Home | History | Annotate | Download | only in layers
      1 /* Copyright (c) 2018-2019 The Khronos Group Inc.
      2  * Copyright (c) 2018-2019 Valve Corporation
      3  * Copyright (c) 2018-2019 LunarG, Inc.
      4  * Copyright (C) 2018-2019 Google Inc.
      5  *
      6  * Licensed under the Apache License, Version 2.0 (the "License");
      7  * you may not use this file except in compliance with the License.
      8  * You may obtain a copy of the License at
      9  *
     10  *     http://www.apache.org/licenses/LICENSE-2.0
     11  *
     12  * Unless required by applicable law or agreed to in writing, software
     13  * distributed under the License is distributed on an "AS IS" BASIS,
     14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15  * See the License for the specific language governing permissions and
     16  * limitations under the License.
     17  *
     18  */
     19 
     20 // Allow use of STL min and max functions in Windows
     21 #define NOMINMAX
     22 
     23 #include "chassis.h"
     24 #include "core_validation.h"
     25 #include "gpu_validation.h"
     26 #include "shader_validation.h"
     27 #include "spirv-tools/libspirv.h"
     28 #include "spirv-tools/optimizer.hpp"
     29 #include "spirv-tools/instrument.hpp"
     30 #include <SPIRV/spirv.hpp>
     31 #include <algorithm>
     32 #include <regex>
     33 
     34 // This is the number of bindings in the debug descriptor set.
     35 static const uint32_t kNumBindingsInSet = 1;
     36 
     37 // Implementation for Device Memory Manager class
     38 GpuDeviceMemoryManager::GpuDeviceMemoryManager(layer_data *dev_data, uint32_t data_size) {
     39     uint32_t align = static_cast<uint32_t>(dev_data->GetPDProperties()->limits.minStorageBufferOffsetAlignment);
     40     if (0 == align) {
     41         align = 1;
     42     }
     43     record_size_ = data_size;
     44     // Round the requested size up to the next multiple of the storage buffer offset alignment
     45     // so that we can address each block in the storage buffer using the offset.
     46     block_size_ = ((record_size_ + align - 1) / align) * align;
     47     blocks_per_chunk_ = kItemsPerChunk;
     48     chunk_size_ = blocks_per_chunk_ * block_size_;
     49     dev_data_ = dev_data;
     50 }
     51 
     52 GpuDeviceMemoryManager::~GpuDeviceMemoryManager() {
     53     for (auto &chunk : chunk_list_) {
     54         FreeMemoryChunk(chunk);
     55     }
     56     chunk_list_.clear();
     57 }
     58 
     59 VkResult GpuDeviceMemoryManager::GetBlock(GpuDeviceMemoryBlock *block) {
     60     assert(block->buffer == VK_NULL_HANDLE);  // avoid possible overwrite/leak of an allocated block
     61     VkResult result = VK_SUCCESS;
     62     MemoryChunk *pChunk = nullptr;
     63     // Look for a chunk with available offsets.
     64     for (auto &chunk : chunk_list_) {
     65         if (!chunk.available_offsets.empty()) {
     66             pChunk = &chunk;
     67             break;
     68         }
     69     }
     70     // If no chunks with available offsets, allocate device memory and set up offsets.
     71     if (pChunk == nullptr) {
     72         MemoryChunk new_chunk;
     73         result = AllocMemoryChunk(new_chunk);
     74         if (result == VK_SUCCESS) {
     75             new_chunk.available_offsets.resize(blocks_per_chunk_);
     76             for (uint32_t offset = 0, i = 0; i < blocks_per_chunk_; offset += block_size_, ++i) {
     77                 new_chunk.available_offsets[i] = offset;
     78             }
     79             chunk_list_.push_front(std::move(new_chunk));
     80             pChunk = &chunk_list_.front();
     81         } else {
     82             // Indicate failure
     83             block->buffer = VK_NULL_HANDLE;
     84             block->memory = VK_NULL_HANDLE;
     85             return result;
     86         }
     87     }
     88     // Give the requester an available offset
     89     block->buffer = pChunk->buffer;
     90     block->memory = pChunk->memory;
     91     block->offset = pChunk->available_offsets.back();
     92     pChunk->available_offsets.pop_back();
     93     return result;
     94 }
     95 
     96 void GpuDeviceMemoryManager::PutBackBlock(VkBuffer buffer, VkDeviceMemory memory, uint32_t offset) {
     97     GpuDeviceMemoryBlock block = {buffer, memory, offset};
     98     PutBackBlock(block);
     99 }
    100 
    101 void GpuDeviceMemoryManager::PutBackBlock(GpuDeviceMemoryBlock &block) {
    102     // Find the chunk belonging to the allocated offset and make the offset available again
    103     auto chunk = std::find_if(std::begin(chunk_list_), std::end(chunk_list_),
    104                               [&block](const MemoryChunk &c) { return c.buffer == block.buffer; });
    105     if (chunk_list_.end() == chunk) {
    106         assert(false);
    107     } else {
    108         chunk->available_offsets.push_back(block.offset);
    109         if (chunk->available_offsets.size() == blocks_per_chunk_) {
    110             // All offsets have been returned
    111             FreeMemoryChunk(*chunk);
    112             chunk_list_.erase(chunk);
    113         }
    114     }
    115 }
    116 
    117 void ResetBlock(GpuDeviceMemoryBlock &block) {
    118     block.buffer = VK_NULL_HANDLE;
    119     block.memory = VK_NULL_HANDLE;
    120     block.offset = 0;
    121 }
    122 
    123 bool BlockUsed(GpuDeviceMemoryBlock &block) { return (block.buffer != VK_NULL_HANDLE) && (block.memory != VK_NULL_HANDLE); }
    124 
    125 bool GpuDeviceMemoryManager::MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
    126     // Search memtypes to find first index with those properties
    127     const VkPhysicalDeviceMemoryProperties *props = dev_data_->GetPhysicalDeviceMemoryProperties();
    128     for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
    129         if ((typeBits & 1) == 1) {
    130             // Type is available, does it match user properties?
