Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LiveRangeEdit class represents changes done to a virtual register when it
     11 // is spilled or split.
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/LiveRangeEdit.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/CodeGen/CalcSpillWeights.h"
     17 #include "llvm/CodeGen/LiveIntervals.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/TargetInstrInfo.h"
     20 #include "llvm/CodeGen/VirtRegMap.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "regalloc"
     27 
     28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
     29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
     30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
     31 
     32 void LiveRangeEdit::Delegate::anchor() { }
     33 
     34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
     35                                                      bool createSubRanges) {
     36   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     37   if (VRM)
     38     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     39 
     40   LiveInterval &LI = LIS.createEmptyInterval(VReg);
     41   if (Parent && !Parent->isSpillable())
     42     LI.markNotSpillable();
     43   if (createSubRanges) {
     44     // Create empty subranges if the OldReg's interval has them. Do not create
     45     // the main range here---it will be constructed later after the subranges
     46     // have been finalized.
     47     LiveInterval &OldLI = LIS.getInterval(OldReg);
     48     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
     49     for (LiveInterval::SubRange &S : OldLI.subranges())
     50       LI.createSubRange(Alloc, S.LaneMask);
     51   }
     52   return LI;
     53 }
     54 
     55 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
     56   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     57   if (VRM) {
     58     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     59   }
     60   // FIXME: Getting the interval here actually computes it.
     61   // In theory, this may not be what we want, but in practice
     62   // the createEmptyIntervalFrom API is used when this is not
     63   // the case. Generally speaking we just want to annotate the
     64   // LiveInterval when it gets created but we cannot do that at
     65   // the moment.
     66   if (Parent && !Parent->isSpillable())
     67     LIS.getInterval(VReg).markNotSpillable();
     68   return VReg;
     69 }
     70 
     71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
     72                                           const MachineInstr *DefMI,
     73                                           AliasAnalysis *aa) {
     74   assert(DefMI && "Missing instruction");
     75   ScannedRemattable = true;
     76   if (!TII.isTriviallyReMaterializable(*DefMI, aa))
     77     return false;
     78   Remattable.insert(VNI);
     79   return true;
     80 }
     81 
     82 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
     83   for (VNInfo *VNI : getParent().valnos) {
     84     if (VNI->isUnused())
     85       continue;
     86     unsigned Original = VRM->getOriginal(getReg());
     87     LiveInterval &OrigLI = LIS.getInterval(Original);
     88     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
     89     if (!OrigVNI)
     90       continue;
     91     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
     92     if (!DefMI)
     93       continue;
     94     checkRematerializable(OrigVNI, DefMI, aa);
     95   }
     96   ScannedRemattable = true;
     97 }
     98 
     99 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
    100   if (!ScannedRemattable)
    101     scanRemattable(aa);
    102   return !Remattable.empty();
    103 }
    104 
    105 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
    106 /// OrigIdx are also available with the same value at UseIdx.
    107 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
    108                                        SlotIndex OrigIdx,
    109                                        SlotIndex UseIdx) const {
    110   OrigIdx = OrigIdx.getRegSlot(true);
    111   UseIdx = UseIdx.getRegSlot(true);
    112   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
    113     const MachineOperand &MO = OrigMI->getOperand(i);
    114     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
    115       continue;
    116 
    117     // We can't remat physreg uses, unless it is a constant.
    118     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    119       if (MRI.isConstantPhysReg(MO.getReg()))
    120         continue;
    121       return false;
    122     }
    123 
    124     LiveInterval &li = LIS.getInterval(MO.getReg());
    125     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
    126     if (!OVNI)
    127       continue;
    128 
    129     // Don't allow rematerialization immediately after the original def.
    130     // It would be incorrect if OrigMI redefines the register.
    131     // See PR14098.
    132     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
    133       return false;
    134 
    135     if (OVNI != li.getVNInfoAt(UseIdx))
    136       return false;
    137   }
    138   return true;
    139 }
    140 
    141 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
    142                                        SlotIndex UseIdx, bool cheapAsAMove) {
    143   assert(ScannedRemattable && "Call anyRematerializable first");
    144 
    145   // Use scanRemattable info.
    146   if (!Remattable.count(OrigVNI))
    147     return false;
    148 
    149   // No defining instruction provided.
    150   SlotIndex DefIdx;
    151   assert(RM.OrigMI && "No defining instruction for remattable value");
    152   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
    153 
    154   // If only cheap remats were requested, bail out early.
    155   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
    156     return false;
    157 
    158   // Verify that all used registers are available with the same values.
    159   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    160     return false;
    161 
    162   return true;
    163 }
    164 
    165 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
    166                                          MachineBasicBlock::iterator MI,
    167                                          unsigned DestReg,
    168                                          const Remat &RM,
    169                                          const TargetRegisterInfo &tri,
    170                                          bool Late) {
    171   assert(RM.OrigMI && "Invalid remat");
    172   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
    173   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
    174   // to false anyway in case the isDead flag of RM.OrigMI's dest register
    175   // is true.
