Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef X86ISELLOWERING_H
     16 #define X86ISELLOWERING_H
     17 
     18 #include "X86Subtarget.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86MachineFunctionInfo.h"
     21 #include "llvm/Target/TargetLowering.h"
     22 #include "llvm/Target/TargetOptions.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/SelectionDAG.h"
     25 #include "llvm/CodeGen/CallingConvLower.h"
     26 
     27 namespace llvm {
     28   namespace X86ISD {
     29     // X86 Specific DAG Nodes
     30     enum NodeType {
     31       // Start the numbering where the builtin ops leave off.
     32       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     33 
     34       /// BSF - Bit scan forward.
     35       /// BSR - Bit scan reverse.
     36       BSF,
     37       BSR,
     38 
     39       /// SHLD, SHRD - Double shift instructions. These correspond to
     40       /// X86::SHLDxx and X86::SHRDxx instructions.
     41       SHLD,
     42       SHRD,
     43 
     44       /// FAND - Bitwise logical AND of floating point values. This corresponds
     45       /// to X86::ANDPS or X86::ANDPD.
     46       FAND,
     47 
     48       /// FOR - Bitwise logical OR of floating point values. This corresponds
     49       /// to X86::ORPS or X86::ORPD.
     50       FOR,
     51 
     52       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
     53       /// to X86::XORPS or X86::XORPD.
     54       FXOR,
     55 
     56       /// FSRL - Bitwise logical right shift of floating point values. These
     57       /// corresponds to X86::PSRLDQ.
     58       FSRL,
     59 
     60       /// CALL - These operations represent an abstract X86 call
     61       /// instruction, which includes a bunch of information.  In particular the
     62       /// operands of these node are:
     63       ///
     64       ///     #0 - The incoming token chain
     65       ///     #1 - The callee
     66       ///     #2 - The number of arg bytes the caller pushes on the stack.
     67       ///     #3 - The number of arg bytes the callee pops off the stack.
     68       ///     #4 - The value to pass in AL/AX/EAX (optional)
     69       ///     #5 - The value to pass in DL/DX/EDX (optional)
     70       ///
     71       /// The result values of these nodes are:
     72       ///
     73       ///     #0 - The outgoing token chain
     74       ///     #1 - The first register result value (optional)
     75       ///     #2 - The second register result value (optional)
     76       ///
     77       CALL,
     78 
     79       /// RDTSC_DAG - This operation implements the lowering for
     80       /// readcyclecounter
     81       RDTSC_DAG,
     82 
     83       /// X86 compare and logical compare instructions.
     84       CMP, COMI, UCOMI,
     85 
     86       /// X86 bit-test instructions.
     87       BT,
     88 
     89       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
     90       /// operand, usually produced by a CMP instruction.
     91       SETCC,
     92 
     93       // Same as SETCC except it's materialized with a sbb and the value is all
     94       // one's or all zero's.
     95       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
     96 
     97       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
     98       /// Operands are two FP values to compare; result is a mask of
     99       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    100       FSETCCss, FSETCCsd,
    101 
    102       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
    103       /// result in an integer GPR.  Needs masking for scalar result.
    104       FGETSIGNx86,
    105 
    106       /// X86 conditional moves. Operand 0 and operand 1 are the two values
    107       /// to select from. Operand 2 is the condition code, and operand 3 is the
    108       /// flag operand produced by a CMP or TEST instruction. It also writes a
    109       /// flag result.
    110       CMOV,
    111 
    112       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    113       /// is the block to branch if condition is true, operand 2 is the
    114       /// condition code, and operand 3 is the flag operand produced by a CMP
    115       /// or TEST instruction.
    116       BRCOND,
    117 
    118       /// Return with a flag operand. Operand 0 is the chain operand, operand
    119       /// 1 is the number of bytes of stack to pop.
    120       RET_FLAG,
    121 
    122       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
    123       REP_STOS,
    124 
    125       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
    126       REP_MOVS,
    127 
    128       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
    129       /// at function entry, used for PIC code.
