Home | History | Annotate | Download | only in AArch64
      1 //===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that expands pseudo instructions into target
     11 // instructions to allow proper scheduling and other late optimizations.  This
     12 // pass should be run after register allocation but before the post-regalloc
     13 // scheduling pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "AArch64InstrInfo.h"
     18 #include "AArch64Subtarget.h"
     19 #include "MCTargetDesc/AArch64AddressingModes.h"
     20 #include "Utils/AArch64BaseInfo.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/CodeGen/LivePhysRegs.h"
     24 #include "llvm/CodeGen/MachineBasicBlock.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineInstr.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineOperand.h"
     30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     31 #include "llvm/IR/DebugLoc.h"
     32 #include "llvm/MC/MCInstrDesc.h"
     33 #include "llvm/Pass.h"
     34 #include "llvm/Support/CodeGen.h"
     35 #include "llvm/Support/MathExtras.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include <cassert>
     38 #include <cstdint>
     39 #include <iterator>
     40 #include <limits>
     41 #include <utility>
     42 
     43 using namespace llvm;
     44 
     45 #define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
     46 
     47 namespace {
     48 
     49 class AArch64ExpandPseudo : public MachineFunctionPass {
     50 public:
     51   const AArch64InstrInfo *TII;
     52 
     53   static char ID;
     54 
     55   AArch64ExpandPseudo() : MachineFunctionPass(ID) {
     56     initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
     57   }
     58 
     59   bool runOnMachineFunction(MachineFunction &Fn) override;
     60 
     61   StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
     62 
     63 private:
     64   bool expandMBB(MachineBasicBlock &MBB);
     65   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
     66                 MachineBasicBlock::iterator &NextMBBI);
     67   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
     68                     unsigned BitSize);
     69   bool expandMOVImmSimple(MachineBasicBlock &MBB,
     70                           MachineBasicBlock::iterator MBBI,
     71                           unsigned BitSize,
     72                           unsigned OneChunks,
     73                           unsigned ZeroChunks);
     74 
     75   bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
     76                       unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
     77                       unsigned ExtendImm, unsigned ZeroReg,
     78                       MachineBasicBlock::iterator &NextMBBI);
     79   bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
     80                           MachineBasicBlock::iterator MBBI,
     81                           MachineBasicBlock::iterator &NextMBBI);
     82 };
     83 
     84 } // end anonymous namespace
     85 
     86 char AArch64ExpandPseudo::ID = 0;
     87 
     88 INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
     89                 AARCH64_EXPAND_PSEUDO_NAME, false, false)
     90 
     91 /// Transfer implicit operands on the pseudo instruction to the
     92 /// instructions created from the expansion.
     93 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
     94                            MachineInstrBuilder &DefMI) {
     95   const MCInstrDesc &Desc = OldMI.getDesc();
     96   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
     97        ++i) {
     98     const MachineOperand &MO = OldMI.getOperand(i);
     99     assert(MO.isReg() && MO.getReg());
    100     if (MO.isUse())
    101       UseMI.add(MO);
    102     else
    103       DefMI.add(MO);
    104   }
    105 }
    106 
    107 /// Helper function which extracts the specified 16-bit chunk from a
    108 /// 64-bit value.
    109 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
    110   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
    111 
    112   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
    113 }
    114 
    115 /// Check whether the given 16-bit chunk replicated to full 64-bit width
    116 /// can be materialized with an ORR instruction.
    117 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
    118   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
    119 
    120   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
    121 }
    122 
    123 /// Check for identical 16-bit chunks within the constant and if so
    124 /// materialize them with a single ORR instruction. The remaining one or two
    125 /// 16-bit chunks will be materialized with MOVK instructions.
    126 ///
    127 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
    128 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
    129 /// an ORR instruction.
    130 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
    131                                  MachineBasicBlock &MBB,
    132                                  MachineBasicBlock::iterator &MBBI,
    133                                  const AArch64InstrInfo *TII) {
    134   using CountMap = DenseMap<uint64_t, unsigned>;
    135 
    136   CountMap Counts;
    137 
    138   // Scan the constant and count how often every chunk occurs.
    139   for (unsigned Idx = 0; Idx < 4; ++Idx)
    140     ++Counts[getChunk(UImm, Idx)];
    141 
    142   // Traverse the chunks to find one which occurs more than once.