    176   (*--MI).getOperand(0).setIsDead(false);
    177   Rematted.insert(RM.ParentVNI);
    178   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
    179 }
    180 
    181 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
    182   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    183     LIS.removeInterval(Reg);
    184 }
    185 
    186 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
    187                                SmallVectorImpl<MachineInstr*> &Dead) {
    188   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
    189 
    190   // Check that there is a single def and a single use.
    191   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
    192     MachineInstr *MI = MO.getParent();
    193     if (MO.isDef()) {
    194       if (DefMI && DefMI != MI)
    195         return false;
    196       if (!MI->canFoldAsLoad())
    197         return false;
    198       DefMI = MI;
    199     } else if (!MO.isUndef()) {
    200       if (UseMI && UseMI != MI)
    201         return false;
    202       // FIXME: Targets don't know how to fold subreg uses.
    203       if (MO.getSubReg())
    204         return false;
    205       UseMI = MI;
    206     }
    207   }
    208   if (!DefMI || !UseMI)
    209     return false;
    210 
    211   // Since we're moving the DefMI load, make sure we're not extending any live
    212   // ranges.
    213   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
    214                           LIS.getInstructionIndex(*UseMI)))
    215     return false;
    216 
    217   // We also need to make sure it is safe to move the load.
    218   // Assume there are stores between DefMI and UseMI.
    219   bool SawStore = true;
    220   if (!DefMI->isSafeToMove(nullptr, SawStore))
    221     return false;
    222 
    223   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
    224                     << "       into single use: " << *UseMI);
    225 
    226   SmallVector<unsigned, 8> Ops;
    227   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    228     return false;
    229 
    230   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
    231   if (!FoldMI)
    232     return false;
    233   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
    234   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
    235   UseMI->eraseFromParent();
    236   DefMI->addRegisterDead(LI->reg, nullptr);
    237   Dead.push_back(DefMI);
    238   ++NumDCEFoldedLoads;
    239   return true;
    240 }
    241 
    242 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
    243                               const MachineOperand &MO) const {
    244   const MachineInstr &MI = *MO.getParent();
    245   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
    246   if (LI.Query(Idx).isKill())
    247     return true;
    248   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
    249   unsigned SubReg = MO.getSubReg();
    250   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
    251   for (const LiveInterval::SubRange &S : LI.subranges()) {
    252     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
    253       return true;
    254   }
    255   return false;
    256 }
    257 
    258 /// Find all live intervals that need to shrink, then remove the instruction.
    259 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
    260                                      AliasAnalysis *AA) {
    261   assert(MI->allDefsAreDead() && "Def isn't really dead");
    262   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    263 
    264   // Never delete a bundled instruction.
    265   if (MI->isBundled()) {
    266     return;
    267   }
    268   // Never delete inline asm.
    269   if (MI->isInlineAsm()) {
    270     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    271     return;
    272   }
    273 
    274   // Use the same criteria as DeadMachineInstructionElim.
    275   bool SawStore = false;
    276   if (!MI->isSafeToMove(nullptr, SawStore)) {
    277     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    278     return;
    279   }
    280 
    281   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
    282 
    283   // Collect virtual registers to be erased after MI is gone.
    284   SmallVector<unsigned, 8> RegsToErase;
    285   bool ReadsPhysRegs = false;
    286   bool isOrigDef = false;
    287   unsigned Dest;
    288   // Only optimize rematerialize case when the instruction has one def, since
    289   // otherwise we could leave some dead defs in the code.  This case is
    290   // extremely rare.
    291   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
    292       MI->getDesc().getNumDefs() == 1) {
    293     Dest = MI->getOperand(0).getReg();
    294     unsigned Original = VRM->getOriginal(Dest);
    295     LiveInterval &OrigLI = LIS.getInterval(Original);
    296     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    297     // The original live-range may have been shrunk to
    298     // an empty live-range. It happens when it is dead, but
    299     // we still keep it around to be able to rematerialize
    300     // other values that depend on it.
    301     if (OrigVNI)
    302       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
    303   }
    304 
    305   // Check for live intervals that may shrink
    306   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    307          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    308     if (!MOI->isReg())
    309       continue;
    310     unsigned Reg = MOI->getReg();
    311     if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
    312       // Check if MI reads any unreserved physregs.
    313       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
    314         ReadsPhysRegs = true;
    315       else if (MOI->isDef())
    316         LIS.removePhysRegDefAt(Reg, Idx);
    317       continue;
    318     }
    319     LiveInterval &LI = LIS.getInterval(Reg);
    320 
    321     // Shrink read registers, unless it is likely to be expensive and
    322     // unlikely to change anything. We typically don't want to shrink the
    323     // PIC base register that has lots of uses everywhere.
    324     // Always shrink COPY uses that probably come from live range splitting.
    325     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
    326         (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
    327       ToShrink.insert(&LI);
    328 
    329     // Remove defined value.