    130       GlobalBaseReg,
    131 
    132       /// Wrapper - A wrapper node for TargetConstantPool,
    133       /// TargetExternalSymbol, and TargetGlobalAddress.
    134       Wrapper,
    135 
    136       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
    137       /// relative displacements.
    138       WrapperRIP,
    139 
    140       /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
    141       /// of an XMM vector, with the high word zero filled.
    142       MOVQ2DQ,
    143 
    144       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
    145       /// to an MMX vector.  If you think this is too close to the previous
    146       /// mnemonic, so do I; blame Intel.
    147       MOVDQ2Q,
    148 
    149       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
    150       /// i32, corresponds to X86::PEXTRB.
    151       PEXTRB,
    152 
    153       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
    154       /// i32, corresponds to X86::PEXTRW.
    155       PEXTRW,
    156 
    157       /// INSERTPS - Insert any element of a 4 x float vector into any element
    158       /// of a destination 4 x floatvector.
    159       INSERTPS,
    160 
    161       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
    162       /// corresponds to X86::PINSRB.
    163       PINSRB,
    164 
    165       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
    166       /// corresponds to X86::PINSRW.
    167       PINSRW, MMX_PINSRW,
    168 
    169       /// PSHUFB - Shuffle 16 8-bit values within a vector.
    170       PSHUFB,
    171 
    172       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
    173       ANDNP,
    174 
    175       /// PSIGNB/W/D - Copy integer sign.
    176       PSIGNB, PSIGNW, PSIGND,
    177 
    178       /// PBLENDVB - Variable blend
    179       PBLENDVB,
    180 
    181       /// FMAX, FMIN - Floating point max and min.
    182       ///
    183       FMAX, FMIN,
    184 
    185       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
    186       /// approximation.  Note that these typically require refinement
    187       /// in order to obtain suitable precision.
    188       FRSQRT, FRCP,
    189 
    190       // TLSADDR - Thread Local Storage.
    191       TLSADDR,
    192 
    193       // TLSCALL - Thread Local Storage.  When calling to an OS provided
    194       // thunk at the address from an earlier relocation.
    195       TLSCALL,
    196 
    197       // EH_RETURN - Exception Handling helpers.
    198       EH_RETURN,
    199 
    200       /// TC_RETURN - Tail call return.
    201       ///   operand #0 chain
    202       ///   operand #1 callee (register or absolute)
    203       ///   operand #2 stack adjustment
    204       ///   operand #3 optional in flag
    205       TC_RETURN,
    206 
    207       // VZEXT_MOVL - Vector move low and zero extend.
    208       VZEXT_MOVL,
    209 
    210       // VSHL, VSRL - Vector logical left / right shift.
    211       VSHL, VSRL,
    212 
    213       // CMPPD, CMPPS - Vector double/float comparison.
    214       // CMPPD, CMPPS - Vector double/float comparison.
    215       CMPPD, CMPPS,
    216 
    217       // PCMP* - Vector integer comparisons.
    218       PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
    219       PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
    220 
    221       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
    222       ADD, SUB, ADC, SBB, SMUL,
    223       INC, DEC, OR, XOR, AND,
    224 
    225       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
    226 
    227       // MUL_IMM - X86 specific multiply by immediate.
    228       MUL_IMM,
    229 
    230       // PTEST - Vector bitwise comparisons
    231       PTEST,
    232 
    233       // TESTP - Vector packed fp sign bitwise comparisons
    234       TESTP,
    235 
    236       // Several flavors of instructions with vector shuffle behaviors.
