1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGObjCRuntime.h" 15 16 #include "CGRecordLayout.h" 17 #include "CodeGenModule.h" 18 #include "CodeGenFunction.h" 19 #include "CGBlocks.h" 20 #include "CGCleanup.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 29 #include "llvm/InlineAsm.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/ADT/DenseSet.h" 34 #include "llvm/ADT/SetVector.h" 35 #include "llvm/ADT/SmallString.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetData.h" 40 #include <cstdio> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 46 namespace { 47 48 typedef std::vector<llvm::Constant*> ConstantVector; 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::Constant *getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 70 params, true), 71 "objc_msgSend", 72 llvm::Attribute::NonLazyBind); 73 } 74 75 /// void objc_msgSend_stret (id, SEL, ...) 76 /// 77 /// The messenger used when the return value is an aggregate returned 78 /// by indirect reference in the first argument, and therefore the 79 /// self and selector parameters are shifted over by one. 80 llvm::Constant *getMessageSendStretFn() const { 81 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 82 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 83 params, true), 84 "objc_msgSend_stret"); 85 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::Constant *getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get( 96 llvm::Type::getDoubleTy(VMContext), 97 params, true), 98 "objc_msgSend_fpret"); 99 100 } 101 102 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 103 /// 104 /// The messenger used for super calls, which have different dispatch 105 /// semantics. The class passed is the superclass of the current 106 /// class. 107 llvm::Constant *getMessageSendSuperFn() const { 108 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 109 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 110 params, true), 111 "objc_msgSendSuper"); 112 } 113 114 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 115 /// 116 /// A slightly different messenger used for super calls. The class 117 /// passed is the current class. 118 llvm::Constant *getMessageSendSuperFn2() const { 119 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 120 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 121 params, true), 122 "objc_msgSendSuper2"); 123 } 124 125 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 126 /// SEL op, ...) 127 /// 128 /// The messenger used for super calls which return an aggregate indirectly. 129 llvm::Constant *getMessageSendSuperStretFn() const { 130 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 131 return CGM.CreateRuntimeFunction( 132 llvm::FunctionType::get(CGM.VoidTy, params, true), 133 "objc_msgSendSuper_stret"); 134 } 135 136 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 137 /// SEL op, ...) 138 /// 139 /// objc_msgSendSuper_stret with the super2 semantics. 140 llvm::Constant *getMessageSendSuperStretFn2() const { 141 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 142 return CGM.CreateRuntimeFunction( 143 llvm::FunctionType::get(CGM.VoidTy, params, true), 144 "objc_msgSendSuper2_stret"); 145 } 146 147 llvm::Constant *getMessageSendSuperFpretFn() const { 148 // There is no objc_msgSendSuper_fpret? How can that work? 149 return getMessageSendSuperFn(); 150 } 151 152 llvm::Constant *getMessageSendSuperFpretFn2() const { 153 // There is no objc_msgSendSuper_fpret? How can that work? 154 return getMessageSendSuperFn2(); 155 } 156 157 protected: 158 CodeGen::CodeGenModule &CGM; 159 160 public: 161 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 162 llvm::Type *Int8PtrTy; 163 164 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 165 llvm::Type *ObjectPtrTy; 166 167 /// PtrObjectPtrTy - LLVM type for id * 168 llvm::Type *PtrObjectPtrTy; 169 170 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 171 llvm::Type *SelectorPtrTy; 172 /// ProtocolPtrTy - LLVM type for external protocol handles 173 /// (typeof(Protocol)) 174 llvm::Type *ExternalProtocolPtrTy; 175 176 // SuperCTy - clang type for struct objc_super. 177 QualType SuperCTy; 178 // SuperPtrCTy - clang type for struct objc_super *. 179 QualType SuperPtrCTy; 180 181 /// SuperTy - LLVM type for struct objc_super. 182 llvm::StructType *SuperTy; 183 /// SuperPtrTy - LLVM type for struct objc_super *. 184 llvm::Type *SuperPtrTy; 185 186 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 187 /// in GCC parlance). 188 llvm::StructType *PropertyTy; 189 190 /// PropertyListTy - LLVM type for struct objc_property_list 191 /// (_prop_list_t in GCC parlance). 192 llvm::StructType *PropertyListTy; 193 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 194 llvm::Type *PropertyListPtrTy; 195 196 // MethodTy - LLVM type for struct objc_method. 197 llvm::StructType *MethodTy; 198 199 /// CacheTy - LLVM type for struct objc_cache. 200 llvm::Type *CacheTy; 201 /// CachePtrTy - LLVM type for struct objc_cache *. 202 llvm::Type *CachePtrTy; 203 204 llvm::Constant *getGetPropertyFn() { 205 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 206 ASTContext &Ctx = CGM.getContext(); 207 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 208 llvm::SmallVector<CanQualType,4> Params; 209 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 210 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 211 Params.push_back(IdType); 212 Params.push_back(SelType); 213 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 214 Params.push_back(Ctx.BoolTy); 215 llvm::FunctionType *FTy = 216 Types.GetFunctionType(Types.getFunctionInfo(IdType, Params, 217 FunctionType::ExtInfo()), 218 false); 219 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 220 } 221 222 llvm::Constant *getSetPropertyFn() { 223 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 224 ASTContext &Ctx = CGM.getContext(); 225 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 226 llvm::SmallVector<CanQualType,6> Params; 227 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 228 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 229 Params.push_back(IdType); 230 Params.push_back(SelType); 231 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 232 Params.push_back(IdType); 233 Params.push_back(Ctx.BoolTy); 234 Params.push_back(Ctx.BoolTy); 235 llvm::FunctionType *FTy = 236 Types.GetFunctionType(Types.getFunctionInfo(Ctx.VoidTy, Params, 237 FunctionType::ExtInfo()), 238 false); 239 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 240 } 241 242 243 llvm::Constant *getCopyStructFn() { 244 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 245 ASTContext &Ctx = CGM.getContext(); 246 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 247 llvm::SmallVector<CanQualType,5> Params; 248 Params.push_back(Ctx.VoidPtrTy); 249 Params.push_back(Ctx.VoidPtrTy); 250 Params.push_back(Ctx.LongTy); 251 Params.push_back(Ctx.BoolTy); 252 Params.push_back(Ctx.BoolTy); 253 llvm::FunctionType *FTy = 254 Types.GetFunctionType(Types.getFunctionInfo(Ctx.VoidTy, Params, 255 FunctionType::ExtInfo()), 256 false); 257 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 258 } 259 260 llvm::Constant *getEnumerationMutationFn() { 261 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 262 ASTContext &Ctx = CGM.getContext(); 263 // void objc_enumerationMutation (id) 264 llvm::SmallVector<CanQualType,1> Params; 265 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 266 llvm::FunctionType *FTy = 267 Types.GetFunctionType(Types.getFunctionInfo(Ctx.VoidTy, Params, 268 FunctionType::ExtInfo()), 269 false); 270 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 271 } 272 273 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 274 llvm::Constant *getGcReadWeakFn() { 275 // id objc_read_weak (id *) 276 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 277 llvm::FunctionType *FTy = 278 llvm::FunctionType::get(ObjectPtrTy, args, false); 279 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 280 } 281 282 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 283 llvm::Constant *getGcAssignWeakFn() { 284 // id objc_assign_weak (id, id *) 285 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 286 llvm::FunctionType *FTy = 287 llvm::FunctionType::get(ObjectPtrTy, args, false); 288 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 289 } 290 291 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 292 llvm::Constant *getGcAssignGlobalFn() { 293 // id objc_assign_global(id, id *) 294 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 295 llvm::FunctionType *FTy = 296 llvm::FunctionType::get(ObjectPtrTy, args, false); 297 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 298 } 299 300 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 301 llvm::Constant *getGcAssignThreadLocalFn() { 302 // id objc_assign_threadlocal(id src, id * dest) 303 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 304 llvm::FunctionType *FTy = 305 llvm::FunctionType::get(ObjectPtrTy, args, false); 306 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 307 } 308 309 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 310 llvm::Constant *getGcAssignIvarFn() { 311 // id objc_assign_ivar(id, id *, ptrdiff_t) 312 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 313 CGM.PtrDiffTy }; 314 llvm::FunctionType *FTy = 315 llvm::FunctionType::get(ObjectPtrTy, args, false); 316 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 317 } 318 319 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 320 llvm::Constant *GcMemmoveCollectableFn() { 321 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 322 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 323 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 324 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 325 } 326 327 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 328 llvm::Constant *getGcAssignStrongCastFn() { 329 // id objc_assign_strongCast(id, id *) 330 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 331 llvm::FunctionType *FTy = 332 llvm::FunctionType::get(ObjectPtrTy, args, false); 333 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 334 } 335 336 /// ExceptionThrowFn - LLVM objc_exception_throw function. 337 llvm::Constant *getExceptionThrowFn() { 338 // void objc_exception_throw(id) 339 llvm::Type *args[] = { ObjectPtrTy }; 340 llvm::FunctionType *FTy = 341 llvm::FunctionType::get(CGM.VoidTy, args, false); 342 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 343 } 344 345 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 346 llvm::Constant *getExceptionRethrowFn() { 347 // void objc_exception_rethrow(void) 348 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 349 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 350 } 351 352 /// SyncEnterFn - LLVM object_sync_enter function. 353 llvm::Constant *getSyncEnterFn() { 354 // void objc_sync_enter (id) 355 llvm::Type *args[] = { ObjectPtrTy }; 356 llvm::FunctionType *FTy = 357 llvm::FunctionType::get(CGM.VoidTy, args, false); 358 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 359 } 360 361 /// SyncExitFn - LLVM object_sync_exit function. 362 llvm::Constant *getSyncExitFn() { 363 // void objc_sync_exit (id) 364 llvm::Type *args[] = { ObjectPtrTy }; 365 llvm::FunctionType *FTy = 366 llvm::FunctionType::get(CGM.VoidTy, args, false); 367 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 368 } 369 370 llvm::Constant *getSendFn(bool IsSuper) const { 371 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 372 } 373 374 llvm::Constant *getSendFn2(bool IsSuper) const { 375 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 376 } 377 378 llvm::Constant *getSendStretFn(bool IsSuper) const { 379 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 380 } 381 382 llvm::Constant *getSendStretFn2(bool IsSuper) const { 383 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 384 } 385 386 llvm::Constant *getSendFpretFn(bool IsSuper) const { 387 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 388 } 389 390 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 391 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 392 } 393 394 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 395 ~ObjCCommonTypesHelper(){} 396 }; 397 398 /// ObjCTypesHelper - Helper class that encapsulates lazy 399 /// construction of varies types used during ObjC generation. 400 class ObjCTypesHelper : public ObjCCommonTypesHelper { 401 public: 402 /// SymtabTy - LLVM type for struct objc_symtab. 403 llvm::StructType *SymtabTy; 404 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 405 llvm::Type *SymtabPtrTy; 406 /// ModuleTy - LLVM type for struct objc_module. 407 llvm::StructType *ModuleTy; 408 409 /// ProtocolTy - LLVM type for struct objc_protocol. 410 llvm::StructType *ProtocolTy; 411 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 412 llvm::Type *ProtocolPtrTy; 413 /// ProtocolExtensionTy - LLVM type for struct 414 /// objc_protocol_extension. 415 llvm::StructType *ProtocolExtensionTy; 416 /// ProtocolExtensionTy - LLVM type for struct 417 /// objc_protocol_extension *. 418 llvm::Type *ProtocolExtensionPtrTy; 419 /// MethodDescriptionTy - LLVM type for struct 420 /// objc_method_description. 421 llvm::StructType *MethodDescriptionTy; 422 /// MethodDescriptionListTy - LLVM type for struct 423 /// objc_method_description_list. 424 llvm::StructType *MethodDescriptionListTy; 425 /// MethodDescriptionListPtrTy - LLVM type for struct 426 /// objc_method_description_list *. 427 llvm::Type *MethodDescriptionListPtrTy; 428 /// ProtocolListTy - LLVM type for struct objc_property_list. 429 llvm::StructType *ProtocolListTy; 430 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 431 llvm::Type *ProtocolListPtrTy; 432 /// CategoryTy - LLVM type for struct objc_category. 433 llvm::StructType *CategoryTy; 434 /// ClassTy - LLVM type for struct objc_class. 435 llvm::StructType *ClassTy; 436 /// ClassPtrTy - LLVM type for struct objc_class *. 437 llvm::Type *ClassPtrTy; 438 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 439 llvm::StructType *ClassExtensionTy; 440 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 441 llvm::Type *ClassExtensionPtrTy; 442 // IvarTy - LLVM type for struct objc_ivar. 443 llvm::StructType *IvarTy; 444 /// IvarListTy - LLVM type for struct objc_ivar_list. 445 llvm::Type *IvarListTy; 446 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 447 llvm::Type *IvarListPtrTy; 448 /// MethodListTy - LLVM type for struct objc_method_list. 449 llvm::Type *MethodListTy; 450 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 451 llvm::Type *MethodListPtrTy; 452 453 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 454 llvm::Type *ExceptionDataTy; 455 456 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 457 llvm::Constant *getExceptionTryEnterFn() { 458 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 459 return CGM.CreateRuntimeFunction( 460 llvm::FunctionType::get(CGM.VoidTy, params, false), 461 "objc_exception_try_enter"); 462 } 463 464 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 465 llvm::Constant *getExceptionTryExitFn() { 466 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 467 return CGM.CreateRuntimeFunction( 468 llvm::FunctionType::get(CGM.VoidTy, params, false), 469 "objc_exception_try_exit"); 470 } 471 472 /// ExceptionExtractFn - LLVM objc_exception_extract function. 473 llvm::Constant *getExceptionExtractFn() { 474 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 475 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 476 params, false), 477 "objc_exception_extract"); 478 } 479 480 /// ExceptionMatchFn - LLVM objc_exception_match function. 481 llvm::Constant *getExceptionMatchFn() { 482 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 483 return CGM.CreateRuntimeFunction( 484 llvm::FunctionType::get(CGM.Int32Ty, params, false), 485 "objc_exception_match"); 486 487 } 488 489 /// SetJmpFn - LLVM _setjmp function. 490 llvm::Constant *getSetJmpFn() { 491 // This is specifically the prototype for x86. 492 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 493 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 494 params, false), 495 "_setjmp"); 496 } 497 498 public: 499 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 500 ~ObjCTypesHelper() {} 501 }; 502 503 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 504 /// modern abi 505 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 506 public: 507 508 // MethodListnfABITy - LLVM for struct _method_list_t 509 llvm::StructType *MethodListnfABITy; 510 511 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 512 llvm::Type *MethodListnfABIPtrTy; 513 514 // ProtocolnfABITy = LLVM for struct _protocol_t 515 llvm::StructType *ProtocolnfABITy; 516 517 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 518 llvm::Type *ProtocolnfABIPtrTy; 519 520 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 521 llvm::StructType *ProtocolListnfABITy; 522 523 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 524 llvm::Type *ProtocolListnfABIPtrTy; 525 526 // ClassnfABITy - LLVM for struct _class_t 527 llvm::StructType *ClassnfABITy; 528 529 // ClassnfABIPtrTy - LLVM for struct _class_t* 530 llvm::Type *ClassnfABIPtrTy; 531 532 // IvarnfABITy - LLVM for struct _ivar_t 533 llvm::StructType *IvarnfABITy; 534 535 // IvarListnfABITy - LLVM for struct _ivar_list_t 536 llvm::StructType *IvarListnfABITy; 537 538 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 539 llvm::Type *IvarListnfABIPtrTy; 540 541 // ClassRonfABITy - LLVM for struct _class_ro_t 542 llvm::StructType *ClassRonfABITy; 543 544 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 545 llvm::Type *ImpnfABITy; 546 547 // CategorynfABITy - LLVM for struct _category_t 548 llvm::StructType *CategorynfABITy; 549 550 // New types for nonfragile abi messaging. 551 552 // MessageRefTy - LLVM for: 553 // struct _message_ref_t { 554 // IMP messenger; 555 // SEL name; 556 // }; 557 llvm::StructType *MessageRefTy; 558 // MessageRefCTy - clang type for struct _message_ref_t 559 QualType MessageRefCTy; 560 561 // MessageRefPtrTy - LLVM for struct _message_ref_t* 562 llvm::Type *MessageRefPtrTy; 563 // MessageRefCPtrTy - clang type for struct _message_ref_t* 564 QualType MessageRefCPtrTy; 565 566 // MessengerTy - Type of the messenger (shown as IMP above) 567 llvm::FunctionType *MessengerTy; 568 569 // SuperMessageRefTy - LLVM for: 570 // struct _super_message_ref_t { 571 // SUPER_IMP messenger; 572 // SEL name; 573 // }; 574 llvm::StructType *SuperMessageRefTy; 575 576 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 577 llvm::Type *SuperMessageRefPtrTy; 578 579 llvm::Constant *getMessageSendFixupFn() { 580 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 581 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 582 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 583 params, true), 584 "objc_msgSend_fixup"); 585 } 586 587 llvm::Constant *getMessageSendFpretFixupFn() { 588 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 589 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 590 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 591 params, true), 592 "objc_msgSend_fpret_fixup"); 593 } 594 595 llvm::Constant *getMessageSendStretFixupFn() { 596 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 597 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 598 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 599 params, true), 600 "objc_msgSend_stret_fixup"); 601 } 602 603 llvm::Constant *getMessageSendSuper2FixupFn() { 604 // id objc_msgSendSuper2_fixup (struct objc_super *, 605 // struct _super_message_ref_t*, ...) 606 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 607 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 608 params, true), 609 "objc_msgSendSuper2_fixup"); 610 } 611 612 llvm::Constant *getMessageSendSuper2StretFixupFn() { 613 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 614 // struct _super_message_ref_t*, ...) 615 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 616 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 617 params, true), 618 "objc_msgSendSuper2_stret_fixup"); 619 } 620 621 llvm::Constant *getObjCEndCatchFn() { 622 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 623 "objc_end_catch"); 624 625 } 626 627 llvm::Constant *getObjCBeginCatchFn() { 628 llvm::Type *params[] = { Int8PtrTy }; 629 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 630 params, false), 631 "objc_begin_catch"); 632 } 633 634 llvm::StructType *EHTypeTy; 635 llvm::Type *EHTypePtrTy; 636 637 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 638 ~ObjCNonFragileABITypesHelper(){} 639 }; 640 641 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 642 public: 643 // FIXME - accessibility 644 class GC_IVAR { 645 public: 646 unsigned ivar_bytepos; 647 unsigned ivar_size; 648 GC_IVAR(unsigned bytepos = 0, unsigned size = 0) 649 : ivar_bytepos(bytepos), ivar_size(size) {} 650 651 // Allow sorting based on byte pos. 652 bool operator<(const GC_IVAR &b) const { 653 return ivar_bytepos < b.ivar_bytepos; 654 } 655 }; 656 657 class SKIP_SCAN { 658 public: 659 unsigned skip; 660 unsigned scan; 661 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 662 : skip(_skip), scan(_scan) {} 663 }; 664 665 protected: 666 CodeGen::CodeGenModule &CGM; 667 llvm::LLVMContext &VMContext; 668 // FIXME! May not be needing this after all. 669 unsigned ObjCABI; 670 671 // gc ivar layout bitmap calculation helper caches. 672 llvm::SmallVector<GC_IVAR, 16> SkipIvars; 673 llvm::SmallVector<GC_IVAR, 16> IvarsInfo; 674 675 /// LazySymbols - Symbols to generate a lazy reference for. See 676 /// DefinedSymbols and FinishModule(). 677 llvm::SetVector<IdentifierInfo*> LazySymbols; 678 679 /// DefinedSymbols - External symbols which are defined by this 680 /// module. The symbols in this list and LazySymbols are used to add 681 /// special linker symbols which ensure that Objective-C modules are 682 /// linked properly. 683 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 684 685 /// ClassNames - uniqued class names. 686 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassNames; 687 688 /// MethodVarNames - uniqued method variable names. 689 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 690 691 /// DefinedCategoryNames - list of category names in form Class_Category. 692 llvm::SetVector<std::string> DefinedCategoryNames; 693 694 /// MethodVarTypes - uniqued method type signatures. We have to use 695 /// a StringMap here because have no other unique reference. 696 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 697 698 /// MethodDefinitions - map of methods which have been defined in 699 /// this translation unit. 700 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 701 702 /// PropertyNames - uniqued method variable names. 703 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 704 705 /// ClassReferences - uniqued class references. 706 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 707 708 /// SelectorReferences - uniqued selector references. 709 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 710 711 /// Protocols - Protocols for which an objc_protocol structure has 712 /// been emitted. Forward declarations are handled by creating an 713 /// empty structure whose initializer is filled in when/if defined. 714 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 715 716 /// DefinedProtocols - Protocols which have actually been 717 /// defined. We should not need this, see FIXME in GenerateProtocol. 718 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 719 720 /// DefinedClasses - List of defined classes. 721 std::vector<llvm::GlobalValue*> DefinedClasses; 722 723 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 724 std::vector<llvm::GlobalValue*> DefinedNonLazyClasses; 725 726 /// DefinedCategories - List of defined categories. 727 std::vector<llvm::GlobalValue*> DefinedCategories; 728 729 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 730 std::vector<llvm::GlobalValue*> DefinedNonLazyCategories; 731 732 /// GetNameForMethod - Return a name for the given method. 733 /// \param[out] NameOut - The return value. 734 void GetNameForMethod(const ObjCMethodDecl *OMD, 735 const ObjCContainerDecl *CD, 736 llvm::SmallVectorImpl<char> &NameOut); 737 738 /// GetMethodVarName - Return a unique constant for the given 739 /// selector's name. The return value has type char *. 740 llvm::Constant *GetMethodVarName(Selector Sel); 741 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 742 743 /// GetMethodVarType - Return a unique constant for the given 744 /// selector's name. The return value has type char *. 745 746 // FIXME: This is a horrible name. 747 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D); 748 llvm::Constant *GetMethodVarType(const FieldDecl *D); 749 750 /// GetPropertyName - Return a unique constant for the given 751 /// name. The return value has type char *. 752 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 753 754 // FIXME: This can be dropped once string functions are unified. 755 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 756 const Decl *Container); 757 758 /// GetClassName - Return a unique constant for the given selector's 759 /// name. The return value has type char *. 760 llvm::Constant *GetClassName(IdentifierInfo *Ident); 761 762 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 763 764 /// BuildIvarLayout - Builds ivar layout bitmap for the class 765 /// implementation for the __strong or __weak case. 766 /// 767 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 768 bool ForStrongLayout); 769 770 llvm::Constant *BuildIvarLayoutBitmap(std::string &BitMap); 771 772 void BuildAggrIvarRecordLayout(const RecordType *RT, 773 unsigned int BytePos, bool ForStrongLayout, 774 bool &HasUnion); 775 void BuildAggrIvarLayout(const ObjCImplementationDecl *OI, 776 const llvm::StructLayout *Layout, 777 const RecordDecl *RD, 778 const llvm::SmallVectorImpl<FieldDecl*> &RecFields, 779 unsigned int BytePos, bool ForStrongLayout, 780 bool &HasUnion); 781 782 /// GetIvarLayoutName - Returns a unique constant for the given 783 /// ivar layout bitmap. 784 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 785 const ObjCCommonTypesHelper &ObjCTypes); 786 787 /// EmitPropertyList - Emit the given property list. The return 788 /// value has type PropertyListPtrTy. 789 llvm::Constant *EmitPropertyList(llvm::Twine Name, 790 const Decl *Container, 791 const ObjCContainerDecl *OCD, 792 const ObjCCommonTypesHelper &ObjCTypes); 793 794 /// PushProtocolProperties - Push protocol's property on the input stack. 795 void PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 796 std::vector<llvm::Constant*> &Properties, 797 const Decl *Container, 798 const ObjCProtocolDecl *PROTO, 799 const ObjCCommonTypesHelper &ObjCTypes); 800 801 /// GetProtocolRef - Return a reference to the internal protocol 802 /// description, creating an empty one if it has not been 803 /// defined. The return value has type ProtocolPtrTy. 804 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 805 806 /// CreateMetadataVar - Create a global variable with internal 807 /// linkage for use by the Objective-C runtime. 808 /// 809 /// This is a convenience wrapper which not only creates the 810 /// variable, but also sets the section and alignment and adds the 811 /// global to the "llvm.used" list. 812 /// 813 /// \param Name - The variable name. 814 /// \param Init - The variable initializer; this is also used to 815 /// define the type of the variable. 816 /// \param Section - The section the variable should go into, or 0. 817 /// \param Align - The alignment for the variable, or 0. 