg at all. Who knows what it's
    383       // doing with it.
    384       if (MI->isInlineAsm())
    385         return true;
    386     }
    387   }
    388   return false;
    389 }
    390 
    391 unsigned CriticalAntiDepBreaker::
    392 findSuitableFreeRegister(RegRefIter RegRefBegin,
    393                          RegRefIter RegRefEnd,
    394                          unsigned AntiDepReg,
    395                          unsigned LastNewReg,
    396                          const TargetRegisterClass *RC,
    397                          SmallVectorImpl<unsigned> &Forbid) {
    398   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
    399   for (unsigned i = 0; i != Order.size(); ++i) {
    400     unsigned NewReg = Order[i];
    401     // Don't replace a register with itself.
    402     if (NewReg == AntiDepReg) continue;
    403     // Don't replace a register with one that was recently used to repair
    404     // an anti-dependence with this AntiDepReg, because that would
    405     // re-introduce that anti-dependence.
    406     if (NewReg == LastNewReg) continue;
    407     // If any instructions that define AntiDepReg also define the NewReg, it's
    408     // not suitable.  For example, Instruction with multiple definitions can
    409     // result in this condition.
    410     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    411     // If NewReg is dead and NewReg's most recent def is not before
    412     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    413     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
    414            && "Kill and Def maps aren't consistent for AntiDepReg!");
    415     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
    416            && "Kill and Def maps aren't consistent for NewReg!");
    417     if (KillIndices[NewReg] != ~0u ||
    418         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
    419         KillIndices[AntiDepReg] > DefIndices[NewReg])
    420       continue;
    421     // If NewReg overlaps any of the forbidden registers, we can't use it.
    422     bool Forbidden = false;
    423     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
    424            ite = Forbid.end(); it != ite; ++it)
    425       if (TRI->regsOverlap(NewReg, *it)) {
    426         Forbidden = true;
    427         break;
    428       }
    429     if (Forbidden) continue;
    430     return NewReg;
    431   }
    432 
    433   // No registers are free and available!
    434   return 0;
    435 }
    436 
    437 unsigned CriticalAntiDepBreaker::
    438 BreakAntiDependencies(const std::vector<SUnit> &SUnits,
    439                       MachineBasicBlock::iterator Begin,
    440                       MachineBasicBlock::iterator End,
    441                       unsigned InsertPosIndex,
    442                       DbgValueVector &DbgValues) {
    443   // The code below assumes that there is at least one instruction,
    444   // so just duck out immediately if the block is empty.
    445   if (SUnits.empty()) return 0;
    446 
    447   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
    448   // This is used for updating debug information.
    449   //
    450   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
    451   DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
    452 
    453   // Find the node at the bottom of the critical path.
    454   const SUnit *Max = nullptr;
    455   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    456     const SUnit *SU = &SUnits[i];
    457     MISUnitMap[SU->getInstr()] = SU;
    458     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
    459       Max = SU;
    460   }
    461 
    462 #ifndef NDEBUG
    463   {
    464     LLVM_DEBUG(dbgs() << "Critical path has total latency "
    465                       << (Max->getDepth() + Max->Latency) << "\n");
    466     LLVM_DEBUG(dbgs() << "Available regs:");
    467     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    468       if (KillIndices[Reg] == ~0u)
    469         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
    470     }
    471     LLVM_DEBUG(dbgs() << '\n');
    472   }
    473 #endif
    474 
    475   // Track progress along the critical path through the SUnit graph as we walk
    476   // the instructions.
    477   const SUnit *CriticalPathSU = Max;
    478   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
    479 
    480   // Consider this pattern:
    481   //   A = ...
    482   //   ... = A
    483   //   A = ...
    484   //   ... = A
    485   //   A = ...
    486   //   ... = A
    487   //   A = ...
    488   //   ... = A
    489   // There are three anti-dependencies here, and without special care,
    490   // we'd break all of them using the same register:
    491   //   A = ...
    492   //   ... = A
    493   //   B = ...
    494   //   ... = B
    495   //   B = ...