    143   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
    144        Chunk != End; ++Chunk) {
    145     const uint64_t ChunkVal = Chunk->first;
    146     const unsigned Count = Chunk->second;
    147 
    148     uint64_t Encoding = 0;
    149 
    150     // We are looking for chunks which have two or three instances and can be
    151     // materialized with an ORR instruction.
    152     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
    153       continue;
    154 
    155     const bool CountThree = Count == 3;
    156     // Create the ORR-immediate instruction.
    157     MachineInstrBuilder MIB =
    158         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
    159             .add(MI.getOperand(0))
    160             .addReg(AArch64::XZR)
    161             .addImm(Encoding);
    162 
    163     const unsigned DstReg = MI.getOperand(0).getReg();
    164     const bool DstIsDead = MI.getOperand(0).isDead();
    165 
    166     unsigned ShiftAmt = 0;
    167     uint64_t Imm16 = 0;
    168     // Find the first chunk not materialized with the ORR instruction.
    169     for (; ShiftAmt < 64; ShiftAmt += 16) {
    170       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
    171 
    172       if (Imm16 != ChunkVal)
    173         break;
    174     }
    175 
    176     // Create the first MOVK instruction.
    177     MachineInstrBuilder MIB1 =
    178         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    179             .addReg(DstReg,
    180                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
    181             .addReg(DstReg)
    182             .addImm(Imm16)
    183             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
    184 
    185     // In case we have three instances the whole constant is now materialized
    186     // and we can exit.
    187     if (CountThree) {
    188       transferImpOps(MI, MIB, MIB1);
    189       MI.eraseFromParent();
    190       return true;
    191     }
    192 
    193     // Find the remaining chunk which needs to be materialized.
    194     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
    195       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
    196 
    197       if (Imm16 != ChunkVal)
    198         break;
    199     }
    200 
    201     // Create the second MOVK instruction.
    202     MachineInstrBuilder MIB2 =
    203         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    204             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    205             .addReg(DstReg)
    206             .addImm(Imm16)
    207             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
    208 
    209     transferImpOps(MI, MIB, MIB2);
    210     MI.eraseFromParent();
    211     return true;
    212   }
    213 
    214   return false;
    215 }
    216 
    217 /// Check whether this chunk matches the pattern '1...0...'. This pattern
    218 /// starts a contiguous sequence of ones if we look at the bits from the LSB
    219 /// towards the MSB.
    220 static bool isStartChunk(uint64_t Chunk) {
    221   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    222     return false;
    223 
    224   return isMask_64(~Chunk);
    225 }
    226 
    227 /// Check whether this chunk matches the pattern '0...1...' This pattern
    228 /// ends a contiguous sequence of ones if we look at the bits from the LSB
    229 /// towards the MSB.
    230 static bool isEndChunk(uint64_t Chunk) {
    231   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    232     return false;
    233 
    234   return isMask_64(Chunk);
    235 }
    236 
    237 /// Clear or set all bits in the chunk at the given index.
    238 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
    239   const uint64_t Mask = 0xFFFF;
    240 
    241   if (Clear)
    242     // Clear chunk in the immediate.
    243     Imm &= ~(Mask << (Idx * 16));
    244   else
    245     // Set all bits in the immediate for the particular chunk.
    246     Imm |= Mask << (Idx * 16);
    247 
    248   return Imm;
    249 }
    250 
    251 /// Check whether the constant contains a sequence of contiguous ones,
    252 /// which might be interrupted by one or two chunks. If so, materialize the
    253 /// sequence of contiguous ones with an ORR instruction.
    254 /// Materialize the chunks which are either interrupting the sequence or outside
    255 /// of the sequence with a MOVK instruction.
    256 ///
    257 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
    258 /// which ends the sequence (0...1...). Then we are looking for constants which
    259 /// contain at least one S and E chunk.
    260 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
    261 ///
    262 /// We are also looking for constants like |S|A|B|E| where the contiguous
    263 /// sequence of ones wraps around the MSB into the LSB.
    264 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
    265                               MachineBasicBlock &MBB,
    266                               MachineBasicBlock::iterator &MBBI,
    267                               const AArch64InstrInfo *TII) {
    268   const int NotSet = -1;
    269   const uint64_t Mask = 0xFFFF;
    270 
    271   int StartIdx = NotSet;
    272   int EndIdx = NotSet;
    273   // Try to find the chunks which start/end a contiguous sequence of ones.