    131             if ((props->memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
    132                 *typeIndex = i;
    133                 return true;
    134             }
    135         }
    136         typeBits >>= 1;
    137     }
    138     // No memory types matched, return failure
    139     return false;
    140 }
    141 
    142 VkResult GpuDeviceMemoryManager::AllocMemoryChunk(MemoryChunk &chunk) {
    143     VkBuffer buffer;
    144     VkDeviceMemory memory;
    145     VkBufferCreateInfo buffer_create_info = {};
    146     VkMemoryRequirements mem_reqs = {};
    147     VkMemoryAllocateInfo mem_alloc = {};
    148     VkResult result = VK_SUCCESS;
    149     bool pass;
    150     void *pData;
    151     const auto *dispatch_table = dev_data_->GetDispatchTable();
    152 
    153     buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    154     buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
    155     buffer_create_info.size = chunk_size_;
    156     result = dispatch_table->CreateBuffer(dev_data_->GetDevice(), &buffer_create_info, NULL, &buffer);
    157     if (result != VK_SUCCESS) {
    158         return result;
    159     }
    160 
    161     dispatch_table->GetBufferMemoryRequirements(dev_data_->GetDevice(), buffer, &mem_reqs);
    162 
    163     mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
    164     mem_alloc.pNext = NULL;
    165     mem_alloc.allocationSize = mem_reqs.size;
    166     pass = MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
    167                                     VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
    168                                     &mem_alloc.memoryTypeIndex);
    169     if (!pass) {
    170         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
    171         return result;
    172     }
    173     result = dispatch_table->AllocateMemory(dev_data_->GetDevice(), &mem_alloc, NULL, &memory);
    174     if (result != VK_SUCCESS) {
    175         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
    176         return result;
    177     }
    178 
    179     result = dispatch_table->BindBufferMemory(dev_data_->GetDevice(), buffer, memory, 0);
    180     if (result != VK_SUCCESS) {
    181         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
    182         dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
    183         return result;
    184     }
    185 
    186     result = dispatch_table->MapMemory(dev_data_->GetDevice(), memory, 0, mem_alloc.allocationSize, 0, &pData);
    187     if (result == VK_SUCCESS) {
    188         memset(pData, 0, chunk_size_);
    189         dispatch_table->UnmapMemory(dev_data_->GetDevice(), memory);
    190     } else {
    191         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
    192         dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
    193         return result;
    194     }
    195     chunk.buffer = buffer;
    196     chunk.memory = memory;
    197     return result;
    198 }
    199 
    200 void GpuDeviceMemoryManager::FreeMemoryChunk(MemoryChunk &chunk) {
    201     dev_data_->GetDispatchTable()->DestroyBuffer(dev_data_->GetDevice(), chunk.buffer, NULL);
    202     dev_data_->GetDispatchTable()->FreeMemory(dev_data_->GetDevice(), chunk.memory, NULL);
    203 }
    204 
    205 void GpuDeviceMemoryManager::FreeAllBlocks() {
    206     for (auto &chunk : chunk_list_) {
    207         FreeMemoryChunk(chunk);
    208     }
    209     chunk_list_.clear();
    210 }
    211 
    212 // Implementation for Descriptor Set Manager class
    213 GpuDescriptorSetManager::GpuDescriptorSetManager(layer_data *dev_data) { dev_data_ = dev_data; }
    214 
    215 GpuDescriptorSetManager::~GpuDescriptorSetManager() {
    216     for (auto &pool : desc_pool_map_) {
    217         dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
    218     }
    219     desc_pool_map_.clear();
    220 }
    221 
    222 VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
    223                                                     std::vector<VkDescriptorSet> *desc_sets) {
    224     auto gpu_state = dev_data_->GetGpuValidationState();
    225     const uint32_t default_pool_size = kItemsPerChunk;
    226     VkResult result = VK_SUCCESS;
    227     VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
    228 
    229     if (0 == count) {
    230         return result;
    231     }
    232     desc_sets->clear();
    233     desc_sets->resize(count);
    234 
    235     for (auto &pool : desc_pool_map_) {
    236         if (pool.second.used + count < pool.second.size) {
    237             pool_to_use = pool.first;
    238             break;
    239         }
    240     }
    241     if (VK_NULL_HANDLE == pool_to_use) {
    242         uint32_t pool_count = default_pool_size;
    243         if (count > default_pool_size) {
    244             pool_count = count;
    245         }
    246         const VkDescriptorPoolSize size_counts = {
    247             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
    248             pool_count * kNumBindingsInSet,
    249         };
    250         VkDescriptorPoolCreateInfo desc_pool_info = {};
    251         desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    252         desc_pool_info.pNext = NULL;
    253         desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
    254         desc_pool_info.maxSets = pool_count;
    255         desc_pool_info.poolSizeCount = 1;
    256         desc_pool_info.pPoolSizes = &size_counts;
    257         result = dev_data_->GetDispatchTable()->CreateDescriptorPool(dev_data_->GetDevice(), &desc_pool_info, NULL, &pool_to_use);
    258         assert(result == VK_SUCCESS);
    259         if (result != VK_SUCCESS) {
    260             return result;
    261         }
    262         desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
    263         desc_pool_map_[pool_to_use].used = 0;
    264     }
    265     std::vector<VkDescriptorSetLayout> desc_layouts(count, gpu_state->debug_desc_layout);
    266 
    267     VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
    268                                               desc_layouts.data()};
    269 
    270     result = dev_data_->GetDispatchTable()->AllocateDescriptorSets(dev_data_->GetDevice(), &alloc_info, desc_sets->data());
    271     assert(result == VK_SUCCESS);
    272     if (result != VK_SUCCESS) {
    273         return result;
    274     }
    275     *pool = pool_to_use;
    276     desc_pool_map_[pool_to_use].used += count;
    277     return result;
    278 }
    279 
    280 void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
    281     auto iter = desc_pool_map_.find(desc_pool);
    282     if (iter != desc_pool_map_.end()) {
    283         VkResult result = dev_data_->GetDispatchTable()->FreeDescriptorSets(dev_data_->GetDevice(), desc_pool, 1, &desc_set);
    284         assert(result == VK_SUCCESS);
    285         if (result != VK_SUCCESS) {
    286             return;
    287         }
    288         desc_pool_map_[desc_pool].used--;
    289         if (0 == desc_pool_map_[desc_pool].used) {
    290             dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), desc_pool, NULL);
    291             desc_pool_map_.erase(desc_pool);
    292         }
    293     }
    294     return;
    295 }
    296 
    297 void GpuDescriptorSetManager::DestroyDescriptorPools() {
    298     for (auto &pool : desc_pool_map_) {
    299         dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
    300     }
    301     desc_pool_map_.clear();
    302 }
    303 
    304 // Convenience function for reporting problems with setting up GPU Validation.