    496   //   ... = B
    497   //   B = ...
    498   //   ... = B
    499   // because at each anti-dependence, B is the first register that
    500   // isn't A which is free.  This re-introduces anti-dependencies
    501   // at all but one of the original anti-dependencies that we were
    502   // trying to break.  To avoid this, keep track of the most recent
    503   // register that each register was replaced with, avoid
    504   // using it to repair an anti-dependence on the same register.
    505   // This lets us produce this:
    506   //   A = ...
    507   //   ... = A
    508   //   B = ...
    509   //   ... = B
    510   //   C = ...
    511   //   ... = C
    512   //   B = ...
    513   //   ... = B
    514   // This still has an anti-dependence on B, but at least it isn't on the
    515   // original critical path.
    516   //
    517   // TODO: If we tracked more than one register here, we could potentially
    518   // fix that remaining critical edge too. This is a little more involved,
    519   // because unlike the most recent register, less recent registers should
    520   // still be considered, though only if no other registers are available.
    521   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
    522 
    523   // Attempt to break anti-dependence edges on the critical path. Walk the
    524   // instructions from the bottom up, tracking information about liveness
    525   // as we go to help determine which registers are available.
    526   unsigned Broken = 0;
    527   unsigned Count = InsertPosIndex - 1;
    528   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
    529     MachineInstr &MI = *--I;
    530     // Kill instructions can define registers but are really nops, and there
    531     // might be a real definition earlier that needs to be paired with uses
    532     // dominated by this kill.
    533 
    534     // FIXME: It may be possible to remove the isKill() restriction once PR18663
    535     // has been properly fixed. There can be value in processing kills as seen
    536     // in the AggressiveAntiDepBreaker class.
    537     if (MI.isDebugInstr() || MI.isKill())
    538       continue;
    539 
    540     // Check if this instruction has a dependence on the critical path that
    541     // is an anti-dependence that we may be able to break. If it is, set
    542     // AntiDepReg to the non-zero register associated with the anti-dependence.
    543     //
    544     // We limit our attention to the critical path as a heuristic to avoid
    545     // breaking anti-dependence edges that aren't going to significantly
    546     // impact the overall schedule. There are a limited number of registers
    547     // and we want to save them for the important edges.
    548     //
    549     // TODO: Instructions with multiple defs could have multiple
    550     // anti-dependencies. The current code here only knows how to break one
    551     // edge per instruction. Note that we'd have to be able to break all of
    552     // the anti-dependencies in an instruction in order to be effective.
    553     unsigned AntiDepReg = 0;
    554     if (&MI == CriticalPathMI) {
    555       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
    556         const SUnit *NextSU = Edge->getSUnit();
    557 
    558         // Only consider anti-dependence edges.
    559         if (Edge->getKind() == SDep::Anti) {
    560           AntiDepReg = Edge->getReg();
    561           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    562           if (!MRI.isAllocatable(AntiDepReg))
    563             // Don't break anti-dependencies on non-allocatable registers.
    564             AntiDepReg = 0;
    565           else if (KeepRegs.test(AntiDepReg))
    566             // Don't break anti-dependencies if a use down below requires
    567             // this exact register.
    568             AntiDepReg = 0;
    569           else {
    570             // If the SUnit has other dependencies on the SUnit that it
    571             // anti-depends on, don't bother breaking the anti-dependency
    572             // since those edges would prevent such units from being
    573             // scheduled past each other regardless.
    574             //
    575             // Also, if there are dependencies on other SUnits with the
    576             // same register as the anti-dependency, don't attempt to
    577             // break it.
    578             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
    579                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
    580               if (P->getSUnit() == NextSU ?
    581                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    582                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    583                 AntiDepReg = 0;
    584                 break;
    585               }
    586           }
    587         }
    588         CriticalPathSU = NextSU;
    589         CriticalPathMI = CriticalPathSU->getInstr();
    590       } else {
    591         // We've reached the end of the critical path.