    274   for (int Idx = 0; Idx < 4; ++Idx) {
    275     int64_t Chunk = getChunk(UImm, Idx);
    276     // Sign extend the 16-bit chunk to 64-bit.
    277     Chunk = (Chunk << 48) >> 48;
    278 
    279     if (isStartChunk(Chunk))
    280       StartIdx = Idx;
    281     else if (isEndChunk(Chunk))
    282       EndIdx = Idx;
    283   }
    284 
    285   // Early exit in case we can't find a start/end chunk.
    286   if (StartIdx == NotSet || EndIdx == NotSet)
    287     return false;
    288 
    289   // Outside of the contiguous sequence of ones everything needs to be zero.
    290   uint64_t Outside = 0;
    291   // Chunks between the start and end chunk need to have all their bits set.
    292   uint64_t Inside = Mask;
    293 
    294   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
    295   // just swap indices and pretend we are materializing a contiguous sequence
    296   // of zeros surrounded by a contiguous sequence of ones.
    297   if (StartIdx > EndIdx) {
    298     std::swap(StartIdx, EndIdx);
    299     std::swap(Outside, Inside);
    300   }
    301 
    302   uint64_t OrrImm = UImm;
    303   int FirstMovkIdx = NotSet;
    304   int SecondMovkIdx = NotSet;
    305 
    306   // Find out which chunks we need to patch up to obtain a contiguous sequence
    307   // of ones.
    308   for (int Idx = 0; Idx < 4; ++Idx) {
    309     const uint64_t Chunk = getChunk(UImm, Idx);
    310 
    311     // Check whether we are looking at a chunk which is not part of the
    312     // contiguous sequence of ones.
    313     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
    314       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
    315 
    316       // Remember the index we need to patch.
    317       if (FirstMovkIdx == NotSet)
    318         FirstMovkIdx = Idx;
    319       else
    320         SecondMovkIdx = Idx;
    321 
    322       // Check whether we are looking a chunk which is part of the contiguous
    323       // sequence of ones.
    324     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
    325       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
    326 
    327       // Remember the index we need to patch.
    328       if (FirstMovkIdx == NotSet)
    329         FirstMovkIdx = Idx;
    330       else
    331         SecondMovkIdx = Idx;
    332     }
    333   }
    334   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
    335 
    336   // Create the ORR-immediate instruction.
    337   uint64_t Encoding = 0;
    338   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
    339   MachineInstrBuilder MIB =
    340       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
    341           .add(MI.getOperand(0))
    342           .addReg(AArch64::XZR)
    343           .addImm(Encoding);
    344 
    345   const unsigned DstReg = MI.getOperand(0).getReg();
    346   const bool DstIsDead = MI.getOperand(0).isDead();
    347 
    348   const bool SingleMovk = SecondMovkIdx == NotSet;
    349   // Create the first MOVK instruction.
    350   MachineInstrBuilder MIB1 =
    351       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    352           .addReg(DstReg,
    353                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
    354           .addReg(DstReg)
    355           .addImm(getChunk(UImm, FirstMovkIdx))
    356           .addImm(
    357               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
    358 
    359   // Early exit in case we only need to emit a single MOVK instruction.
    360   if (SingleMovk) {
    361     transferImpOps(MI, MIB, MIB1);
    362     MI.eraseFromParent();
    363     return true;
    364   }
    365 
    366   // Create the second MOVK instruction.
    367   MachineInstrBuilder MIB2 =
    368       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    369           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    370           .addReg(DstReg)
    371           .addImm(getChunk(UImm, SecondMovkIdx))
    372           .addImm(
    373               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
    374 
    375   transferImpOps(MI, MIB, MIB2);
    376   MI.eraseFromParent();
    377   return true;
    378 }
    379 
    380 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
    381 /// real move-immediate instructions to synthesize the immediate.
    382 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
    383                                        MachineBasicBlock::iterator MBBI,
    384                                        unsigned BitSize) {
    385   MachineInstr &MI = *MBBI;
    386   unsigned DstReg = MI.getOperand(0).getReg();
    387   uint64_t Imm = MI.getOperand(1).getImm();
    388   const unsigned Mask = 0xFFFF;
    389 
    390   if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
    391     // Useless def, and we don't want to risk creating an invalid ORR (which
    392     // would really write to sp).
    393     MI.eraseFromParent();
    394     return true;
    395   }
    396 
    397   // Scan the immediate and count the number of 16-bit chunks which are either
    398   // all ones or all zeros.