    237       PALIGN,
    238       PSHUFD,
    239       PSHUFHW,
    240       PSHUFLW,
    241       PSHUFHW_LD,
    242       PSHUFLW_LD,
    243       SHUFPD,
    244       SHUFPS,
    245       MOVDDUP,
    246       MOVSHDUP,
    247       MOVSLDUP,
    248       MOVSHDUP_LD,
    249       MOVSLDUP_LD,
    250       MOVLHPS,
    251       MOVLHPD,
    252       MOVHLPS,
    253       MOVHLPD,
    254       MOVLPS,
    255       MOVLPD,
    256       MOVSD,
    257       MOVSS,
    258       UNPCKLPS,
    259       UNPCKLPD,
    260       VUNPCKLPS,
    261       VUNPCKLPD,
    262       VUNPCKLPSY,
    263       VUNPCKLPDY,
    264       UNPCKHPS,
    265       UNPCKHPD,
    266       PUNPCKLBW,
    267       PUNPCKLWD,
    268       PUNPCKLDQ,
    269       PUNPCKLQDQ,
    270       PUNPCKHBW,
    271       PUNPCKHWD,
    272       PUNPCKHDQ,
    273       PUNPCKHQDQ,
    274 
    275       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
    276       // according to %al. An operator is needed so that this can be expanded
    277       // with control flow.
    278       VASTART_SAVE_XMM_REGS,
    279 
    280       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
    281       WIN_ALLOCA,
    282 
    283       // Memory barrier
    284       MEMBARRIER,
    285       MFENCE,
    286       SFENCE,
    287       LFENCE,
    288 
    289       // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
    290       // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
    291       // Atomic 64-bit binary operations.
    292       ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    293       ATOMSUB64_DAG,
    294       ATOMOR64_DAG,
    295       ATOMXOR64_DAG,
    296       ATOMAND64_DAG,
    297       ATOMNAND64_DAG,
    298       ATOMSWAP64_DAG,
    299 
    300       // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
    301       LCMPXCHG_DAG,
    302       LCMPXCHG8_DAG,
    303 
    304       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
    305       VZEXT_LOAD,
    306 
    307       // FNSTCW16m - Store FP control world into i16 memory.
    308       FNSTCW16m,
    309 
    310       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
    311       /// integer destination in memory and a FP reg source.  This corresponds
    312       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    313       /// has two inputs (token chain and address) and two outputs (int value
    314       /// and token chain).
    315       FP_TO_INT16_IN_MEM,
    316       FP_TO_INT32_IN_MEM,
    317       FP_TO_INT64_IN_MEM,
    318 
    319       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
    320       /// integer source in memory and FP reg result.  This corresponds to the
    321       /// X86::FILD*m instructions. It has three inputs (token chain, address,
    322       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
    323       /// also produces a flag).
    324       FILD,
    325       FILD_FLAG,
    326 
    327       /// FLD - This instruction implements an extending load to FP stack slots.
    328       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    329       /// operand, ptr to load from, and a ValueType node indicating the type
    330       /// to load to.
    331       FLD,
    332 
    333       /// FST - This instruction implements a truncating store to FP stack
    334       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    335       /// chain operand, value to store, address, and a ValueType to store it
    336       /// as.
    337       FST,
    338 
    339       /// VAARG_64 - This instruction grabs the address of the next argument
    340       /// from a va_list. (reads and modifies the va_list in memory)
    341       VAARG_64
    342 
    343       // WARNING: Do not add anything in the end unless you want the node to
    344       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
    345       // thought as target memory ops!
    346     };
    347   }
    348 
    349   /// Define some predicates that are used for node matching.
    350   namespace X86 {
    351     /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
    352     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    353     bool isPSHUFDMask(ShuffleVectorSDNode *N);
    354 
    355     /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
    356     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    357     bool isPSHUFHWMask(ShuffleVectorSDNode *N);
    358 
    359     /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
    360     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    361     bool isPSHUFLWMask(ShuffleVectorSDNode *N);
    362 
    363     /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
    364     /// specifies a shuffle of elements that is suitable for input to SHUFP*.
    365     bool isSHUFPMask(ShuffleVectorSDNode *N);
    366 
    367     /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
    368     /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
    369     bool isMOVHLPSMask(ShuffleVectorSDNode *N);
    370 
    371     /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
    372     /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
    373     /// <2, 3, 2, 3>
    374     bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
    375 
    376     /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
    377     /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
    378     bool isMOVLPMask(ShuffleVectorSDNode *N);
    379 
    380     /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
    381     /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
    382     /// as well as MOVLHPS.