    330     if (MOI->isDef()) {
    331       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
    332         TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
    333       LIS.removeVRegDefAt(LI, Idx);
    334       if (LI.empty())
    335         RegsToErase.push_back(Reg);
    336     }
    337   }
    338 
    339   // Currently, we don't support DCE of physreg live ranges. If MI reads
    340   // any unreserved physregs, don't erase the instruction, but turn it into
    341   // a KILL instead. This way, the physreg live ranges don't end up
    342   // dangling.
    343   // FIXME: It would be better to have something like shrinkToUses() for
    344   // physregs. That could potentially enable more DCE and it would free up
    345   // the physreg. It would not happen often, though.
    346   if (ReadsPhysRegs) {
    347     MI->setDesc(TII.get(TargetOpcode::KILL));
    348     // Remove all operands that aren't physregs.
    349     for (unsigned i = MI->getNumOperands(); i; --i) {
    350       const MachineOperand &MO = MI->getOperand(i-1);
    351       if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
    352         continue;
    353       MI->RemoveOperand(i-1);
    354     }
    355     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
    356   } else {
    357     // If the dest of MI is an original reg and MI is reMaterializable,
    358     // don't delete the inst. Replace the dest with a new reg, and keep
    359     // the inst for remat of other siblings. The inst is saved in
    360     // LiveRangeEdit::DeadRemats and will be deleted after all the
    361     // allocations of the func are done.
    362     if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
    363       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
    364       VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
    365       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
    366       pop_back();
    367       DeadRemats->insert(MI);
    368       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
    369       MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
    370       MI->getOperand(0).setIsDead(true);
    371     } else {
    372       if (TheDelegate)
    373         TheDelegate->LRE_WillEraseInstruction(MI);
    374       LIS.RemoveMachineInstrFromMaps(*MI);
    375       MI->eraseFromParent();
    376       ++NumDCEDeleted;
    377     }
    378   }
    379 
    380   // Erase any virtregs that are now empty and unused. There may be <undef>
    381   // uses around. Keep the empty live range in that case.
    382   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    383     unsigned Reg = RegsToErase[i];
    384     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
    385       ToShrink.remove(&LIS.getInterval(Reg));
    386       eraseVirtReg(Reg);
    387     }
    388   }
    389 }
    390 
    391 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
    392                                       ArrayRef<unsigned> RegsBeingSpilled,
    393                                       AliasAnalysis *AA) {
    394   ToShrinkSet ToShrink;
    395 
    396   for (;;) {
    397     // Erase all dead defs.
    398     while (!Dead.empty())
    399       eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
    400 
    401     if (ToShrink.empty())
    402       break;
    403 
    404     // Shrink just one live interval. Then delete new dead defs.
    405     LiveInterval *LI = ToShrink.back();
    406     ToShrink.pop_back();
    407     if (foldAsLoad(LI, Dead))
    408       continue;
    409     unsigned VReg = LI->reg;
    410     if (TheDelegate)
    411       TheDelegate->LRE_WillShrinkVirtReg(VReg);
    412     if (!LIS.shrinkToUses(LI, &Dead))
    413       continue;
    414 
    415     // Don't create new intervals for a register being spilled.
    416     // The new intervals would have to be spilled anyway so its not worth it.
    417     // Also they currently aren't spilled so creating them and not spilling
    418     // them results in incorrect code.
    419     bool BeingSpilled = false;
    420     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
    421       if (VReg == RegsBeingSpilled[i]) {
    422         BeingSpilled = true;
    423         break;
    424       }
    425     }
    426 
    427     if (BeingSpilled) continue;
    428 
    429     // LI may have been separated, create new intervals.
    430     LI->RenumberValues();
    431     SmallVector<LiveInterval*, 8> SplitLIs;
    432     LIS.splitSeparateComponents(*LI, SplitLIs);
    433     if (!SplitLIs.empty())
    434       ++NumFracRanges;
    435 
    436     unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
    437     for (const LiveInterval *SplitLI : SplitLIs) {
    438       // If LI is an original interval that hasn't been split yet, make the new
    439       // intervals their own originals instead of referring to LI. The original
    440       // interval must contain all the split products, and LI doesn't.
    441       if (Original != VReg && Original != 0)
    442         VRM->setIsSplitFromReg(SplitLI->reg, Original);
    443       if (TheDelegate)
    444         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
    445     }
    446   }
    447 }
    448 
    449 // Keep track of new virtual registers created via
    450 // MachineRegisterInfo::createVirtualRegister.
    451 void
    452 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
    453 {
    454   if (VRM)
    455     VRM->grow();
    456 
    457   NewRegs.push_back(VReg);
    458 }
    459 
    460 void
    461 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
    462                                         const MachineLoopInfo &Loops,
    463                                         const MachineBlockFrequencyInfo &MBFI) {
    464   VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
    465   for (unsigned I = 0, Size = size(); I < Size; ++I) {
    466     LiveInterval &LI = LIS.getInterval(get(I));
    467     if (MRI.recomputeRegClass(LI.reg))
    468       LLVM_DEBUG({
    469         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    470         dbgs() << "Inflated " << printReg(LI.reg) << " to "
    471                << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
    472       });
    473     VRAI.calculateSpillWeightAndHint(LI);
    474   }
    475 }
    476