    399   unsigned OneChunks = 0;
    400   unsigned ZeroChunks = 0;
    401   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    402     const unsigned Chunk = (Imm >> Shift) & Mask;
    403     if (Chunk == Mask)
    404       OneChunks++;
    405     else if (Chunk == 0)
    406       ZeroChunks++;
    407   }
    408 
    409   // FIXME: Prefer MOVZ/MOVN over ORR because of the rules for the "mov"
    410   // alias.
    411 
    412   // Try a single ORR.
    413   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
    414   uint64_t Encoding;
    415   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
    416     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
    417     MachineInstrBuilder MIB =
    418         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
    419             .add(MI.getOperand(0))
    420             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
    421             .addImm(Encoding);
    422     transferImpOps(MI, MIB, MIB);
    423     MI.eraseFromParent();
    424     return true;
    425   }
    426 
    427   // Two instruction sequences.
    428   //
    429   // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
    430   // fastest sequence with fast literal generation.
    431   if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2)
    432     return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
    433 
    434   assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
    435                           "MOVZ/MOVK pair");
    436 
    437   // Try other two-instruction sequences.
    438 
    439   // 64-bit ORR followed by MOVK.
    440   // We try to construct the ORR immediate in three different ways: either we
    441   // zero out the chunk which will be replaced, we fill the chunk which will
    442   // be replaced with ones, or we take the bit pattern from the other half of
    443   // the 64-bit immediate. This is comprehensive because of the way ORR
    444   // immediates are constructed.
    445   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    446     uint64_t ShiftedMask = (0xFFFFULL << Shift);
    447     uint64_t ZeroChunk = UImm & ~ShiftedMask;
    448     uint64_t OneChunk = UImm | ShiftedMask;
    449     uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
    450     uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
    451     if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
    452         AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
    453         AArch64_AM::processLogicalImmediate(ReplicateChunk,
    454                                             BitSize, Encoding)) {
    455       // Create the ORR-immediate instruction.
    456       MachineInstrBuilder MIB =
    457           BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
    458               .add(MI.getOperand(0))
    459               .addReg(AArch64::XZR)
    460               .addImm(Encoding);
    461 
    462       // Create the MOVK instruction.
    463       const unsigned Imm16 = getChunk(UImm, Shift / 16);
    464       const unsigned DstReg = MI.getOperand(0).getReg();
    465       const bool DstIsDead = MI.getOperand(0).isDead();
    466       MachineInstrBuilder MIB1 =
    467           BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    468               .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    469               .addReg(DstReg)
    470               .addImm(Imm16)
    471               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
    472 
    473       transferImpOps(MI, MIB, MIB1);
    474       MI.eraseFromParent();
    475       return true;
    476     }
    477   }
    478 
    479   // FIXME: Add more two-instruction sequences.
    480 
    481   // Three instruction sequences.
    482   //
    483   // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
    484   // the fastest sequence with fast literal generation. (If neither MOVK is
    485   // part of a fast literal generation pair, it could be slower than the
    486   // four-instruction sequence, but we won't worry about that for now.)
    487   if (OneChunks || ZeroChunks)
    488     return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
    489 
    490   // Check for identical 16-bit chunks within the constant and if so materialize
    491   // them with a single ORR instruction. The remaining one or two 16-bit chunks
    492   // will be materialized with MOVK instructions.
    493   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
    494     return true;
    495 
    496   // Check whether the constant contains a sequence of contiguous ones, which
    497   // might be interrupted by one or two chunks. If so, materialize the sequence
    498   // of contiguous ones with an ORR instruction. Materialize the chunks which
    499   // are either interrupting the sequence or outside of the sequence with a
    500   // MOVK instruction.
    501   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
    502     return true;
    503 
    504   // We found no possible two or three instruction sequence; use the general
    505   // four-instruction sequence.
    506   return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks);
    507 }
    508 
    509 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
    510 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
    511 bool AArch64ExpandPseudo::expandMOVImmSimple(MachineBasicBlock &MBB,
    512                                              MachineBasicBlock::iterator MBBI,
    513                                              unsigned BitSize,
    514                                              unsigned OneChunks,
    515                                              unsigned ZeroChunks) {
    516   MachineInstr &MI = *MBBI;
    517   unsigned DstReg = MI.getOperand(0).getReg();
    518   uint64_t Imm = MI.getOperand(1).getImm();
    519   const unsigned Mask = 0xFFFF;
    520 
    521   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
    522   // more MOVK instructions to insert additional 16-bit portions into the
    523   // lower bits.