818 /// \param AddToUsed - Whether the variable should be added to 819 /// "llvm.used". 820 llvm::GlobalVariable *CreateMetadataVar(llvm::Twine Name, 821 llvm::Constant *Init, 822 const char *Section, 823 unsigned Align, 824 bool AddToUsed); 825 826 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 827 ReturnValueSlot Return, 828 QualType ResultType, 829 llvm::Value *Sel, 830 llvm::Value *Arg0, 831 QualType Arg0Ty, 832 bool IsSuper, 833 const CallArgList &CallArgs, 834 const ObjCMethodDecl *OMD, 835 const ObjCCommonTypesHelper &ObjCTypes); 836 837 /// EmitImageInfo - Emit the image info marker used to encode some module 838 /// level information. 839 void EmitImageInfo(); 840 841 public: 842 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 843 CGM(cgm), VMContext(cgm.getLLVMContext()) { } 844 845 virtual llvm::Constant *GenerateConstantString(const StringLiteral *SL); 846 847 virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 848 const ObjCContainerDecl *CD=0); 849 850 virtual void GenerateProtocol(const ObjCProtocolDecl *PD); 851 852 /// GetOrEmitProtocol - Get the protocol object for the given 853 /// declaration, emitting it if necessary. The return value has type 854 /// ProtocolPtrTy. 855 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 856 857 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 858 /// object for the given declaration, emitting it if needed. These 859 /// forward references will be filled in with empty bodies if no 860 /// definition is seen. The return value has type ProtocolPtrTy. 861 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 862 virtual llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 863 const CGBlockInfo &blockInfo); 864 865 }; 866 867 class CGObjCMac : public CGObjCCommonMac { 868 private: 869 ObjCTypesHelper ObjCTypes; 870 871 /// EmitModuleInfo - Another marker encoding module level 872 /// information. 873 void EmitModuleInfo(); 874 875 /// EmitModuleSymols - Emit module symbols, the list of defined 876 /// classes and categories. The result has type SymtabPtrTy. 877 llvm::Constant *EmitModuleSymbols(); 878 879 /// FinishModule - Write out global data structures at the end of 880 /// processing a translation unit. 881 void FinishModule(); 882 883 /// EmitClassExtension - Generate the class extension structure used 884 /// to store the weak ivar layout and properties. The return value 885 /// has type ClassExtensionPtrTy. 886 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID); 887 888 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 889 /// for the given class. 890 llvm::Value *EmitClassRef(CGBuilderTy &Builder, 891 const ObjCInterfaceDecl *ID); 892 893 llvm::Value *EmitClassRefFromId(CGBuilderTy &Builder, 894 IdentifierInfo *II); 895 896 llvm::Value *EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder); 897 898 /// EmitSuperClassRef - Emits reference to class's main metadata class. 899 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 900 901 /// EmitIvarList - Emit the ivar list for the given 902 /// implementation. If ForClass is true the list of class ivars 903 /// (i.e. metaclass ivars) is emitted, otherwise the list of 904 /// interface ivars will be emitted. The return value has type 905 /// IvarListPtrTy. 906 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 907 bool ForClass); 908 909 /// EmitMetaClass - Emit a forward reference to the class structure 910 /// for the metaclass of the given interface. The return value has 911 /// type ClassPtrTy. 912 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 913 914 /// EmitMetaClass - Emit a class structure for the metaclass of the 915 /// given implementation. The return value has type ClassPtrTy. 916 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 917 llvm::Constant *Protocols, 918 const ConstantVector &Methods); 919 920 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 921 922 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 923 924 /// EmitMethodList - Emit the method list for the given 925 /// implementation. The return value has type MethodListPtrTy. 926 llvm::Constant *EmitMethodList(llvm::Twine Name, 927 const char *Section, 928 const ConstantVector &Methods); 929 930 /// EmitMethodDescList - Emit a method description list for a list of 931 /// method declarations. 932 /// - TypeName: The name for the type containing the methods. 933 /// - IsProtocol: True iff these methods are for a protocol. 934 /// - ClassMethds: True iff these are class methods. 935 /// - Required: When true, only "required" methods are 936 /// listed. Similarly, when false only "optional" methods are 937 /// listed. For classes this should always be true. 938 /// - begin, end: The method list to output. 939 /// 940 /// The return value has type MethodDescriptionListPtrTy. 941 llvm::Constant *EmitMethodDescList(llvm::Twine Name, 942 const char *Section, 943 const ConstantVector &Methods); 944 945 /// GetOrEmitProtocol - Get the protocol object for the given 946 /// declaration, emitting it if necessary. The return value has type 947 /// ProtocolPtrTy. 948 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD); 949 950 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 951 /// object for the given declaration, emitting it if needed. These 952 /// forward references will be filled in with empty bodies if no 953 /// definition is seen. The return value has type ProtocolPtrTy. 954 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD); 955 956 /// EmitProtocolExtension - Generate the protocol extension 957 /// structure used to store optional instance and class methods, and 958 /// protocol properties. The return value has type 959 /// ProtocolExtensionPtrTy. 960 llvm::Constant * 961 EmitProtocolExtension(const ObjCProtocolDecl *PD, 962 const ConstantVector &OptInstanceMethods, 963 const ConstantVector &OptClassMethods); 964 965 /// EmitProtocolList - Generate the list of referenced 966 /// protocols. The return value has type ProtocolListPtrTy. 967 llvm::Constant *EmitProtocolList(llvm::Twine Name, 968 ObjCProtocolDecl::protocol_iterator begin, 969 ObjCProtocolDecl::protocol_iterator end); 970 971 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 972 /// for the given selector. 973 llvm::Value *EmitSelector(CGBuilderTy &Builder, Selector Sel, 974 bool lval=false); 975 976 public: 977 CGObjCMac(CodeGen::CodeGenModule &cgm); 978 979 virtual llvm::Function *ModuleInitFunction(); 980 981 virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 982 ReturnValueSlot Return, 983 QualType ResultType, 984 Selector Sel, 985 llvm::Value *Receiver, 986 const CallArgList &CallArgs, 987 const ObjCInterfaceDecl *Class, 988 const ObjCMethodDecl *Method); 989 990 virtual CodeGen::RValue 991 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 992 ReturnValueSlot Return, 993 QualType ResultType, 994 Selector Sel, 995 const ObjCInterfaceDecl *Class, 996 bool isCategoryImpl, 997 llvm::Value *Receiver, 998 bool IsClassMessage, 999 const CallArgList &CallArgs, 1000 const ObjCMethodDecl *Method); 1001 1002 virtual llvm::Value *GetClass(CGBuilderTy &Builder, 1003 const ObjCInterfaceDecl *ID); 1004 1005 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel, 1006 bool lval = false); 1007 1008 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1009 /// untyped one. 1010 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, 1011 const ObjCMethodDecl *Method); 1012 1013 virtual llvm::Constant *GetEHType(QualType T); 1014 1015 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 1016 1017 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 1018 1019 virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder, 1020 const ObjCProtocolDecl *PD); 1021 1022 virtual llvm::Constant *GetPropertyGetFunction(); 1023 virtual llvm::Constant *GetPropertySetFunction(); 1024 virtual llvm::Constant *GetGetStructFunction(); 1025 virtual llvm::Constant *GetSetStructFunction(); 1026 virtual llvm::Constant *EnumerationMutationFunction(); 1027 1028 virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1029 const ObjCAtTryStmt &S); 1030 virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1031 const ObjCAtSynchronizedStmt &S); 1032 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1033 virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 1034 const ObjCAtThrowStmt &S); 1035 virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1036 llvm::Value *AddrWeakObj); 1037 virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1038 llvm::Value *src, llvm::Value *dst); 1039 virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1040 llvm::Value *src, llvm::Value *dest, 1041 bool threadlocal = false); 1042 virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1043 llvm::Value *src, llvm::Value *dest, 1044 llvm::Value *ivarOffset); 1045 virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1046 llvm::Value *src, llvm::Value *dest); 1047 virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1048 llvm::Value *dest, llvm::Value *src, 1049 llvm::Value *size); 1050 1051 virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 1052 QualType ObjectTy, 1053 llvm::Value *BaseValue, 1054 const ObjCIvarDecl *Ivar, 1055 unsigned CVRQualifiers); 1056 virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1057 const ObjCInterfaceDecl *Interface, 1058 const ObjCIvarDecl *Ivar); 1059 1060 /// GetClassGlobal - Return the global variable for the Objective-C 1061 /// class of the given name. 1062 virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) { 1063 assert(false && "CGObjCMac::GetClassGlobal"); 1064 return 0; 1065 } 1066 }; 1067 1068 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1069 private: 1070 ObjCNonFragileABITypesHelper ObjCTypes; 1071 llvm::GlobalVariable* ObjCEmptyCacheVar; 1072 llvm::GlobalVariable* ObjCEmptyVtableVar; 1073 1074 /// SuperClassReferences - uniqued super class references. 1075 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1076 1077 /// MetaClassReferences - uniqued meta class references. 1078 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1079 1080 /// EHTypeReferences - uniqued class ehtype references. 1081 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1082 1083 /// VTableDispatchMethods - List of methods for which we generate 1084 /// vtable-based message dispatch. 1085 llvm::DenseSet<Selector> VTableDispatchMethods; 1086 1087 /// DefinedMetaClasses - List of defined meta-classes. 1088 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1089 1090 /// isVTableDispatchedSelector - Returns true if SEL is a 1091 /// vtable-based selector. 1092 bool isVTableDispatchedSelector(Selector Sel); 1093 1094 /// FinishNonFragileABIModule - Write out global data structures at the end of 1095 /// processing a translation unit. 1096 void FinishNonFragileABIModule(); 1097 1098 /// AddModuleClassList - Add the given list of class pointers to the 1099 /// module with the provided symbol and section names. 1100 void AddModuleClassList(const std::vector<llvm::GlobalValue*> &Container, 1101 const char *SymbolName, 1102 const char *SectionName); 1103 1104 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1105 unsigned InstanceStart, 1106 unsigned InstanceSize, 1107 const ObjCImplementationDecl *ID); 1108 llvm::GlobalVariable * BuildClassMetaData(std::string &ClassName, 1109 llvm::Constant *IsAGV, 1110 llvm::Constant *SuperClassGV, 1111 llvm::Constant *ClassRoGV, 1112 bool HiddenVisibility); 1113 1114 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1115 1116 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1117 1118 /// EmitMethodList - Emit the method list for the given 1119 /// implementation. The return value has type MethodListnfABITy. 1120 llvm::Constant *EmitMethodList(llvm::Twine Name, 1121 const char *Section, 1122 const ConstantVector &Methods); 1123 /// EmitIvarList - Emit the ivar list for the given 1124 /// implementation. If ForClass is true the list of class ivars 1125 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1126 /// interface ivars will be emitted. The return value has type 1127 /// IvarListnfABIPtrTy. 1128 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1129 1130 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1131 const ObjCIvarDecl *Ivar, 1132 unsigned long int offset); 1133 1134 /// GetOrEmitProtocol - Get the protocol object for the given 1135 /// declaration, emitting it if necessary. The return value has type 1136 /// ProtocolPtrTy. 1137 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD); 1138 1139 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1140 /// object for the given declaration, emitting it if needed. These 1141 /// forward references will be filled in with empty bodies if no 1142 /// definition is seen. The return value has type ProtocolPtrTy. 1143 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD); 1144 1145 /// EmitProtocolList - Generate the list of referenced 1146 /// protocols. The return value has type ProtocolListPtrTy. 1147 llvm::Constant *EmitProtocolList(llvm::Twine Name, 1148 ObjCProtocolDecl::protocol_iterator begin, 1149 ObjCProtocolDecl::protocol_iterator end); 1150 1151 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1152 ReturnValueSlot Return, 1153 QualType ResultType, 1154 Selector Sel, 1155 llvm::Value *Receiver, 1156 QualType Arg0Ty, 1157 bool IsSuper, 1158 const CallArgList &CallArgs, 1159 const ObjCMethodDecl *Method); 1160 1161 /// GetClassGlobal - Return the global variable for the Objective-C 1162 /// class of the given name. 1163 llvm::GlobalVariable *GetClassGlobal(const std::string &Name); 1164 1165 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1166 /// for the given class reference. 1167 llvm::Value *EmitClassRef(CGBuilderTy &Builder, 1168 const ObjCInterfaceDecl *ID); 1169 1170 llvm::Value *EmitClassRefFromId(CGBuilderTy &Builder, 1171 IdentifierInfo *II); 1172 1173 llvm::Value *EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder); 1174 1175 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1176 /// for the given super class reference. 1177 llvm::Value *EmitSuperClassRef(CGBuilderTy &Builder, 1178 const ObjCInterfaceDecl *ID); 1179 1180 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1181 /// meta-data 1182 llvm::Value *EmitMetaClassRef(CGBuilderTy &Builder, 1183 const ObjCInterfaceDecl *ID); 1184 1185 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1186 /// the given ivar. 1187 /// 1188 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1189 const ObjCInterfaceDecl *ID, 1190 const ObjCIvarDecl *Ivar); 1191 1192 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1193 /// for the given selector. 1194 llvm::Value *EmitSelector(CGBuilderTy &Builder, Selector Sel, 1195 bool lval=false); 1196 1197 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1198 /// interface. The return value has type EHTypePtrTy. 1199 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1200 bool ForDefinition); 1201 1202 const char *getMetaclassSymbolPrefix() const { 1203 return "OBJC_METACLASS_$_"; 1204 } 1205 1206 const char *getClassSymbolPrefix() const { 1207 return "OBJC_CLASS_$_"; 1208 } 1209 1210 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1211 uint32_t &InstanceStart, 1212 uint32_t &InstanceSize); 1213 1214 // Shamelessly stolen from Analysis/CFRefCount.cpp 1215 Selector GetNullarySelector(const char* name) const { 1216 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1217 return CGM.getContext().Selectors.getSelector(0, &II); 1218 } 1219 1220 Selector GetUnarySelector(const char* name) const { 1221 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1222 return CGM.getContext().Selectors.getSelector(1, &II); 1223 } 1224 1225 /// ImplementationIsNonLazy - Check whether the given category or 1226 /// class implementation is "non-lazy". 1227 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1228 1229 public: 1230 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1231 // FIXME. All stubs for now! 1232 virtual llvm::Function *ModuleInitFunction(); 1233 1234 virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1235 ReturnValueSlot Return, 1236 QualType ResultType, 1237 Selector Sel, 1238 llvm::Value *Receiver, 1239 const CallArgList &CallArgs, 1240 const ObjCInterfaceDecl *Class, 1241 const ObjCMethodDecl *Method); 1242 1243 virtual CodeGen::RValue 1244 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1245 ReturnValueSlot Return, 1246 QualType ResultType, 1247 Selector Sel, 1248 const ObjCInterfaceDecl *Class, 1249 bool isCategoryImpl, 1250 llvm::Value *Receiver, 1251 bool IsClassMessage, 1252 const CallArgList &CallArgs, 1253 const ObjCMethodDecl *Method); 1254 1255 virtual llvm::Value *GetClass(CGBuilderTy &Builder, 1256 const ObjCInterfaceDecl *ID); 1257 1258 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel, 1259 bool lvalue = false) 1260 { return EmitSelector(Builder, Sel, lvalue); } 1261 1262 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1263 /// untyped one. 1264 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, 1265 const ObjCMethodDecl *Method) 1266 { return EmitSelector(Builder, Method->getSelector()); } 1267 1268 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 1269 1270 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 1271 virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder, 1272 const ObjCProtocolDecl *PD); 1273 1274 virtual llvm::Constant *GetEHType(QualType T); 1275 1276 virtual llvm::Constant *GetPropertyGetFunction() { 1277 return ObjCTypes.getGetPropertyFn(); 1278 } 1279 virtual llvm::Constant *GetPropertySetFunction() { 1280 return ObjCTypes.getSetPropertyFn(); 1281 } 1282 1283 virtual llvm::Constant *GetSetStructFunction() { 1284 return ObjCTypes.getCopyStructFn(); 1285 } 1286 virtual llvm::Constant *GetGetStructFunction() { 1287 return ObjCTypes.getCopyStructFn(); 1288 } 1289 1290 virtual llvm::Constant *EnumerationMutationFunction() { 1291 return ObjCTypes.getEnumerationMutationFn(); 1292 } 1293 1294 virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1295 const ObjCAtTryStmt &S); 1296 virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1297 const ObjCAtSynchronizedStmt &S); 1298 virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 1299 const ObjCAtThrowStmt &S); 1300 virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1301 llvm::Value *AddrWeakObj); 1302 virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1303 llvm::Value *src, llvm::Value *dst); 1304 virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1305 llvm::Value *src, llvm::Value *dest, 1306 bool threadlocal = false); 1307 virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1308 llvm::Value *src, llvm::Value *dest, 1309 llvm::Value *ivarOffset); 1310 virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1311 llvm::Value *src, llvm::Value *dest); 1312 virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1313 llvm::Value *dest, llvm::Value *src, 1314 llvm::Value *size); 1315 virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 1316 QualType ObjectTy, 1317 llvm::Value *BaseValue, 1318 const ObjCIvarDecl *Ivar, 1319 unsigned CVRQualifiers); 1320 virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1321 const ObjCInterfaceDecl *Interface, 1322 const ObjCIvarDecl *Ivar); 1323 }; 1324 1325 /// A helper class for performing the null-initialization of a return 1326 /// value. 1327 struct NullReturnState { 1328 llvm::BasicBlock *NullBB; 1329 1330 NullReturnState() : NullBB(0) {} 1331 1332 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1333 // Make blocks for the null-init and call edges. 1334 NullBB = CGF.createBasicBlock("msgSend.nullinit"); 1335 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1336 1337 // Check for a null receiver and, if there is one, jump to the 1338 // null-init test. 1339 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1340 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1341 1342 // Otherwise, start performing the call. 1343 CGF.EmitBlock(callBB); 1344 } 1345 1346 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType) { 1347 if (!NullBB) return result; 1348 1349 // Finish the call path. 1350 llvm::BasicBlock *contBB = CGF.createBasicBlock("msgSend.cont"); 1351 if (CGF.HaveInsertPoint()) CGF.Builder.CreateBr(contBB); 1352 1353 // Emit the null-init block and perform the null-initialization there. 1354 CGF.EmitBlock(NullBB); 1355 assert(result.isAggregate() && "null init of non-aggregate result?"); 1356 CGF.EmitNullInitialization(result.getAggregateAddr(), resultType); 1357 1358 // Jump to the continuation block. 1359 CGF.EmitBlock(contBB); 1360 1361 return result; 1362 } 1363 }; 1364 1365 } // end anonymous namespace 1366 1367 /* *** Helper Functions *** */ 1368 1369 /// getConstantGEP() - Help routine to construct simple GEPs. 1370 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1371 llvm::Constant *C, 1372 unsigned idx0, 1373 unsigned idx1) { 1374 llvm::Value *Idxs[] = { 1375 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1376 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1377 }; 1378 return llvm::ConstantExpr::getGetElementPtr(C, Idxs, 2); 1379 } 1380 1381 /// hasObjCExceptionAttribute - Return true if this class or any super 1382 /// class has the __objc_exception__ attribute. 1383 static bool hasObjCExceptionAttribute(ASTContext &Context, 1384 const ObjCInterfaceDecl *OID) { 1385 if (OID->hasAttr<ObjCExceptionAttr>()) 1386 return true; 1387 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1388 return hasObjCExceptionAttribute(Context, Super); 1389 return false; 1390 } 1391 1392 /* *** CGObjCMac Public Interface *** */ 1393 1394 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1395 ObjCTypes(cgm) { 1396 ObjCABI = 1; 1397 EmitImageInfo(); 1398 } 1399 1400 /// GetClass - Return a reference to the class for the given interface 1401 /// decl. 1402 llvm::Value *CGObjCMac::GetClass(CGBuilderTy &Builder, 1403 const ObjCInterfaceDecl *ID) { 1404 return EmitClassRef(Builder, ID); 1405 } 1406 1407 /// GetSelector - Return the pointer to the unique'd string for this selector. 1408 llvm::Value *CGObjCMac::GetSelector(CGBuilderTy &Builder, Selector Sel, 1409 bool lval) { 1410 return EmitSelector(Builder, Sel, lval); 1411 } 1412 llvm::Value *CGObjCMac::GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl 1413 *Method) { 1414 return EmitSelector(Builder, Method->getSelector()); 1415 } 1416 1417 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1418 if (T->isObjCIdType() || 1419 T->isObjCQualifiedIdType()) { 1420 return CGM.GetAddrOfRTTIDescriptor( 1421 CGM.getContext().ObjCIdRedefinitionType, /*ForEH=*/true); 1422 } 1423 if (T->isObjCClassType() || 1424 T->isObjCQualifiedClassType()) { 1425 return CGM.GetAddrOfRTTIDescriptor( 1426 CGM.getContext().ObjCClassRedefinitionType, /*ForEH=*/true); 1427 } 1428 if (T->isObjCObjectPointerType()) 1429 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1430 1431 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1432 return 0; 1433 } 1434 1435 /// Generate a constant CFString object. 1436 /* 1437 struct __builtin_CFString { 1438 const int *isa; // point to __CFConstantStringClassReference 1439 int flags; 1440 const char *str; 1441 long length; 1442 }; 1443 */ 1444 1445 /// or Generate a constant NSString object. 1446 /* 1447 struct __builtin_NSString { 1448 const int *isa; // point to __NSConstantStringClassReference 1449 const char *str; 1450 unsigned int length; 1451 }; 1452 */ 1453 1454 llvm::Constant *CGObjCCommonMac::GenerateConstantString( 1455 const StringLiteral *SL) { 1456 return (CGM.getLangOptions().NoConstantCFStrings == 0 ? 1457 CGM.GetAddrOfConstantCFString(SL) : 1458 CGM.GetAddrOfConstantString(SL)); 1459 } 1460 1461 /// Generates a message send where the super is the receiver. This is 1462 /// a message send to self with special delivery semantics indicating 1463 /// which class's method should be called. 1464 CodeGen::RValue 1465 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1466 ReturnValueSlot Return, 1467 QualType ResultType, 1468 Selector Sel, 1469 const ObjCInterfaceDecl *Class, 1470 bool isCategoryImpl, 1471 llvm::Value *Receiver, 1472 bool IsClassMessage, 1473 const CodeGen::CallArgList &CallArgs, 1474 const ObjCMethodDecl *Method) { 1475 // Create and init a super structure; this is a (receiver, class) 1476 // pair we will pass to objc_msgSendSuper. 1477 llvm::Value *ObjCSuper = 1478 CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super"); 1479 llvm::Value *ReceiverAsObject = 1480 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1481 CGF.Builder.CreateStore(ReceiverAsObject, 1482 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 1483 1484 // If this is a class message the metaclass is passed as the target. 1485 llvm::Value *Target; 1486 if (IsClassMessage) { 1487 if (isCategoryImpl) { 1488 // Message sent to 'super' in a class method defined in a category 1489 // implementation requires an odd treatment. 1490 // If we are in a class method, we must retrieve the 1491 // _metaclass_ for the current class, pointed at by 1492 // the class's "isa" pointer. The following assumes that 1493 // isa" is the first ivar in a class (which it must be). 1494 Target = EmitClassRef(CGF.Builder, Class->getSuperClass()); 1495 Target = CGF.Builder.CreateStructGEP(Target, 0); 1496 Target = CGF.Builder.CreateLoad(Target); 1497 } else { 1498 llvm::Value *MetaClassPtr = EmitMetaClassRef(Class); 1499 llvm::Value *SuperPtr = CGF.Builder.CreateStructGEP(MetaClassPtr, 1); 1500 llvm::Value *Super = CGF.Builder.CreateLoad(SuperPtr); 1501 Target = Super; 1502 } 1503 } 1504 else if (isCategoryImpl) 1505 Target = EmitClassRef(CGF.Builder, Class->getSuperClass()); 1506 else { 1507 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1508 ClassPtr = CGF.Builder.CreateStructGEP(ClassPtr, 1); 1509 Target = CGF.Builder.CreateLoad(ClassPtr); 1510 } 1511 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1512 // ObjCTypes types. 1513 llvm::Type *ClassTy = 1514 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1515 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1516 CGF.Builder.CreateStore(Target, 1517 CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 1518 return EmitMessageSend(CGF, Return, ResultType, 1519 EmitSelector(CGF.Builder, Sel), 1520 ObjCSuper, ObjCTypes.SuperPtrCTy, 1521 true, CallArgs, Method, ObjCTypes); 1522 } 1523 1524 /// Generate code for a message send expression. 