    383     bool isMOVLHPSMask(ShuffleVectorSDNode *N);
    384 
    385     /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
    386     /// specifies a shuffle of elements that is suitable for input to UNPCKL.
    387     bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
    388 
    389     /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
    390     /// specifies a shuffle of elements that is suitable for input to UNPCKH.
    391     bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
    392 
    393     /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
    394     /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
    395     /// <0, 0, 1, 1>
    396     bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
    397 
    398     /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
    399     /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
    400     /// <2, 2, 3, 3>
    401     bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
    402 
    403     /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
    404     /// specifies a shuffle of elements that is suitable for input to MOVSS,
    405     /// MOVSD, and MOVD, i.e. setting the lowest element.
    406     bool isMOVLMask(ShuffleVectorSDNode *N);
    407 
    408     /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    409     /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
    410     bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
    411 
    412     /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    413     /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
    414     bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
    415 
    416     /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    417     /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
    418     bool isMOVDDUPMask(ShuffleVectorSDNode *N);
    419 
    420     /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
    421     /// specifies a shuffle of elements that is suitable for input to PALIGNR.
    422     bool isPALIGNRMask(ShuffleVectorSDNode *N);
    423 
    424     /// isVEXTRACTF128Index - Return true if the specified
    425     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    426     /// suitable for input to VEXTRACTF128.
    427     bool isVEXTRACTF128Index(SDNode *N);
    428 
    429     /// isVINSERTF128Index - Return true if the specified
    430     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    431     /// suitable for input to VINSERTF128.
    432     bool isVINSERTF128Index(SDNode *N);
    433 
    434     /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
    435     /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
    436     /// instructions.
    437     unsigned getShuffleSHUFImmediate(SDNode *N);
    438 
    439     /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
    440     /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
    441     unsigned getShufflePSHUFHWImmediate(SDNode *N);
    442 
    443     /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
    444     /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
    445     unsigned getShufflePSHUFLWImmediate(SDNode *N);
    446 
    447     /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
    448     /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
    449     unsigned getShufflePALIGNRImmediate(SDNode *N);
    450 
    451     /// getExtractVEXTRACTF128Immediate - Return the appropriate
    452     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    453     /// with VEXTRACTF128 instructions.
    454     unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
    455 
    456     /// getInsertVINSERTF128Immediate - Return the appropriate
    457     /// immediate to insert at the specified INSERT_SUBVECTOR index
    458     /// with VINSERTF128 instructions.
    459     unsigned getInsertVINSERTF128Immediate(SDNode *N);
    460 
    461     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
    462     /// constant +0.0.
    463     bool isZeroNode(SDValue Elt);
    464 
    465     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
    466     /// fit into displacement field of the instruction.
    467     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
    468                                       bool hasSymbolicDisplacement = true);
    469 
    470 
    471     /// isCalleePop - Determines whether the callee is required to pop its
    472     /// own arguments. Callee pop is necessary to support tail calls.
    473     bool isCalleePop(CallingConv::ID CallingConv,
    474                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
    475   }
    476 
    477   //===--------------------------------------------------------------------===//
    478   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
    479   class X86TargetLowering : public TargetLowering {
    480   public:
    481     explicit X86TargetLowering(X86TargetMachine &TM);
    482 
    483     virtual unsigned getJumpTableEncoding() const;
    484 
    485     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
    486 
    487     virtual const MCExpr *
    488     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    489                               const MachineBasicBlock *MBB, unsigned uid,
    490                               MCContext &Ctx) const;
    491 
    492     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    493     /// jumptable.
    494     virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    495                                              SelectionDAG &DAG) const;
    496     virtual const MCExpr *
    497     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    498                                  unsigned JTI, MCContext &Ctx) const;
    499 
    500     /// getStackPtrReg - Return the stack pointer register we are using: either
    501     /// ESP or RSP.