    305 void CoreChecks::ReportSetupProblem(const layer_data *dev_data, VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
    306                                     const char *const specific_message) {
    307     log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
    308             "Detail: (%s)", specific_message);
    309 }
    310 
    311 // Turn on necessary device features.
    312 void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, std::unique_ptr<safe_VkDeviceCreateInfo> &create_info,
    313                                               VkPhysicalDeviceFeatures *supported_features) {
    314     if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
    315         VkPhysicalDeviceFeatures new_features = {};
    316         if (create_info->pEnabledFeatures) {
    317             new_features = *create_info->pEnabledFeatures;
    318         }
    319         new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
    320         new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
    321         delete create_info->pEnabledFeatures;
    322         create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
    323     }
    324 }
    325 
    326 // Perform initializations that can be done at Create Device time.
    327 void CoreChecks::GpuPostCallRecordCreateDevice(layer_data *dev_data) {
    328     auto gpu_state = GetGpuValidationState();
    329     const auto *dispatch_table = GetDispatchTable();
    330 
    331     gpu_state->aborted = false;
    332     gpu_state->reserve_binding_slot = false;
    333     gpu_state->barrier_command_pool = VK_NULL_HANDLE;
    334     gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
    335 
    336     if (GetPDProperties()->apiVersion < VK_API_VERSION_1_1) {
    337         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
    338                            "GPU-Assisted validation requires Vulkan 1.1 or later.  GPU-Assisted Validation disabled.");
    339         gpu_state->aborted = true;
    340         return;
    341     }
    342     // Some devices have extremely high limits here, so set a reasonable max because we have to pad
    343     // the pipeline layout with dummy descriptor set layouts.
    344     gpu_state->adjusted_max_desc_sets = GetPDProperties()->limits.maxBoundDescriptorSets;
    345     gpu_state->adjusted_max_desc_sets = std::min(33U, gpu_state->adjusted_max_desc_sets);
    346 
    347     // We can't do anything if there is only one.
    348     // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
    349     if (gpu_state->adjusted_max_desc_sets == 1) {
    350         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
    351                            "Device can bind only a single descriptor set.  GPU-Assisted Validation disabled.");
    352         gpu_state->aborted = true;
    353         return;
    354     }
    355     gpu_state->desc_set_bind_index = gpu_state->adjusted_max_desc_sets - 1;
    356     log_msg(GetReportData(), VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
    357             HandleToUint64(GetDevice()), "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
    358             gpu_state->desc_set_bind_index);
    359 
    360     std::unique_ptr<GpuDeviceMemoryManager> memory_manager(
    361         new GpuDeviceMemoryManager(dev_data, sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1)));
    362     std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(dev_data));
    363 
    364     // The descriptor indexing checks require only the first "output" binding.
    365     const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
    366         {
    367             0,  // output
    368             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
    369             1,
    370             VK_SHADER_STAGE_ALL_GRAPHICS,
    371             NULL,
    372         },
    373     };
    374 
    375     const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
    376                                                                     kNumBindingsInSet, debug_desc_layout_bindings};
    377 
    378     const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
    379                                                                     NULL};
    380 
    381     VkResult result =
    382         dispatch_table->CreateDescriptorSetLayout(GetDevice(), &debug_desc_layout_info, NULL, &gpu_state->debug_desc_layout);
    383 
    384     // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
    385     VkResult result2 =
    386         dispatch_table->CreateDescriptorSetLayout(GetDevice(), &dummy_desc_layout_info, NULL, &gpu_state->dummy_desc_layout);
    387     assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
    388     if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
    389         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
    390                            "Unable to create descriptor set layout.  GPU-Assisted Validation disabled.");
    391         if (result == VK_SUCCESS) {
    392             dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
    393         }
    394         if (result2 == VK_SUCCESS) {
    395             dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
    396         }
    397         gpu_state->debug_desc_layout = VK_NULL_HANDLE;
    398         gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
    399         gpu_state->aborted = true;
    400         return;
    401     }
    402     gpu_state->memory_manager = std::move(memory_manager);
    403     gpu_state->desc_set_manager = std::move(desc_set_manager);
    404 }
    405 
    406 // Clean up device-related resources
    407 void CoreChecks::GpuPreCallRecordDestroyDevice(layer_data *dev_data) {
    408     auto gpu_state = GetGpuValidationState();
    409 
    410     if (gpu_state->barrier_command_buffer) {
    411         GetDispatchTable()->FreeCommandBuffers(GetDevice(), gpu_state->barrier_command_pool, 1, &gpu_state->barrier_command_buffer);
    412         gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
    413     }
    414     if (gpu_state->barrier_command_pool) {
    415         GetDispatchTable()->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, NULL);
    416         gpu_state->barrier_command_pool = VK_NULL_HANDLE;
    417     }
    418     if (gpu_state->debug_desc_layout) {
    419         GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
    420         gpu_state->debug_desc_layout = VK_NULL_HANDLE;
    421     }
    422     if (gpu_state->dummy_desc_layout) {
    423         GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
    424         gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
    425     }
    426     gpu_state->memory_manager->FreeAllBlocks();
    427     gpu_state->desc_set_manager->DestroyDescriptorPools();
    428 }
    429 
    430 // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
    431 bool CoreChecks::GpuPreCallCreatePipelineLayout(layer_data *device_data, const VkPipelineLayoutCreateInfo *pCreateInfo,
    432                                                 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
    433                                                 std::vector<VkDescriptorSetLayout> *new_layouts,
    434                                                 VkPipelineLayoutCreateInfo *modified_create_info) {
    435     auto gpu_state = GetGpuValidationState();
    436     if (gpu_state->aborted) {
    437         return false;
    438     }
    439 
    440     if (modified_create_info->setLayoutCount >= gpu_state->adjusted_max_desc_sets) {
    441         std::ostringstream strm;
    442         strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_state->desc_set_bind_index << ". "
    443              << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
    444              << "Validation is not modifying the pipeline layout. "
    445              << "Instrumented shaders are replaced with non-instrumented shaders.";
    446         ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()), strm.str().c_str());
    447     } else {
    448         // Modify the pipeline layout by:
    449         // 1. Copying the caller's descriptor set desc_layouts
    450         // 2. Fill in dummy descriptor layouts up to the max binding
    451         // 3. Fill in with the debug descriptor layout at the max binding slot
    452         new_layouts->reserve(gpu_state->adjusted_max_desc_sets);
    453         new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
    454                             &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
    455         for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_state->adjusted_max_desc_sets - 1; ++i) {
    456             new_layouts->push_back(gpu_state->dummy_desc_layout);
    457         }
    458         new_layouts->push_back(gpu_state->debug_desc_layout);
    459         modified_create_info->pSetLayouts = new_layouts->data();
    460         modified_create_info->setLayoutCount = gpu_state->adjusted_max_desc_sets;
    461     }
    462     return true;
    463 }
    464 
    465 // Clean up GPU validation after the CreatePipelineLayout call is made
    466 void CoreChecks::GpuPostCallCreatePipelineLayout(layer_data *device_data, VkResult result) {
    467     auto gpu_state = GetGpuValidationState();
    468     // Clean up GPU validation
    469     if (result != VK_SUCCESS) {
    470         ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
    471                            "Unable to create pipeline layout.  Device could become unstable.");
    472         gpu_state->aborted = true;
    473     }
    474 }
    475 
    476 // Free the device memory and descriptor set associated with a command buffer.
