Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     17 
     18 #include "llvm/Target/TargetLowering.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "PPC.h"
     21 #include "PPCSubtarget.h"
     22 
     23 namespace llvm {
     24   namespace PPCISD {
     25     enum NodeType {
     26       // Start the numbering where the builtin ops and target ops leave off.
     27       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     28 
     29       /// FSEL - Traditional three-operand fsel node.
     30       ///
     31       FSEL,
     32 
     33       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     34       /// and f64 value containing the FP representation of the integer that
     35       /// was temporarily in the f64 operand.
     36       FCFID,
     37 
     38       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     39       /// operand, producing an f64 value containing the integer representation
     40       /// of that FP value.
     41       FCTIDZ, FCTIWZ,
     42 
     43       /// STFIWX - The STFIWX instruction.  The first operand is an input token
     44       /// chain, then an f64 value to store, then an address to store it to.
     45       STFIWX,
     46 
     47       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     48       // three v4f32 operands and producing a v4f32 result.
     49       VMADDFP, VNMSUBFP,
     50 
     51       /// VPERM - The PPC VPERM Instruction.
     52       ///
     53       VPERM,
     54 
     55       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     56       /// address respectively.  These nodes have two operands, the first of
     57       /// which must be a TargetGlobalAddress, and the second of which must be a
     58       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     59       /// though these are usually folded into other nodes.
     60       Hi, Lo,
     61 
     62       TOC_ENTRY,
     63 
     64       /// The following three target-specific nodes are used for calls through
     65       /// function pointers in the 64-bit SVR4 ABI.
     66 
     67       /// Restore the TOC from the TOC save area of the current stack frame.
     68       /// This is basically a hard coded load instruction which additionally
     69       /// takes/produces a flag.
     70       TOC_RESTORE,
     71 
     72       /// Like a regular LOAD but additionally taking/producing a flag.
     73       LOAD,
     74 
     75       /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
     76       /// a hard coded load instruction.
     77       LOAD_TOC,
     78 
     79       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     80       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     81       /// compute an allocation on the stack.
     82       DYNALLOC,
     83 
     84       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     85       /// at function entry, used for PIC code.
     86       GlobalBaseReg,
     87 
     88       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     89       /// shift amounts.  These nodes are generated by the multi-precision shift
     90       /// code.
     91       SRL, SRA, SHL,
     92 
     93       /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
     94       /// registers.
     95       EXTSW_32,
     96 
     97       /// CALL - A direct function call.
     98       CALL_Darwin, CALL_SVR4,
     99 
    100       /// NOP - Special NOP which follows 64-bit SVR4 calls.
    101       NOP,
    102 
    103       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    104       /// MTCTR instruction.
    105       MTCTR,
    106 
    107       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    108       /// BCTRL instruction.
    109       BCTRL_Darwin, BCTRL_SVR4,
    110 
    111       /// Return with a flag operand, matched by 'blr'
    112       RET_FLAG,
    113 
    114       /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
    115       /// instructions.  This copies the bits corresponding to the specified
    116       /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
    117       /// are undefined.
    118       MFCR,
    119 
    120       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    121       /// instructions.  For lack of better number, we use the opcode number
    122       /// encoding for the OPC field to identify the compare.  For example, 838
    123       /// is VCMPGTSH.
    124       VCMP,
    125 
    126       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    127       /// altivec VCMP*o instructions.  For lack of better number, we use the
    128       /// opcode number encoding for the OPC field to identify the compare.  For
    129       /// example, 838 is VCMPGTSH.
    130       VCMPo,
    131 
    132       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    133       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    134       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    135       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    136       /// an optional input flag argument.
    137       COND_BRANCH,
    138 
    139       // The following 5 instructions are used only as part of the
    140       // long double-to-int conversion sequence.
    141 
    142       /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
    143       /// register.
    144       MFFS,
    145 
    146       /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
    147       MTFSB0,
    148 
    149       /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
    150       MTFSB1,
    151 
    152       /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
    153       /// rounding towards zero.  It has flags added so it won't move past the
    154       /// FPSCR-setting instructions.
    155       FADDRTZ,
    156 
    157       /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
    158       MTFSF,
    159 
    160       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
    161       /// reserve indexed. This is used to implement atomic operations.
    162       LARX,
    163 
    164       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
    165       /// indexed. This is used to implement atomic operations.
    166       STCX,
    167 
    168       /// TC_RETURN - A tail call return.
    169       ///   operand #0 chain
    170       ///   operand #1 callee (register or absolute)
    171       ///   operand #2 stack adjustment
    172       ///   operand #3 optional in flag
    173       TC_RETURN,
    174 
    175       /// STD_32 - This is the STD instruction for use with "32-bit" registers.