    592         CriticalPathSU = nullptr;
    593         CriticalPathMI = nullptr;
    594       }
    595     }
    596 
    597     PrescanInstruction(MI);
    598 
    599     SmallVector<unsigned, 2> ForbidRegs;
    600 
    601     // If MI's defs have a special allocation requirement, don't allow
    602     // any def registers to be changed. Also assume all registers
    603     // defined in a call must not be changed (ABI).
    604     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
    605       // If this instruction's defs have special allocation requirement, don't
    606       // break this anti-dependency.
    607       AntiDepReg = 0;
    608     else if (AntiDepReg) {
    609       // If this instruction has a use of AntiDepReg, breaking it
    610       // is invalid.  If the instruction defines other registers,
    611       // save a list of them so that we don't pick a new register
    612       // that overlaps any of them.
    613       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    614         MachineOperand &MO = MI.getOperand(i);
    615         if (!MO.isReg()) continue;
    616         unsigned Reg = MO.getReg();
    617         if (Reg == 0) continue;
    618         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
    619           AntiDepReg = 0;
    620           break;
    621         }
    622         if (MO.isDef() && Reg != AntiDepReg)
    623           ForbidRegs.push_back(Reg);
    624       }
    625     }
    626 
    627     // Determine AntiDepReg's register class, if it is live and is
    628     // consistently used within a single class.
    629     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
    630                                                     : nullptr;
    631     assert((AntiDepReg == 0 || RC != nullptr) &&
    632            "Register should be live if it's causing an anti-dependence!");
    633     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
    634       AntiDepReg = 0;
    635 
    636     // Look for a suitable register to use to break the anti-dependence.
    637     //
    638     // TODO: Instead of picking the first free register, consider which might
    639     // be the best.
    640     if (AntiDepReg != 0) {
    641       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
    642                 std::multimap<unsigned, MachineOperand *>::iterator>
    643         Range = RegRefs.equal_range(AntiDepReg);
    644       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
    645                                                      AntiDepReg,
    646                                                      LastNewReg[AntiDepReg],
    647                                                      RC, ForbidRegs)) {
    648         LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
    649                           << printReg(AntiDepReg, TRI) << " with "
    650                           << RegRefs.count(AntiDepReg) << " references"
    651                           << " using " << printReg(NewReg, TRI) << "!\n");
    652 
    653         // Update the references to the old register to refer to the new
    654         // register.
    655         for (std::multimap<unsigned, MachineOperand *>::iterator
    656              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    657           Q->second->setReg(NewReg);
    658           // If the SU for the instruction being updated has debug information
    659           // related to the anti-dependency register, make sure to update that
    660           // as well.
    661           const SUnit *SU = MISUnitMap[Q->second->getParent()];
    662           if (!SU) continue;
    663           UpdateDbgValues(DbgValues, Q->second->getParent(),
    664                           AntiDepReg, NewReg);
    665         }
    666 
    667         // We just went back in time and modified history; the
    668         // liveness information for the anti-dependence reg is now
    669         // inconsistent. Set the state as if it were dead.
    670         Classes[NewReg] = Classes[AntiDepReg];
    671         DefIndices[NewReg] = DefIndices[AntiDepReg];
    672         KillIndices[NewReg] = KillIndices[AntiDepReg];
    673         assert(((KillIndices[NewReg] == ~0u) !=
    674                 (DefIndices[NewReg] == ~0u)) &&
    675              "Kill and Def maps aren't consistent for NewReg!");
    676 
    677         Classes[AntiDepReg] = nullptr;
    678         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
    679         KillIndices[AntiDepReg] = ~0u;
    680         assert(((KillIndices[AntiDepReg] == ~0u) !=
    681                 (DefIndices[AntiDepReg] == ~0u)) &&
    682              "Kill and Def maps aren't consistent for AntiDepReg!");
    683 
    684         RegRefs.erase(AntiDepReg);
    685         LastNewReg[AntiDepReg] = NewReg;
    686         ++Broken;
    687       }
    688     }
    689 
    690     ScanInstruction(MI, Count);
    691   }
    692 
    693   return Broken;
    694 }
    695