1525 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1526 ReturnValueSlot Return, 1527 QualType ResultType, 1528 Selector Sel, 1529 llvm::Value *Receiver, 1530 const CallArgList &CallArgs, 1531 const ObjCInterfaceDecl *Class, 1532 const ObjCMethodDecl *Method) { 1533 return EmitMessageSend(CGF, Return, ResultType, 1534 EmitSelector(CGF.Builder, Sel), 1535 Receiver, CGF.getContext().getObjCIdType(), 1536 false, CallArgs, Method, ObjCTypes); 1537 } 1538 1539 CodeGen::RValue 1540 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1541 ReturnValueSlot Return, 1542 QualType ResultType, 1543 llvm::Value *Sel, 1544 llvm::Value *Arg0, 1545 QualType Arg0Ty, 1546 bool IsSuper, 1547 const CallArgList &CallArgs, 1548 const ObjCMethodDecl *Method, 1549 const ObjCCommonTypesHelper &ObjCTypes) { 1550 CallArgList ActualArgs; 1551 if (!IsSuper) 1552 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy, "tmp"); 1553 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1554 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1555 ActualArgs.addFrom(CallArgs); 1556 1557 CodeGenTypes &Types = CGM.getTypes(); 1558 const CGFunctionInfo &FnInfo = Types.getFunctionInfo(ResultType, ActualArgs, 1559 FunctionType::ExtInfo()); 1560 llvm::FunctionType *FTy = 1561 Types.GetFunctionType(FnInfo, Method ? Method->isVariadic() : false); 1562 1563 if (Method) 1564 assert(CGM.getContext().getCanonicalType(Method->getResultType()) == 1565 CGM.getContext().getCanonicalType(ResultType) && 1566 "Result type mismatch!"); 1567 1568 NullReturnState nullReturn; 1569 1570 llvm::Constant *Fn = NULL; 1571 if (CGM.ReturnTypeUsesSRet(FnInfo)) { 1572 if (!IsSuper) nullReturn.init(CGF, Arg0); 1573 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1574 : ObjCTypes.getSendStretFn(IsSuper); 1575 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1576 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1577 : ObjCTypes.getSendFpretFn(IsSuper); 1578 } else { 1579 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1580 : ObjCTypes.getSendFn(IsSuper); 1581 } 1582 Fn = llvm::ConstantExpr::getBitCast(Fn, llvm::PointerType::getUnqual(FTy)); 1583 RValue rvalue = CGF.EmitCall(FnInfo, Fn, Return, ActualArgs); 1584 return nullReturn.complete(CGF, rvalue, ResultType); 1585 } 1586 1587 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT) { 1588 if (FQT.isObjCGCStrong()) 1589 return Qualifiers::Strong; 1590 1591 if (FQT.isObjCGCWeak() || FQT.getObjCLifetime() == Qualifiers::OCL_Weak) 1592 return Qualifiers::Weak; 1593 1594 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 1595 return Qualifiers::Strong; 1596 1597 if (const PointerType *PT = FQT->getAs<PointerType>()) 1598 return GetGCAttrTypeForType(Ctx, PT->getPointeeType()); 1599 1600 return Qualifiers::GCNone; 1601 } 1602 1603 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 1604 const CGBlockInfo &blockInfo) { 1605 llvm::Constant *nullPtr = 1606 llvm::Constant::getNullValue(llvm::Type::getInt8PtrTy(VMContext)); 1607 1608 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC && 1609 !CGM.getLangOptions().ObjCAutoRefCount) 1610 return nullPtr; 1611 1612 bool hasUnion = false; 1613 SkipIvars.clear(); 1614 IvarsInfo.clear(); 1615 unsigned WordSizeInBits = CGM.getContext().Target.getPointerWidth(0); 1616 unsigned ByteSizeInBits = CGM.getContext().Target.getCharWidth(); 1617 1618 // __isa is the first field in block descriptor and must assume by runtime's 1619 // convention that it is GC'able. 1620 IvarsInfo.push_back(GC_IVAR(0, 1)); 1621 1622 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1623 1624 // Calculate the basic layout of the block structure. 1625 const llvm::StructLayout *layout = 1626 CGM.getTargetData().getStructLayout(blockInfo.StructureType); 1627 1628 // Ignore the optional 'this' capture: C++ objects are not assumed 1629 // to be GC'ed. 1630 1631 // Walk the captured variables. 1632 for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), 1633 ce = blockDecl->capture_end(); ci != ce; ++ci) { 1634 const VarDecl *variable = ci->getVariable(); 1635 QualType type = variable->getType(); 1636 1637 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1638 1639 // Ignore constant captures. 1640 if (capture.isConstant()) continue; 1641 1642 uint64_t fieldOffset = layout->getElementOffset(capture.getIndex()); 1643 1644 // __block variables are passed by their descriptor address. 1645 if (ci->isByRef()) { 1646 IvarsInfo.push_back(GC_IVAR(fieldOffset, /*size in words*/ 1)); 1647 continue; 1648 } 1649 1650 assert(!type->isArrayType() && "array variable should not be caught"); 1651 if (const RecordType *record = type->getAs<RecordType>()) { 1652 BuildAggrIvarRecordLayout(record, fieldOffset, true, hasUnion); 1653 continue; 1654 } 1655 1656 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 1657 unsigned fieldSize = CGM.getContext().getTypeSize(type); 1658 1659 if (GCAttr == Qualifiers::Strong) 1660 IvarsInfo.push_back(GC_IVAR(fieldOffset, 1661 fieldSize / WordSizeInBits)); 1662 else if (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak) 1663 SkipIvars.push_back(GC_IVAR(fieldOffset, 1664 fieldSize / ByteSizeInBits)); 1665 } 1666 1667 if (IvarsInfo.empty()) 1668 return nullPtr; 1669 1670 // Sort on byte position; captures might not be allocated in order, 1671 // and unions can do funny things. 1672 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 1673 llvm::array_pod_sort(SkipIvars.begin(), SkipIvars.end()); 1674 1675 std::string BitMap; 1676 llvm::Constant *C = BuildIvarLayoutBitmap(BitMap); 1677 if (CGM.getLangOptions().ObjCGCBitmapPrint) { 1678 printf("\n block variable layout for block: "); 1679 const unsigned char *s = (unsigned char*)BitMap.c_str(); 1680 for (unsigned i = 0; i < BitMap.size(); i++) 1681 if (!(s[i] & 0xf0)) 1682 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 1683 else 1684 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 1685 printf("\n"); 1686 } 1687 1688 return C; 1689 } 1690 1691 llvm::Value *CGObjCMac::GenerateProtocolRef(CGBuilderTy &Builder, 1692 const ObjCProtocolDecl *PD) { 1693 // FIXME: I don't understand why gcc generates this, or where it is 1694 // resolved. Investigate. Its also wasteful to look this up over and over. 1695 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 1696 1697 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 1698 ObjCTypes.ExternalProtocolPtrTy); 1699 } 1700 1701 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 1702 // FIXME: We shouldn't need this, the protocol decl should contain enough 1703 // information to tell us whether this was a declaration or a definition. 1704 DefinedProtocols.insert(PD->getIdentifier()); 1705 1706 // If we have generated a forward reference to this protocol, emit 1707 // it now. Otherwise do nothing, the protocol objects are lazily 1708 // emitted. 1709 if (Protocols.count(PD->getIdentifier())) 1710 GetOrEmitProtocol(PD); 1711 } 1712 1713 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 1714 if (DefinedProtocols.count(PD->getIdentifier())) 1715 return GetOrEmitProtocol(PD); 1716 1717 return GetOrEmitProtocolRef(PD); 1718 } 1719 1720 /* 1721 // APPLE LOCAL radar 4585769 - Objective-C 1.0 extensions 1722 struct _objc_protocol { 1723 struct _objc_protocol_extension *isa; 1724 char *protocol_name; 1725 struct _objc_protocol_list *protocol_list; 1726 struct _objc__method_prototype_list *instance_methods; 1727 struct _objc__method_prototype_list *class_methods 1728 }; 1729 1730 See EmitProtocolExtension(). 1731 */ 1732 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 1733 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 1734 1735 // Early exit if a defining object has already been generated. 1736 if (Entry && Entry->hasInitializer()) 1737 return Entry; 1738 1739 // FIXME: I don't understand why gcc generates this, or where it is 1740 // resolved. Investigate. Its also wasteful to look this up over and over. 1741 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 1742 1743 // Construct method lists. 1744 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 1745 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 1746 for (ObjCProtocolDecl::instmeth_iterator 1747 i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) { 1748 ObjCMethodDecl *MD = *i; 1749 llvm::Constant *C = GetMethodDescriptionConstant(MD); 1750 if (!C) 1751 return GetOrEmitProtocolRef(PD); 1752 1753 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 1754 OptInstanceMethods.push_back(C); 1755 } else { 1756 InstanceMethods.push_back(C); 1757 } 1758 } 1759 1760 for (ObjCProtocolDecl::classmeth_iterator 1761 i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) { 1762 ObjCMethodDecl *MD = *i; 1763 llvm::Constant *C = GetMethodDescriptionConstant(MD); 1764 if (!C) 1765 return GetOrEmitProtocolRef(PD); 1766 1767 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 1768 OptClassMethods.push_back(C); 1769 } else { 1770 ClassMethods.push_back(C); 1771 } 1772 } 1773 1774 std::vector<llvm::Constant*> Values(5); 1775 Values[0] = EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods); 1776 Values[1] = GetClassName(PD->getIdentifier()); 1777 Values[2] = 1778 EmitProtocolList("\01L_OBJC_PROTOCOL_REFS_" + PD->getName(), 1779 PD->protocol_begin(), 1780 PD->protocol_end()); 1781 Values[3] = 1782 EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 1783 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 1784 InstanceMethods); 1785 Values[4] = 1786 EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 1787 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 1788 ClassMethods); 1789 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 1790 Values); 1791 1792 if (Entry) { 1793 // Already created, fix the linkage and update the initializer. 1794 Entry->setLinkage(llvm::GlobalValue::InternalLinkage); 1795 Entry->setInitializer(Init); 1796 } else { 1797 Entry = 1798 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false, 1799 llvm::GlobalValue::InternalLinkage, 1800 Init, 1801 "\01L_OBJC_PROTOCOL_" + PD->getName()); 1802 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 1803 // FIXME: Is this necessary? Why only for protocol? 1804 Entry->setAlignment(4); 1805 } 1806 CGM.AddUsedGlobal(Entry); 1807 1808 return Entry; 1809 } 1810 1811 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 1812 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 1813 1814 if (!Entry) { 1815 // We use the initializer as a marker of whether this is a forward 1816 // reference or not. At module finalization we add the empty 1817 // contents for protocols which were referenced but never defined. 1818 Entry = 1819 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false, 1820 llvm::GlobalValue::ExternalLinkage, 1821 0, 1822 "\01L_OBJC_PROTOCOL_" + PD->getName()); 1823 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 1824 // FIXME: Is this necessary? Why only for protocol? 1825 Entry->setAlignment(4); 1826 } 1827 1828 return Entry; 1829 } 1830 1831 /* 1832 struct _objc_protocol_extension { 1833 uint32_t size; 1834 struct objc_method_description_list *optional_instance_methods; 1835 struct objc_method_description_list *optional_class_methods; 1836 struct objc_property_list *instance_properties; 1837 }; 1838 */ 1839 llvm::Constant * 1840 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 1841 const ConstantVector &OptInstanceMethods, 1842 const ConstantVector &OptClassMethods) { 1843 uint64_t Size = 1844 CGM.getTargetData().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 1845 std::vector<llvm::Constant*> Values(4); 1846 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 1847 Values[1] = 1848 EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" 1849 + PD->getName(), 1850 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 1851 OptInstanceMethods); 1852 Values[2] = 1853 EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 1854 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 1855 OptClassMethods); 1856 Values[3] = EmitPropertyList("\01L_OBJC_$_PROP_PROTO_LIST_" + PD->getName(), 1857 0, PD, ObjCTypes); 1858 1859 // Return null if no extension bits are used. 1860 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 1861 Values[3]->isNullValue()) 1862 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 1863 1864 llvm::Constant *Init = 1865 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 1866 1867 // No special section, but goes in llvm.used 1868 return CreateMetadataVar("\01L_OBJC_PROTOCOLEXT_" + PD->getName(), 1869 Init, 1870 0, 0, true); 1871 } 1872 1873 /* 1874 struct objc_protocol_list { 1875 struct objc_protocol_list *next; 1876 long count; 1877 Protocol *list[]; 1878 }; 1879 */ 1880 llvm::Constant * 1881 CGObjCMac::EmitProtocolList(llvm::Twine Name, 1882 ObjCProtocolDecl::protocol_iterator begin, 1883 ObjCProtocolDecl::protocol_iterator end) { 1884 std::vector<llvm::Constant*> ProtocolRefs; 1885 1886 for (; begin != end; ++begin) 1887 ProtocolRefs.push_back(GetProtocolRef(*begin)); 1888 1889 // Just return null for empty protocol lists 1890 if (ProtocolRefs.empty()) 1891 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 1892 1893 // This list is null terminated. 1894 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 1895 1896 llvm::Constant *Values[3]; 1897 // This field is only used by the runtime. 1898 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 1899 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 1900 ProtocolRefs.size() - 1); 1901 Values[2] = 1902 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 1903 ProtocolRefs.size()), 1904 ProtocolRefs); 1905 1906 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 1907 llvm::GlobalVariable *GV = 1908 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 1909 4, false); 1910 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 1911 } 1912 1913 void CGObjCCommonMac::PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 1914 std::vector<llvm::Constant*> &Properties, 1915 const Decl *Container, 1916 const ObjCProtocolDecl *PROTO, 1917 const ObjCCommonTypesHelper &ObjCTypes) { 1918 std::vector<llvm::Constant*> Prop(2); 1919 for (ObjCProtocolDecl::protocol_iterator P = PROTO->protocol_begin(), 1920 E = PROTO->protocol_end(); P != E; ++P) 1921 PushProtocolProperties(PropertySet, Properties, Container, (*P), ObjCTypes); 1922 for (ObjCContainerDecl::prop_iterator I = PROTO->prop_begin(), 1923 E = PROTO->prop_end(); I != E; ++I) { 1924 const ObjCPropertyDecl *PD = *I; 1925 if (!PropertySet.insert(PD->getIdentifier())) 1926 continue; 1927 Prop[0] = GetPropertyName(PD->getIdentifier()); 1928 Prop[1] = GetPropertyTypeString(PD, Container); 1929 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 1930 } 1931 } 1932 1933 /* 1934 struct _objc_property { 1935 const char * const name; 1936 const char * const attributes; 1937 }; 1938 1939 struct _objc_property_list { 1940 uint32_t entsize; // sizeof (struct _objc_property) 1941 uint32_t prop_count; 1942 struct _objc_property[prop_count]; 1943 }; 1944 */ 1945 llvm::Constant *CGObjCCommonMac::EmitPropertyList(llvm::Twine Name, 1946 const Decl *Container, 1947 const ObjCContainerDecl *OCD, 1948 const ObjCCommonTypesHelper &ObjCTypes) { 1949 std::vector<llvm::Constant*> Properties, Prop(2); 1950 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 1951 for (ObjCContainerDecl::prop_iterator I = OCD->prop_begin(), 1952 E = OCD->prop_end(); I != E; ++I) { 1953 const ObjCPropertyDecl *PD = *I; 1954 PropertySet.insert(PD->getIdentifier()); 1955 Prop[0] = GetPropertyName(PD->getIdentifier()); 1956 Prop[1] = GetPropertyTypeString(PD, Container); 1957 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, 1958 Prop)); 1959 } 1960 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 1961 for (ObjCInterfaceDecl::all_protocol_iterator 1962 P = OID->all_referenced_protocol_begin(), 1963 E = OID->all_referenced_protocol_end(); P != E; ++P) 1964 PushProtocolProperties(PropertySet, Properties, Container, (*P), 1965 ObjCTypes); 1966 } 1967 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 1968 for (ObjCCategoryDecl::protocol_iterator P = CD->protocol_begin(), 1969 E = CD->protocol_end(); P != E; ++P) 1970 PushProtocolProperties(PropertySet, Properties, Container, (*P), 1971 ObjCTypes); 1972 } 1973 1974 // Return null for empty list. 1975 if (Properties.empty()) 1976 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 1977 1978 unsigned PropertySize = 1979 CGM.getTargetData().getTypeAllocSize(ObjCTypes.PropertyTy); 1980 llvm::Constant *Values[3]; 1981 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 1982 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 1983 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 1984 Properties.size()); 1985 Values[2] = llvm::ConstantArray::get(AT, Properties); 1986 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 1987 1988 llvm::GlobalVariable *GV = 1989 CreateMetadataVar(Name, Init, 1990 (ObjCABI == 2) ? "__DATA, __objc_const" : 1991 "__OBJC,__property,regular,no_dead_strip", 1992 (ObjCABI == 2) ? 8 : 4, 1993 true); 1994 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 1995 } 1996 1997 /* 1998 struct objc_method_description_list { 1999 int count; 2000 struct objc_method_description list[]; 2001 }; 2002 */ 2003 llvm::Constant * 2004 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 2005 std::vector<llvm::Constant*> Desc(2); 2006 Desc[0] = 2007 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 2008 ObjCTypes.SelectorPtrTy); 2009 Desc[1] = GetMethodVarType(MD); 2010 if (!Desc[1]) 2011 return 0; 2012 2013 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 2014 Desc); 2015 } 2016 2017 llvm::Constant *CGObjCMac::EmitMethodDescList(llvm::Twine Name, 2018 const char *Section, 2019 const ConstantVector &Methods) { 2020 // Return null for empty list. 2021 if (Methods.empty()) 2022 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 2023 2024 llvm::Constant *Values[2]; 2025 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 2026 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 2027 Methods.size()); 2028 Values[1] = llvm::ConstantArray::get(AT, Methods); 2029 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2030 2031 llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true); 2032 return llvm::ConstantExpr::getBitCast(GV, 2033 ObjCTypes.MethodDescriptionListPtrTy); 2034 } 2035 2036 /* 2037 struct _objc_category { 2038 char *category_name; 2039 char *class_name; 2040 struct _objc_method_list *instance_methods; 2041 struct _objc_method_list *class_methods; 2042 struct _objc_protocol_list *protocols; 2043 uint32_t size; // <rdar://4585769> 2044 struct _objc_property_list *instance_properties; 2045 }; 2046 */ 2047 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 2048 unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.CategoryTy); 2049 2050 // FIXME: This is poor design, the OCD should have a pointer to the category 2051 // decl. Additionally, note that Category can be null for the @implementation 2052 // w/o an @interface case. Sema should just create one for us as it does for 2053 // @implementation so everyone else can live life under a clear blue sky. 2054 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 2055 const ObjCCategoryDecl *Category = 2056 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 2057 2058 llvm::SmallString<256> ExtName; 2059 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 2060 << OCD->getName(); 2061 2062 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2063 for (ObjCCategoryImplDecl::instmeth_iterator 2064 i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) { 2065 // Instance methods should always be defined. 2066 InstanceMethods.push_back(GetMethodConstant(*i)); 2067 } 2068 for (ObjCCategoryImplDecl::classmeth_iterator 2069 i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) { 2070 // Class methods should always be defined. 2071 ClassMethods.push_back(GetMethodConstant(*i)); 2072 } 2073 2074 llvm::Constant *Values[7]; 2075 Values[0] = GetClassName(OCD->getIdentifier()); 2076 Values[1] = GetClassName(Interface->getIdentifier()); 2077 LazySymbols.insert(Interface->getIdentifier()); 2078 Values[2] = 2079 EmitMethodList("\01L_OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 2080 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2081 InstanceMethods); 2082 Values[3] = 2083 EmitMethodList("\01L_OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 2084 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2085 ClassMethods); 2086 if (Category) { 2087 Values[4] = 2088 EmitProtocolList("\01L_OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 2089 Category->protocol_begin(), 2090 Category->protocol_end()); 2091 } else { 2092 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2093 } 2094 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 2095 2096 // If there is no category @interface then there can be no properties. 2097 if (Category) { 2098 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 2099 OCD, Category, ObjCTypes); 2100 } else { 2101 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2102 } 2103 2104 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 2105 Values); 2106 2107 llvm::GlobalVariable *GV = 2108 CreateMetadataVar("\01L_OBJC_CATEGORY_" + ExtName.str(), Init, 2109 "__OBJC,__category,regular,no_dead_strip", 2110 4, true); 2111 DefinedCategories.push_back(GV); 2112 DefinedCategoryNames.insert(ExtName.str()); 2113 // method definition entries must be clear for next implementation. 2114 MethodDefinitions.clear(); 2115 } 2116 2117 // FIXME: Get from somewhere? 2118 enum ClassFlags { 2119 eClassFlags_Factory = 0x00001, 2120 eClassFlags_Meta = 0x00002, 2121 // <rdr://5142207> 2122 eClassFlags_HasCXXStructors = 0x02000, 2123 eClassFlags_Hidden = 0x20000, 2124 eClassFlags_ABI2_Hidden = 0x00010, 2125 eClassFlags_ABI2_HasCXXStructors = 0x00004 // <rdr://4923634> 2126 }; 2127 2128 /* 2129 struct _objc_class { 2130 Class isa; 2131 Class super_class; 2132 const char *name; 2133 long version; 2134 long info; 2135 long instance_size; 2136 struct _objc_ivar_list *ivars; 2137 struct _objc_method_list *methods; 2138 struct _objc_cache *cache; 2139 struct _objc_protocol_list *protocols; 2140 // Objective-C 1.0 extensions (<rdr://4585769>) 2141 const char *ivar_layout; 2142 struct _objc_class_ext *ext; 2143 }; 2144 2145 See EmitClassExtension(); 2146 */ 2147 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 2148 DefinedSymbols.insert(ID->getIdentifier()); 2149 2150 std::string ClassName = ID->getNameAsString(); 2151 // FIXME: Gross 2152 ObjCInterfaceDecl *Interface = 2153 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 2154 llvm::Constant *Protocols = 2155 EmitProtocolList("\01L_OBJC_CLASS_PROTOCOLS_" + ID->getName(), 2156 Interface->all_referenced_protocol_begin(), 2157 Interface->all_referenced_protocol_end()); 2158 unsigned Flags = eClassFlags_Factory; 2159 if (ID->hasCXXStructors()) 2160 Flags |= eClassFlags_HasCXXStructors; 2161 unsigned Size = 2162 CGM.getContext().getASTObjCImplementationLayout(ID).getSize().getQuantity(); 2163 2164 // FIXME: Set CXX-structors flag. 2165 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 2166 Flags |= eClassFlags_Hidden; 2167 2168 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2169 for (ObjCImplementationDecl::instmeth_iterator 2170 i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) { 2171 // Instance methods should always be defined. 2172 InstanceMethods.push_back(GetMethodConstant(*i)); 2173 } 2174 for (ObjCImplementationDecl::classmeth_iterator 2175 i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) { 2176 // Class methods should always be defined. 2177 ClassMethods.push_back(GetMethodConstant(*i)); 2178 } 2179 2180 for (ObjCImplementationDecl::propimpl_iterator 2181 i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) { 2182 ObjCPropertyImplDecl *PID = *i; 2183 2184 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2185 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2186 2187 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 2188 if (llvm::Constant *C = GetMethodConstant(MD)) 2189 InstanceMethods.push_back(C); 2190 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 2191 if (llvm::Constant *C = GetMethodConstant(MD)) 2192 InstanceMethods.push_back(C); 2193 } 2194 } 2195 2196 llvm::Constant *Values[12]; 2197 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 2198 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 2199 // Record a reference to the super class. 2200 LazySymbols.insert(Super->getIdentifier()); 2201 2202 Values[ 1] = 2203 llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), 2204 ObjCTypes.ClassPtrTy); 2205 } else { 2206 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 2207 } 2208 Values[ 2] = GetClassName(ID->getIdentifier()); 2209 // Version is always 0. 2210 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 2211 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 2212 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 2213 Values[ 6] = EmitIvarList(ID, false); 2214 Values[ 7] = 2215 EmitMethodList("\01L_OBJC_INSTANCE_METHODS_" + ID->getName(), 2216 "__OBJC,__inst_meth,regular,no_dead_strip", 2217 InstanceMethods); 2218 // cache is always NULL. 2219 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 2220 Values[ 9] = Protocols; 2221 Values[10] = BuildIvarLayout(ID, true); 2222 Values[11] = EmitClassExtension(ID); 2223 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 2224 Values); 2225 std::string Name("\01L_OBJC_CLASS_"); 2226 Name += ClassName; 2227 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 2228 // Check for a forward reference. 2229 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 2230 if (GV) { 2231 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 2232 "Forward metaclass reference has incorrect type."); 2233 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 2234 GV->setInitializer(Init); 2235 GV->setSection(Section); 2236 GV->setAlignment(4); 2237 CGM.AddUsedGlobal(GV); 2238 } 2239 else 2240 GV = CreateMetadataVar(Name, Init, Section, 4, true); 2241 DefinedClasses.push_back(GV); 2242 // method definition entries must be clear for next implementation. 2243 MethodDefinitions.clear(); 2244 } 2245 2246 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 2247 llvm::Constant *Protocols, 2248 const ConstantVector &Methods) { 2249 unsigned Flags = eClassFlags_Meta; 2250 unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassTy); 2251 2252 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 2253 Flags |= eClassFlags_Hidden; 2254 2255 llvm::Constant *Values[12]; 2256 // The isa for the metaclass is the root of the hierarchy. 2257 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 2258 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 2259 Root = Super; 2260 Values[ 0] = 2261 llvm::ConstantExpr::getBitCast(GetClassName(Root->getIdentifier()), 2262 ObjCTypes.ClassPtrTy); 2263 // The super class for the metaclass is emitted as the name of the 2264 // super class. The runtime fixes this up to point to the 2265 // *metaclass* for the super class. 2266 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 2267 Values[ 1] = 2268 llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), 2269 ObjCTypes.ClassPtrTy); 2270 } else { 2271 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 2272 } 2273 Values[ 2] = GetClassName(ID->getIdentifier()); 2274 // Version is always 0. 2275 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 2276 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 2277 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 2278 Values[ 6] = EmitIvarList(ID, true); 2279 Values[ 7] = 2280 EmitMethodList("\01L_OBJC_CLASS_METHODS_" + ID->getNameAsString(), 2281 "__OBJC,__cls_meth,regular,no_dead_strip", 2282 Methods); 2283 // cache is always NULL. 2284 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 2285 Values[ 9] = Protocols; 2286 // ivar_layout for metaclass is always NULL. 2287 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 2288 // The class extension is always unused for metaclasses. 2289 Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 2290 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 2291 Values); 2292 2293 std::string Name("\01L_OBJC_METACLASS_"); 2294 Name += ID->getNameAsCString(); 2295 2296 // Check for a forward reference. 2297 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 2298 if (GV) { 2299 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 2300 "Forward metaclass reference has incorrect type."); 2301 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 2302 GV->setInitializer(Init); 2303 } else { 2304 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 2305 llvm::GlobalValue::InternalLinkage, 2306 Init, Name); 2307 } 2308 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 2309 GV->setAlignment(4); 2310 CGM.AddUsedGlobal(GV); 2311 2312 return GV; 2313 } 2314 2315 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 2316 std::string Name = "\01L_OBJC_METACLASS_" + ID->getNameAsString(); 2317 2318 // FIXME: Should we look these up somewhere other than the module. Its a bit 2319 // silly since we only generate these while processing an implementation, so 2320 // exactly one pointer would work if know when we entered/exitted an 2321 // implementation block. 