    502     unsigned getStackPtrReg() const { return X86StackPtr; }
    503 
    504     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    505     /// function arguments in the caller parameter area. For X86, aggregates
    506     /// that contains are placed at 16-byte boundaries while the rest are at
    507     /// 4-byte boundaries.
    508     virtual unsigned getByValTypeAlignment(Type *Ty) const;
    509 
    510     /// getOptimalMemOpType - Returns the target specific optimal type for load
    511     /// and store operations as a result of memset, memcpy, and memmove
    512     /// lowering. If DstAlign is zero that means it's safe to destination
    513     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    514     /// means there isn't a need to check it against alignment requirement,
    515     /// probably because the source does not need to be loaded. If
    516     /// 'NonScalarIntSafe' is true, that means it's safe to return a
    517     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    518     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    519     /// constant so it does not need to be loaded.
    520     /// It returns EVT::Other if the type should be determined using generic
    521     /// target-independent logic.
    522     virtual EVT
    523     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    524                         bool NonScalarIntSafe, bool MemcpyStrSrc,
    525                         MachineFunction &MF) const;
    526 
    527     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
    528     /// unaligned memory accesses. of the specified type.
    529     virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
    530       return true;
    531     }
    532 
    533     /// LowerOperation - Provide custom lowering hooks for some operations.
    534     ///
    535     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    536 
    537     /// ReplaceNodeResults - Replace the results of node with an illegal result
    538     /// type with new values built out of custom code.
    539     ///
    540     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    541                                     SelectionDAG &DAG) const;
    542 
    543 
    544     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    545 
    546     /// isTypeDesirableForOp - Return true if the target has native support for
    547     /// the specified value type and it is 'desirable' to use the type for the
    548     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    549     /// instruction encodings are longer and some i16 instructions are slow.
    550     virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
    551 
    552     /// isTypeDesirable - Return true if the target has native support for the
    553     /// specified value type and it is 'desirable' to use the type. e.g. On x86
    554     /// i16 is legal, but undesirable since i16 instruction encodings are longer
    555     /// and some i16 instructions are slow.
    556     virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
    557 
    558     virtual MachineBasicBlock *
    559       EmitInstrWithCustomInserter(MachineInstr *MI,
    560                                   MachineBasicBlock *MBB) const;
    561 
    562 
    563     /// getTargetNodeName - This method returns the name of a target specific
    564     /// DAG node.
    565     virtual const char *getTargetNodeName(unsigned Opcode) const;
    566 
    567     /// getSetCCResultType - Return the ISD::SETCC ValueType
    568     virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
    569 
    570     /// computeMaskedBitsForTargetNode - Determine which of the bits specified
    571     /// in Mask are known to be either zero or one and return them in the
    572     /// KnownZero/KnownOne bitsets.
    573     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    574                                                 const APInt &Mask,
    575                                                 APInt &KnownZero,
    576                                                 APInt &KnownOne,
    577                                                 const SelectionDAG &DAG,
    578                                                 unsigned Depth = 0) const;
    579 
    580     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
    581     // operation that are sign bits.
    582     virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    583                                                      unsigned Depth) const;
    584 
    585     virtual bool
    586     isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    587 
    588     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
    589 
    590     virtual bool ExpandInlineAsm(CallInst *CI) const;
    591 
    592     ConstraintType getConstraintType(const std::string &Constraint) const;
    593 
    594     /// Examine constraint string and operand type and determine a weight value.
    595     /// The operand object must already have been set up with the operand type.
    596     virtual ConstraintWeight getSingleConstraintMatchWeight(
    597       AsmOperandInfo &info, const char *constraint) const;
    598 
    599     virtual const char *LowerXConstraint(EVT ConstraintVT) const;
    600 
    601     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    602     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
    603     /// true it means one of the asm constraint of the inline asm instruction
    604     /// being processed is 'm'.