    524   bool isNeg = false;
    525 
    526   // Use MOVN to materialize the high bits if we have more all one chunks
    527   // than all zero chunks.
    528   if (OneChunks > ZeroChunks) {
    529     isNeg = true;
    530     Imm = ~Imm;
    531   }
    532 
    533   unsigned FirstOpc;
    534   if (BitSize == 32) {
    535     Imm &= (1LL << 32) - 1;
    536     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
    537   } else {
    538     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
    539   }
    540   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
    541   unsigned LastShift = 0; // LSL amount for last MOVK
    542   if (Imm != 0) {
    543     unsigned LZ = countLeadingZeros(Imm);
    544     unsigned TZ = countTrailingZeros(Imm);
    545     Shift = (TZ / 16) * 16;
    546     LastShift = ((63 - LZ) / 16) * 16;
    547   }
    548   unsigned Imm16 = (Imm >> Shift) & Mask;
    549   bool DstIsDead = MI.getOperand(0).isDead();
    550   MachineInstrBuilder MIB1 =
    551       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
    552           .addReg(DstReg, RegState::Define |
    553                   getDeadRegState(DstIsDead && Shift == LastShift))
    554           .addImm(Imm16)
    555           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
    556 
    557   // If a MOVN was used for the high bits of a negative value, flip the rest
    558   // of the bits back for use with MOVK.
    559   if (isNeg)
    560     Imm = ~Imm;
    561 
    562   if (Shift == LastShift) {
    563     transferImpOps(MI, MIB1, MIB1);
    564     MI.eraseFromParent();
    565     return true;
    566   }
    567 
    568   MachineInstrBuilder MIB2;
    569   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
    570   while (Shift < LastShift) {
    571     Shift += 16;
    572     Imm16 = (Imm >> Shift) & Mask;
    573     if (Imm16 == (isNeg ? Mask : 0))
    574       continue; // This 16-bit portion is already set correctly.
    575     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
    576                .addReg(DstReg,
    577                        RegState::Define |
    578                        getDeadRegState(DstIsDead && Shift == LastShift))
    579                .addReg(DstReg)
    580                .addImm(Imm16)
    581                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
    582   }
    583 
    584   transferImpOps(MI, MIB1, MIB2);
    585   MI.eraseFromParent();
    586   return true;
    587 }
    588 
    589 bool AArch64ExpandPseudo::expandCMP_SWAP(
    590     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
    591     unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
    592     MachineBasicBlock::iterator &NextMBBI) {
    593   MachineInstr &MI = *MBBI;
    594   DebugLoc DL = MI.getDebugLoc();
    595   const MachineOperand &Dest = MI.getOperand(0);
    596   unsigned StatusReg = MI.getOperand(1).getReg();
    597   bool StatusDead = MI.getOperand(1).isDead();
    598   // Duplicating undef operands into 2 instructions does not guarantee the same
    599   // value on both; However undef should be replaced by xzr anyway.
    600   assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
    601   unsigned AddrReg = MI.getOperand(2).getReg();
    602   unsigned DesiredReg = MI.getOperand(3).getReg();
    603   unsigned NewReg = MI.getOperand(4).getReg();
    604 
    605   MachineFunction *MF = MBB.getParent();
    606   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    607   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    608   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    609 
    610   MF->insert(++MBB.getIterator(), LoadCmpBB);
    611   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
    612   MF->insert(++StoreBB->getIterator(), DoneBB);
    613 
    614   // .Lloadcmp:
    615   //     mov wStatus, 0
    616   //     ldaxr xDest, [xAddr]
    617   //     cmp xDest, xDesired
    618   //     b.ne .Ldone
    619   if (!StatusDead)
    620     BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
    621       .addImm(0).addImm(0);
    622   BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
    623       .addReg(AddrReg);
    624   BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
    625       .addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
    626       .addReg(DesiredReg)
    627       .addImm(ExtendImm);
    628   BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
    629       .addImm(AArch64CC::NE)
    630       .addMBB(DoneBB)
    631       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
    632   LoadCmpBB->addSuccessor(DoneBB);
    633   LoadCmpBB->addSuccessor(StoreBB);
    634 
    635   // .Lstore:
    636   //     stlxr wStatus, xNew, [xAddr]
    637   //     cbnz wStatus, .Lloadcmp
    638   BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
    639       .addReg(NewReg)
    640       .addReg(AddrReg);
    641   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
    642       .addReg(StatusReg, getKillRegState(StatusDead))
    643       .addMBB(LoadCmpBB);
    644   StoreBB->addSuccessor(LoadCmpBB);
    645   StoreBB->addSuccessor(DoneBB);
    646 
    647   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
    648   DoneBB->transferSuccessors(&MBB);
    649 
    650   MBB.addSuccessor(LoadCmpBB);
    651 
    652   NextMBBI = MBB.end();
    653   MI.eraseFromParent();
    654 
    655   // Recompute livein lists.