2322 2323 // Check for an existing forward reference. 2324 // Previously, metaclass with internal linkage may have been defined. 2325 // pass 'true' as 2nd argument so it is returned. 2326 if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, 2327 true)) { 2328 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 2329 "Forward metaclass reference has incorrect type."); 2330 return GV; 2331 } else { 2332 // Generate as an external reference to keep a consistent 2333 // module. This will be patched up when we emit the metaclass. 2334 return new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 2335 llvm::GlobalValue::ExternalLinkage, 2336 0, 2337 Name); 2338 } 2339 } 2340 2341 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 2342 std::string Name = "\01L_OBJC_CLASS_" + ID->getNameAsString(); 2343 2344 if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, 2345 true)) { 2346 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 2347 "Forward class metadata reference has incorrect type."); 2348 return GV; 2349 } else { 2350 return new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 2351 llvm::GlobalValue::ExternalLinkage, 2352 0, 2353 Name); 2354 } 2355 } 2356 2357 /* 2358 struct objc_class_ext { 2359 uint32_t size; 2360 const char *weak_ivar_layout; 2361 struct _objc_property_list *properties; 2362 }; 2363 */ 2364 llvm::Constant * 2365 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID) { 2366 uint64_t Size = 2367 CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 2368 2369 llvm::Constant *Values[3]; 2370 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 2371 Values[1] = BuildIvarLayout(ID, false); 2372 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 2373 ID, ID->getClassInterface(), ObjCTypes); 2374 2375 // Return null if no extension bits are used. 2376 if (Values[1]->isNullValue() && Values[2]->isNullValue()) 2377 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 2378 2379 llvm::Constant *Init = 2380 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 2381 return CreateMetadataVar("\01L_OBJC_CLASSEXT_" + ID->getName(), 2382 Init, "__OBJC,__class_ext,regular,no_dead_strip", 2383 4, true); 2384 } 2385 2386 /* 2387 struct objc_ivar { 2388 char *ivar_name; 2389 char *ivar_type; 2390 int ivar_offset; 2391 }; 2392 2393 struct objc_ivar_list { 2394 int ivar_count; 2395 struct objc_ivar list[count]; 2396 }; 2397 */ 2398 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 2399 bool ForClass) { 2400 std::vector<llvm::Constant*> Ivars, Ivar(3); 2401 2402 // When emitting the root class GCC emits ivar entries for the 2403 // actual class structure. It is not clear if we need to follow this 2404 // behavior; for now lets try and get away with not doing it. If so, 2405 // the cleanest solution would be to make up an ObjCInterfaceDecl 2406 // for the class. 2407 if (ForClass) 2408 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 2409 2410 ObjCInterfaceDecl *OID = 2411 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 2412 2413 for (ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 2414 IVD; IVD = IVD->getNextIvar()) { 2415 // Ignore unnamed bit-fields. 2416 if (!IVD->getDeclName()) 2417 continue; 2418 Ivar[0] = GetMethodVarName(IVD->getIdentifier()); 2419 Ivar[1] = GetMethodVarType(IVD); 2420 Ivar[2] = llvm::ConstantInt::get(ObjCTypes.IntTy, 2421 ComputeIvarBaseOffset(CGM, OID, IVD)); 2422 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 2423 } 2424 2425 // Return null for empty list. 2426 if (Ivars.empty()) 2427 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 2428 2429 llvm::Constant *Values[2]; 2430 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 2431 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 2432 Ivars.size()); 2433 Values[1] = llvm::ConstantArray::get(AT, Ivars); 2434 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2435 2436 llvm::GlobalVariable *GV; 2437 if (ForClass) 2438 GV = CreateMetadataVar("\01L_OBJC_CLASS_VARIABLES_" + ID->getName(), 2439 Init, "__OBJC,__class_vars,regular,no_dead_strip", 2440 4, true); 2441 else 2442 GV = CreateMetadataVar("\01L_OBJC_INSTANCE_VARIABLES_" + ID->getName(), 2443 Init, "__OBJC,__instance_vars,regular,no_dead_strip", 2444 4, true); 2445 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 2446 } 2447 2448 /* 2449 struct objc_method { 2450 SEL method_name; 2451 char *method_types; 2452 void *method; 2453 }; 2454 2455 struct objc_method_list { 2456 struct objc_method_list *obsolete; 2457 int count; 2458 struct objc_method methods_list[count]; 2459 }; 2460 */ 2461 2462 /// GetMethodConstant - Return a struct objc_method constant for the 2463 /// given method if it has been defined. The result is null if the 2464 /// method has not been defined. The return value has type MethodPtrTy. 2465 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 2466 llvm::Function *Fn = GetMethodDefinition(MD); 2467 if (!Fn) 2468 return 0; 2469 2470 std::vector<llvm::Constant*> Method(3); 2471 Method[0] = 2472 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 2473 ObjCTypes.SelectorPtrTy); 2474 Method[1] = GetMethodVarType(MD); 2475 Method[2] = llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy); 2476 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 2477 } 2478 2479 llvm::Constant *CGObjCMac::EmitMethodList(llvm::Twine Name, 2480 const char *Section, 2481 const ConstantVector &Methods) { 2482 // Return null for empty list. 2483 if (Methods.empty()) 2484 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 2485 2486 llvm::Constant *Values[3]; 2487 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 2488 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 2489 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 2490 Methods.size()); 2491 Values[2] = llvm::ConstantArray::get(AT, Methods); 2492 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2493 2494 llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true); 2495 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 2496 } 2497 2498 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 2499 const ObjCContainerDecl *CD) { 2500 llvm::SmallString<256> Name; 2501 GetNameForMethod(OMD, CD, Name); 2502 2503 CodeGenTypes &Types = CGM.getTypes(); 2504 llvm::FunctionType *MethodTy = 2505 Types.GetFunctionType(Types.getFunctionInfo(OMD), OMD->isVariadic()); 2506 llvm::Function *Method = 2507 llvm::Function::Create(MethodTy, 2508 llvm::GlobalValue::InternalLinkage, 2509 Name.str(), 2510 &CGM.getModule()); 2511 MethodDefinitions.insert(std::make_pair(OMD, Method)); 2512 2513 return Method; 2514 } 2515 2516 llvm::GlobalVariable * 2517 CGObjCCommonMac::CreateMetadataVar(llvm::Twine Name, 2518 llvm::Constant *Init, 2519 const char *Section, 2520 unsigned Align, 2521 bool AddToUsed) { 2522 llvm::Type *Ty = Init->getType(); 2523 llvm::GlobalVariable *GV = 2524 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 2525 llvm::GlobalValue::InternalLinkage, Init, Name); 2526 if (Section) 2527 GV->setSection(Section); 2528 if (Align) 2529 GV->setAlignment(Align); 2530 if (AddToUsed) 2531 CGM.AddUsedGlobal(GV); 2532 return GV; 2533 } 2534 2535 llvm::Function *CGObjCMac::ModuleInitFunction() { 2536 // Abuse this interface function as a place to finalize. 2537 FinishModule(); 2538 return NULL; 2539 } 2540 2541 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 2542 return ObjCTypes.getGetPropertyFn(); 2543 } 2544 2545 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 2546 return ObjCTypes.getSetPropertyFn(); 2547 } 2548 2549 llvm::Constant *CGObjCMac::GetGetStructFunction() { 2550 return ObjCTypes.getCopyStructFn(); 2551 } 2552 llvm::Constant *CGObjCMac::GetSetStructFunction() { 2553 return ObjCTypes.getCopyStructFn(); 2554 } 2555 2556 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 2557 return ObjCTypes.getEnumerationMutationFn(); 2558 } 2559 2560 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 2561 return EmitTryOrSynchronizedStmt(CGF, S); 2562 } 2563 2564 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 2565 const ObjCAtSynchronizedStmt &S) { 2566 return EmitTryOrSynchronizedStmt(CGF, S); 2567 } 2568 2569 namespace { 2570 struct PerformFragileFinally : EHScopeStack::Cleanup { 2571 const Stmt &S; 2572 llvm::Value *SyncArgSlot; 2573 llvm::Value *CallTryExitVar; 2574 llvm::Value *ExceptionData; 2575 ObjCTypesHelper &ObjCTypes; 2576 PerformFragileFinally(const Stmt *S, 2577 llvm::Value *SyncArgSlot, 2578 llvm::Value *CallTryExitVar, 2579 llvm::Value *ExceptionData, 2580 ObjCTypesHelper *ObjCTypes) 2581 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 2582 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 2583 2584 void Emit(CodeGenFunction &CGF, Flags flags) { 2585 // Check whether we need to call objc_exception_try_exit. 2586 // In optimized code, this branch will always be folded. 2587 llvm::BasicBlock *FinallyCallExit = 2588 CGF.createBasicBlock("finally.call_exit"); 2589 llvm::BasicBlock *FinallyNoCallExit = 2590 CGF.createBasicBlock("finally.no_call_exit"); 2591 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 2592 FinallyCallExit, FinallyNoCallExit); 2593 2594 CGF.EmitBlock(FinallyCallExit); 2595 CGF.Builder.CreateCall(ObjCTypes.getExceptionTryExitFn(), ExceptionData) 2596 ->setDoesNotThrow(); 2597 2598 CGF.EmitBlock(FinallyNoCallExit); 2599 2600 if (isa<ObjCAtTryStmt>(S)) { 2601 if (const ObjCAtFinallyStmt* FinallyStmt = 2602 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 2603 // Save the current cleanup destination in case there's 2604 // control flow inside the finally statement. 2605 llvm::Value *CurCleanupDest = 2606 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 2607 2608 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 2609 2610 if (CGF.HaveInsertPoint()) { 2611 CGF.Builder.CreateStore(CurCleanupDest, 2612 CGF.getNormalCleanupDestSlot()); 2613 } else { 2614 // Currently, the end of the cleanup must always exist. 2615 CGF.EnsureInsertPoint(); 2616 } 2617 } 2618 } else { 2619 // Emit objc_sync_exit(expr); as finally's sole statement for 2620 // @synchronized. 2621 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 2622 CGF.Builder.CreateCall(ObjCTypes.getSyncExitFn(), SyncArg) 2623 ->setDoesNotThrow(); 2624 } 2625 } 2626 }; 2627 2628 class FragileHazards { 2629 CodeGenFunction &CGF; 2630 llvm::SmallVector<llvm::Value*, 20> Locals; 2631 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 2632 2633 llvm::InlineAsm *ReadHazard; 2634 llvm::InlineAsm *WriteHazard; 2635 2636 llvm::FunctionType *GetAsmFnType(); 2637 2638 void collectLocals(); 2639 void emitReadHazard(CGBuilderTy &Builder); 2640 2641 public: 2642 FragileHazards(CodeGenFunction &CGF); 2643 2644 void emitWriteHazard(); 2645 void emitHazardsInNewBlocks(); 2646 }; 2647 } 2648 2649 /// Create the fragile-ABI read and write hazards based on the current 2650 /// state of the function, which is presumed to be immediately prior 2651 /// to a @try block. These hazards are used to maintain correct 2652 /// semantics in the face of optimization and the fragile ABI's 2653 /// cavalier use of setjmp/longjmp. 2654 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 2655 collectLocals(); 2656 2657 if (Locals.empty()) return; 2658 2659 // Collect all the blocks in the function. 2660 for (llvm::Function::iterator 2661 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 2662 BlocksBeforeTry.insert(&*I); 2663 2664 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 2665 2666 // Create a read hazard for the allocas. This inhibits dead-store 2667 // optimizations and forces the values to memory. This hazard is 2668 // inserted before any 'throwing' calls in the protected scope to 2669 // reflect the possibility that the variables might be read from the 2670 // catch block if the call throws. 2671 { 2672 std::string Constraint; 2673 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 2674 if (I) Constraint += ','; 2675 Constraint += "*m"; 2676 } 2677 2678 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 2679 } 2680 2681 // Create a write hazard for the allocas. This inhibits folding 2682 // loads across the hazard. This hazard is inserted at the 2683 // beginning of the catch path to reflect the possibility that the 2684 // variables might have been written within the protected scope. 2685 { 2686 std::string Constraint; 2687 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 2688 if (I) Constraint += ','; 2689 Constraint += "=*m"; 2690 } 2691 2692 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 2693 } 2694 } 2695 2696 /// Emit a write hazard at the current location. 2697 void FragileHazards::emitWriteHazard() { 2698 if (Locals.empty()) return; 2699 2700 CGF.Builder.CreateCall(WriteHazard, Locals)->setDoesNotThrow(); 2701 } 2702 2703 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 2704 assert(!Locals.empty()); 2705 Builder.CreateCall(ReadHazard, Locals)->setDoesNotThrow(); 2706 } 2707 2708 /// Emit read hazards in all the protected blocks, i.e. all the blocks 2709 /// which have been inserted since the beginning of the try. 2710 void FragileHazards::emitHazardsInNewBlocks() { 2711 if (Locals.empty()) return; 2712 2713 CGBuilderTy Builder(CGF.getLLVMContext()); 2714 2715 // Iterate through all blocks, skipping those prior to the try. 2716 for (llvm::Function::iterator 2717 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 2718 llvm::BasicBlock &BB = *FI; 2719 if (BlocksBeforeTry.count(&BB)) continue; 2720 2721 // Walk through all the calls in the block. 2722 for (llvm::BasicBlock::iterator 2723 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 2724 llvm::Instruction &I = *BI; 2725 2726 // Ignore instructions that aren't non-intrinsic calls. 2727 // These are the only calls that can possibly call longjmp. 2728 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 2729 if (isa<llvm::IntrinsicInst>(I)) 2730 continue; 2731 2732 // Ignore call sites marked nounwind. This may be questionable, 2733 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 2734 llvm::CallSite CS(&I); 2735 if (CS.doesNotThrow()) continue; 2736 2737 // Insert a read hazard before the call. This will ensure that 2738 // any writes to the locals are performed before making the 2739 // call. If the call throws, then this is sufficient to 2740 // guarantee correctness as long as it doesn't also write to any 2741 // locals. 2742 Builder.SetInsertPoint(&BB, BI); 2743 emitReadHazard(Builder); 2744 } 2745 } 2746 } 2747 2748 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 2749 if (V) S.insert(V); 2750 } 2751 2752 void FragileHazards::collectLocals() { 2753 // Compute a set of allocas to ignore. 2754 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 2755 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 2756 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 2757 addIfPresent(AllocasToIgnore, CGF.EHCleanupDest); 2758 2759 // Collect all the allocas currently in the function. This is 2760 // probably way too aggressive. 2761 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 2762 for (llvm::BasicBlock::iterator 2763 I = Entry.begin(), E = Entry.end(); I != E; ++I) 2764 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 2765 Locals.push_back(&*I); 2766 } 2767 2768 llvm::FunctionType *FragileHazards::GetAsmFnType() { 2769 llvm::SmallVector<llvm::Type *, 16> tys(Locals.size()); 2770 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 2771 tys[i] = Locals[i]->getType(); 2772 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 2773 } 2774 2775 /* 2776 2777 Objective-C setjmp-longjmp (sjlj) Exception Handling 2778 -- 2779 2780 A catch buffer is a setjmp buffer plus: 2781 - a pointer to the exception that was caught 2782 - a pointer to the previous exception data buffer 2783 - two pointers of reserved storage 2784 Therefore catch buffers form a stack, with a pointer to the top 2785 of the stack kept in thread-local storage. 2786 2787 objc_exception_try_enter pushes a catch buffer onto the EH stack. 2788 objc_exception_try_exit pops the given catch buffer, which is 2789 required to be the top of the EH stack. 2790 objc_exception_throw pops the top of the EH stack, writes the 2791 thrown exception into the appropriate field, and longjmps 2792 to the setjmp buffer. It crashes the process (with a printf 2793 and an abort()) if there are no catch buffers on the stack. 2794 objc_exception_extract just reads the exception pointer out of the 2795 catch buffer. 2796 2797 There's no reason an implementation couldn't use a light-weight 2798 setjmp here --- something like __builtin_setjmp, but API-compatible 2799 with the heavyweight setjmp. This will be more important if we ever 2800 want to implement correct ObjC/C++ exception interactions for the 2801 fragile ABI. 2802 2803 Note that for this use of setjmp/longjmp to be correct, we may need 2804 to mark some local variables volatile: if a non-volatile local 2805 variable is modified between the setjmp and the longjmp, it has 2806 indeterminate value. For the purposes of LLVM IR, it may be 2807 sufficient to make loads and stores within the @try (to variables 2808 declared outside the @try) volatile. This is necessary for 2809 optimized correctness, but is not currently being done; this is 2810 being tracked as rdar://problem/8160285 2811 2812 The basic framework for a @try-catch-finally is as follows: 2813 { 2814 objc_exception_data d; 2815 id _rethrow = null; 2816 bool _call_try_exit = true; 2817 2818 objc_exception_try_enter(&d); 2819 if (!setjmp(d.jmp_buf)) { 2820 ... try body ... 2821 } else { 2822 // exception path 2823 id _caught = objc_exception_extract(&d); 2824 2825 // enter new try scope for handlers 2826 if (!setjmp(d.jmp_buf)) { 2827 ... match exception and execute catch blocks ... 2828 2829 // fell off end, rethrow. 2830 _rethrow = _caught; 2831 ... jump-through-finally to finally_rethrow ... 2832 } else { 2833 // exception in catch block 2834 _rethrow = objc_exception_extract(&d); 2835 _call_try_exit = false; 2836 ... jump-through-finally to finally_rethrow ... 2837 } 2838 } 2839 ... jump-through-finally to finally_end ... 2840 2841 finally: 2842 if (_call_try_exit) 2843 objc_exception_try_exit(&d); 2844 2845 ... finally block .... 2846 ... dispatch to finally destination ... 2847 2848 finally_rethrow: 2849 objc_exception_throw(_rethrow); 2850 2851 finally_end: 2852 } 2853 2854 This framework differs slightly from the one gcc uses, in that gcc 2855 uses _rethrow to determine if objc_exception_try_exit should be called 2856 and if the object should be rethrown. This breaks in the face of 2857 throwing nil and introduces unnecessary branches. 2858 2859 We specialize this framework for a few particular circumstances: 2860 2861 - If there are no catch blocks, then we avoid emitting the second 2862 exception handling context. 2863 2864 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 2865 e)) we avoid emitting the code to rethrow an uncaught exception. 2866 2867 - FIXME: If there is no @finally block we can do a few more 2868 simplifications. 2869 2870 Rethrows and Jumps-Through-Finally 2871 -- 2872 2873 '@throw;' is supported by pushing the currently-caught exception 2874 onto ObjCEHStack while the @catch blocks are emitted. 2875 2876 Branches through the @finally block are handled with an ordinary 2877 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 2878 exceptions are not compatible with C++ exceptions, and this is 2879 hardly the only place where this will go wrong. 2880 2881 @synchronized(expr) { stmt; } is emitted as if it were: 2882 id synch_value = expr; 2883 objc_sync_enter(synch_value); 2884 @try { stmt; } @finally { objc_sync_exit(synch_value); } 2885 */ 2886 2887 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 2888 const Stmt &S) { 2889 bool isTry = isa<ObjCAtTryStmt>(S); 2890 2891 // A destination for the fall-through edges of the catch handlers to 2892 // jump to. 2893 CodeGenFunction::JumpDest FinallyEnd = 2894 CGF.getJumpDestInCurrentScope("finally.end"); 2895 2896 // A destination for the rethrow edge of the catch handlers to jump 2897 // to. 2898 CodeGenFunction::JumpDest FinallyRethrow = 2899 CGF.getJumpDestInCurrentScope("finally.rethrow"); 2900 2901 // For @synchronized, call objc_sync_enter(sync.expr). The 2902 // evaluation of the expression must occur before we enter the 2903 // @synchronized. We can't avoid a temp here because we need the 2904 // value to be preserved. If the backend ever does liveness 2905 // correctly after setjmp, this will be unnecessary. 2906 llvm::Value *SyncArgSlot = 0; 2907 if (!isTry) { 2908 llvm::Value *SyncArg = 2909 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 2910 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 2911 CGF.Builder.CreateCall(ObjCTypes.getSyncEnterFn(), SyncArg) 2912 ->setDoesNotThrow(); 2913 2914 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), "sync.arg"); 2915 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 2916 } 2917 2918 // Allocate memory for the setjmp buffer. This needs to be kept 2919 // live throughout the try and catch blocks. 2920 llvm::Value *ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 2921 "exceptiondata.ptr"); 2922 2923 // Create the fragile hazards. Note that this will not capture any 2924 // of the allocas required for exception processing, but will 2925 // capture the current basic block (which extends all the way to the 2926 // setjmp call) as "before the @try". 2927 FragileHazards Hazards(CGF); 2928 2929 // Create a flag indicating whether the cleanup needs to call 2930 // objc_exception_try_exit. This is true except when 2931 // - no catches match and we're branching through the cleanup 2932 // just to rethrow the exception, or 2933 // - a catch matched and we're falling out of the catch handler. 2934 // The setjmp-safety rule here is that we should always store to this 2935 // variable in a place that dominates the branch through the cleanup 2936 // without passing through any setjmps. 2937 llvm::Value *CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 2938 "_call_try_exit"); 2939 2940 // A slot containing the exception to rethrow. Only needed when we 2941 // have both a @catch and a @finally. 2942 llvm::Value *PropagatingExnVar = 0; 2943 2944 // Push a normal cleanup to leave the try scope. 2945 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalCleanup, &S, 2946 SyncArgSlot, 2947 CallTryExitVar, 2948 ExceptionData, 2949 &ObjCTypes); 2950 2951 // Enter a try block: 2952 // - Call objc_exception_try_enter to push ExceptionData on top of 2953 // the EH stack. 2954 CGF.Builder.CreateCall(ObjCTypes.getExceptionTryEnterFn(), ExceptionData) 2955 ->setDoesNotThrow(); 2956 2957 // - Call setjmp on the exception data buffer. 2958 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 2959 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 2960 llvm::Value *SetJmpBuffer = 2961 CGF.Builder.CreateGEP(ExceptionData, GEPIndexes, GEPIndexes+3, "setjmp_buffer"); 2962 llvm::CallInst *SetJmpResult = 2963 CGF.Builder.CreateCall(ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 2964 SetJmpResult->setDoesNotThrow(); 2965 2966 // If setjmp returned 0, enter the protected block; otherwise, 2967 // branch to the handler. 2968 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 2969 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 2970 llvm::Value *DidCatch = 2971 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 2972 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 2973 2974 // Emit the protected block. 2975 CGF.EmitBlock(TryBlock); 2976 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 2977 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 2978 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 2979 2980 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 2981 2982 // Emit the exception handler block. 2983 CGF.EmitBlock(TryHandler); 2984 2985 // Don't optimize loads of the in-scope locals across this point. 2986 Hazards.emitWriteHazard(); 2987 2988 // For a @synchronized (or a @try with no catches), just branch 2989 // through the cleanup to the rethrow block. 2990 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 2991 // Tell the cleanup not to re-pop the exit. 2992 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 2993 CGF.EmitBranchThroughCleanup(FinallyRethrow); 2994 2995 // Otherwise, we have to match against the caught exceptions. 2996 } else { 2997 // Retrieve the exception object. We may emit multiple blocks but 2998 // nothing can cross this so the value is already in SSA form. 2999 llvm::CallInst *Caught = 3000 CGF.Builder.CreateCall(ObjCTypes.getExceptionExtractFn(), 3001 ExceptionData, "caught"); 3002 Caught->setDoesNotThrow(); 3003 3004 // Push the exception to rethrow onto the EH value stack for the 3005 // benefit of any @throws in the handlers. 3006 CGF.ObjCEHValueStack.push_back(Caught); 3007 3008 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 3009 3010 bool HasFinally = (AtTryStmt->getFinallyStmt() != 0); 3011 3012 llvm::BasicBlock *CatchBlock = 0; 3013 llvm::BasicBlock *CatchHandler = 0; 3014 if (HasFinally) { 3015 // Save the currently-propagating exception before 3016 // objc_exception_try_enter clears the exception slot. 3017 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 3018 "propagating_exception"); 3019 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 3020 3021 // Enter a new exception try block (in case a @catch block 3022 // throws an exception). 3023 CGF.Builder.CreateCall(ObjCTypes.getExceptionTryEnterFn(), ExceptionData) 3024 ->setDoesNotThrow(); 3025 3026 llvm::CallInst *SetJmpResult = 3027 CGF.Builder.CreateCall(ObjCTypes.getSetJmpFn(), SetJmpBuffer, 3028 "setjmp.result"); 3029 SetJmpResult->setDoesNotThrow(); 3030 3031 llvm::Value *Threw = 3032 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 3033 3034 CatchBlock = CGF.createBasicBlock("catch"); 3035 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 3036 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 3037 3038 CGF.EmitBlock(CatchBlock); 3039 } 3040 3041 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 3042 3043 // Handle catch list. As a special case we check if everything is 3044 // matched and avoid generating code for falling off the end if 3045 // so. 3046 bool AllMatched = false; 3047 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 3048 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 3049 3050 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 3051 const ObjCObjectPointerType *OPT = 0; 3052 3053 // catch(...) always matches. 3054 if (!CatchParam) { 3055 AllMatched = true; 3056 } else { 3057 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 3058 3059 // catch(id e) always matches under this ABI, since only 3060 // ObjC exceptions end up here in the first place. 3061 // FIXME: For the time being we also match id<X>; this should 3062 // be rejected by Sema instead. 3063 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 3064 AllMatched = true; 3065 } 3066 3067 // If this is a catch-all, we don't need to test anything. 3068 if (AllMatched) { 3069 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 3070 3071 if (CatchParam) { 3072 CGF.EmitAutoVarDecl(*CatchParam); 3073 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 3074 3075 // These types work out because ConvertType(id) == i8*. 