    176       STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
    177 
    178       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    179       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    180       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    181       /// i32.
    182       STBRX,
    183 
    184       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    185       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    186       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    187       /// or i32.
    188       LBRX
    189     };
    190   }
    191 
    192   /// Define some predicates that are used for node matching.
    193   namespace PPC {
    194     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    195     /// VPKUHUM instruction.
    196     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    197 
    198     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    199     /// VPKUWUM instruction.
    200     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    201 
    202     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    203     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    204     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    205                             bool isUnary);
    206 
    207     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    208     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    209     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    210                             bool isUnary);
    211 
    212     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    213     /// amount, otherwise return -1.
    214     int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
    215 
    216     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    217     /// specifies a splat of a single element that is suitable for input to
    218     /// VSPLTB/VSPLTH/VSPLTW.
    219     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    220 
    221     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    222     /// are -0.0.
    223     bool isAllNegativeZeroVector(SDNode *N);
    224 
    225     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    226     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    227     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
    228 
    229     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    230     /// formed by using a vspltis[bhw] instruction of the specified element
    231     /// size, return the constant being splatted.  The ByteSize field indicates
    232     /// the number of bytes of each element [124] -> [bhw].
    233     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    234   }
    235 
    236   class PPCTargetLowering : public TargetLowering {
    237     const PPCSubtarget &PPCSubTarget;
    238 
    239   public:
    240     explicit PPCTargetLowering(PPCTargetMachine &TM);
    241 
    242     /// getTargetNodeName() - This method returns the name of a target specific
    243     /// DAG node.
    244     virtual const char *getTargetNodeName(unsigned Opcode) const;
    245 
    246     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
    247 
    248     /// getSetCCResultType - Return the ISD::SETCC ValueType
    249     virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
    250 
    251     /// getPreIndexedAddressParts - returns true by value, base pointer and
    252     /// offset pointer and addressing mode by reference if the node's address
    253     /// can be legally represented as pre-indexed load / store address.
    254     virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    255                                            SDValue &Offset,
    256                                            ISD::MemIndexedMode &AM,
    257                                            SelectionDAG &DAG) const;
    258 
    259     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    260     /// can be represented as an indexed [r+r] operation.  Returns false if it
    261     /// can be more efficiently represented with [r+imm].
    262     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    263                              SelectionDAG &DAG) const;
    264 
    265     /// SelectAddressRegImm - Returns true if the address N can be represented
    266     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    267     /// is not better represented as reg+reg.
    268     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    269                              SelectionDAG &DAG) const;
    270 
    271     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    272     /// represented as an indexed [r+r] operation.
    273     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    274                                  SelectionDAG &DAG) const;
    275 
    276     /// SelectAddressRegImmShift - Returns true if the address N can be
    277     /// represented by a base register plus a signed 14-bit displacement
    278     /// [r+imm*4].  Suitable for use by STD and friends.
    279     bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
    280                                   SelectionDAG &DAG) const;
    281 
    282 
    283     /// LowerOperation - Provide custom lowering hooks for some operations.
    284     ///
    285     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    286 
    287     /// ReplaceNodeResults - Replace the results of node with an illegal result
    288     /// type with new values built out of custom code.
    289     ///
    290     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    291                                     SelectionDAG &DAG) const;
    292 
    293     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    294 
    295     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    296                                                 const APInt &Mask,
    297                                                 APInt &KnownZero,
    298                                                 APInt &KnownOne,
    299                                                 const SelectionDAG &DAG,
    300                                                 unsigned Depth = 0) const;
    301 
    302     virtual MachineBasicBlock *
    303       EmitInstrWithCustomInserter(MachineInstr *MI,
    304                                   MachineBasicBlock *MBB) const;
    305     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    306                                         MachineBasicBlock *MBB, bool is64Bit,
    307                                         unsigned BinOpcode) const;
    308     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    309                                                 MachineBasicBlock *MBB,
    310                                             bool is8bit, unsigned Opcode) const;
    311 
    312     ConstraintType getConstraintType(const std::string &Constraint) const;
    313 
    314     /// Examine constraint string and operand type and determine a weight value.
    315     /// The operand object must already have been set up with the operand type.
    316     ConstraintWeight getSingleConstraintMatchWeight(
    317       AsmOperandInfo &info, const char *constraint) const;
    318 
    319     std::pair<unsigned, const TargetRegisterClass*>
    320       getRegForInlineAsmConstraint(const std::string &Constraint,
    321                                    EVT VT) const;
    322 
    323     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    324     /// function arguments in the caller parameter area.  This is the actual
    325     /// alignment, not its logarithm.