    656   LivePhysRegs LiveRegs;
    657   computeAndAddLiveIns(LiveRegs, *DoneBB);
    658   computeAndAddLiveIns(LiveRegs, *StoreBB);
    659   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
    660   // Do an extra pass around the loop to get loop carried registers right.
    661   StoreBB->clearLiveIns();
    662   computeAndAddLiveIns(LiveRegs, *StoreBB);
    663   LoadCmpBB->clearLiveIns();
    664   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
    665 
    666   return true;
    667 }
    668 
    669 bool AArch64ExpandPseudo::expandCMP_SWAP_128(
    670     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    671     MachineBasicBlock::iterator &NextMBBI) {
    672   MachineInstr &MI = *MBBI;
    673   DebugLoc DL = MI.getDebugLoc();
    674   MachineOperand &DestLo = MI.getOperand(0);
    675   MachineOperand &DestHi = MI.getOperand(1);
    676   unsigned StatusReg = MI.getOperand(2).getReg();
    677   bool StatusDead = MI.getOperand(2).isDead();
    678   // Duplicating undef operands into 2 instructions does not guarantee the same
    679   // value on both; However undef should be replaced by xzr anyway.
    680   assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
    681   unsigned AddrReg = MI.getOperand(3).getReg();
    682   unsigned DesiredLoReg = MI.getOperand(4).getReg();
    683   unsigned DesiredHiReg = MI.getOperand(5).getReg();
    684   unsigned NewLoReg = MI.getOperand(6).getReg();
    685   unsigned NewHiReg = MI.getOperand(7).getReg();
    686 
    687   MachineFunction *MF = MBB.getParent();
    688   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    689   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    690   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
    691 
    692   MF->insert(++MBB.getIterator(), LoadCmpBB);
    693   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
    694   MF->insert(++StoreBB->getIterator(), DoneBB);
    695 
    696   // .Lloadcmp:
    697   //     ldaxp xDestLo, xDestHi, [xAddr]
    698   //     cmp xDestLo, xDesiredLo
    699   //     sbcs xDestHi, xDesiredHi
    700   //     b.ne .Ldone
    701   BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
    702       .addReg(DestLo.getReg(), RegState::Define)
    703       .addReg(DestHi.getReg(), RegState::Define)
    704       .addReg(AddrReg);
    705   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
    706       .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
    707       .addReg(DesiredLoReg)
    708       .addImm(0);
    709   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
    710     .addUse(AArch64::WZR)
    711     .addUse(AArch64::WZR)
    712     .addImm(AArch64CC::EQ);
    713   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
    714       .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
    715       .addReg(DesiredHiReg)
    716       .addImm(0);
    717   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
    718       .addUse(StatusReg, RegState::Kill)
    719       .addUse(StatusReg, RegState::Kill)
    720       .addImm(AArch64CC::EQ);
    721   BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
    722       .addUse(StatusReg, getKillRegState(StatusDead))
    723       .addMBB(DoneBB);
    724   LoadCmpBB->addSuccessor(DoneBB);
    725   LoadCmpBB->addSuccessor(StoreBB);
    726 
    727   // .Lstore:
    728   //     stlxp wStatus, xNewLo, xNewHi, [xAddr]
    729   //     cbnz wStatus, .Lloadcmp
    730   BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
    731       .addReg(NewLoReg)
    732       .addReg(NewHiReg)
    733       .addReg(AddrReg);
    734   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
    735       .addReg(StatusReg, getKillRegState(StatusDead))
    736       .addMBB(LoadCmpBB);
    737   StoreBB->addSuccessor(LoadCmpBB);
    738   StoreBB->addSuccessor(DoneBB);
    739 
    740   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
    741   DoneBB->transferSuccessors(&MBB);
    742 
    743   MBB.addSuccessor(LoadCmpBB);
    744 
    745   NextMBBI = MBB.end();
    746   MI.eraseFromParent();
    747 
    748   // Recompute liveness bottom up.