3076 CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(CatchParam)); 3077 } 3078 3079 CGF.EmitStmt(CatchStmt->getCatchBody()); 3080 3081 // The scope of the catch variable ends right here. 3082 CatchVarCleanups.ForceCleanup(); 3083 3084 CGF.EmitBranchThroughCleanup(FinallyEnd); 3085 break; 3086 } 3087 3088 assert(OPT && "Unexpected non-object pointer type in @catch"); 3089 const ObjCObjectType *ObjTy = OPT->getObjectType(); 3090 3091 // FIXME: @catch (Class c) ? 3092 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 3093 assert(IDecl && "Catch parameter must have Objective-C type!"); 3094 3095 // Check if the @catch block matches the exception object. 3096 llvm::Value *Class = EmitClassRef(CGF.Builder, IDecl); 3097 3098 llvm::CallInst *Match = 3099 CGF.Builder.CreateCall2(ObjCTypes.getExceptionMatchFn(), 3100 Class, Caught, "match"); 3101 Match->setDoesNotThrow(); 3102 3103 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 3104 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 3105 3106 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 3107 MatchedBlock, NextCatchBlock); 3108 3109 // Emit the @catch block. 3110 CGF.EmitBlock(MatchedBlock); 3111 3112 // Collect any cleanups for the catch variable. The scope lasts until 3113 // the end of the catch body. 3114 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 3115 3116 CGF.EmitAutoVarDecl(*CatchParam); 3117 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 3118 3119 // Initialize the catch variable. 3120 llvm::Value *Tmp = 3121 CGF.Builder.CreateBitCast(Caught, 3122 CGF.ConvertType(CatchParam->getType()), 3123 "tmp"); 3124 CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(CatchParam)); 3125 3126 CGF.EmitStmt(CatchStmt->getCatchBody()); 3127 3128 // We're done with the catch variable. 3129 CatchVarCleanups.ForceCleanup(); 3130 3131 CGF.EmitBranchThroughCleanup(FinallyEnd); 3132 3133 CGF.EmitBlock(NextCatchBlock); 3134 } 3135 3136 CGF.ObjCEHValueStack.pop_back(); 3137 3138 // If nothing wanted anything to do with the caught exception, 3139 // kill the extract call. 3140 if (Caught->use_empty()) 3141 Caught->eraseFromParent(); 3142 3143 if (!AllMatched) 3144 CGF.EmitBranchThroughCleanup(FinallyRethrow); 3145 3146 if (HasFinally) { 3147 // Emit the exception handler for the @catch blocks. 3148 CGF.EmitBlock(CatchHandler); 3149 3150 // In theory we might now need a write hazard, but actually it's 3151 // unnecessary because there's no local-accessing code between 3152 // the try's write hazard and here. 3153 //Hazards.emitWriteHazard(); 3154 3155 // Extract the new exception and save it to the 3156 // propagating-exception slot. 3157 assert(PropagatingExnVar); 3158 llvm::CallInst *NewCaught = 3159 CGF.Builder.CreateCall(ObjCTypes.getExceptionExtractFn(), 3160 ExceptionData, "caught"); 3161 NewCaught->setDoesNotThrow(); 3162 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 3163 3164 // Don't pop the catch handler; the throw already did. 3165 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 3166 CGF.EmitBranchThroughCleanup(FinallyRethrow); 3167 } 3168 } 3169 3170 // Insert read hazards as required in the new blocks. 3171 Hazards.emitHazardsInNewBlocks(); 3172 3173 // Pop the cleanup. 3174 CGF.Builder.restoreIP(TryFallthroughIP); 3175 if (CGF.HaveInsertPoint()) 3176 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 3177 CGF.PopCleanupBlock(); 3178 CGF.EmitBlock(FinallyEnd.getBlock(), true); 3179 3180 // Emit the rethrow block. 3181 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 3182 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 3183 if (CGF.HaveInsertPoint()) { 3184 // If we have a propagating-exception variable, check it. 3185 llvm::Value *PropagatingExn; 3186 if (PropagatingExnVar) { 3187 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 3188 3189 // Otherwise, just look in the buffer for the exception to throw. 3190 } else { 3191 llvm::CallInst *Caught = 3192 CGF.Builder.CreateCall(ObjCTypes.getExceptionExtractFn(), 3193 ExceptionData); 3194 Caught->setDoesNotThrow(); 3195 PropagatingExn = Caught; 3196 } 3197 3198 CGF.Builder.CreateCall(ObjCTypes.getExceptionThrowFn(), PropagatingExn) 3199 ->setDoesNotThrow(); 3200 CGF.Builder.CreateUnreachable(); 3201 } 3202 3203 CGF.Builder.restoreIP(SavedIP); 3204 } 3205 3206 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 3207 const ObjCAtThrowStmt &S) { 3208 llvm::Value *ExceptionAsObject; 3209 3210 if (const Expr *ThrowExpr = S.getThrowExpr()) { 3211 llvm::Value *Exception = CGF.EmitScalarExpr(ThrowExpr); 3212 ExceptionAsObject = 3213 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy, "tmp"); 3214 } else { 3215 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 3216 "Unexpected rethrow outside @catch block."); 3217 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 3218 } 3219 3220 CGF.Builder.CreateCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 3221 ->setDoesNotReturn(); 3222 CGF.Builder.CreateUnreachable(); 3223 3224 // Clear the insertion point to indicate we are in unreachable code. 3225 CGF.Builder.ClearInsertionPoint(); 3226 } 3227 3228 /// EmitObjCWeakRead - Code gen for loading value of a __weak 3229 /// object: objc_read_weak (id *src) 3230 /// 3231 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 3232 llvm::Value *AddrWeakObj) { 3233 llvm::Type* DestTy = 3234 cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType(); 3235 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 3236 ObjCTypes.PtrObjectPtrTy); 3237 llvm::Value *read_weak = CGF.Builder.CreateCall(ObjCTypes.getGcReadWeakFn(), 3238 AddrWeakObj, "weakread"); 3239 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 3240 return read_weak; 3241 } 3242 3243 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 3244 /// objc_assign_weak (id src, id *dst) 3245 /// 3246 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 3247 llvm::Value *src, llvm::Value *dst) { 3248 llvm::Type * SrcTy = src->getType(); 3249 if (!isa<llvm::PointerType>(SrcTy)) { 3250 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 3251 assert(Size <= 8 && "does not support size > 8"); 3252 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 3253 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 3254 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 3255 } 3256 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 3257 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 3258 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignWeakFn(), 3259 src, dst, "weakassign"); 3260 return; 3261 } 3262 3263 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 3264 /// objc_assign_global (id src, id *dst) 3265 /// 3266 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 3267 llvm::Value *src, llvm::Value *dst, 3268 bool threadlocal) { 3269 llvm::Type * SrcTy = src->getType(); 3270 if (!isa<llvm::PointerType>(SrcTy)) { 3271 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 3272 assert(Size <= 8 && "does not support size > 8"); 3273 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 3274 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 3275 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 3276 } 3277 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 3278 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 3279 if (!threadlocal) 3280 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignGlobalFn(), 3281 src, dst, "globalassign"); 3282 else 3283 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignThreadLocalFn(), 3284 src, dst, "threadlocalassign"); 3285 return; 3286 } 3287 3288 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 3289 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 3290 /// 3291 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 3292 llvm::Value *src, llvm::Value *dst, 3293 llvm::Value *ivarOffset) { 3294 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 3295 llvm::Type * SrcTy = src->getType(); 3296 if (!isa<llvm::PointerType>(SrcTy)) { 3297 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 3298 assert(Size <= 8 && "does not support size > 8"); 3299 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 3300 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 3301 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 3302 } 3303 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 3304 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 3305 CGF.Builder.CreateCall3(ObjCTypes.getGcAssignIvarFn(), 3306 src, dst, ivarOffset); 3307 return; 3308 } 3309 3310 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 3311 /// objc_assign_strongCast (id src, id *dst) 3312 /// 3313 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 3314 llvm::Value *src, llvm::Value *dst) { 3315 llvm::Type * SrcTy = src->getType(); 3316 if (!isa<llvm::PointerType>(SrcTy)) { 3317 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 3318 assert(Size <= 8 && "does not support size > 8"); 3319 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 3320 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 3321 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 3322 } 3323 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 3324 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 3325 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignStrongCastFn(), 3326 src, dst, "weakassign"); 3327 return; 3328 } 3329 3330 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 3331 llvm::Value *DestPtr, 3332 llvm::Value *SrcPtr, 3333 llvm::Value *size) { 3334 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 3335 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 3336 CGF.Builder.CreateCall3(ObjCTypes.GcMemmoveCollectableFn(), 3337 DestPtr, SrcPtr, size); 3338 return; 3339 } 3340 3341 /// EmitObjCValueForIvar - Code Gen for ivar reference. 3342 /// 3343 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 3344 QualType ObjectTy, 3345 llvm::Value *BaseValue, 3346 const ObjCIvarDecl *Ivar, 3347 unsigned CVRQualifiers) { 3348 const ObjCInterfaceDecl *ID = 3349 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 3350 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 3351 EmitIvarOffset(CGF, ID, Ivar)); 3352 } 3353 3354 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 3355 const ObjCInterfaceDecl *Interface, 3356 const ObjCIvarDecl *Ivar) { 3357 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 3358 return llvm::ConstantInt::get( 3359 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 3360 Offset); 3361 } 3362 3363 /* *** Private Interface *** */ 3364 3365 /// EmitImageInfo - Emit the image info marker used to encode some module 3366 /// level information. 3367 /// 3368 /// See: <rdr://4810609&4810587&4810587> 3369 /// struct IMAGE_INFO { 3370 /// unsigned version; 3371 /// unsigned flags; 3372 /// }; 3373 enum ImageInfoFlags { 3374 eImageInfo_FixAndContinue = (1 << 0), 3375 eImageInfo_GarbageCollected = (1 << 1), 3376 eImageInfo_GCOnly = (1 << 2), 3377 eImageInfo_OptimizedByDyld = (1 << 3), // FIXME: When is this set. 3378 3379 // A flag indicating that the module has no instances of a @synthesize of a 3380 // superclass variable. <rdar://problem/6803242> 3381 eImageInfo_CorrectedSynthesize = (1 << 4) 3382 }; 3383 3384 void CGObjCCommonMac::EmitImageInfo() { 3385 unsigned version = 0; // Version is unused? 3386 unsigned flags = 0; 3387 3388 // FIXME: Fix and continue? 3389 if (CGM.getLangOptions().getGCMode() != LangOptions::NonGC) 3390 flags |= eImageInfo_GarbageCollected; 3391 if (CGM.getLangOptions().getGCMode() == LangOptions::GCOnly) 3392 flags |= eImageInfo_GCOnly; 3393 3394 // We never allow @synthesize of a superclass property. 3395 flags |= eImageInfo_CorrectedSynthesize; 3396 3397 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 3398 3399 // Emitted as int[2]; 3400 llvm::Constant *values[2] = { 3401 llvm::ConstantInt::get(Int32Ty, version), 3402 llvm::ConstantInt::get(Int32Ty, flags) 3403 }; 3404 llvm::ArrayType *AT = llvm::ArrayType::get(Int32Ty, 2); 3405 3406 const char *Section; 3407 if (ObjCABI == 1) 3408 Section = "__OBJC, __image_info,regular"; 3409 else 3410 Section = "__DATA, __objc_imageinfo, regular, no_dead_strip"; 3411 llvm::GlobalVariable *GV = 3412 CreateMetadataVar("\01L_OBJC_IMAGE_INFO", 3413 llvm::ConstantArray::get(AT, values), 3414 Section, 3415 0, 3416 true); 3417 GV->setConstant(true); 3418 } 3419 3420 3421 // struct objc_module { 3422 // unsigned long version; 3423 // unsigned long size; 3424 // const char *name; 3425 // Symtab symtab; 3426 // }; 3427 3428 // FIXME: Get from somewhere 3429 static const int ModuleVersion = 7; 3430 3431 void CGObjCMac::EmitModuleInfo() { 3432 uint64_t Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.ModuleTy); 3433 3434 std::vector<llvm::Constant*> Values(4); 3435 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion); 3436 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3437 // This used to be the filename, now it is unused. <rdr://4327263> 3438 Values[2] = GetClassName(&CGM.getContext().Idents.get("")); 3439 Values[3] = EmitModuleSymbols(); 3440 CreateMetadataVar("\01L_OBJC_MODULES", 3441 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 3442 "__OBJC,__module_info,regular,no_dead_strip", 3443 4, true); 3444 } 3445 3446 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 3447 unsigned NumClasses = DefinedClasses.size(); 3448 unsigned NumCategories = DefinedCategories.size(); 3449 3450 // Return null if no symbols were defined. 3451 if (!NumClasses && !NumCategories) 3452 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 3453 3454 llvm::Constant *Values[5]; 3455 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3456 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 3457 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 3458 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 3459 3460 // The runtime expects exactly the list of defined classes followed 3461 // by the list of defined categories, in a single array. 3462 std::vector<llvm::Constant*> Symbols(NumClasses + NumCategories); 3463 for (unsigned i=0; i<NumClasses; i++) 3464 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 3465 ObjCTypes.Int8PtrTy); 3466 for (unsigned i=0; i<NumCategories; i++) 3467 Symbols[NumClasses + i] = 3468 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 3469 ObjCTypes.Int8PtrTy); 3470 3471 Values[4] = 3472 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3473 NumClasses + NumCategories), 3474 Symbols); 3475 3476 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3477 3478 llvm::GlobalVariable *GV = 3479 CreateMetadataVar("\01L_OBJC_SYMBOLS", Init, 3480 "__OBJC,__symbols,regular,no_dead_strip", 3481 4, true); 3482 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 3483 } 3484 3485 llvm::Value *CGObjCMac::EmitClassRefFromId(CGBuilderTy &Builder, 3486 IdentifierInfo *II) { 3487 LazySymbols.insert(II); 3488 3489 llvm::GlobalVariable *&Entry = ClassReferences[II]; 3490 3491 if (!Entry) { 3492 llvm::Constant *Casted = 3493 llvm::ConstantExpr::getBitCast(GetClassName(II), 3494 ObjCTypes.ClassPtrTy); 3495 Entry = 3496 CreateMetadataVar("\01L_OBJC_CLASS_REFERENCES_", Casted, 3497 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 3498 4, true); 3499 } 3500 3501 return Builder.CreateLoad(Entry, "tmp"); 3502 } 3503 3504 llvm::Value *CGObjCMac::EmitClassRef(CGBuilderTy &Builder, 3505 const ObjCInterfaceDecl *ID) { 3506 return EmitClassRefFromId(Builder, ID->getIdentifier()); 3507 } 3508 3509 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder) { 3510 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 3511 return EmitClassRefFromId(Builder, II); 3512 } 3513 3514 llvm::Value *CGObjCMac::EmitSelector(CGBuilderTy &Builder, Selector Sel, 3515 bool lvalue) { 3516 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 3517 3518 if (!Entry) { 3519 llvm::Constant *Casted = 3520 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 3521 ObjCTypes.SelectorPtrTy); 3522 Entry = 3523 CreateMetadataVar("\01L_OBJC_SELECTOR_REFERENCES_", Casted, 3524 "__OBJC,__message_refs,literal_pointers,no_dead_strip", 3525 4, true); 3526 } 3527 3528 if (lvalue) 3529 return Entry; 3530 return Builder.CreateLoad(Entry, "tmp"); 3531 } 3532 3533 llvm::Constant *CGObjCCommonMac::GetClassName(IdentifierInfo *Ident) { 3534 llvm::GlobalVariable *&Entry = ClassNames[Ident]; 3535 3536 if (!Entry) 3537 Entry = CreateMetadataVar("\01L_OBJC_CLASS_NAME_", 3538 llvm::ConstantArray::get(VMContext, 3539 Ident->getNameStart()), 3540 ((ObjCABI == 2) ? 3541 "__TEXT,__objc_classname,cstring_literals" : 3542 "__TEXT,__cstring,cstring_literals"), 3543 1, true); 3544 3545 return getConstantGEP(VMContext, Entry, 0, 0); 3546 } 3547 3548 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 3549 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 3550 I = MethodDefinitions.find(MD); 3551 if (I != MethodDefinitions.end()) 3552 return I->second; 3553 3554 if (MD->hasBody() && MD->getPCHLevel() > 0) { 3555 // MD isn't emitted yet because it comes from PCH. 3556 CGM.EmitTopLevelDecl(const_cast<ObjCMethodDecl*>(MD)); 3557 assert(MethodDefinitions[MD] && "EmitTopLevelDecl didn't emit the method!"); 3558 return MethodDefinitions[MD]; 3559 } 3560 3561 return NULL; 3562 } 3563 3564 /// GetIvarLayoutName - Returns a unique constant for the given 3565 /// ivar layout bitmap. 3566 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 3567 const ObjCCommonTypesHelper &ObjCTypes) { 3568 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3569 } 3570 3571 void CGObjCCommonMac::BuildAggrIvarRecordLayout(const RecordType *RT, 3572 unsigned int BytePos, 3573 bool ForStrongLayout, 3574 bool &HasUnion) { 3575 const RecordDecl *RD = RT->getDecl(); 3576 // FIXME - Use iterator. 3577 llvm::SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end()); 3578 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 3579 const llvm::StructLayout *RecLayout = 3580 CGM.getTargetData().getStructLayout(cast<llvm::StructType>(Ty)); 3581 3582 BuildAggrIvarLayout(0, RecLayout, RD, Fields, BytePos, 3583 ForStrongLayout, HasUnion); 3584 } 3585 3586 void CGObjCCommonMac::BuildAggrIvarLayout(const ObjCImplementationDecl *OI, 3587 const llvm::StructLayout *Layout, 3588 const RecordDecl *RD, 3589 const llvm::SmallVectorImpl<FieldDecl*> &RecFields, 3590 unsigned int BytePos, bool ForStrongLayout, 3591 bool &HasUnion) { 3592 bool IsUnion = (RD && RD->isUnion()); 3593 uint64_t MaxUnionIvarSize = 0; 3594 uint64_t MaxSkippedUnionIvarSize = 0; 3595 FieldDecl *MaxField = 0; 3596 FieldDecl *MaxSkippedField = 0; 3597 FieldDecl *LastFieldBitfieldOrUnnamed = 0; 3598 uint64_t MaxFieldOffset = 0; 3599 uint64_t MaxSkippedFieldOffset = 0; 3600 uint64_t LastBitfieldOrUnnamedOffset = 0; 3601 uint64_t FirstFieldDelta = 0; 3602 3603 if (RecFields.empty()) 3604 return; 3605 unsigned WordSizeInBits = CGM.getContext().Target.getPointerWidth(0); 3606 unsigned ByteSizeInBits = CGM.getContext().Target.getCharWidth(); 3607 if (!RD && CGM.getLangOptions().ObjCAutoRefCount) { 3608 FieldDecl *FirstField = RecFields[0]; 3609 FirstFieldDelta = 3610 ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(FirstField)); 3611 } 3612 3613 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 3614 FieldDecl *Field = RecFields[i]; 3615 uint64_t FieldOffset; 3616 if (RD) { 3617 // Note that 'i' here is actually the field index inside RD of Field, 3618 // although this dependency is hidden. 3619 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 3620 FieldOffset = (RL.getFieldOffset(i) / ByteSizeInBits) - FirstFieldDelta; 3621 } else 3622 FieldOffset = 3623 ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(Field)) - FirstFieldDelta; 3624 3625 // Skip over unnamed or bitfields 3626 if (!Field->getIdentifier() || Field->isBitField()) { 3627 LastFieldBitfieldOrUnnamed = Field; 3628 LastBitfieldOrUnnamedOffset = FieldOffset; 3629 continue; 3630 } 3631 3632 LastFieldBitfieldOrUnnamed = 0; 3633 QualType FQT = Field->getType(); 3634 if (FQT->isRecordType() || FQT->isUnionType()) { 3635 if (FQT->isUnionType()) 3636 HasUnion = true; 3637 3638 BuildAggrIvarRecordLayout(FQT->getAs<RecordType>(), 3639 BytePos + FieldOffset, 3640 ForStrongLayout, HasUnion); 3641 continue; 3642 } 3643 3644 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 3645 const ConstantArrayType *CArray = 3646 dyn_cast_or_null<ConstantArrayType>(Array); 3647 uint64_t ElCount = CArray->getSize().getZExtValue(); 3648 assert(CArray && "only array with known element size is supported"); 3649 FQT = CArray->getElementType(); 3650 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 3651 const ConstantArrayType *CArray = 3652 dyn_cast_or_null<ConstantArrayType>(Array); 3653 ElCount *= CArray->getSize().getZExtValue(); 3654 FQT = CArray->getElementType(); 3655 } 3656 3657 assert(!FQT->isUnionType() && 3658 "layout for array of unions not supported"); 3659 if (FQT->isRecordType() && ElCount) { 3660 int OldIndex = IvarsInfo.size() - 1; 3661 int OldSkIndex = SkipIvars.size() -1; 3662 3663 const RecordType *RT = FQT->getAs<RecordType>(); 3664 BuildAggrIvarRecordLayout(RT, BytePos + FieldOffset, 3665 ForStrongLayout, HasUnion); 3666 3667 // Replicate layout information for each array element. Note that 3668 // one element is already done. 3669 uint64_t ElIx = 1; 3670 for (int FirstIndex = IvarsInfo.size() - 1, 3671 FirstSkIndex = SkipIvars.size() - 1 ;ElIx < ElCount; ElIx++) { 3672 uint64_t Size = CGM.getContext().getTypeSize(RT)/ByteSizeInBits; 3673 for (int i = OldIndex+1; i <= FirstIndex; ++i) 3674 IvarsInfo.push_back(GC_IVAR(IvarsInfo[i].ivar_bytepos + Size*ElIx, 3675 IvarsInfo[i].ivar_size)); 3676 for (int i = OldSkIndex+1; i <= FirstSkIndex; ++i) 3677 SkipIvars.push_back(GC_IVAR(SkipIvars[i].ivar_bytepos + Size*ElIx, 3678 SkipIvars[i].ivar_size)); 3679 } 3680 continue; 3681 } 3682 } 3683 // At this point, we are done with Record/Union and array there of. 3684 // For other arrays we are down to its element type. 3685 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), FQT); 3686 3687 unsigned FieldSize = CGM.getContext().getTypeSize(Field->getType()); 3688 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 3689 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 3690 if (IsUnion) { 3691 uint64_t UnionIvarSize = FieldSize / WordSizeInBits; 3692 if (UnionIvarSize > MaxUnionIvarSize) { 3693 MaxUnionIvarSize = UnionIvarSize; 3694 MaxField = Field; 3695 MaxFieldOffset = FieldOffset; 3696 } 3697 } else { 3698 IvarsInfo.push_back(GC_IVAR(BytePos + FieldOffset, 3699 FieldSize / WordSizeInBits)); 3700 } 3701 } else if ((ForStrongLayout && 3702 (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak)) 3703 || (!ForStrongLayout && GCAttr != Qualifiers::Weak)) { 3704 if (IsUnion) { 3705 // FIXME: Why the asymmetry? We divide by word size in bits on other 3706 // side. 3707 uint64_t UnionIvarSize = FieldSize; 3708 if (UnionIvarSize > MaxSkippedUnionIvarSize) { 3709 MaxSkippedUnionIvarSize = UnionIvarSize; 3710 MaxSkippedField = Field; 3711 MaxSkippedFieldOffset = FieldOffset; 3712 } 3713 } else { 3714 // FIXME: Why the asymmetry, we divide by byte size in bits here? 3715 SkipIvars.push_back(GC_IVAR(BytePos + FieldOffset, 3716 FieldSize / ByteSizeInBits)); 3717 } 3718 } 3719 } 3720 3721 if (LastFieldBitfieldOrUnnamed) { 3722 if (LastFieldBitfieldOrUnnamed->isBitField()) { 3723 // Last field was a bitfield. Must update skip info. 3724 Expr *BitWidth = LastFieldBitfieldOrUnnamed->getBitWidth(); 3725 uint64_t BitFieldSize = 3726 BitWidth->EvaluateAsInt(CGM.getContext()).getZExtValue(); 3727 GC_IVAR skivar; 3728 skivar.ivar_bytepos = BytePos + LastBitfieldOrUnnamedOffset; 3729 skivar.ivar_size = (BitFieldSize / ByteSizeInBits) 3730 + ((BitFieldSize % ByteSizeInBits) != 0); 3731 SkipIvars.push_back(skivar); 3732 } else { 3733 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 3734 // Last field was unnamed. Must update skip info. 3735 unsigned FieldSize 3736 = CGM.getContext().getTypeSize(LastFieldBitfieldOrUnnamed->getType()); 3737 SkipIvars.push_back(GC_IVAR(BytePos + LastBitfieldOrUnnamedOffset, 3738 FieldSize / ByteSizeInBits)); 3739 } 3740 } 3741 3742 if (MaxField) 3743 IvarsInfo.push_back(GC_IVAR(BytePos + MaxFieldOffset, 3744 MaxUnionIvarSize)); 3745 if (MaxSkippedField) 3746 SkipIvars.push_back(GC_IVAR(BytePos + MaxSkippedFieldOffset, 3747 MaxSkippedUnionIvarSize)); 3748 } 3749 3750 /// BuildIvarLayoutBitmap - This routine is the horsework for doing all 3751 /// the computations and returning the layout bitmap (for ivar or blocks) in 3752 /// the given argument BitMap string container. Routine reads 3753 /// two containers, IvarsInfo and SkipIvars which are assumed to be 3754 /// filled already by the caller. 3755 llvm::Constant *CGObjCCommonMac::BuildIvarLayoutBitmap(std::string& BitMap) { 3756 unsigned int WordsToScan, WordsToSkip; 3757 llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); 3758 3759 // Build the string of skip/scan nibbles 3760 llvm::SmallVector<SKIP_SCAN, 32> SkipScanIvars; 3761 unsigned int WordSize = 3762 CGM.getTypes().getTargetData().getTypeAllocSize(PtrTy); 3763 if (IvarsInfo[0].ivar_bytepos == 0) { 3764 WordsToSkip = 0; 3765 WordsToScan = IvarsInfo[0].ivar_size; 3766 } else { 3767 WordsToSkip = IvarsInfo[0].ivar_bytepos/WordSize; 3768 WordsToScan = IvarsInfo[0].ivar_size; 3769 } 3770 for (unsigned int i=1, Last=IvarsInfo.size(); i != Last; i++) { 3771 unsigned int TailPrevGCObjC = 3772 IvarsInfo[i-1].ivar_bytepos + IvarsInfo[i-1].ivar_size * WordSize; 3773 if (IvarsInfo[i].ivar_bytepos == TailPrevGCObjC) { 3774 // consecutive 'scanned' object pointers. 3775 WordsToScan += IvarsInfo[i].ivar_size; 3776 } else { 3777 // Skip over 'gc'able object pointer which lay over each other. 3778 if (TailPrevGCObjC > IvarsInfo[i].ivar_bytepos) 3779 continue; 3780 // Must skip over 1 or more words. We save current skip/scan values 3781 // and start a new pair. 3782 SKIP_SCAN SkScan; 3783 SkScan.skip = WordsToSkip; 3784 SkScan.scan = WordsToScan; 3785 SkipScanIvars.push_back(SkScan); 3786 3787 // Skip the hole. 3788 SkScan.skip = (IvarsInfo[i].ivar_bytepos - TailPrevGCObjC) / WordSize; 3789 SkScan.scan = 0; 3790 SkipScanIvars.push_back(SkScan); 3791 WordsToSkip = 0; 3792 WordsToScan = IvarsInfo[i].ivar_size; 3793 } 3794 } 3795 if (WordsToScan > 0) { 3796 SKIP_SCAN SkScan; 3797 SkScan.skip = WordsToSkip; 3798 SkScan.scan = WordsToScan; 3799 SkipScanIvars.push_back(SkScan); 3800 } 3801 3802 if (!SkipIvars.empty()) { 3803 unsigned int LastIndex = SkipIvars.size()-1; 3804 int LastByteSkipped = 3805 SkipIvars[LastIndex].ivar_bytepos + SkipIvars[LastIndex].ivar_size; 3806 LastIndex = IvarsInfo.size()-1; 3807 int LastByteScanned = 3808 IvarsInfo[LastIndex].ivar_bytepos + 3809 IvarsInfo[LastIndex].ivar_size * WordSize; 3810 // Compute number of bytes to skip at the tail end of the last ivar scanned. 3811 if (LastByteSkipped > LastByteScanned) { 3812 unsigned int TotalWords = (LastByteSkipped + (WordSize -1)) / WordSize; 3813 SKIP_SCAN SkScan; 3814 SkScan.skip = TotalWords - (LastByteScanned/WordSize); 3815 SkScan.scan = 0; 3816 SkipScanIvars.push_back(SkScan); 3817 } 3818 } 3819 // Mini optimization of nibbles such that an 0xM0 followed by 0x0N is produced 3820 // as 0xMN. 3821 int SkipScan = SkipScanIvars.size()-1; 3822 for (int i = 0; i <= SkipScan; i++) { 3823 if ((i < SkipScan) && SkipScanIvars[i].skip && SkipScanIvars[i].scan == 0 3824 && SkipScanIvars[i+1].skip == 0 && SkipScanIvars[i+1].scan) { 3825 // 0xM0 followed by 0x0N detected. 3826 SkipScanIvars[i].scan = SkipScanIvars[i+1].scan; 3827 for (int j = i+1; j < SkipScan; j++) 3828 SkipScanIvars[j] = SkipScanIvars[j+1]; 3829 --SkipScan; 3830 } 3831 } 3832 3833 // Generate the string. 