    477 void CoreChecks::GpuPreCallRecordFreeCommandBuffers(layer_data *dev_data, uint32_t commandBufferCount,
    478                                                     const VkCommandBuffer *pCommandBuffers) {
    479     auto gpu_state = GetGpuValidationState();
    480     if (gpu_state->aborted) {
    481         return;
    482     }
    483     for (uint32_t i = 0; i < commandBufferCount; ++i) {
    484         auto cb_node = GetCBNode(pCommandBuffers[i]);
    485         if (cb_node) {
    486             for (auto &buffer_info : cb_node->gpu_buffer_list) {
    487                 if (BlockUsed(buffer_info.mem_block)) {
    488                     gpu_state->memory_manager->PutBackBlock(buffer_info.mem_block);
    489                     ResetBlock(buffer_info.mem_block);
    490                 }
    491                 if (buffer_info.desc_set != VK_NULL_HANDLE) {
    492                     gpu_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
    493                 }
    494             }
    495             cb_node->gpu_buffer_list.clear();
    496         }
    497     }
    498 }
    499 
    500 // Just gives a warning about a possible deadlock.
    501 void CoreChecks::GpuPreCallValidateCmdWaitEvents(layer_data *dev_data, VkPipelineStageFlags sourceStageMask) {
    502     if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
    503         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
    504                            "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
    505                            "GPU_Assisted validation waits on queue completion. "
    506                            "This wait could block the host's signaling of this event, resulting in deadlock.");
    507     }
    508 }
    509 
    510 // Examine the pipelines to see if they use the debug descriptor set binding index.
    511 // If any do, create new non-instrumented shader modules and use them to replace the instrumented
    512 // shaders in the pipeline.  Return the (possibly) modified create infos to the caller.
    513 std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
    514     layer_data *dev_data, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
    515     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
    516     auto gpu_state = GetGpuValidationState();
    517 
    518     std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
    519     std::vector<unsigned int> pipeline_uses_debug_index(count);
    520 
    521     // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
    522     // descriptor set index.
    523     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
    524         new_pipeline_create_infos.push_back(pipe_state[pipeline]->graphicsPipelineCI);
    525         if (pipe_state[pipeline]->active_slots.find(gpu_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
    526             pipeline_uses_debug_index[pipeline] = 1;
    527         }
    528     }
    529 
    530     // See if any pipeline has shaders using the debug descriptor set index
    531     if (std::all_of(pipeline_uses_debug_index.begin(), pipeline_uses_debug_index.end(), [](unsigned int i) { return i == 0; })) {
    532         // None of the shaders in all the pipelines use the debug descriptor set index, so use the pipelines
    533         // as they stand with the instrumented shaders.
    534         return new_pipeline_create_infos;
    535     }
    536 
    537     // At least one pipeline has a shader that uses the debug descriptor set index.
    538     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
    539         if (pipeline_uses_debug_index[pipeline]) {
    540             for (uint32_t stage = 0; stage < pCreateInfos[pipeline].stageCount; ++stage) {
    541                 const shader_module *shader = GetShaderModuleState(pCreateInfos[pipeline].pStages[stage].module);
    542                 VkShaderModuleCreateInfo create_info = {};
    543                 VkShaderModule shader_module;
    544                 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    545                 create_info.pCode = shader->words.data();
    546                 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
    547                 VkResult result = GetDispatchTable()->CreateShaderModule(GetDevice(), &create_info, pAllocator, &shader_module);
    548                 if (result == VK_SUCCESS) {
    549                     new_pipeline_create_infos[pipeline].pStages[stage].module = shader_module;
    550                 } else {
    551                     ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
    552                                        HandleToUint64(pCreateInfos[pipeline].pStages[stage].module),
    553                                        "Unable to replace instrumented shader with non-instrumented one.  "
    554                                        "Device could become unstable.");
    555                 }
    556             }
    557         }
    558     }
    559     return new_pipeline_create_infos;
    560 }
    561 
    562 // For every pipeline:
    563 // - For every shader in a pipeline:
    564 //   - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
    565 //     - Destroy it since it has been bound into the pipeline by now.  This is our only chance to delete it.
    566 //   - Track the shader in the shader_map
    567 //   - Save the shader binary if it contains debug code
    568 void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(layer_data *dev_data, const uint32_t count,
    569                                                           const VkGraphicsPipelineCreateInfo *pCreateInfos,
    570                                                           const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
    571     auto gpu_state = GetGpuValidationState();
    572     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
    573         auto pipeline_state = GetPipelineState(pPipelines[pipeline]);
    574         if (nullptr == pipeline_state) continue;
    575         for (uint32_t stage = 0; stage < pipeline_state->graphicsPipelineCI.stageCount; ++stage) {
    576             if (pipeline_state->active_slots.find(gpu_state->desc_set_bind_index) != pipeline_state->active_slots.end()) {
    577                 GetDispatchTable()->DestroyShaderModule(GetDevice(), pCreateInfos->pStages[stage].module, pAllocator);
    578             }
    579             auto shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
    580             std::vector<unsigned int> code;
    581             // Save the shader binary if debug info is present.
    582             // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
    583             // is destroyed.  Applications may destroy ShaderModules after they are placed in a pipeline and before
    584             // the pipeline is used, so we have to keep another copy.
    585             if (shader_state && shader_state->has_valid_spirv) {  // really checking for presense of SPIR-V code.