    605     virtual void LowerAsmOperandForConstraint(SDValue Op,
    606                                               std::string &Constraint,
    607                                               std::vector<SDValue> &Ops,
    608                                               SelectionDAG &DAG) const;
    609 
    610     /// getRegForInlineAsmConstraint - Given a physical register constraint
    611     /// (e.g. {edx}), return the register number and the register class for the
    612     /// register.  This should only be used for C_Register constraints.  On
    613     /// error, this returns a register number of 0.
    614     std::pair<unsigned, const TargetRegisterClass*>
    615       getRegForInlineAsmConstraint(const std::string &Constraint,
    616                                    EVT VT) const;
    617 
    618     /// isLegalAddressingMode - Return true if the addressing mode represented
    619     /// by AM is legal for this target, for a load/store of the specified type.
    620     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    621 
    622     /// isTruncateFree - Return true if it's free to truncate a value of
    623     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    624     /// register EAX to i16 by referencing its sub-register AX.
    625     virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    626     virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
    627 
    628     /// isZExtFree - Return true if any actual instruction that defines a
    629     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    630     /// register. This does not necessarily include registers defined in
    631     /// unknown ways, such as incoming arguments, or copies from unknown
    632     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    633     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    634     /// all instructions that define 32-bit values implicit zero-extend the
    635     /// result out to 64 bits.
    636     virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
    637     virtual bool isZExtFree(EVT VT1, EVT VT2) const;
    638 
    639     /// isNarrowingProfitable - Return true if it's profitable to narrow
    640     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    641     /// from i32 to i8 but not from i32 to i16.
    642     virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
    643 
    644     /// isFPImmLegal - Returns true if the target can instruction select the
    645     /// specified FP immediate natively. If false, the legalizer will
    646     /// materialize the FP immediate as a load from a constant pool.
    647     virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
    648 
    649     /// isShuffleMaskLegal - Targets can use this to indicate that they only
    650     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    651     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    652     /// values are assumed to be legal.
    653     virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    654                                     EVT VT) const;
    655 
    656     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    657     /// used by Targets can use this to indicate if there is a suitable
    658     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    659     /// pool entry.
    660     virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    661                                         EVT VT) const;
    662 
    663     /// ShouldShrinkFPConstant - If true, then instruction selection should
    664     /// seek to shrink the FP constant of the specified type to a smaller type
    665     /// in order to save space and / or reduce runtime.
    666     virtual bool ShouldShrinkFPConstant(EVT VT) const {
    667       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
    668       // expensive than a straight movsd. On the other hand, it's important to
    669       // shrink long double fp constant since fldt is very slow.
    670       return !X86ScalarSSEf64 || VT == MVT::f80;
    671     }
    672 
    673     const X86Subtarget* getSubtarget() const {
    674       return Subtarget;
    675     }
    676 
    677     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    678     /// computed in an SSE register, not on the X87 floating point stack.
    679     bool isScalarFPTypeInSSEReg(EVT VT) const {
    680       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    681       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    682     }
    683 
    684     /// createFastISel - This method returns a target specific FastISel object,
    685     /// or null if the target does not support "fast" ISel.
    686     virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
    687 
    688     /// getStackCookieLocation - Return true if the target stores stack
    689     /// protector cookies at a fixed offset in some non-standard address
    690     /// space, and populates the address space and offset as
    691     /// appropriate.
    692     virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
    693 
    694     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
    695                       SelectionDAG &DAG) const;
    696 
    697   protected:
    698     std::pair<const TargetRegisterClass*, uint8_t>
    699     findRepresentativeClass(EVT VT) const;
    700 
    701   private:
    702     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    703     /// make the right decision when generating code for different targets.
    704     const X86Subtarget *Subtarget;
    705     const X86RegisterInfo *RegInfo;
    706     const TargetData *TD;
    707 
    708     /// X86StackPtr - X86 physical register used as stack ptr.
    709     unsigned X86StackPtr;
    710 
    711     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
    712     /// floating point ops.
    713     /// When SSE is available, use it for f32 operations.
    714     /// When SSE2 is available, use it for f64 operations.