3834 for (int i = 0; i <= SkipScan; i++) { 3835 unsigned char byte; 3836 unsigned int skip_small = SkipScanIvars[i].skip % 0xf; 3837 unsigned int scan_small = SkipScanIvars[i].scan % 0xf; 3838 unsigned int skip_big = SkipScanIvars[i].skip / 0xf; 3839 unsigned int scan_big = SkipScanIvars[i].scan / 0xf; 3840 3841 // first skip big. 3842 for (unsigned int ix = 0; ix < skip_big; ix++) 3843 BitMap += (unsigned char)(0xf0); 3844 3845 // next (skip small, scan) 3846 if (skip_small) { 3847 byte = skip_small << 4; 3848 if (scan_big > 0) { 3849 byte |= 0xf; 3850 --scan_big; 3851 } else if (scan_small) { 3852 byte |= scan_small; 3853 scan_small = 0; 3854 } 3855 BitMap += byte; 3856 } 3857 // next scan big 3858 for (unsigned int ix = 0; ix < scan_big; ix++) 3859 BitMap += (unsigned char)(0x0f); 3860 // last scan small 3861 if (scan_small) { 3862 byte = scan_small; 3863 BitMap += byte; 3864 } 3865 } 3866 // null terminate string. 3867 unsigned char zero = 0; 3868 BitMap += zero; 3869 3870 llvm::GlobalVariable * Entry = 3871 CreateMetadataVar("\01L_OBJC_CLASS_NAME_", 3872 llvm::ConstantArray::get(VMContext, BitMap.c_str()), 3873 ((ObjCABI == 2) ? 3874 "__TEXT,__objc_classname,cstring_literals" : 3875 "__TEXT,__cstring,cstring_literals"), 3876 1, true); 3877 return getConstantGEP(VMContext, Entry, 0, 0); 3878 } 3879 3880 /// BuildIvarLayout - Builds ivar layout bitmap for the class 3881 /// implementation for the __strong or __weak case. 3882 /// The layout map displays which words in ivar list must be skipped 3883 /// and which must be scanned by GC (see below). String is built of bytes. 3884 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 3885 /// of words to skip and right nibble is count of words to scan. So, each 3886 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 3887 /// represented by a 0x00 byte which also ends the string. 3888 /// 1. when ForStrongLayout is true, following ivars are scanned: 3889 /// - id, Class 3890 /// - object * 3891 /// - __strong anything 3892 /// 3893 /// 2. When ForStrongLayout is false, following ivars are scanned: 3894 /// - __weak anything 3895 /// 3896 llvm::Constant *CGObjCCommonMac::BuildIvarLayout( 3897 const ObjCImplementationDecl *OMD, 3898 bool ForStrongLayout) { 3899 bool hasUnion = false; 3900 3901 llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); 3902 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC && 3903 !CGM.getLangOptions().ObjCAutoRefCount) 3904 return llvm::Constant::getNullValue(PtrTy); 3905 3906 ObjCInterfaceDecl *OI = 3907 const_cast<ObjCInterfaceDecl*>(OMD->getClassInterface()); 3908 llvm::SmallVector<FieldDecl*, 32> RecFields; 3909 if (CGM.getLangOptions().ObjCAutoRefCount) { 3910 for (ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 3911 IVD; IVD = IVD->getNextIvar()) 3912 RecFields.push_back(cast<FieldDecl>(IVD)); 3913 } 3914 else { 3915 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars; 3916 CGM.getContext().DeepCollectObjCIvars(OI, true, Ivars); 3917 3918 for (unsigned k = 0, e = Ivars.size(); k != e; ++k) 3919 RecFields.push_back(cast<FieldDecl>(Ivars[k])); 3920 } 3921 3922 if (RecFields.empty()) 3923 return llvm::Constant::getNullValue(PtrTy); 3924 3925 SkipIvars.clear(); 3926 IvarsInfo.clear(); 3927 3928 BuildAggrIvarLayout(OMD, 0, 0, RecFields, 0, ForStrongLayout, hasUnion); 3929 if (IvarsInfo.empty()) 3930 return llvm::Constant::getNullValue(PtrTy); 3931 // Sort on byte position in case we encounterred a union nested in 3932 // the ivar list. 3933 if (hasUnion && !IvarsInfo.empty()) 3934 std::sort(IvarsInfo.begin(), IvarsInfo.end()); 3935 if (hasUnion && !SkipIvars.empty()) 3936 std::sort(SkipIvars.begin(), SkipIvars.end()); 3937 3938 std::string BitMap; 3939 llvm::Constant *C = BuildIvarLayoutBitmap(BitMap); 3940 3941 if (CGM.getLangOptions().ObjCGCBitmapPrint) { 3942 printf("\n%s ivar layout for class '%s': ", 3943 ForStrongLayout ? "strong" : "weak", 3944 OMD->getClassInterface()->getName().data()); 3945 const unsigned char *s = (unsigned char*)BitMap.c_str(); 3946 for (unsigned i = 0; i < BitMap.size(); i++) 3947 if (!(s[i] & 0xf0)) 3948 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 3949 else 3950 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 3951 printf("\n"); 3952 } 3953 return C; 3954 } 3955 3956 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 3957 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 3958 3959 // FIXME: Avoid std::string copying. 3960 if (!Entry) 3961 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_NAME_", 3962 llvm::ConstantArray::get(VMContext, Sel.getAsString()), 3963 ((ObjCABI == 2) ? 3964 "__TEXT,__objc_methname,cstring_literals" : 3965 "__TEXT,__cstring,cstring_literals"), 3966 1, true); 3967 3968 return getConstantGEP(VMContext, Entry, 0, 0); 3969 } 3970 3971 // FIXME: Merge into a single cstring creation function. 3972 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 3973 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 3974 } 3975 3976 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 3977 std::string TypeStr; 3978 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 3979 3980 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 3981 3982 if (!Entry) 3983 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_", 3984 llvm::ConstantArray::get(VMContext, TypeStr), 3985 ((ObjCABI == 2) ? 3986 "__TEXT,__objc_methtype,cstring_literals" : 3987 "__TEXT,__cstring,cstring_literals"), 3988 1, true); 3989 3990 return getConstantGEP(VMContext, Entry, 0, 0); 3991 } 3992 3993 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D) { 3994 std::string TypeStr; 3995 if (CGM.getContext().getObjCEncodingForMethodDecl( 3996 const_cast<ObjCMethodDecl*>(D), 3997 TypeStr)) 3998 return 0; 3999 4000 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 4001 4002 if (!Entry) 4003 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_", 4004 llvm::ConstantArray::get(VMContext, TypeStr), 4005 ((ObjCABI == 2) ? 4006 "__TEXT,__objc_methtype,cstring_literals" : 4007 "__TEXT,__cstring,cstring_literals"), 4008 1, true); 4009 4010 return getConstantGEP(VMContext, Entry, 0, 0); 4011 } 4012 4013 // FIXME: Merge into a single cstring creation function. 4014 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 4015 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 4016 4017 if (!Entry) 4018 Entry = CreateMetadataVar("\01L_OBJC_PROP_NAME_ATTR_", 4019 llvm::ConstantArray::get(VMContext, 4020 Ident->getNameStart()), 4021 "__TEXT,__cstring,cstring_literals", 4022 1, true); 4023 4024 return getConstantGEP(VMContext, Entry, 0, 0); 4025 } 4026 4027 // FIXME: Merge into a single cstring creation function. 4028 // FIXME: This Decl should be more precise. 4029 llvm::Constant * 4030 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 4031 const Decl *Container) { 4032 std::string TypeStr; 4033 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 4034 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 4035 } 4036 4037 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 4038 const ObjCContainerDecl *CD, 4039 llvm::SmallVectorImpl<char> &Name) { 4040 llvm::raw_svector_ostream OS(Name); 4041 assert (CD && "Missing container decl in GetNameForMethod"); 4042 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 4043 << '[' << CD->getName(); 4044 if (const ObjCCategoryImplDecl *CID = 4045 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 4046 OS << '(' << CID << ')'; 4047 OS << ' ' << D->getSelector().getAsString() << ']'; 4048 } 4049 4050 void CGObjCMac::FinishModule() { 4051 EmitModuleInfo(); 4052 4053 // Emit the dummy bodies for any protocols which were referenced but 4054 // never defined. 4055 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 4056 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 4057 if (I->second->hasInitializer()) 4058 continue; 4059 4060 std::vector<llvm::Constant*> Values(5); 4061 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 4062 Values[1] = GetClassName(I->first); 4063 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 4064 Values[3] = Values[4] = 4065 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 4066 I->second->setLinkage(llvm::GlobalValue::InternalLinkage); 4067 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 4068 Values)); 4069 CGM.AddUsedGlobal(I->second); 4070 } 4071 4072 // Add assembler directives to add lazy undefined symbol references 4073 // for classes which are referenced but not defined. This is 4074 // important for correct linker interaction. 4075 // 4076 // FIXME: It would be nice if we had an LLVM construct for this. 4077 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 4078 llvm::SmallString<256> Asm; 4079 Asm += CGM.getModule().getModuleInlineAsm(); 4080 if (!Asm.empty() && Asm.back() != '\n') 4081 Asm += '\n'; 4082 4083 llvm::raw_svector_ostream OS(Asm); 4084 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 4085 e = DefinedSymbols.end(); I != e; ++I) 4086 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 4087 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 4088 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 4089 e = LazySymbols.end(); I != e; ++I) { 4090 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 4091 } 4092 4093 for (size_t i = 0; i < DefinedCategoryNames.size(); ++i) { 4094 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 4095 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 4096 } 4097 4098 CGM.getModule().setModuleInlineAsm(OS.str()); 4099 } 4100 } 4101 4102 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 4103 : CGObjCCommonMac(cgm), 4104 ObjCTypes(cgm) { 4105 ObjCEmptyCacheVar = ObjCEmptyVtableVar = NULL; 4106 ObjCABI = 2; 4107 } 4108 4109 /* *** */ 4110 4111 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 4112 : VMContext(cgm.getLLVMContext()), CGM(cgm) { 4113 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 4114 ASTContext &Ctx = CGM.getContext(); 4115 4116 ShortTy = Types.ConvertType(Ctx.ShortTy); 4117 IntTy = Types.ConvertType(Ctx.IntTy); 4118 LongTy = Types.ConvertType(Ctx.LongTy); 4119 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 4120 Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 4121 4122 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 4123 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 4124 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 4125 4126 // FIXME: It would be nice to unify this with the opaque type, so that the IR 4127 // comes out a bit cleaner. 4128 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 4129 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 4130 4131 // I'm not sure I like this. The implicit coordination is a bit 4132 // gross. We should solve this in a reasonable fashion because this 4133 // is a pretty common task (match some runtime data structure with 4134 // an LLVM data structure). 4135 4136 // FIXME: This is leaked. 4137 // FIXME: Merge with rewriter code? 4138 4139 // struct _objc_super { 4140 // id self; 4141 // Class cls; 4142 // } 4143 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 4144 Ctx.getTranslationUnitDecl(), 4145 SourceLocation(), SourceLocation(), 4146 &Ctx.Idents.get("_objc_super")); 4147 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 4148 Ctx.getObjCIdType(), 0, 0, false, false)); 4149 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 4150 Ctx.getObjCClassType(), 0, 0, false, false)); 4151 RD->completeDefinition(); 4152 4153 SuperCTy = Ctx.getTagDeclType(RD); 4154 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 4155 4156 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 4157 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 4158 4159 // struct _prop_t { 4160 // char *name; 4161 // char *attributes; 4162 // } 4163 PropertyTy = llvm::StructType::createNamed("struct._prop_t", 4164 Int8PtrTy, Int8PtrTy, NULL); 4165 4166 // struct _prop_list_t { 4167 // uint32_t entsize; // sizeof(struct _prop_t) 4168 // uint32_t count_of_properties; 4169 // struct _prop_t prop_list[count_of_properties]; 4170 // } 4171 PropertyListTy = 4172 llvm::StructType::createNamed("struct._prop_list_t", 4173 IntTy, IntTy, 4174 llvm::ArrayType::get(PropertyTy, 0), 4175 NULL); 4176 // struct _prop_list_t * 4177 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 4178 4179 // struct _objc_method { 4180 // SEL _cmd; 4181 // char *method_type; 4182 // char *_imp; 4183 // } 4184 MethodTy = llvm::StructType::createNamed("struct._objc_method", 4185 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 4186 NULL); 4187 4188 // struct _objc_cache * 4189 CacheTy = llvm::StructType::createNamed(VMContext, "struct._objc_cache"); 4190 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 4191 4192 } 4193 4194 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 4195 : ObjCCommonTypesHelper(cgm) { 4196 // struct _objc_method_description { 4197 // SEL name; 4198 // char *types; 4199 // } 4200 MethodDescriptionTy = 4201 llvm::StructType::createNamed("struct._objc_method_description", 4202 SelectorPtrTy, Int8PtrTy, NULL); 4203 4204 // struct _objc_method_description_list { 4205 // int count; 4206 // struct _objc_method_description[1]; 4207 // } 4208 MethodDescriptionListTy = 4209 llvm::StructType::createNamed("struct._objc_method_description_list", 4210 IntTy, 4211 llvm::ArrayType::get(MethodDescriptionTy, 0), 4212 NULL); 4213 4214 // struct _objc_method_description_list * 4215 MethodDescriptionListPtrTy = 4216 llvm::PointerType::getUnqual(MethodDescriptionListTy); 4217 4218 // Protocol description structures 4219 4220 // struct _objc_protocol_extension { 4221 // uint32_t size; // sizeof(struct _objc_protocol_extension) 4222 // struct _objc_method_description_list *optional_instance_methods; 4223 // struct _objc_method_description_list *optional_class_methods; 4224 // struct _objc_property_list *instance_properties; 4225 // } 4226 ProtocolExtensionTy = 4227 llvm::StructType::createNamed("struct._objc_protocol_extension", 4228 IntTy, 4229 MethodDescriptionListPtrTy, 4230 MethodDescriptionListPtrTy, 4231 PropertyListPtrTy, 4232 NULL); 4233 4234 // struct _objc_protocol_extension * 4235 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 4236 4237 // Handle recursive construction of Protocol and ProtocolList types 4238 4239 ProtocolTy = 4240 llvm::StructType::createNamed(VMContext, "struct._objc_protocol"); 4241 4242 ProtocolListTy = 4243 llvm::StructType::createNamed(VMContext, "struct._objc_protocol_list"); 4244 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 4245 LongTy, 4246 llvm::ArrayType::get(ProtocolTy, 0), 4247 NULL); 4248 4249 // struct _objc_protocol { 4250 // struct _objc_protocol_extension *isa; 4251 // char *protocol_name; 4252 // struct _objc_protocol **_objc_protocol_list; 4253 // struct _objc_method_description_list *instance_methods; 4254 // struct _objc_method_description_list *class_methods; 4255 // } 4256 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 4257 llvm::PointerType::getUnqual(ProtocolListTy), 4258 MethodDescriptionListPtrTy, 4259 MethodDescriptionListPtrTy, 4260 NULL); 4261 4262 // struct _objc_protocol_list * 4263 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 4264 4265 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 4266 4267 // Class description structures 4268 4269 // struct _objc_ivar { 4270 // char *ivar_name; 4271 // char *ivar_type; 4272 // int ivar_offset; 4273 // } 4274 IvarTy = llvm::StructType::createNamed("struct._objc_ivar", 4275 Int8PtrTy, Int8PtrTy, IntTy, NULL); 4276 4277 // struct _objc_ivar_list * 4278 IvarListTy = 4279 llvm::StructType::createNamed(VMContext, "struct._objc_ivar_list"); 4280 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 4281 4282 // struct _objc_method_list * 4283 MethodListTy = 4284 llvm::StructType::createNamed(VMContext, "struct._objc_method_list"); 4285 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 4286 4287 // struct _objc_class_extension * 4288 ClassExtensionTy = 4289 llvm::StructType::createNamed("struct._objc_class_extension", 4290 IntTy, Int8PtrTy, PropertyListPtrTy, NULL); 4291 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 4292 4293 ClassTy = llvm::StructType::createNamed(VMContext, "struct._objc_class"); 4294 4295 // struct _objc_class { 4296 // Class isa; 4297 // Class super_class; 4298 // char *name; 4299 // long version; 4300 // long info; 4301 // long instance_size; 4302 // struct _objc_ivar_list *ivars; 4303 // struct _objc_method_list *methods; 4304 // struct _objc_cache *cache; 4305 // struct _objc_protocol_list *protocols; 4306 // char *ivar_layout; 4307 // struct _objc_class_ext *ext; 4308 // }; 4309 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 4310 llvm::PointerType::getUnqual(ClassTy), 4311 Int8PtrTy, 4312 LongTy, 4313 LongTy, 4314 LongTy, 4315 IvarListPtrTy, 4316 MethodListPtrTy, 4317 CachePtrTy, 4318 ProtocolListPtrTy, 4319 Int8PtrTy, 4320 ClassExtensionPtrTy, 4321 NULL); 4322 4323 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 4324 4325 // struct _objc_category { 4326 // char *category_name; 4327 // char *class_name; 4328 // struct _objc_method_list *instance_method; 4329 // struct _objc_method_list *class_method; 4330 // uint32_t size; // sizeof(struct _objc_category) 4331 // struct _objc_property_list *instance_properties;// category's @property 4332 // } 4333 CategoryTy = 4334 llvm::StructType::createNamed("struct._objc_category", 4335 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 4336 MethodListPtrTy, ProtocolListPtrTy, 4337 IntTy, PropertyListPtrTy, NULL); 4338 4339 // Global metadata structures 4340 4341 // struct _objc_symtab { 4342 // long sel_ref_cnt; 4343 // SEL *refs; 4344 // short cls_def_cnt; 4345 // short cat_def_cnt; 4346 // char *defs[cls_def_cnt + cat_def_cnt]; 4347 // } 4348 SymtabTy = 4349 llvm::StructType::createNamed("struct._objc_symtab", 4350 LongTy, SelectorPtrTy, ShortTy, ShortTy, 4351 llvm::ArrayType::get(Int8PtrTy, 0), NULL); 4352 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 4353 4354 // struct _objc_module { 4355 // long version; 4356 // long size; // sizeof(struct _objc_module) 4357 // char *name; 4358 // struct _objc_symtab* symtab; 4359 // } 4360 ModuleTy = 4361 llvm::StructType::createNamed("struct._objc_module", 4362 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, NULL); 4363 4364 4365 // FIXME: This is the size of the setjmp buffer and should be target 4366 // specific. 18 is what's used on 32-bit X86. 4367 uint64_t SetJmpBufferSize = 18; 4368 4369 // Exceptions 4370 llvm::Type *StackPtrTy = llvm::ArrayType::get( 4371 llvm::Type::getInt8PtrTy(VMContext), 4); 4372 4373 ExceptionDataTy = 4374 llvm::StructType::createNamed("struct._objc_exception_data", 4375 llvm::ArrayType::get(llvm::Type::getInt32Ty(VMContext), 4376 SetJmpBufferSize), 4377 StackPtrTy, NULL); 4378 4379 } 4380 4381 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 4382 : ObjCCommonTypesHelper(cgm) { 4383 // struct _method_list_t { 4384 // uint32_t entsize; // sizeof(struct _objc_method) 4385 // uint32_t method_count; 4386 // struct _objc_method method_list[method_count]; 4387 // } 4388 MethodListnfABITy = 4389 llvm::StructType::createNamed("struct.__method_list_t", 4390 IntTy, IntTy, 4391 llvm::ArrayType::get(MethodTy, 0), 4392 NULL); 4393 // struct method_list_t * 4394 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 4395 4396 // struct _protocol_t { 4397 // id isa; // NULL 4398 // const char * const protocol_name; 4399 // const struct _protocol_list_t * protocol_list; // super protocols 4400 // const struct method_list_t * const instance_methods; 4401 // const struct method_list_t * const class_methods; 4402 // const struct method_list_t *optionalInstanceMethods; 4403 // const struct method_list_t *optionalClassMethods; 4404 // const struct _prop_list_t * properties; 4405 // const uint32_t size; // sizeof(struct _protocol_t) 4406 // const uint32_t flags; // = 0 4407 // } 4408 4409 // Holder for struct _protocol_list_t * 4410 ProtocolListnfABITy = 4411 llvm::StructType::createNamed(VMContext, "struct._objc_protocol_list"); 4412 4413 ProtocolnfABITy = 4414 llvm::StructType::createNamed("struct._protocol_t", 4415 ObjectPtrTy, Int8PtrTy, 4416 llvm::PointerType::getUnqual(ProtocolListnfABITy), 4417 MethodListnfABIPtrTy, 4418 MethodListnfABIPtrTy, 4419 MethodListnfABIPtrTy, 4420 MethodListnfABIPtrTy, 4421 PropertyListPtrTy, 4422 IntTy, 4423 IntTy, 4424 NULL); 4425 4426 // struct _protocol_t* 4427 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 4428 4429 // struct _protocol_list_t { 4430 // long protocol_count; // Note, this is 32/64 bit 4431 // struct _protocol_t *[protocol_count]; 4432 // } 4433 ProtocolListnfABITy->setBody(LongTy, 4434 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 4435 NULL); 4436 4437 // struct _objc_protocol_list* 4438 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 4439 4440 // struct _ivar_t { 4441 // unsigned long int *offset; // pointer to ivar offset location 4442 // char *name; 4443 // char *type; 4444 // uint32_t alignment; 4445 // uint32_t size; 4446 // } 4447 IvarnfABITy = 4448 llvm::StructType::createNamed("struct._ivar_t", 4449 llvm::PointerType::getUnqual(LongTy), 4450 Int8PtrTy, 4451 Int8PtrTy, 4452 IntTy, 4453 IntTy, 4454 NULL); 4455 4456 // struct _ivar_list_t { 4457 // uint32 entsize; // sizeof(struct _ivar_t) 4458 // uint32 count; 4459 // struct _iver_t list[count]; 4460 // } 4461 IvarListnfABITy = 4462 llvm::StructType::createNamed("struct._ivar_list_t", 4463 IntTy, IntTy, 4464 llvm::ArrayType::get(IvarnfABITy, 0), 4465 NULL); 4466 4467 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 4468 4469 // struct _class_ro_t { 4470 // uint32_t const flags; 4471 // uint32_t const instanceStart; 4472 // uint32_t const instanceSize; 4473 // uint32_t const reserved; // only when building for 64bit targets 4474 // const uint8_t * const ivarLayout; 4475 // const char *const name; 4476 // const struct _method_list_t * const baseMethods; 4477 // const struct _objc_protocol_list *const baseProtocols; 4478 // const struct _ivar_list_t *const ivars; 4479 // const uint8_t * const weakIvarLayout; 4480 // const struct _prop_list_t * const properties; 4481 // } 4482 4483 // FIXME. Add 'reserved' field in 64bit abi mode! 4484 ClassRonfABITy = llvm::StructType::createNamed("struct._class_ro_t", 4485 IntTy, 4486 IntTy, 4487 IntTy, 4488 Int8PtrTy, 4489 Int8PtrTy, 4490 MethodListnfABIPtrTy, 4491 ProtocolListnfABIPtrTy, 4492 IvarListnfABIPtrTy, 4493 Int8PtrTy, 4494 PropertyListPtrTy, 4495 NULL); 4496 4497 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 4498 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 4499 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 4500 ->getPointerTo(); 4501 4502 // struct _class_t { 4503 // struct _class_t *isa; 4504 // struct _class_t * const superclass; 4505 // void *cache; 4506 // IMP *vtable; 4507 // struct class_ro_t *ro; 4508 // } 4509 4510 ClassnfABITy = llvm::StructType::createNamed(VMContext, "struct._class_t"); 4511 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 4512 llvm::PointerType::getUnqual(ClassnfABITy), 4513 CachePtrTy, 4514 llvm::PointerType::getUnqual(ImpnfABITy), 4515 llvm::PointerType::getUnqual(ClassRonfABITy), 4516 NULL); 4517 4518 // LLVM for struct _class_t * 4519 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 4520 4521 // struct _category_t { 4522 // const char * const name; 4523 // struct _class_t *const cls; 4524 // const struct _method_list_t * const instance_methods; 4525 // const struct _method_list_t * const class_methods; 4526 // const struct _protocol_list_t * const protocols; 4527 // const struct _prop_list_t * const properties; 4528 // } 4529 CategorynfABITy = llvm::StructType::createNamed("struct._category_t", 4530 Int8PtrTy, 4531 ClassnfABIPtrTy, 4532 MethodListnfABIPtrTy, 4533 MethodListnfABIPtrTy, 4534 ProtocolListnfABIPtrTy, 4535 PropertyListPtrTy, 4536 NULL); 4537 4538 // New types for nonfragile abi messaging. 4539 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 4540 ASTContext &Ctx = CGM.getContext(); 4541 4542 // MessageRefTy - LLVM for: 4543 // struct _message_ref_t { 4544 // IMP messenger; 4545 // SEL name; 4546 // }; 4547 4548 // First the clang type for struct _message_ref_t 4549 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 4550 Ctx.getTranslationUnitDecl(), 4551 SourceLocation(), SourceLocation(), 4552 &Ctx.Idents.get("_message_ref_t")); 4553 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 4554 Ctx.VoidPtrTy, 0, 0, false, false)); 4555 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 4556 Ctx.getObjCSelType(), 0, 0, false, false)); 4557 RD->completeDefinition(); 4558 4559 MessageRefCTy = Ctx.getTagDeclType(RD); 4560 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 4561 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 4562 4563 // MessageRefPtrTy - LLVM for struct _message_ref_t* 4564 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 4565 4566 // SuperMessageRefTy - LLVM for: 4567 // struct _super_message_ref_t { 4568 // SUPER_IMP messenger; 4569 // SEL name; 4570 // }; 4571 SuperMessageRefTy = 4572 llvm::StructType::createNamed("struct._super_message_ref_t", 4573 ImpnfABITy, SelectorPtrTy, NULL); 4574 4575 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 4576 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 4577 4578 4579 // struct objc_typeinfo { 4580 // const void** vtable; // objc_ehtype_vtable + 2 4581 // const char* name; // c++ typeinfo string 4582 // Class cls; 4583 // }; 4584 EHTypeTy = 4585 llvm::StructType::createNamed("struct._objc_typeinfo", 4586 llvm::PointerType::getUnqual(Int8PtrTy), 4587 Int8PtrTy, 4588 ClassnfABIPtrTy, 4589 NULL); 4590 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 4591 } 4592 4593 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 4594 FinishNonFragileABIModule(); 4595 4596 return NULL; 4597 } 4598 4599 void CGObjCNonFragileABIMac::AddModuleClassList(const 4600 std::vector<llvm::GlobalValue*> 4601 &Container, 4602 const char *SymbolName, 4603 const char *SectionName) { 4604 unsigned NumClasses = Container.size(); 4605 4606 if (!NumClasses) 4607 return; 4608 4609 std::vector<llvm::Constant*> Symbols(NumClasses); 4610 for (unsigned i=0; i<NumClasses; i++) 4611 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 4612 ObjCTypes.Int8PtrTy); 4613 llvm::Constant* Init = 4614 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4615 NumClasses), 4616 Symbols); 4617 4618 llvm::GlobalVariable *GV = 4619 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 4620 llvm::GlobalValue::InternalLinkage, 4621 Init, 4622 SymbolName); 4623 GV->setAlignment(CGM.getTargetData().getABITypeAlignment(Init->getType())); 4624 GV->setSection(SectionName); 4625 CGM.AddUsedGlobal(GV); 4626 } 4627 4628 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 4629 // nonfragile abi has no module definition. 4630 4631 // Build list of all implemented class addresses in array 4632 // L_OBJC_LABEL_CLASS_$. 4633 AddModuleClassList(DefinedClasses, 4634 "\01L_OBJC_LABEL_CLASS_$", 4635 "__DATA, __objc_classlist, regular, no_dead_strip"); 4636 4637 for (unsigned i = 0; i < DefinedClasses.size(); i++) { 4638 llvm::GlobalValue *IMPLGV = DefinedClasses[i]; 4639 if (IMPLGV->getLinkage() != llvm::GlobalValue::ExternalWeakLinkage) 4640 continue; 4641 IMPLGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4642 } 4643 4644 for (unsigned i = 0; i < DefinedMetaClasses.size(); i++) { 4645 llvm::GlobalValue *IMPLGV = DefinedMetaClasses[i]; 4646 if (IMPLGV->getLinkage() != llvm::GlobalValue::ExternalWeakLinkage) 4647 continue; 4648 IMPLGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4649 } 4650 4651 AddModuleClassList(DefinedNonLazyClasses, 4652 "\01L_OBJC_LABEL_NONLAZY_CLASS_$", 4653 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 4654 4655 // Build list of all implemented category addresses in array 4656 // L_OBJC_LABEL_CATEGORY_$. 