    586                 for (auto insn : *shader_state) {
    587                     if (insn.opcode() == spv::OpLine) {
    588                         code = shader_state->words;
    589                         break;
    590                     }
    591                 }
    592             }
    593             gpu_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
    594             // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
    595             // out with a non-instrumented shader.  The non-instrumented shader (found in pCreateInfo) was destroyed above.
    596             gpu_state->shader_map[shader_state->gpu_validation_shader_id].shader_module =
    597                 pipeline_state->graphicsPipelineCI.pStages[stage].module;
    598             gpu_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
    599         }
    600     }
    601 }
    602 
    603 // Remove all the shader trackers associated with this destroyed pipeline.
    604 void CoreChecks::GpuPreCallRecordDestroyPipeline(layer_data *dev_data, const VkPipeline pipeline) {
    605     auto gpu_state = GetGpuValidationState();
    606     for (auto it = gpu_state->shader_map.begin(); it != gpu_state->shader_map.end();) {
    607         if (it->second.pipeline == pipeline) {
    608             it = gpu_state->shader_map.erase(it);
    609         } else {
    610             ++it;
    611         }
    612     }
    613 }
    614 
    615 // Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
    616 bool CoreChecks::GpuInstrumentShader(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
    617                                      std::vector<unsigned int> &new_pgm, uint32_t *unique_shader_id) {
    618     auto gpu_state = GetGpuValidationState();
    619     if (gpu_state->aborted) return false;
    620     if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
    621 
    622     // Load original shader SPIR-V
    623     uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
    624     new_pgm.clear();
    625     new_pgm.reserve(num_words);
    626     new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
    627 
    628     // Call the optimizer to instrument the shader.
    629     // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
    630     using namespace spvtools;
    631     spv_target_env target_env = SPV_ENV_VULKAN_1_1;
    632     Optimizer optimizer(target_env);
    633     optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_state->desc_set_bind_index, gpu_state->unique_shader_module_id));
    634     optimizer.RegisterPass(CreateAggressiveDCEPass());
    635     bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
    636     if (!pass) {
    637         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
    638                            "Failure to instrument shader.  Proceeding with non-instrumented shader.");
    639     }
    640     *unique_shader_id = gpu_state->unique_shader_module_id++;
    641     return pass;
    642 }
    643 
    644 // Create the instrumented shader data to provide to the driver.
    645 bool CoreChecks::GpuPreCallCreateShaderModule(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
    646                                               const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
    647                                               uint32_t *unique_shader_id, VkShaderModuleCreateInfo *instrumented_create_info,
    648                                               std::vector<unsigned int> *instrumented_pgm) {
    649     bool pass = GpuInstrumentShader(dev_data, pCreateInfo, *instrumented_pgm, unique_shader_id);
    650     if (pass) {
    651         instrumented_create_info->pCode = instrumented_pgm->data();
    652         instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
    653     }
    654     return pass;
    655 }
    656 
    657 // Generate the stage-specific part of the message.
    658 static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
    659     using namespace spvtools;
    660     std::ostringstream strm;
    661     switch (debug_record[kInstCommonOutStageIdx]) {
    662         case 0: {
    663             strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
    664                  << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
    665         } break;
    666         case 1: {
    667             strm << "Stage = Tessellation Control.  Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
    668         } break;
    669         case 2: {
    670             strm << "Stage = Tessellation Eval.  Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
    671         } break;
    672         case 3: {
    673             strm << "Stage = Geometry.  Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
    674                  << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
    675         } break;
    676         case 4: {
    677             strm << "Stage = Fragment.  Fragment coord (x,y) = ("
    678                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
    679                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
    680         } break;
    681         case 5: {
    682             strm << "Stage = Compute.  Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationId] << ". ";
    683         } break;
    684         default: {
    685             strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
    686             assert(false);
    687         } break;
    688     }
    689     msg = strm.str();
    690 }
    691 
    692 // Generate the part of the message describing the violation.
    693 static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
    694     using namespace spvtools;
    695     std::ostringstream strm;
    696     switch (debug_record[kInstValidationOutError]) {
    697         case 0: {
    698             strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
    699                  << debug_record[kInstBindlessOutDescBound] << ". ";
    700             vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
    701         } break;
    702         case 1: {
    703             strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
    704             vuid_msg = "UNASSIGNED-Descriptor uninitialized";
    705         } break;
    706         default: {
    707             strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
    708             vuid_msg = "UNASSIGNED-Internal Error";
    709             assert(false);
    710         } break;
    711     }
    712     msg = strm.str();
    713 }
    714 
    715 static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
    716     auto object_label = report_data->DebugReportGetUtilsObjectName(object);
    717     if (object_label != "") {
    718         object_label = "(" + object_label + ")";
    719     }
    720     return object_label;
    721 }
    722 
    723 // Generate message from the common portion of the debug report record.
    724 static void GenerateCommonMessage(const debug_report_data *report_data, const GLOBAL_CB_NODE *cb_node, const uint32_t *debug_record,
    725                                   const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle,
    726                                   const uint32_t draw_index, std::string &msg) {
    727     using namespace spvtools;
    728     std::ostringstream strm;
    729     if (shader_module_handle == VK_NULL_HANDLE) {
    730         strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
    731              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
    732              << HandleToUint64(cb_node->commandBuffer) << "). ";
    733         assert(true);
    734     } else {
    735         strm << std::hex << std::showbase << "Command buffer "
    736              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
    737              << HandleToUint64(cb_node->commandBuffer) << "). "
    738              << "Draw Index " << draw_index << ". "
    739              << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
    740              << HandleToUint64(pipeline_handle) << "). "
    741              << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
    742              << HandleToUint64(shader_module_handle) << "). ";
    743     }
    744     strm << std::dec << std::noshowbase;
    745     strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
    746     msg = strm.str();
    747 }
    748 
    749 // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
    750 // Split the single string into a vector of strings, one for each line, for easier processing.
    751 static void ReadOpSource(const shader_module &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
    752     for (auto insn : shader) {
    753         if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
    754             std::istringstream in_stream;
    755             std::string cur_line;
    756             in_stream.str((char *)&insn.word(4));
    757             while (std::getline(in_stream, cur_line)) {
    758                 opsource_lines.push_back(cur_line);
    759             }
    760             while ((++insn).opcode() == spv::OpSourceContinued) {
    761                 in_stream.str((char *)&insn.word(1));
    762                 while (std::getline(in_stream, cur_line)) {
    763                     opsource_lines.push_back(cur_line);
    764                 }
    765             }
    766             break;
    767         }
    768     }
    769 }
    770 
    771 // The task here is to search the OpSource content to find the #line directive with the
    772 // line number that is closest to, but still prior to the reported error line number and
    773 // still within the reported filename.