    715     bool X86ScalarSSEf32;
    716     bool X86ScalarSSEf64;
    717 
    718     /// LegalFPImmediates - A list of legal fp immediates.
    719     std::vector<APFloat> LegalFPImmediates;
    720 
    721     /// addLegalFPImmediate - Indicate that this x86 target can instruction
    722     /// select the specified FP immediate natively.
    723     void addLegalFPImmediate(const APFloat& Imm) {
    724       LegalFPImmediates.push_back(Imm);
    725     }
    726 
    727     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    728                             CallingConv::ID CallConv, bool isVarArg,
    729                             const SmallVectorImpl<ISD::InputArg> &Ins,
    730                             DebugLoc dl, SelectionDAG &DAG,
    731                             SmallVectorImpl<SDValue> &InVals) const;
    732     SDValue LowerMemArgument(SDValue Chain,
    733                              CallingConv::ID CallConv,
    734                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
    735                              DebugLoc dl, SelectionDAG &DAG,
    736                              const CCValAssign &VA,  MachineFrameInfo *MFI,
    737                               unsigned i) const;
    738     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
    739                              DebugLoc dl, SelectionDAG &DAG,
    740                              const CCValAssign &VA,
    741                              ISD::ArgFlagsTy Flags) const;
    742 
    743     // Call lowering helpers.
    744 
    745     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    746     /// for tail call optimization. Targets which want to do tail call
    747     /// optimization should implement this function.
    748     bool IsEligibleForTailCallOptimization(SDValue Callee,
    749                                            CallingConv::ID CalleeCC,
    750                                            bool isVarArg,
    751                                            bool isCalleeStructRet,
    752                                            bool isCallerStructRet,
    753                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
    754                                     const SmallVectorImpl<SDValue> &OutVals,
    755                                     const SmallVectorImpl<ISD::InputArg> &Ins,
    756                                            SelectionDAG& DAG) const;
    757     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
    758     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
    759                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
    760                                 int FPDiff, DebugLoc dl) const;
    761 
    762     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
    763                                          SelectionDAG &DAG) const;
    764 
    765     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
    766                                                bool isSigned) const;
    767 
    768     SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
    769                                    SelectionDAG &DAG) const;
    770     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    771     SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
    772     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    773     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    774     SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
    775     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    776     SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
    777     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    778     SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    779     SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    780     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    781     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    782     SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
    783                                int64_t Offset, SelectionDAG &DAG) const;
    784     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    785     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    786     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
    787     SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
    788     SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
    789     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    790     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    791     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    792     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    793     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
    794     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
    795     SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
    796     SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
    797     SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
    798     SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
    799     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
    800                       DebugLoc dl, SelectionDAG &DAG) const;
    801     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    802     SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
    803     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    804     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    805     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
    806     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    807     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    808     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    809     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    810     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    811     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    812     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    813     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    814     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    815     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    816     SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    817     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    818     SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
    819     SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
    820     SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
    821     SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
    822     SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
    823 
    824     SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
    825     SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
    826     SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
    827     SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
    828     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    829 
    830     // Utility functions to help LowerVECTOR_SHUFFLE
    831     SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
    832 
    833     virtual SDValue
    834       LowerFormalArguments(SDValue Chain,
    835                            CallingConv::ID CallConv, bool isVarArg,
    836                            const SmallVectorImpl<ISD::InputArg> &Ins,
    837                            DebugLoc dl, SelectionDAG &DAG,
    838                            SmallVectorImpl<SDValue> &InVals) const;
    839     virtual SDValue
    840       LowerCall(SDValue Chain, SDValue Callee,
    841                 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
    842                 const SmallVectorImpl<ISD::OutputArg> &Outs,
    843                 const SmallVectorImpl<SDValue> &OutVals,
    844                 const SmallVectorImpl<ISD::InputArg> &Ins,
    845                 DebugLoc dl, SelectionDAG &DAG,
    846                 SmallVectorImpl<SDValue> &InVals) const;
    847 
    848     virtual SDValue
    849       LowerReturn(SDValue Chain,
    850                   CallingConv::ID CallConv, bool isVarArg,
    851                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    852                   const SmallVectorImpl<SDValue> &OutVals,
    853                   DebugLoc dl, SelectionDAG &DAG) const;
    854 
    855     virtual bool isUsedByReturnOnly(SDNode *N) const;
    856 
    857     virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
    858 
    859     virtual EVT
    860     getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
    861                              ISD::NodeType ExtendKind) const;
    862 
    863     virtual bool
    864     CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    865 		   bool isVarArg,
    866 		   const SmallVectorImpl<ISD::OutputArg> &Outs,
    867 		   LLVMContext &Context) const;
    868 
    869     void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
    870                                  SelectionDAG &DAG, unsigned NewOp) const;
    871 
    872     /// Utility function to emit string processing sse4.2 instructions
    873     /// that return in xmm0.