4657 AddModuleClassList(DefinedCategories, 4658 "\01L_OBJC_LABEL_CATEGORY_$", 4659 "__DATA, __objc_catlist, regular, no_dead_strip"); 4660 AddModuleClassList(DefinedNonLazyCategories, 4661 "\01L_OBJC_LABEL_NONLAZY_CATEGORY_$", 4662 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 4663 4664 EmitImageInfo(); 4665 } 4666 4667 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 4668 /// VTableDispatchMethods; false otherwise. What this means is that 4669 /// except for the 19 selectors in the list, we generate 32bit-style 4670 /// message dispatch call for all the rest. 4671 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 4672 // At various points we've experimented with using vtable-based 4673 // dispatch for all methods. 4674 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 4675 default: 4676 llvm_unreachable("Invalid dispatch method!"); 4677 case CodeGenOptions::Legacy: 4678 return false; 4679 case CodeGenOptions::NonLegacy: 4680 return true; 4681 case CodeGenOptions::Mixed: 4682 break; 4683 } 4684 4685 // If so, see whether this selector is in the white-list of things which must 4686 // use the new dispatch convention. We lazily build a dense set for this. 4687 if (VTableDispatchMethods.empty()) { 4688 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 4689 VTableDispatchMethods.insert(GetNullarySelector("class")); 4690 VTableDispatchMethods.insert(GetNullarySelector("self")); 4691 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 4692 VTableDispatchMethods.insert(GetNullarySelector("length")); 4693 VTableDispatchMethods.insert(GetNullarySelector("count")); 4694 4695 // These are vtable-based if GC is disabled. 4696 // Optimistically use vtable dispatch for hybrid compiles. 4697 if (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly) { 4698 VTableDispatchMethods.insert(GetNullarySelector("retain")); 4699 VTableDispatchMethods.insert(GetNullarySelector("release")); 4700 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 4701 } 4702 4703 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 4704 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 4705 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 4706 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 4707 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 4708 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 4709 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 4710 4711 // These are vtable-based if GC is enabled. 4712 // Optimistically use vtable dispatch for hybrid compiles. 4713 if (CGM.getLangOptions().getGCMode() != LangOptions::NonGC) { 4714 VTableDispatchMethods.insert(GetNullarySelector("hash")); 4715 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 4716 4717 // "countByEnumeratingWithState:objects:count" 4718 IdentifierInfo *KeyIdents[] = { 4719 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 4720 &CGM.getContext().Idents.get("objects"), 4721 &CGM.getContext().Idents.get("count") 4722 }; 4723 VTableDispatchMethods.insert( 4724 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 4725 } 4726 } 4727 4728 return VTableDispatchMethods.count(Sel); 4729 } 4730 4731 // Metadata flags 4732 enum MetaDataDlags { 4733 CLS = 0x0, 4734 CLS_META = 0x1, 4735 CLS_ROOT = 0x2, 4736 OBJC2_CLS_HIDDEN = 0x10, 4737 CLS_EXCEPTION = 0x20, 4738 4739 /// (Obsolete) ARC-specific: this class has a .release_ivars method 4740 CLS_HAS_IVAR_RELEASER = 0x40, 4741 /// class was compiled with -fobjc-arr 4742 CLS_COMPILED_BY_ARC = 0x80 // (1<<7) 4743 }; 4744 /// BuildClassRoTInitializer - generate meta-data for: 4745 /// struct _class_ro_t { 4746 /// uint32_t const flags; 4747 /// uint32_t const instanceStart; 4748 /// uint32_t const instanceSize; 4749 /// uint32_t const reserved; // only when building for 64bit targets 4750 /// const uint8_t * const ivarLayout; 4751 /// const char *const name; 4752 /// const struct _method_list_t * const baseMethods; 4753 /// const struct _protocol_list_t *const baseProtocols; 4754 /// const struct _ivar_list_t *const ivars; 4755 /// const uint8_t * const weakIvarLayout; 4756 /// const struct _prop_list_t * const properties; 4757 /// } 4758 /// 4759 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 4760 unsigned flags, 4761 unsigned InstanceStart, 4762 unsigned InstanceSize, 4763 const ObjCImplementationDecl *ID) { 4764 std::string ClassName = ID->getNameAsString(); 4765 std::vector<llvm::Constant*> Values(10); // 11 for 64bit targets! 4766 4767 if (CGM.getLangOptions().ObjCAutoRefCount) 4768 flags |= CLS_COMPILED_BY_ARC; 4769 4770 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 4771 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 4772 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 4773 // FIXME. For 64bit targets add 0 here. 4774 Values[ 3] = (flags & CLS_META) ? GetIvarLayoutName(0, ObjCTypes) 4775 : BuildIvarLayout(ID, true); 4776 Values[ 4] = GetClassName(ID->getIdentifier()); 4777 // const struct _method_list_t * const baseMethods; 4778 std::vector<llvm::Constant*> Methods; 4779 std::string MethodListName("\01l_OBJC_$_"); 4780 if (flags & CLS_META) { 4781 MethodListName += "CLASS_METHODS_" + ID->getNameAsString(); 4782 for (ObjCImplementationDecl::classmeth_iterator 4783 i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) { 4784 // Class methods should always be defined. 4785 Methods.push_back(GetMethodConstant(*i)); 4786 } 4787 } else { 4788 MethodListName += "INSTANCE_METHODS_" + ID->getNameAsString(); 4789 for (ObjCImplementationDecl::instmeth_iterator 4790 i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) { 4791 // Instance methods should always be defined. 4792 Methods.push_back(GetMethodConstant(*i)); 4793 } 4794 for (ObjCImplementationDecl::propimpl_iterator 4795 i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) { 4796 ObjCPropertyImplDecl *PID = *i; 4797 4798 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 4799 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4800 4801 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 4802 if (llvm::Constant *C = GetMethodConstant(MD)) 4803 Methods.push_back(C); 4804 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 4805 if (llvm::Constant *C = GetMethodConstant(MD)) 4806 Methods.push_back(C); 4807 } 4808 } 4809 } 4810 Values[ 5] = EmitMethodList(MethodListName, 4811 "__DATA, __objc_const", Methods); 4812 4813 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 4814 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 4815 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 4816 + OID->getName(), 4817 OID->all_referenced_protocol_begin(), 4818 OID->all_referenced_protocol_end()); 4819 4820 if (flags & CLS_META) 4821 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 4822 else 4823 Values[ 7] = EmitIvarList(ID); 4824 Values[ 8] = (flags & CLS_META) ? GetIvarLayoutName(0, ObjCTypes) 4825 : BuildIvarLayout(ID, false); 4826 if (flags & CLS_META) 4827 Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 4828 else 4829 Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 4830 ID, ID->getClassInterface(), ObjCTypes); 4831 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 4832 Values); 4833 llvm::GlobalVariable *CLASS_RO_GV = 4834 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 4835 llvm::GlobalValue::InternalLinkage, 4836 Init, 4837 (flags & CLS_META) ? 4838 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 4839 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 4840 CLASS_RO_GV->setAlignment( 4841 CGM.getTargetData().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 4842 CLASS_RO_GV->setSection("__DATA, __objc_const"); 4843 return CLASS_RO_GV; 4844 4845 } 4846 4847 /// BuildClassMetaData - This routine defines that to-level meta-data 4848 /// for the given ClassName for: 4849 /// struct _class_t { 4850 /// struct _class_t *isa; 4851 /// struct _class_t * const superclass; 4852 /// void *cache; 4853 /// IMP *vtable; 4854 /// struct class_ro_t *ro; 4855 /// } 4856 /// 4857 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassMetaData( 4858 std::string &ClassName, 4859 llvm::Constant *IsAGV, 4860 llvm::Constant *SuperClassGV, 4861 llvm::Constant *ClassRoGV, 4862 bool HiddenVisibility) { 4863 std::vector<llvm::Constant*> Values(5); 4864 Values[0] = IsAGV; 4865 Values[1] = SuperClassGV; 4866 if (!Values[1]) 4867 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 4868 Values[2] = ObjCEmptyCacheVar; // &ObjCEmptyCacheVar 4869 Values[3] = ObjCEmptyVtableVar; // &ObjCEmptyVtableVar 4870 Values[4] = ClassRoGV; // &CLASS_RO_GV 4871 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 4872 Values); 4873 llvm::GlobalVariable *GV = GetClassGlobal(ClassName); 4874 GV->setInitializer(Init); 4875 GV->setSection("__DATA, __objc_data"); 4876 GV->setAlignment( 4877 CGM.getTargetData().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 4878 if (HiddenVisibility) 4879 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 4880 return GV; 4881 } 4882 4883 bool 4884 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 4885 return OD->getClassMethod(GetNullarySelector("load")) != 0; 4886 } 4887 4888 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 4889 uint32_t &InstanceStart, 4890 uint32_t &InstanceSize) { 4891 const ASTRecordLayout &RL = 4892 CGM.getContext().getASTObjCImplementationLayout(OID); 4893 4894 // InstanceSize is really instance end. 4895 InstanceSize = RL.getDataSize().getQuantity(); 4896 4897 // If there are no fields, the start is the same as the end. 4898 if (!RL.getFieldCount()) 4899 InstanceStart = InstanceSize; 4900 else 4901 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 4902 } 4903 4904 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 4905 std::string ClassName = ID->getNameAsString(); 4906 if (!ObjCEmptyCacheVar) { 4907 ObjCEmptyCacheVar = new llvm::GlobalVariable( 4908 CGM.getModule(), 4909 ObjCTypes.CacheTy, 4910 false, 4911 llvm::GlobalValue::ExternalLinkage, 4912 0, 4913 "_objc_empty_cache"); 4914 4915 ObjCEmptyVtableVar = new llvm::GlobalVariable( 4916 CGM.getModule(), 4917 ObjCTypes.ImpnfABITy, 4918 false, 4919 llvm::GlobalValue::ExternalLinkage, 4920 0, 4921 "_objc_empty_vtable"); 4922 } 4923 assert(ID->getClassInterface() && 4924 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 4925 // FIXME: Is this correct (that meta class size is never computed)? 4926 uint32_t InstanceStart = 4927 CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassnfABITy); 4928 uint32_t InstanceSize = InstanceStart; 4929 uint32_t flags = CLS_META; 4930 std::string ObjCMetaClassName(getMetaclassSymbolPrefix()); 4931 std::string ObjCClassName(getClassSymbolPrefix()); 4932 4933 llvm::GlobalVariable *SuperClassGV, *IsAGV; 4934 4935 bool classIsHidden = 4936 ID->getClassInterface()->getVisibility() == HiddenVisibility; 4937 if (classIsHidden) 4938 flags |= OBJC2_CLS_HIDDEN; 4939 if (ID->hasCXXStructors()) 4940 flags |= eClassFlags_ABI2_HasCXXStructors; 4941 if (!ID->getClassInterface()->getSuperClass()) { 4942 // class is root 4943 flags |= CLS_ROOT; 4944 SuperClassGV = GetClassGlobal(ObjCClassName + ClassName); 4945 IsAGV = GetClassGlobal(ObjCMetaClassName + ClassName); 4946 } else { 4947 // Has a root. Current class is not a root. 4948 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 4949 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 4950 Root = Super; 4951 IsAGV = GetClassGlobal(ObjCMetaClassName + Root->getNameAsString()); 4952 if (Root->isWeakImported()) 4953 IsAGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 4954 // work on super class metadata symbol. 4955 std::string SuperClassName = 4956 ObjCMetaClassName + 4957 ID->getClassInterface()->getSuperClass()->getNameAsString(); 4958 SuperClassGV = GetClassGlobal(SuperClassName); 4959 if (ID->getClassInterface()->getSuperClass()->isWeakImported()) 4960 SuperClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 4961 } 4962 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 4963 InstanceStart, 4964 InstanceSize,ID); 4965 std::string TClassName = ObjCMetaClassName + ClassName; 4966 llvm::GlobalVariable *MetaTClass = 4967 BuildClassMetaData(TClassName, IsAGV, SuperClassGV, CLASS_RO_GV, 4968 classIsHidden); 4969 DefinedMetaClasses.push_back(MetaTClass); 4970 4971 // Metadata for the class 4972 flags = CLS; 4973 if (classIsHidden) 4974 flags |= OBJC2_CLS_HIDDEN; 4975 if (ID->hasCXXStructors()) 4976 flags |= eClassFlags_ABI2_HasCXXStructors; 4977 4978 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 4979 flags |= CLS_EXCEPTION; 4980 4981 if (!ID->getClassInterface()->getSuperClass()) { 4982 flags |= CLS_ROOT; 4983 SuperClassGV = 0; 4984 } else { 4985 // Has a root. Current class is not a root. 4986 std::string RootClassName = 4987 ID->getClassInterface()->getSuperClass()->getNameAsString(); 4988 SuperClassGV = GetClassGlobal(ObjCClassName + RootClassName); 4989 if (ID->getClassInterface()->getSuperClass()->isWeakImported()) 4990 SuperClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 4991 } 4992 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 4993 CLASS_RO_GV = BuildClassRoTInitializer(flags, 4994 InstanceStart, 4995 InstanceSize, 4996 ID); 4997 4998 TClassName = ObjCClassName + ClassName; 4999 llvm::GlobalVariable *ClassMD = 5000 BuildClassMetaData(TClassName, MetaTClass, SuperClassGV, CLASS_RO_GV, 5001 classIsHidden); 5002 DefinedClasses.push_back(ClassMD); 5003 5004 // Determine if this class is also "non-lazy". 5005 if (ImplementationIsNonLazy(ID)) 5006 DefinedNonLazyClasses.push_back(ClassMD); 5007 5008 // Force the definition of the EHType if necessary. 5009 if (flags & CLS_EXCEPTION) 5010 GetInterfaceEHType(ID->getClassInterface(), true); 5011 // Make sure method definition entries are all clear for next implementation. 5012 MethodDefinitions.clear(); 5013 } 5014 5015 /// GenerateProtocolRef - This routine is called to generate code for 5016 /// a protocol reference expression; as in: 5017 /// @code 5018 /// @protocol(Proto1); 5019 /// @endcode 5020 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 5021 /// which will hold address of the protocol meta-data. 5022 /// 5023 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CGBuilderTy &Builder, 5024 const ObjCProtocolDecl *PD) { 5025 5026 // This routine is called for @protocol only. So, we must build definition 5027 // of protocol's meta-data (not a reference to it!) 5028 // 5029 llvm::Constant *Init = 5030 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 5031 ObjCTypes.ExternalProtocolPtrTy); 5032 5033 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 5034 ProtocolName += PD->getName(); 5035 5036 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 5037 if (PTGV) 5038 return Builder.CreateLoad(PTGV, "tmp"); 5039 PTGV = new llvm::GlobalVariable( 5040 CGM.getModule(), 5041 Init->getType(), false, 5042 llvm::GlobalValue::WeakAnyLinkage, 5043 Init, 5044 ProtocolName); 5045 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 5046 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5047 CGM.AddUsedGlobal(PTGV); 5048 return Builder.CreateLoad(PTGV, "tmp"); 5049 } 5050 5051 /// GenerateCategory - Build metadata for a category implementation. 5052 /// struct _category_t { 5053 /// const char * const name; 5054 /// struct _class_t *const cls; 5055 /// const struct _method_list_t * const instance_methods; 5056 /// const struct _method_list_t * const class_methods; 5057 /// const struct _protocol_list_t * const protocols; 5058 /// const struct _prop_list_t * const properties; 5059 /// } 5060 /// 5061 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 5062 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 5063 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 5064 std::string ExtCatName(Prefix + Interface->getNameAsString()+ 5065 "_$_" + OCD->getNameAsString()); 5066 std::string ExtClassName(getClassSymbolPrefix() + 5067 Interface->getNameAsString()); 5068 5069 std::vector<llvm::Constant*> Values(6); 5070 Values[0] = GetClassName(OCD->getIdentifier()); 5071 // meta-class entry symbol 5072 llvm::GlobalVariable *ClassGV = GetClassGlobal(ExtClassName); 5073 if (Interface->isWeakImported()) 5074 ClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5075 5076 Values[1] = ClassGV; 5077 std::vector<llvm::Constant*> Methods; 5078 std::string MethodListName(Prefix); 5079 MethodListName += "INSTANCE_METHODS_" + Interface->getNameAsString() + 5080 "_$_" + OCD->getNameAsString(); 5081 5082 for (ObjCCategoryImplDecl::instmeth_iterator 5083 i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) { 5084 // Instance methods should always be defined. 5085 Methods.push_back(GetMethodConstant(*i)); 5086 } 5087 5088 Values[2] = EmitMethodList(MethodListName, 5089 "__DATA, __objc_const", 5090 Methods); 5091 5092 MethodListName = Prefix; 5093 MethodListName += "CLASS_METHODS_" + Interface->getNameAsString() + "_$_" + 5094 OCD->getNameAsString(); 5095 Methods.clear(); 5096 for (ObjCCategoryImplDecl::classmeth_iterator 5097 i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) { 5098 // Class methods should always be defined. 5099 Methods.push_back(GetMethodConstant(*i)); 5100 } 5101 5102 Values[3] = EmitMethodList(MethodListName, 5103 "__DATA, __objc_const", 5104 Methods); 5105 const ObjCCategoryDecl *Category = 5106 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 5107 if (Category) { 5108 llvm::SmallString<256> ExtName; 5109 llvm::raw_svector_ostream(ExtName) << Interface->getName() << "_$_" 5110 << OCD->getName(); 5111 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 5112 + Interface->getName() + "_$_" 5113 + Category->getName(), 5114 Category->protocol_begin(), 5115 Category->protocol_end()); 5116 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 5117 OCD, Category, ObjCTypes); 5118 } else { 5119 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 5120 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 5121 } 5122 5123 llvm::Constant *Init = 5124 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 5125 Values); 5126 llvm::GlobalVariable *GCATV 5127 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 5128 false, 5129 llvm::GlobalValue::InternalLinkage, 5130 Init, 5131 ExtCatName); 5132 GCATV->setAlignment( 5133 CGM.getTargetData().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 5134 GCATV->setSection("__DATA, __objc_const"); 5135 CGM.AddUsedGlobal(GCATV); 5136 DefinedCategories.push_back(GCATV); 5137 5138 // Determine if this category is also "non-lazy". 5139 if (ImplementationIsNonLazy(OCD)) 5140 DefinedNonLazyCategories.push_back(GCATV); 5141 // method definition entries must be clear for next implementation. 5142 MethodDefinitions.clear(); 5143 } 5144 5145 /// GetMethodConstant - Return a struct objc_method constant for the 5146 /// given method if it has been defined. The result is null if the 5147 /// method has not been defined. The return value has type MethodPtrTy. 5148 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 5149 const ObjCMethodDecl *MD) { 5150 llvm::Function *Fn = GetMethodDefinition(MD); 5151 if (!Fn) 5152 return 0; 5153 5154 std::vector<llvm::Constant*> Method(3); 5155 Method[0] = 5156 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 5157 ObjCTypes.SelectorPtrTy); 5158 Method[1] = GetMethodVarType(MD); 5159 Method[2] = llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy); 5160 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 5161 } 5162 5163 /// EmitMethodList - Build meta-data for method declarations 5164 /// struct _method_list_t { 5165 /// uint32_t entsize; // sizeof(struct _objc_method) 5166 /// uint32_t method_count; 5167 /// struct _objc_method method_list[method_count]; 5168 /// } 5169 /// 5170 llvm::Constant *CGObjCNonFragileABIMac::EmitMethodList(llvm::Twine Name, 5171 const char *Section, 5172 const ConstantVector &Methods) { 5173 // Return null for empty list. 5174 if (Methods.empty()) 5175 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 5176 5177 llvm::Constant *Values[3]; 5178 // sizeof(struct _objc_method) 5179 unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.MethodTy); 5180 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 5181 // method_count 5182 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 5183 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 5184 Methods.size()); 5185 Values[2] = llvm::ConstantArray::get(AT, Methods); 5186 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 5187 5188 llvm::GlobalVariable *GV = 5189 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5190 llvm::GlobalValue::InternalLinkage, Init, Name); 5191 GV->setAlignment(CGM.getTargetData().getABITypeAlignment(Init->getType())); 5192 GV->setSection(Section); 5193 CGM.AddUsedGlobal(GV); 5194 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 5195 } 5196 5197 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 5198 /// the given ivar. 5199 llvm::GlobalVariable * 5200 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 5201 const ObjCIvarDecl *Ivar) { 5202 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 5203 std::string Name = "OBJC_IVAR_$_" + Container->getNameAsString() + 5204 '.' + Ivar->getNameAsString(); 5205 llvm::GlobalVariable *IvarOffsetGV = 5206 CGM.getModule().getGlobalVariable(Name); 5207 if (!IvarOffsetGV) 5208 IvarOffsetGV = 5209 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.LongTy, 5210 false, 5211 llvm::GlobalValue::ExternalLinkage, 5212 0, 5213 Name); 5214 return IvarOffsetGV; 5215 } 5216 5217 llvm::Constant * 5218 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 5219 const ObjCIvarDecl *Ivar, 5220 unsigned long int Offset) { 5221 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 5222 IvarOffsetGV->setInitializer(llvm::ConstantInt::get(ObjCTypes.LongTy, 5223 Offset)); 5224 IvarOffsetGV->setAlignment( 5225 CGM.getTargetData().getABITypeAlignment(ObjCTypes.LongTy)); 5226 5227 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 5228 // well (i.e., in ObjCIvarOffsetVariable). 5229 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 5230 Ivar->getAccessControl() == ObjCIvarDecl::Package || 5231 ID->getVisibility() == HiddenVisibility) 5232 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5233 else 5234 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 5235 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 5236 return IvarOffsetGV; 5237 } 5238 5239 /// EmitIvarList - Emit the ivar list for the given 5240 /// implementation. The return value has type 5241 /// IvarListnfABIPtrTy. 5242 /// struct _ivar_t { 5243 /// unsigned long int *offset; // pointer to ivar offset location 5244 /// char *name; 5245 /// char *type; 5246 /// uint32_t alignment; 5247 /// uint32_t size; 5248 /// } 5249 /// struct _ivar_list_t { 5250 /// uint32 entsize; // sizeof(struct _ivar_t) 5251 /// uint32 count; 5252 /// struct _iver_t list[count]; 5253 /// } 5254 /// 5255 5256 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 5257 const ObjCImplementationDecl *ID) { 5258 5259 std::vector<llvm::Constant*> Ivars, Ivar(5); 5260 5261 ObjCInterfaceDecl *OID = 5262 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 5263 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 5264 5265 // FIXME. Consolidate this with similar code in GenerateClass. 5266 5267 for (ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 5268 IVD; IVD = IVD->getNextIvar()) { 5269 // Ignore unnamed bit-fields. 5270 if (!IVD->getDeclName()) 5271 continue; 5272 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 5273 ComputeIvarBaseOffset(CGM, ID, IVD)); 5274 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 5275 Ivar[2] = GetMethodVarType(IVD); 5276 llvm::Type *FieldTy = 5277 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 5278 unsigned Size = CGM.getTargetData().getTypeAllocSize(FieldTy); 5279 unsigned Align = CGM.getContext().getPreferredTypeAlign( 5280 IVD->getType().getTypePtr()) >> 3; 5281 Align = llvm::Log2_32(Align); 5282 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 5283 // NOTE. Size of a bitfield does not match gcc's, because of the 5284 // way bitfields are treated special in each. But I am told that 5285 // 'size' for bitfield ivars is ignored by the runtime so it does 5286 // not matter. If it matters, there is enough info to get the 5287 // bitfield right! 5288 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 5289 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 5290 } 5291 // Return null for empty list. 5292 if (Ivars.empty()) 5293 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5294 5295 llvm::Constant *Values[3]; 5296 unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.IvarnfABITy); 5297 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 5298 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 5299 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 5300 Ivars.size()); 5301 Values[2] = llvm::ConstantArray::get(AT, Ivars); 5302 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 5303 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 5304 llvm::GlobalVariable *GV = 5305 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5306 llvm::GlobalValue::InternalLinkage, 5307 Init, 5308 Prefix + OID->getName()); 5309 GV->setAlignment( 5310 CGM.getTargetData().getABITypeAlignment(Init->getType())); 5311 GV->setSection("__DATA, __objc_const"); 5312 5313 CGM.AddUsedGlobal(GV); 5314 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 5315 } 5316 5317 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 5318 const ObjCProtocolDecl *PD) { 5319 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 5320 5321 if (!Entry) { 5322 // We use the initializer as a marker of whether this is a forward 5323 // reference or not. At module finalization we add the empty 5324 // contents for protocols which were referenced but never defined. 5325 Entry = 5326 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, false, 5327 llvm::GlobalValue::ExternalLinkage, 5328 0, 5329 "\01l_OBJC_PROTOCOL_$_" + PD->getName()); 5330 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 5331 } 5332 5333 return Entry; 5334 } 5335 5336 /// GetOrEmitProtocol - Generate the protocol meta-data: 5337 /// @code 5338 /// struct _protocol_t { 5339 /// id isa; // NULL 5340 /// const char * const protocol_name; 5341 /// const struct _protocol_list_t * protocol_list; // super protocols 5342 /// const struct method_list_t * const instance_methods; 5343 /// const struct method_list_t * const class_methods; 5344 /// const struct method_list_t *optionalInstanceMethods; 5345 /// const struct method_list_t *optionalClassMethods; 5346 /// const struct _prop_list_t * properties; 5347 /// const uint32_t size; // sizeof(struct _protocol_t) 5348 /// const uint32_t flags; // = 0 5349 /// } 5350 /// @endcode 5351 /// 5352 5353 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 5354 const ObjCProtocolDecl *PD) { 5355 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 5356 5357 // Early exit if a defining object has already been generated. 5358 if (Entry && Entry->hasInitializer()) 5359 return Entry; 5360 5361 // Construct method lists. 