    774 // From this known position in the OpSource content we can add the difference between
    775 // the #line line number and the reported error line number to determine the location
    776 // in the OpSource content of the reported error line.
    777 //
    778 // Considerations:
    779 // - Look only at #line directives that specify the reported_filename since
    780 //   the reported error line number refers to its location in the reported filename.
    781 // - If a #line directive does not have a filename, the file is the reported filename, or
    782 //   the filename found in a prior #line directive.  (This is C-preprocessor behavior)
    783 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
    784 //   original order and the #line directives are used to keep the numbering correct.  This
    785 //   is why we need to examine the entire contents of the source, instead of leaving early
    786 //   when finding a #line line number larger than the reported error line number.
    787 //
    788 
    789 // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9.  Provide fallback code for 4.8
    790 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
    791 
    792 #if defined(__GNUC__) && GCC_VERSION < 40900
    793 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
    794     // # line <linenumber> "<filename>" or
    795     // #line <linenumber> "<filename>"
    796     std::vector<std::string> tokens;
    797     std::stringstream stream(string);
    798     std::string temp;
    799     uint32_t line_index = 0;
    800 
    801     while (stream >> temp) tokens.push_back(temp);
    802     auto size = tokens.size();
    803     if (size > 1) {
    804         if (tokens[0] == "#" && tokens[1] == "line") {
    805             line_index = 2;
    806         } else if (tokens[0] == "#line") {
    807             line_index = 1;
    808         }
    809     }
    810     if (0 == line_index) return false;
    811     *linenumber = std::stoul(tokens[line_index]);
    812     uint32_t filename_index = line_index + 1;
    813     // Remove enclosing double quotes around filename
    814     if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
    815     return true;
    816 }
    817 #else
    818 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
    819     static const std::regex line_regex(  // matches #line directives
    820         "^"                              // beginning of line
    821         "\\s*"                           // optional whitespace
    822         "#"                              // required text
    823         "\\s*"                           // optional whitespace
    824         "line"                           // required text
    825         "\\s+"                           // required whitespace
    826         "([0-9]+)"                       // required first capture - line number
    827         "(\\s+)?"                        // optional second capture - whitespace
    828         "(\".+\")?"                      // optional third capture - quoted filename with at least one char inside
    829         ".*");                           // rest of line (needed when using std::regex_match since the entire line is tested)
    830 
    831     std::smatch captures;
    832 
    833     bool found_line = std::regex_match(string, captures, line_regex);
    834     if (!found_line) return false;
    835 
    836     // filename is optional and considered found only if the whitespace and the filename are captured
    837     if (captures[2].matched && captures[3].matched) {
    838         // Remove enclosing double quotes.  The regex guarantees the quotes and at least one char.
    839         filename = captures[3].str().substr(1, captures[3].str().size() - 2);
    840     }
    841     *linenumber = std::stoul(captures[1]);
    842     return true;
    843 }
    844 #endif  // GCC_VERSION
    845 
    846 // Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
    847 // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
    848 static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
    849                                    std::string &source_msg) {
    850     using namespace spvtools;
    851     std::ostringstream filename_stream;
    852     std::ostringstream source_stream;
    853     shader_module shader;
    854     shader.words = pgm;
    855     // Find the OpLine just before the failing instruction indicated by the debug info.
    856     // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
    857     uint32_t instruction_index = 0;
    858     uint32_t reported_file_id = 0;
    859     uint32_t reported_line_number = 0;
    860     uint32_t reported_column_number = 0;
    861     if (shader.words.size() > 0) {
    862         for (auto insn : shader) {
    863             if (insn.opcode() == spv::OpLine) {
    864                 reported_file_id = insn.word(1);
    865                 reported_line_number = insn.word(2);
    866                 reported_column_number = insn.word(3);
    867             }
    868             if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
    869                 break;
    870             }
    871             instruction_index++;
    872         }
    873     }
    874     // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
    875     std::string reported_filename;
    876     if (reported_file_id == 0) {
    877         filename_stream
    878             << "Unable to find SPIR-V OpLine for source information.  Build shader with debug info to get source information.";
    879     } else {
    880         bool found_opstring = false;
    881         for (auto insn : shader) {
    882             if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
    883                 found_opstring = true;
    884                 reported_filename = (char *)&insn.word(2);
    885                 if (reported_filename.empty()) {
    886                     filename_stream << "Shader validation error occurred at line " << reported_line_number;
    887                 } else {
    888                     filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
    889                                     << reported_line_number;
    890                 }
    891                 if (reported_column_number > 0) {
    892                     filename_stream << ", column " << reported_column_number;
    893                 }
    894                 filename_stream << ".";
    895                 break;
    896             }
    897         }
    898         if (!found_opstring) {
    899             filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
    900         }
    901     }
    902     filename_msg = filename_stream.str();
    903 
    904     // Create message to display source code line containing error.
    905     if ((reported_file_id != 0)) {
    906         // Read the source code and split it up into separate lines.
    907         std::vector<std::string> opsource_lines;
    908         ReadOpSource(shader, reported_file_id, opsource_lines);
    909         // Find the line in the OpSource content that corresponds to the reported error file and line.
    910         if (!opsource_lines.empty()) {
    911             uint32_t saved_line_number = 0;
    912             std::string current_filename = reported_filename;  // current "preprocessor" filename state.
    913             std::vector<std::string>::size_type saved_opsource_offset = 0;
    914             bool found_best_line = false;
    915             for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
    916                 uint32_t parsed_line_number;
    917                 std::string parsed_filename;
    918                 bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
    919                 if (!found_line) continue;
    920 
    921                 bool found_filename = parsed_filename.size() > 0;
    922                 if (found_filename) {
    923                     current_filename = parsed_filename;
    924                 }
    925                 if ((!found_filename) || (current_filename == reported_filename)) {
    926                     // Update the candidate best line directive, if the current one is prior and closer to the reported line
    927                     if (reported_line_number >= parsed_line_number) {
    928                         if (!found_best_line ||
    929                             (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
    930                             saved_line_number = parsed_line_number;
    931                             saved_opsource_offset = std::distance(opsource_lines.begin(), it);
    932                             found_best_line = true;
    933                         }
    934                     }
    935                 }
    936             }
    937             if (found_best_line) {
    938                 assert(reported_line_number >= saved_line_number);
    939                 std::vector<std::string>::size_type opsource_index =
    940                     (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
    941                 if (opsource_index < opsource_lines.size()) {
    942                     source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
    943                 } else {
    944                     source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
    945                                   << opsource_lines.size() << " lines.";
    946                 }
    947             } else {
    948                 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
    949             }
    950         } else {
    951             source_stream << "Unable to find SPIR-V OpSource.";
    952         }
    953     }
    954     source_msg = source_stream.str();
    955 }
    956 
    957 // Pull together all the information from the debug record to build the error message strings,
    958 // and then assemble them into a single message string.