    874     /// This takes the instruction to expand, the associated machine basic
    875     /// block, the number of args, and whether or not the second arg is
    876     /// in memory or not.
    877     MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
    878                                 unsigned argNum, bool inMem) const;
    879 
    880     /// Utility functions to emit monitor and mwait instructions. These
    881     /// need to make sure that the arguments to the intrinsic are in the
    882     /// correct registers.
    883     MachineBasicBlock *EmitMonitor(MachineInstr *MI,
    884                                    MachineBasicBlock *BB) const;
    885     MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
    886 
    887     /// Utility function to emit atomic bitwise operations (and, or, xor).
    888     /// It takes the bitwise instruction to expand, the associated machine basic
    889     /// block, and the associated X86 opcodes for reg/reg and reg/imm.
    890     MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
    891                                                     MachineInstr *BInstr,
    892                                                     MachineBasicBlock *BB,
    893                                                     unsigned regOpc,
    894                                                     unsigned immOpc,
    895                                                     unsigned loadOpc,
    896                                                     unsigned cxchgOpc,
    897                                                     unsigned notOpc,
    898                                                     unsigned EAXreg,
    899                                                     TargetRegisterClass *RC,
    900                                                     bool invSrc = false) const;
    901 
    902     MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
    903                                                     MachineInstr *BInstr,
    904                                                     MachineBasicBlock *BB,
    905                                                     unsigned regOpcL,
    906                                                     unsigned regOpcH,
    907                                                     unsigned immOpcL,
    908                                                     unsigned immOpcH,
    909                                                     bool invSrc = false) const;
    910 
    911     /// Utility function to emit atomic min and max.  It takes the min/max
    912     /// instruction to expand, the associated basic block, and the associated
    913     /// cmov opcode for moving the min or max value.
    914     MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
    915                                                           MachineBasicBlock *BB,
    916                                                         unsigned cmovOpc) const;
    917 
    918     // Utility function to emit the low-level va_arg code for X86-64.
    919     MachineBasicBlock *EmitVAARG64WithCustomInserter(
    920                        MachineInstr *MI,
    921                        MachineBasicBlock *MBB) const;
    922 
    923     /// Utility function to emit the xmm reg save portion of va_start.
    924     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
    925                                                    MachineInstr *BInstr,
    926                                                    MachineBasicBlock *BB) const;
    927 
    928     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
    929                                          MachineBasicBlock *BB) const;
    930 
    931     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
    932                                               MachineBasicBlock *BB) const;
    933 
    934     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
    935                                           MachineBasicBlock *BB) const;
    936 
    937     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
    938                                           MachineBasicBlock *BB) const;
    939 
    940     /// Emit nodes that will be selected as "test Op0,Op0", or something
    941     /// equivalent, for use with the given x86 condition code.
    942     SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
    943 
    944     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    945     /// equivalent, for use with the given x86 condition code.
    946     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
    947                     SelectionDAG &DAG) const;
    948   };
    949 
    950   namespace X86 {
    951     FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
    952   }
    953 }
    954 
    955 #endif    // X86ISELLOWERING_H
    956