    749   LivePhysRegs LiveRegs;
    750   computeAndAddLiveIns(LiveRegs, *DoneBB);
    751   computeAndAddLiveIns(LiveRegs, *StoreBB);
    752   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
    753   // Do an extra pass in the loop to get the loop carried dependencies right.
    754   StoreBB->clearLiveIns();
    755   computeAndAddLiveIns(LiveRegs, *StoreBB);
    756   LoadCmpBB->clearLiveIns();
    757   computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
    758 
    759   return true;
    760 }
    761 
    762 /// If MBBI references a pseudo instruction that should be expanded here,
    763 /// do the expansion and return true.  Otherwise return false.
    764 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
    765                                    MachineBasicBlock::iterator MBBI,
    766                                    MachineBasicBlock::iterator &NextMBBI) {
    767   MachineInstr &MI = *MBBI;
    768   unsigned Opcode = MI.getOpcode();
    769   switch (Opcode) {
    770   default:
    771     break;
    772 
    773   case AArch64::ADDWrr:
    774   case AArch64::SUBWrr:
    775   case AArch64::ADDXrr:
    776   case AArch64::SUBXrr:
    777   case AArch64::ADDSWrr:
    778   case AArch64::SUBSWrr:
    779   case AArch64::ADDSXrr:
    780   case AArch64::SUBSXrr:
    781   case AArch64::ANDWrr:
    782   case AArch64::ANDXrr:
    783   case AArch64::BICWrr:
    784   case AArch64::BICXrr:
    785   case AArch64::ANDSWrr:
    786   case AArch64::ANDSXrr:
    787   case AArch64::BICSWrr:
    788   case AArch64::BICSXrr:
    789   case AArch64::EONWrr:
    790   case AArch64::EONXrr:
    791   case AArch64::EORWrr:
    792   case AArch64::EORXrr:
    793   case AArch64::ORNWrr:
    794   case AArch64::ORNXrr:
    795   case AArch64::ORRWrr:
    796   case AArch64::ORRXrr: {
    797     unsigned Opcode;
    798     switch (MI.getOpcode()) {
    799     default:
    800       return false;
    801     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
    802     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
    803     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
    804     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
    805     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
    806     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
    807     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
    808     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
    809     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
    810     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
    811     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
    812     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
    813     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
    814     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
    815     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
    816     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
    817     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
    818     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
    819     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
    820     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
    821     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
    822     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
    823     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
    824     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
    825     }
    826     MachineInstrBuilder MIB1 =
    827         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
    828                 MI.getOperand(0).getReg())
    829             .add(MI.getOperand(1))
    830             .add(MI.getOperand(2))
    831             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
    832     transferImpOps(MI, MIB1, MIB1);
    833     MI.eraseFromParent();
    834     return true;
    835   }
    836 
    837   case AArch64::LOADgot: {
    838     // Expand into ADRP + LDR.
    839     unsigned DstReg = MI.getOperand(0).getReg();
    840     const MachineOperand &MO1 = MI.getOperand(1);
    841     unsigned Flags = MO1.getTargetFlags();
    842     MachineInstrBuilder MIB1 =
    843         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
    844     MachineInstrBuilder MIB2 =
    845         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
    846             .add(MI.getOperand(0))
    847             .addReg(DstReg);
    848 
    849     if (MO1.isGlobal()) {
    850       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
    851       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
    852                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    853     } else if (MO1.isSymbol()) {
    854       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
    855       MIB2.addExternalSymbol(MO1.getSymbolName(),
    856                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    857     } else {
    858       assert(MO1.isCPI() &&
    859              "Only expect globals, externalsymbols, or constant pools");
    860       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
    861                                 Flags | AArch64II::MO_PAGE);
    862       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
    863                                 Flags | AArch64II::MO_PAGEOFF |
    864                                     AArch64II::MO_NC);
    865     }
    866 
    867     transferImpOps(MI, MIB1, MIB2);
    868     MI.eraseFromParent();
    869     return true;
    870   }
    871 
    872   case AArch64::MOVaddr:
    873   case AArch64::MOVaddrJT:
    874   case AArch64::MOVaddrCP:
    875   case AArch64::MOVaddrBA:
    876   case AArch64::MOVaddrTLS:
    877   case AArch64::MOVaddrEXT: {
    878     // Expand into ADRP + ADD.