    959 // Retrieve the shader program referenced by the unique shader ID provided in the debug record.
    960 // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
    961 // sure it is available when the pipeline is submitted.  (The ShaderModule tracking object also
    962 // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
    963 //
    964 void CoreChecks::AnalyzeAndReportError(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkQueue queue, uint32_t draw_index,
    965                                        uint32_t *const debug_output_buffer) {
    966     using namespace spvtools;
    967     const uint32_t total_words = debug_output_buffer[0];
    968     // A zero here means that the shader instrumentation didn't write anything.
    969     // If you have nothing to say, don't say it here.
    970     if (0 == total_words) {
    971         return;
    972     }
    973     // The first word in the debug output buffer is the number of words that would have
    974     // been written by the shader instrumentation, if there was enough room in the buffer we provided.
    975     // The number of words actually written by the shaders is determined by the size of the buffer
    976     // we provide via the descriptor.  So, we process only the number of words that can fit in the
    977     // buffer.
    978     // Each "report" written by the shader instrumentation is considered a "record".  This function
    979     // is hard-coded to process only one record because it expects the buffer to be large enough to
    980     // hold only one record.  If there is a desire to process more than one record, this function needs
    981     // to be modified to loop over records and the buffer size increased.
    982     auto gpu_state = GetGpuValidationState();
    983     std::string validation_message;
    984     std::string stage_message;
    985     std::string common_message;
    986     std::string filename_message;
    987     std::string source_message;
    988     std::string vuid_msg;
    989     VkShaderModule shader_module_handle = VK_NULL_HANDLE;
    990     VkPipeline pipeline_handle = VK_NULL_HANDLE;
    991     std::vector<unsigned int> pgm;
    992     // The first record starts at this offset after the total_words.
    993     const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
    994     // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
    995     // by the instrumented shader.
    996     auto it = gpu_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
    997     if (it != gpu_state->shader_map.end()) {
    998         shader_module_handle = it->second.shader_module;
    999         pipeline_handle = it->second.pipeline;
   1000         pgm = it->second.pgm;
   1001     }
   1002     GenerateValidationMessage(debug_record, validation_message, vuid_msg);
   1003     GenerateStageMessage(debug_record, stage_message);
   1004     GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, draw_index, common_message);
   1005     GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
   1006     log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
   1007             vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
   1008             filename_message.c_str(), source_message.c_str());
   1009     // The debug record at word kInstCommonOutSize is the number of words in the record
   1010     // written by the shader.  Clear the entire record plus the total_words word at the start.
   1011     const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
   1012     memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
   1013 }
   1014 
   1015 // For the given command buffer, map its debug data buffers and read their contents for analysis.
   1016 void CoreChecks::ProcessInstrumentationBuffer(const layer_data *dev_data, VkQueue queue, GLOBAL_CB_NODE *cb_node) {
   1017     auto gpu_state = GetGpuValidationState();
   1018     if (cb_node && cb_node->hasDrawCmd && cb_node->gpu_buffer_list.size() > 0) {
   1019         VkResult result;
   1020         char *pData;
   1021         uint32_t draw_index = 0;
   1022         for (auto &buffer_info : cb_node->gpu_buffer_list) {
   1023             uint32_t block_offset = buffer_info.mem_block.offset;
   1024             uint32_t block_size = gpu_state->memory_manager->GetBlockSize();
   1025             uint32_t offset_to_data = 0;
   1026             const uint32_t map_align = std::max(1U, static_cast<uint32_t>(GetPDProperties()->limits.minMemoryMapAlignment));
   1027 
   1028             // Adjust the offset to the alignment required for mapping.
   1029             block_offset = (block_offset / map_align) * map_align;
   1030             offset_to_data = buffer_info.mem_block.offset - block_offset;
   1031             block_size += offset_to_data;
   1032             result = GetDispatchTable()->MapMemory(cb_node->device, buffer_info.mem_block.memory, block_offset, block_size, 0,
   1033                                                    (void **)&pData);
   1034             // Analyze debug output buffer
   1035             if (result == VK_SUCCESS) {
   1036                 AnalyzeAndReportError(dev_data, cb_node, queue, draw_index, (uint32_t *)(pData + offset_to_data));
   1037                 GetDispatchTable()->UnmapMemory(cb_node->device, buffer_info.mem_block.memory);
   1038             }
   1039             draw_index++;
   1040         }
   1041     }
   1042 }
   1043 
   1044 // Submit a memory barrier on graphics queues.
   1045 // Lazy-create and record the needed command buffer.
   1046 void CoreChecks::SubmitBarrier(layer_data *dev_data, VkQueue queue) {
   1047     auto gpu_state = GetGpuValidationState();
   1048     const auto *dispatch_table = GetDispatchTable();
   1049     uint32_t queue_family_index = 0;
   1050 
   1051     auto it = dev_data->queueMap.find(queue);
   1052     if (it != dev_data->queueMap.end()) {
   1053         queue_family_index = it->second.queueFamilyIndex;
   1054     }
   1055 
   1056     // Pay attention only to queues that support graphics.
   1057     // This ensures that the command buffer pool is created so that it can be used on a graphics queue.
   1058     VkQueueFlags queue_flags = GetPhysicalDeviceState()->queue_family_properties[queue_family_index].queueFlags;
   1059     if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) {
   1060         return;
   1061     }
   1062 
   1063     // Lazy-allocate and record the command buffer.