5362 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 5363 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 5364 for (ObjCProtocolDecl::instmeth_iterator 5365 i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) { 5366 ObjCMethodDecl *MD = *i; 5367 llvm::Constant *C = GetMethodDescriptionConstant(MD); 5368 if (!C) 5369 return GetOrEmitProtocolRef(PD); 5370 5371 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 5372 OptInstanceMethods.push_back(C); 5373 } else { 5374 InstanceMethods.push_back(C); 5375 } 5376 } 5377 5378 for (ObjCProtocolDecl::classmeth_iterator 5379 i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) { 5380 ObjCMethodDecl *MD = *i; 5381 llvm::Constant *C = GetMethodDescriptionConstant(MD); 5382 if (!C) 5383 return GetOrEmitProtocolRef(PD); 5384 5385 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 5386 OptClassMethods.push_back(C); 5387 } else { 5388 ClassMethods.push_back(C); 5389 } 5390 } 5391 5392 std::vector<llvm::Constant*> Values(10); 5393 // isa is NULL 5394 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 5395 Values[1] = GetClassName(PD->getIdentifier()); 5396 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getName(), 5397 PD->protocol_begin(), 5398 PD->protocol_end()); 5399 5400 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 5401 + PD->getName(), 5402 "__DATA, __objc_const", 5403 InstanceMethods); 5404 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 5405 + PD->getName(), 5406 "__DATA, __objc_const", 5407 ClassMethods); 5408 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 5409 + PD->getName(), 5410 "__DATA, __objc_const", 5411 OptInstanceMethods); 5412 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 5413 + PD->getName(), 5414 "__DATA, __objc_const", 5415 OptClassMethods); 5416 Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getName(), 5417 0, PD, ObjCTypes); 5418 uint32_t Size = 5419 CGM.getTargetData().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 5420 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 5421 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 5422 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 5423 Values); 5424 5425 if (Entry) { 5426 // Already created, fix the linkage and update the initializer. 5427 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 5428 Entry->setInitializer(Init); 5429 } else { 5430 Entry = 5431 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 5432 false, llvm::GlobalValue::WeakAnyLinkage, Init, 5433 "\01l_OBJC_PROTOCOL_$_" + PD->getName()); 5434 Entry->setAlignment( 5435 CGM.getTargetData().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 5436 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 5437 } 5438 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 5439 CGM.AddUsedGlobal(Entry); 5440 5441 // Use this protocol meta-data to build protocol list table in section 5442 // __DATA, __objc_protolist 5443 llvm::GlobalVariable *PTGV = 5444 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 5445 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 5446 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getName()); 5447 PTGV->setAlignment( 5448 CGM.getTargetData().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 5449 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 5450 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5451 CGM.AddUsedGlobal(PTGV); 5452 return Entry; 5453 } 5454 5455 /// EmitProtocolList - Generate protocol list meta-data: 5456 /// @code 5457 /// struct _protocol_list_t { 5458 /// long protocol_count; // Note, this is 32/64 bit 5459 /// struct _protocol_t[protocol_count]; 5460 /// } 5461 /// @endcode 5462 /// 5463 llvm::Constant * 5464 CGObjCNonFragileABIMac::EmitProtocolList(llvm::Twine Name, 5465 ObjCProtocolDecl::protocol_iterator begin, 5466 ObjCProtocolDecl::protocol_iterator end) { 5467 std::vector<llvm::Constant*> ProtocolRefs; 5468 5469 // Just return null for empty protocol lists 5470 if (begin == end) 5471 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 5472 5473 // FIXME: We shouldn't need to do this lookup here, should we? 5474 llvm::SmallString<256> TmpName; 5475 Name.toVector(TmpName); 5476 llvm::GlobalVariable *GV = 5477 CGM.getModule().getGlobalVariable(TmpName.str(), true); 5478 if (GV) 5479 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 5480 5481 for (; begin != end; ++begin) 5482 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 5483 5484 // This list is null terminated. 5485 ProtocolRefs.push_back(llvm::Constant::getNullValue( 5486 ObjCTypes.ProtocolnfABIPtrTy)); 5487 5488 llvm::Constant *Values[2]; 5489 Values[0] = 5490 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 5491 Values[1] = 5492 llvm::ConstantArray::get( 5493 llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 5494 ProtocolRefs.size()), 5495 ProtocolRefs); 5496 5497 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 5498 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5499 llvm::GlobalValue::InternalLinkage, 5500 Init, Name); 5501 GV->setSection("__DATA, __objc_const"); 5502 GV->setAlignment( 5503 CGM.getTargetData().getABITypeAlignment(Init->getType())); 5504 CGM.AddUsedGlobal(GV); 5505 return llvm::ConstantExpr::getBitCast(GV, 5506 ObjCTypes.ProtocolListnfABIPtrTy); 5507 } 5508 5509 /// GetMethodDescriptionConstant - This routine build following meta-data: 5510 /// struct _objc_method { 5511 /// SEL _cmd; 5512 /// char *method_type; 5513 /// char *_imp; 5514 /// } 5515 5516 llvm::Constant * 5517 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 5518 std::vector<llvm::Constant*> Desc(3); 5519 Desc[0] = 5520 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 5521 ObjCTypes.SelectorPtrTy); 5522 Desc[1] = GetMethodVarType(MD); 5523 if (!Desc[1]) 5524 return 0; 5525 5526 // Protocol methods have no implementation. So, this entry is always NULL. 5527 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5528 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 5529 } 5530 5531 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 5532 /// This code gen. amounts to generating code for: 5533 /// @code 5534 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 5535 /// @encode 5536 /// 5537 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 5538 CodeGen::CodeGenFunction &CGF, 5539 QualType ObjectTy, 5540 llvm::Value *BaseValue, 5541 const ObjCIvarDecl *Ivar, 5542 unsigned CVRQualifiers) { 5543 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 5544 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5545 EmitIvarOffset(CGF, ID, Ivar)); 5546 } 5547 5548 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 5549 CodeGen::CodeGenFunction &CGF, 5550 const ObjCInterfaceDecl *Interface, 5551 const ObjCIvarDecl *Ivar) { 5552 return CGF.Builder.CreateLoad(ObjCIvarOffsetVariable(Interface, Ivar),"ivar"); 5553 } 5554 5555 static void appendSelectorForMessageRefTable(std::string &buffer, 5556 Selector selector) { 5557 if (selector.isUnarySelector()) { 5558 buffer += selector.getNameForSlot(0); 5559 return; 5560 } 5561 5562 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 5563 buffer += selector.getNameForSlot(i); 5564 buffer += '_'; 5565 } 5566 } 5567 5568 /// Emit a "v-table" message send. We emit a weak hidden-visibility 5569 /// struct, initially containing the selector pointer and a pointer to 5570 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 5571 /// load and call the function pointer, passing the address of the 5572 /// struct as the second parameter. The runtime determines whether 5573 /// the selector is currently emitted using vtable dispatch; if so, it 5574 /// substitutes a stub function which simply tail-calls through the 5575 /// appropriate vtable slot, and if not, it substitues a stub function 5576 /// which tail-calls objc_msgSend. Both stubs adjust the selector 5577 /// argument to correctly point to the selector. 5578 RValue 5579 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 5580 ReturnValueSlot returnSlot, 5581 QualType resultType, 5582 Selector selector, 5583 llvm::Value *arg0, 5584 QualType arg0Type, 5585 bool isSuper, 5586 const CallArgList &formalArgs, 5587 const ObjCMethodDecl *method) { 5588 // Compute the actual arguments. 5589 CallArgList args; 5590 5591 // First argument: the receiver / super-call structure. 5592 if (!isSuper) 5593 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 5594 args.add(RValue::get(arg0), arg0Type); 5595 5596 // Second argument: a pointer to the message ref structure. Leave 5597 // the actual argument value blank for now. 5598 args.add(RValue::get(0), ObjCTypes.MessageRefCPtrTy); 5599 5600 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 5601 5602 const CGFunctionInfo &fnInfo = 5603 CGM.getTypes().getFunctionInfo(resultType, args, 5604 FunctionType::ExtInfo()); 5605 5606 NullReturnState nullReturn; 5607 5608 // Find the function to call and the mangled name for the message 5609 // ref structure. Using a different mangled name wouldn't actually 5610 // be a problem; it would just be a waste. 5611 // 5612 // The runtime currently never uses vtable dispatch for anything 5613 // except normal, non-super message-sends. 5614 // FIXME: don't use this for that. 5615 llvm::Constant *fn = 0; 5616 std::string messageRefName("\01l_"); 5617 if (CGM.ReturnTypeUsesSRet(fnInfo)) { 5618 if (isSuper) { 5619 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 5620 messageRefName += "objc_msgSendSuper2_stret_fixup"; 5621 } else { 5622 nullReturn.init(CGF, arg0); 5623 fn = ObjCTypes.getMessageSendStretFixupFn(); 5624 messageRefName += "objc_msgSend_stret_fixup"; 5625 } 5626 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 5627 fn = ObjCTypes.getMessageSendFpretFixupFn(); 5628 messageRefName += "objc_msgSend_fpret_fixup"; 5629 } else { 5630 if (isSuper) { 5631 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 5632 messageRefName += "objc_msgSendSuper2_fixup"; 5633 } else { 5634 fn = ObjCTypes.getMessageSendFixupFn(); 5635 messageRefName += "objc_msgSend_fixup"; 5636 } 5637 } 5638 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 5639 messageRefName += '_'; 5640 5641 // Append the selector name, except use underscores anywhere we 5642 // would have used colons. 5643 appendSelectorForMessageRefTable(messageRefName, selector); 5644 5645 llvm::GlobalVariable *messageRef 5646 = CGM.getModule().getGlobalVariable(messageRefName); 5647 if (!messageRef) { 5648 // Build the message ref structure. 5649 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 5650 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 5651 messageRef = new llvm::GlobalVariable(CGM.getModule(), 5652 init->getType(), 5653 /*constant*/ false, 5654 llvm::GlobalValue::WeakAnyLinkage, 5655 init, 5656 messageRefName); 5657 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 5658 messageRef->setAlignment(16); 5659 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 5660 } 5661 llvm::Value *mref = 5662 CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy); 5663 5664 // Update the message ref argument. 5665 args[1].RV = RValue::get(mref); 5666 5667 // Load the function to call from the message ref table. 5668 llvm::Value *callee = CGF.Builder.CreateStructGEP(mref, 0); 5669 callee = CGF.Builder.CreateLoad(callee, "msgSend_fn"); 5670 5671 bool variadic = method ? method->isVariadic() : false; 5672 llvm::FunctionType *fnType = 5673 CGF.getTypes().GetFunctionType(fnInfo, variadic); 5674 callee = CGF.Builder.CreateBitCast(callee, 5675 llvm::PointerType::getUnqual(fnType)); 5676 5677 RValue result = CGF.EmitCall(fnInfo, callee, returnSlot, args); 5678 return nullReturn.complete(CGF, result, resultType); 5679 } 5680 5681 /// Generate code for a message send expression in the nonfragile abi. 5682 CodeGen::RValue 5683 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 5684 ReturnValueSlot Return, 5685 QualType ResultType, 5686 Selector Sel, 5687 llvm::Value *Receiver, 5688 const CallArgList &CallArgs, 5689 const ObjCInterfaceDecl *Class, 5690 const ObjCMethodDecl *Method) { 5691 return isVTableDispatchedSelector(Sel) 5692 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 5693 Receiver, CGF.getContext().getObjCIdType(), 5694 false, CallArgs, Method) 5695 : EmitMessageSend(CGF, Return, ResultType, 5696 EmitSelector(CGF.Builder, Sel), 5697 Receiver, CGF.getContext().getObjCIdType(), 5698 false, CallArgs, Method, ObjCTypes); 5699 } 5700 5701 llvm::GlobalVariable * 5702 CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name) { 5703 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 5704 5705 if (!GV) { 5706 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 5707 false, llvm::GlobalValue::ExternalLinkage, 5708 0, Name); 5709 } 5710 5711 return GV; 5712 } 5713 5714 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CGBuilderTy &Builder, 5715 IdentifierInfo *II) { 5716 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5717 5718 if (!Entry) { 5719 std::string ClassName(getClassSymbolPrefix() + II->getName().str()); 5720 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 5721 Entry = 5722 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 5723 false, llvm::GlobalValue::InternalLinkage, 5724 ClassGV, 5725 "\01L_OBJC_CLASSLIST_REFERENCES_$_"); 5726 Entry->setAlignment( 5727 CGM.getTargetData().getABITypeAlignment( 5728 ObjCTypes.ClassnfABIPtrTy)); 5729 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 5730 CGM.AddUsedGlobal(Entry); 5731 } 5732 5733 return Builder.CreateLoad(Entry, "tmp"); 5734 } 5735 5736 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CGBuilderTy &Builder, 5737 const ObjCInterfaceDecl *ID) { 5738 return EmitClassRefFromId(Builder, ID->getIdentifier()); 5739 } 5740 5741 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 5742 CGBuilderTy &Builder) { 5743 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5744 return EmitClassRefFromId(Builder, II); 5745 } 5746 5747 llvm::Value * 5748 CGObjCNonFragileABIMac::EmitSuperClassRef(CGBuilderTy &Builder, 5749 const ObjCInterfaceDecl *ID) { 5750 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 5751 5752 if (!Entry) { 5753 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 5754 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 5755 Entry = 5756 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 5757 false, llvm::GlobalValue::InternalLinkage, 5758 ClassGV, 5759 "\01L_OBJC_CLASSLIST_SUP_REFS_$_"); 5760 Entry->setAlignment( 5761 CGM.getTargetData().getABITypeAlignment( 5762 ObjCTypes.ClassnfABIPtrTy)); 5763 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 5764 CGM.AddUsedGlobal(Entry); 5765 } 5766 5767 return Builder.CreateLoad(Entry, "tmp"); 5768 } 5769 5770 /// EmitMetaClassRef - Return a Value * of the address of _class_t 5771 /// meta-data 5772 /// 5773 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CGBuilderTy &Builder, 5774 const ObjCInterfaceDecl *ID) { 5775 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 5776 if (Entry) 5777 return Builder.CreateLoad(Entry, "tmp"); 5778 5779 std::string MetaClassName(getMetaclassSymbolPrefix() + ID->getNameAsString()); 5780 llvm::GlobalVariable *MetaClassGV = GetClassGlobal(MetaClassName); 5781 Entry = 5782 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 5783 llvm::GlobalValue::InternalLinkage, 5784 MetaClassGV, 5785 "\01L_OBJC_CLASSLIST_SUP_REFS_$_"); 5786 Entry->setAlignment( 5787 CGM.getTargetData().getABITypeAlignment( 5788 ObjCTypes.ClassnfABIPtrTy)); 5789 5790 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 5791 CGM.AddUsedGlobal(Entry); 5792 5793 return Builder.CreateLoad(Entry, "tmp"); 5794 } 5795 5796 /// GetClass - Return a reference to the class for the given interface 5797 /// decl. 5798 llvm::Value *CGObjCNonFragileABIMac::GetClass(CGBuilderTy &Builder, 5799 const ObjCInterfaceDecl *ID) { 5800 if (ID->isWeakImported()) { 5801 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 5802 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 5803 ClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5804 } 5805 5806 return EmitClassRef(Builder, ID); 5807 } 5808 5809 /// Generates a message send where the super is the receiver. This is 5810 /// a message send to self with special delivery semantics indicating 5811 /// which class's method should be called. 5812 CodeGen::RValue 5813 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 5814 ReturnValueSlot Return, 5815 QualType ResultType, 5816 Selector Sel, 5817 const ObjCInterfaceDecl *Class, 5818 bool isCategoryImpl, 5819 llvm::Value *Receiver, 5820 bool IsClassMessage, 5821 const CodeGen::CallArgList &CallArgs, 5822 const ObjCMethodDecl *Method) { 5823 // ... 5824 // Create and init a super structure; this is a (receiver, class) 5825 // pair we will pass to objc_msgSendSuper. 5826 llvm::Value *ObjCSuper = 5827 CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super"); 5828 5829 llvm::Value *ReceiverAsObject = 5830 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 5831 CGF.Builder.CreateStore(ReceiverAsObject, 5832 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 5833 5834 // If this is a class message the metaclass is passed as the target. 5835 llvm::Value *Target; 5836 if (IsClassMessage) { 5837 if (isCategoryImpl) { 5838 // Message sent to "super' in a class method defined in 5839 // a category implementation. 5840 Target = EmitClassRef(CGF.Builder, Class); 5841 Target = CGF.Builder.CreateStructGEP(Target, 0); 5842 Target = CGF.Builder.CreateLoad(Target); 5843 } else 5844 Target = EmitMetaClassRef(CGF.Builder, Class); 5845 } else 5846 Target = EmitSuperClassRef(CGF.Builder, Class); 5847 5848 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 5849 // ObjCTypes types. 5850 llvm::Type *ClassTy = 5851 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 5852 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 5853 CGF.Builder.CreateStore(Target, 5854 CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 5855 5856 return (isVTableDispatchedSelector(Sel)) 5857 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 5858 ObjCSuper, ObjCTypes.SuperPtrCTy, 5859 true, CallArgs, Method) 5860 : EmitMessageSend(CGF, Return, ResultType, 5861 EmitSelector(CGF.Builder, Sel), 5862 ObjCSuper, ObjCTypes.SuperPtrCTy, 5863 true, CallArgs, Method, ObjCTypes); 5864 } 5865 5866 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CGBuilderTy &Builder, 5867 Selector Sel, bool lval) { 5868 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5869 5870 if (!Entry) { 5871 llvm::Constant *Casted = 5872 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5873 ObjCTypes.SelectorPtrTy); 5874 Entry = 5875 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 5876 llvm::GlobalValue::InternalLinkage, 5877 Casted, "\01L_OBJC_SELECTOR_REFERENCES_"); 5878 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 5879 CGM.AddUsedGlobal(Entry); 5880 } 5881 5882 if (lval) 5883 return Entry; 5884 return Builder.CreateLoad(Entry, "tmp"); 5885 } 5886 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 5887 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 5888 /// 5889 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 5890 llvm::Value *src, 5891 llvm::Value *dst, 5892 llvm::Value *ivarOffset) { 5893 llvm::Type * SrcTy = src->getType(); 5894 if (!isa<llvm::PointerType>(SrcTy)) { 5895 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 5896 assert(Size <= 8 && "does not support size > 8"); 5897 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 5898 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 5899 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5900 } 5901 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5902 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5903 CGF.Builder.CreateCall3(ObjCTypes.getGcAssignIvarFn(), 5904 src, dst, ivarOffset); 5905 return; 5906 } 5907 5908 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5909 /// objc_assign_strongCast (id src, id *dst) 5910 /// 5911 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 5912 CodeGen::CodeGenFunction &CGF, 5913 llvm::Value *src, llvm::Value *dst) { 5914 llvm::Type * SrcTy = src->getType(); 5915 if (!isa<llvm::PointerType>(SrcTy)) { 5916 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 5917 assert(Size <= 8 && "does not support size > 8"); 5918 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 5919 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 5920 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5921 } 5922 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5923 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5924 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignStrongCastFn(), 5925 src, dst, "weakassign"); 5926 return; 5927 } 5928 5929 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 5930 CodeGen::CodeGenFunction &CGF, 5931 llvm::Value *DestPtr, 5932 llvm::Value *SrcPtr, 5933 llvm::Value *Size) { 5934 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5935 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5936 CGF.Builder.CreateCall3(ObjCTypes.GcMemmoveCollectableFn(), 5937 DestPtr, SrcPtr, Size); 5938 return; 5939 } 5940 5941 /// EmitObjCWeakRead - Code gen for loading value of a __weak 5942 /// object: objc_read_weak (id *src) 5943 /// 5944 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 5945 CodeGen::CodeGenFunction &CGF, 5946 llvm::Value *AddrWeakObj) { 5947 llvm::Type* DestTy = 5948 cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType(); 5949 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 5950 llvm::Value *read_weak = CGF.Builder.CreateCall(ObjCTypes.getGcReadWeakFn(), 5951 AddrWeakObj, "weakread"); 5952 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 5953 return read_weak; 5954 } 5955 5956 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 5957 /// objc_assign_weak (id src, id *dst) 5958 /// 5959 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 5960 llvm::Value *src, llvm::Value *dst) { 5961 llvm::Type * SrcTy = src->getType(); 5962 if (!isa<llvm::PointerType>(SrcTy)) { 5963 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 5964 assert(Size <= 8 && "does not support size > 8"); 5965 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 5966 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 5967 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5968 } 5969 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5970 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5971 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignWeakFn(), 5972 src, dst, "weakassign"); 5973 return; 5974 } 5975 5976 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 5977 /// objc_assign_global (id src, id *dst) 5978 /// 5979 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 5980 llvm::Value *src, llvm::Value *dst, 5981 bool threadlocal) { 5982 llvm::Type * SrcTy = src->getType(); 5983 if (!isa<llvm::PointerType>(SrcTy)) { 5984 unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy); 5985 assert(Size <= 8 && "does not support size > 8"); 5986 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 5987 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 5988 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5989 } 5990 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5991 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5992 if (!threadlocal) 5993 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignGlobalFn(), 5994 src, dst, "globalassign"); 5995 else 5996 CGF.Builder.CreateCall2(ObjCTypes.getGcAssignThreadLocalFn(), 5997 src, dst, "threadlocalassign"); 5998 return; 5999 } 6000 6001 void 6002 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 6003 const ObjCAtSynchronizedStmt &S) { 6004 EmitAtSynchronizedStmt(CGF, S, 6005 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 6006 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 6007 } 6008 6009 llvm::Constant * 6010 CGObjCNonFragileABIMac::GetEHType(QualType T) { 6011 // There's a particular fixed type info for 'id'. 6012 if (T->isObjCIdType() || 6013 T->isObjCQualifiedIdType()) { 6014 llvm::Constant *IDEHType = 6015 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 6016 if (!IDEHType) 6017 IDEHType = 6018 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 6019 false, 6020 llvm::GlobalValue::ExternalLinkage, 6021 0, "OBJC_EHTYPE_id"); 6022 return IDEHType; 6023 } 6024 6025 // All other types should be Objective-C interface pointer types. 6026 const ObjCObjectPointerType *PT = 6027 T->getAs<ObjCObjectPointerType>(); 6028 assert(PT && "Invalid @catch type."); 6029 const ObjCInterfaceType *IT = PT->getInterfaceType(); 6030 assert(IT && "Invalid @catch type."); 6031 return GetInterfaceEHType(IT->getDecl(), false); 6032 } 6033 6034 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 6035 const ObjCAtTryStmt &S) { 6036 EmitTryCatchStmt(CGF, S, 6037 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 6038 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 6039 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 6040 } 6041 6042 /// EmitThrowStmt - Generate code for a throw statement. 6043 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 6044 const ObjCAtThrowStmt &S) { 6045 if (const Expr *ThrowExpr = S.getThrowExpr()) { 6046 llvm::Value *Exception = CGF.EmitScalarExpr(ThrowExpr); 6047 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy, 6048 "tmp"); 6049 CGF.EmitCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 6050 .setDoesNotReturn(); 6051 } else { 6052 CGF.EmitCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 6053 .setDoesNotReturn(); 6054 } 6055 6056 CGF.Builder.CreateUnreachable(); 6057 CGF.Builder.ClearInsertionPoint(); 6058 } 6059 6060 llvm::Constant * 6061 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 6062 bool ForDefinition) { 6063 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 6064 6065 // If we don't need a definition, return the entry if found or check 6066 // if we use an external reference. 6067 if (!ForDefinition) { 6068 if (Entry) 6069 return Entry; 6070 6071 // If this type (or a super class) has the __objc_exception__ 6072 // attribute, emit an external reference. 6073 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 6074 return Entry = 6075 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 6076 llvm::GlobalValue::ExternalLinkage, 6077 0, 6078 ("OBJC_EHTYPE_$_" + 6079 ID->getIdentifier()->getName())); 6080 } 6081 6082 // Otherwise we need to either make a new entry or fill in the 6083 // initializer. 6084 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 6085 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 6086 std::string VTableName = "objc_ehtype_vtable"; 6087 llvm::GlobalVariable *VTableGV = 6088 CGM.getModule().getGlobalVariable(VTableName); 6089 if (!VTableGV) 6090 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 6091 false, 6092 llvm::GlobalValue::ExternalLinkage, 6093 0, VTableName); 6094 6095 llvm::Value *VTableIdx = 6096 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 2); 6097 6098 std::vector<llvm::Constant*> Values(3); 6099 Values[0] = llvm::ConstantExpr::getGetElementPtr(VTableGV, &VTableIdx, 1); 6100 Values[1] = GetClassName(ID->getIdentifier()); 6101 Values[2] = GetClassGlobal(ClassName); 6102 llvm::Constant *Init = 6103 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 6104 6105 if (Entry) { 6106 Entry->setInitializer(Init); 6107 } else { 6108 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 6109 llvm::GlobalValue::WeakAnyLinkage, 6110 Init, 6111 ("OBJC_EHTYPE_$_" + 6112 ID->getIdentifier()->getName())); 6113 } 6114 6115 if (CGM.getLangOptions().getVisibilityMode() == HiddenVisibility) 6116 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6117 Entry->setAlignment(CGM.getTargetData().getABITypeAlignment( 6118 ObjCTypes.EHTypeTy)); 6119 6120 if (ForDefinition) { 6121 Entry->setSection("__DATA,__objc_const"); 6122 Entry->setLinkage(llvm::GlobalValue::ExternalLinkage); 6123 } else { 6124 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6125 } 6126 6127 return Entry; 6128 } 6129 6130 /* *** */ 6131 6132 CodeGen::CGObjCRuntime * 6133 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 6134 if (CGM.getLangOptions().ObjCNonFragileABI) 6135 return new CGObjCNonFragileABIMac(CGM); 6136 return new CGObjCMac(CGM); 6137 } 6138