    879     unsigned DstReg = MI.getOperand(0).getReg();
    880     MachineInstrBuilder MIB1 =
    881         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
    882             .add(MI.getOperand(1));
    883 
    884     MachineInstrBuilder MIB2 =
    885         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
    886             .add(MI.getOperand(0))
    887             .addReg(DstReg)
    888             .add(MI.getOperand(2))
    889             .addImm(0);
    890 
    891     transferImpOps(MI, MIB1, MIB2);
    892     MI.eraseFromParent();
    893     return true;
    894   }
    895   case AArch64::ADDlowTLS:
    896     // Produce a plain ADD
    897     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
    898         .add(MI.getOperand(0))
    899         .add(MI.getOperand(1))
    900         .add(MI.getOperand(2))
    901         .addImm(0);
    902     MI.eraseFromParent();
    903     return true;
    904 
    905   case AArch64::MOVbaseTLS: {
    906     unsigned DstReg = MI.getOperand(0).getReg();
    907     auto SysReg = AArch64SysReg::TPIDR_EL0;
    908     MachineFunction *MF = MBB.getParent();
    909     if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
    910         MF->getTarget().getCodeModel() == CodeModel::Kernel)
    911       SysReg = AArch64SysReg::TPIDR_EL1;
    912     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
    913         .addImm(SysReg);
    914     MI.eraseFromParent();
    915     return true;
    916   }
    917 
    918   case AArch64::MOVi32imm:
    919     return expandMOVImm(MBB, MBBI, 32);
    920   case AArch64::MOVi64imm:
    921     return expandMOVImm(MBB, MBBI, 64);
    922   case AArch64::RET_ReallyLR: {
    923     // Hiding the LR use with RET_ReallyLR may lead to extra kills in the
    924     // function and missing live-ins. We are fine in practice because callee
    925     // saved register handling ensures the register value is restored before
    926     // RET, but we need the undef flag here to appease the MachineVerifier
    927     // liveness checks.
    928     MachineInstrBuilder MIB =
    929         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
    930           .addReg(AArch64::LR, RegState::Undef);
    931     transferImpOps(MI, MIB, MIB);
    932     MI.eraseFromParent();
    933     return true;
    934   }
    935   case AArch64::CMP_SWAP_8:
    936     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
    937                           AArch64::SUBSWrx,
    938                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
    939                           AArch64::WZR, NextMBBI);
    940   case AArch64::CMP_SWAP_16:
    941     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
    942                           AArch64::SUBSWrx,
    943                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
    944                           AArch64::WZR, NextMBBI);
    945   case AArch64::CMP_SWAP_32:
    946     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
    947                           AArch64::SUBSWrs,
    948                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
    949                           AArch64::WZR, NextMBBI);
    950   case AArch64::CMP_SWAP_64:
    951     return expandCMP_SWAP(MBB, MBBI,
    952                           AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
    953                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
    954                           AArch64::XZR, NextMBBI);
    955   case AArch64::CMP_SWAP_128:
    956     return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
    957 
    958   case AArch64::AESMCrrTied:
    959   case AArch64::AESIMCrrTied: {
    960     MachineInstrBuilder MIB =
    961     BuildMI(MBB, MBBI, MI.getDebugLoc(),
    962             TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
    963                                                       AArch64::AESIMCrr))
    964       .add(MI.getOperand(0))
    965       .add(MI.getOperand(1));
    966     transferImpOps(MI, MIB, MIB);
    967     MI.eraseFromParent();
    968     return true;
    969    }
    970   }
    971   return false;
    972 }
    973 
    974 /// Iterate over the instructions in basic block MBB and expand any
    975 /// pseudo instructions.  Return true if anything was modified.
    976 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
    977   bool Modified = false;
    978 
    979   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
    980   while (MBBI != E) {
    981     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    982     Modified |= expandMI(MBB, MBBI, NMBBI);
    983     MBBI = NMBBI;
    984   }
    985 
    986   return Modified;
    987 }
    988 
    989 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
    990   TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
    991 
    992   bool Modified = false;
    993   for (auto &MBB : MF)
    994     Modified |= expandMBB(MBB);
    995   return Modified;
    996 }
    997 
    998 /// Returns an instance of the pseudo instruction expansion pass.
    999 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
   1000   return new AArch64ExpandPseudo();
   1001 }
   1002