   1064     if (gpu_state->barrier_command_buffer == VK_NULL_HANDLE) {
   1065         VkResult result;
   1066         VkCommandPoolCreateInfo pool_create_info = {};
   1067         pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
   1068         pool_create_info.queueFamilyIndex = queue_family_index;
   1069         result = dispatch_table->CreateCommandPool(GetDevice(), &pool_create_info, nullptr, &gpu_state->barrier_command_pool);
   1070         if (result != VK_SUCCESS) {
   1071             ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1072                                "Unable to create command pool for barrier CB.");
   1073             gpu_state->barrier_command_pool = VK_NULL_HANDLE;
   1074             return;
   1075         }
   1076 
   1077         VkCommandBufferAllocateInfo command_buffer_alloc_info = {};
   1078         command_buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
   1079         command_buffer_alloc_info.commandPool = gpu_state->barrier_command_pool;
   1080         command_buffer_alloc_info.commandBufferCount = 1;
   1081         command_buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
   1082         result =
   1083             dispatch_table->AllocateCommandBuffers(GetDevice(), &command_buffer_alloc_info, &gpu_state->barrier_command_buffer);
   1084         if (result != VK_SUCCESS) {
   1085             ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1086                                "Unable to create barrier command buffer.");
   1087             dispatch_table->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, nullptr);
   1088             gpu_state->barrier_command_pool = VK_NULL_HANDLE;
   1089             gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
   1090             return;
   1091         }
   1092 
   1093         // Hook up command buffer dispatch
   1094         *((const void **)gpu_state->barrier_command_buffer) = *(void **)(GetDevice());
   1095 
   1096         // Record a global memory barrier to force availability of device memory operations to the host domain.
   1097         VkCommandBufferBeginInfo command_buffer_begin_info = {};
   1098         command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
   1099         result = dispatch_table->BeginCommandBuffer(gpu_state->barrier_command_buffer, &command_buffer_begin_info);
   1100 
   1101         if (result == VK_SUCCESS) {
   1102             VkMemoryBarrier memory_barrier = {};
   1103             memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
   1104             memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
   1105             memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
   1106 
   1107             dispatch_table->CmdPipelineBarrier(gpu_state->barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
   1108                                                VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
   1109             dispatch_table->EndCommandBuffer(gpu_state->barrier_command_buffer);
   1110         }
   1111     }
   1112 
   1113     if (gpu_state->barrier_command_buffer) {
   1114         VkSubmitInfo submit_info = {};
   1115         submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
   1116         submit_info.commandBufferCount = 1;
   1117         submit_info.pCommandBuffers = &gpu_state->barrier_command_buffer;
   1118         dispatch_table->QueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
   1119     }
   1120 }
   1121 
   1122 // Issue a memory barrier to make GPU-written data available to host.
   1123 // Wait for the queue to complete execution.
   1124 // Check the debug buffers for all the command buffers that were submitted.
   1125 void CoreChecks::GpuPostCallQueueSubmit(layer_data *dev_data, VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
   1126                                         VkFence fence) {
   1127     auto gpu_state = GetGpuValidationState();
   1128     if (gpu_state->aborted) return;
   1129 
   1130     SubmitBarrier(dev_data, queue);
   1131 
   1132     dev_data->device_dispatch_table.QueueWaitIdle(queue);
   1133 
   1134     for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
   1135         const VkSubmitInfo *submit = &pSubmits[submit_idx];
   1136         for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
   1137             auto cb_node = GetCBNode(submit->pCommandBuffers[i]);
   1138             ProcessInstrumentationBuffer(dev_data, queue, cb_node);
   1139             for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
   1140                 ProcessInstrumentationBuffer(dev_data, queue, secondaryCmdBuffer);
   1141             }
   1142         }
   1143     }
   1144 }
   1145 
   1146 void CoreChecks::GpuAllocateValidationResources(layer_data *dev_data, const VkCommandBuffer cmd_buffer,
   1147                                                 const VkPipelineBindPoint bind_point) {
   1148     VkResult result;
   1149 
   1150     if (!(GetEnables()->gpu_validation)) return;
   1151 
   1152     auto gpu_state = GetGpuValidationState();
   1153     if (gpu_state->aborted) return;
   1154 
   1155     std::vector<VkDescriptorSet> desc_sets;
   1156     VkDescriptorPool desc_pool = VK_NULL_HANDLE;
   1157     result = gpu_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
   1158     assert(result == VK_SUCCESS);
   1159     if (result != VK_SUCCESS) {
   1160         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1161                            "Unable to allocate descriptor sets.  Device could become unstable.");
   1162         gpu_state->aborted = true;
   1163         return;
   1164     }
   1165 
   1166     VkDescriptorBufferInfo desc_buffer_info = {};
   1167     desc_buffer_info.range = gpu_state->memory_manager->GetBlockSize();
   1168 
   1169     auto cb_node = GetCBNode(cmd_buffer);
   1170     if (!cb_node) {
   1171         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1172                            "Unrecognized command buffer");
   1173         gpu_state->aborted = true;
   1174         return;
   1175     }
   1176 
   1177     GpuDeviceMemoryBlock block = {};
   1178     result = gpu_state->memory_manager->GetBlock(&block);
   1179     if (result != VK_SUCCESS) {
   1180         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1181                            "Unable to allocate device memory.  Device could become unstable.");
   1182         gpu_state->aborted = true;
   1183         return;
   1184     }
   1185 
   1186     // Record buffer and memory info in CB state tracking
   1187     cb_node->gpu_buffer_list.emplace_back(block, desc_sets[0], desc_pool);
   1188 
   1189     // Write the descriptor
   1190     desc_buffer_info.buffer = block.buffer;
   1191     desc_buffer_info.offset = block.offset;
   1192 
   1193     VkWriteDescriptorSet desc_write = {};
   1194     desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
   1195     desc_write.descriptorCount = 1;
   1196     desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
   1197     desc_write.pBufferInfo = &desc_buffer_info;
   1198     desc_write.dstSet = desc_sets[0];
   1199     GetDispatchTable()->UpdateDescriptorSets(GetDevice(), 1, &desc_write, 0, NULL);
   1200 
   1201     auto iter = cb_node->lastBound.find(VK_PIPELINE_BIND_POINT_GRAPHICS);  // find() allows read-only access to cb_state
   1202     if (iter != cb_node->lastBound.end()) {
   1203         auto pipeline_state = iter->second.pipeline_state;
   1204         if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_state->desc_set_bind_index)) {
   1205             GetDispatchTable()->CmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
   1206                                                       pipeline_state->pipeline_layout.layout, gpu_state->desc_set_bind_index, 1,
   1207                                                       desc_sets.data(), 0, nullptr);
   1208         }
   1209     } else {
   1210         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
   1211                            "Unable to find pipeline state");
   1212         gpu_state->aborted = true;
   1213         return;
   1214     }
   1215 }
   1216