    326     unsigned getByValTypeAlignment(Type *Ty) const;
    327 
    328     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    329     /// vector.  If it is invalid, don't add anything to Ops.
    330     virtual void LowerAsmOperandForConstraint(SDValue Op,
    331                                               std::string &Constraint,
    332                                               std::vector<SDValue> &Ops,
    333                                               SelectionDAG &DAG) const;
    334 
    335     /// isLegalAddressingMode - Return true if the addressing mode represented
    336     /// by AM is legal for this target, for a load/store of the specified type.
    337     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    338 
    339     /// isLegalAddressImmediate - Return true if the integer value can be used
    340     /// as the offset of the target addressing mode for load / store of the
    341     /// given type.
    342     virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
    343 
    344     /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
    345     /// the offset of the target addressing mode.
    346     virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
    347 
    348     virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    349 
    350     /// getOptimalMemOpType - Returns the target specific optimal type for load
    351     /// and store operations as a result of memset, memcpy, and memmove
    352     /// lowering. If DstAlign is zero that means it's safe to destination
    353     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    354     /// means there isn't a need to check it against alignment requirement,
    355     /// probably because the source does not need to be loaded. If
    356     /// 'NonScalarIntSafe' is true, that means it's safe to return a
    357     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    358     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    359     /// constant so it does not need to be loaded.
    360     /// It returns EVT::Other if the type should be determined using generic
    361     /// target-independent logic.
    362     virtual EVT
    363     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    364                         bool NonScalarIntSafe, bool MemcpyStrSrc,
    365                         MachineFunction &MF) const;
    366 
    367   private:
    368     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    369     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    370 
    371     bool
    372     IsEligibleForTailCallOptimization(SDValue Callee,
    373                                       CallingConv::ID CalleeCC,
    374                                       bool isVarArg,
    375                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    376                                       SelectionDAG& DAG) const;
    377 
    378     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    379                                          int SPDiff,
    380                                          SDValue Chain,
    381                                          SDValue &LROpOut,
    382                                          SDValue &FPOpOut,
    383                                          bool isDarwinABI,
    384                                          DebugLoc dl) const;
    385 
    386     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    387     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    388     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    389     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    390     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    391     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    392     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    393     SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    394     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    395                          const PPCSubtarget &Subtarget) const;
    396     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    397                        const PPCSubtarget &Subtarget) const;
    398     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    399                                 const PPCSubtarget &Subtarget) const;
    400     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    401                                       const PPCSubtarget &Subtarget) const;
    402     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    403     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
    404     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    405     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    406     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    407     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    408     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    409     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    410     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    411     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    412     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    413     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    414 
    415     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    416                             CallingConv::ID CallConv, bool isVarArg,
    417                             const SmallVectorImpl<ISD::InputArg> &Ins,
    418                             DebugLoc dl, SelectionDAG &DAG,
    419                             SmallVectorImpl<SDValue> &InVals) const;
    420     SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
    421                        bool isVarArg,
    422                        SelectionDAG &DAG,
    423                        SmallVector<std::pair<unsigned, SDValue>, 8>
    424                          &RegsToPass,
    425                        SDValue InFlag, SDValue Chain,
    426                        SDValue &Callee,
    427                        int SPDiff, unsigned NumBytes,
    428                        const SmallVectorImpl<ISD::InputArg> &Ins,
    429                        SmallVectorImpl<SDValue> &InVals) const;
    430 
    431     virtual SDValue
    432       LowerFormalArguments(SDValue Chain,
    433                            CallingConv::ID CallConv, bool isVarArg,
    434                            const SmallVectorImpl<ISD::InputArg> &Ins,
    435                            DebugLoc dl, SelectionDAG &DAG,
    436                            SmallVectorImpl<SDValue> &InVals) const;
    437 
    438     virtual SDValue
    439       LowerCall(SDValue Chain, SDValue Callee,
    440                 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
    441                 const SmallVectorImpl<ISD::OutputArg> &Outs,
    442                 const SmallVectorImpl<SDValue> &OutVals,
    443                 const SmallVectorImpl<ISD::InputArg> &Ins,
    444                 DebugLoc dl, SelectionDAG &DAG,
    445                 SmallVectorImpl<SDValue> &InVals) const;
    446 
    447     virtual SDValue
    448       LowerReturn(SDValue Chain,
    449                   CallingConv::ID CallConv, bool isVarArg,
    450                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    451                   const SmallVectorImpl<SDValue> &OutVals,
    452                   DebugLoc dl, SelectionDAG &DAG) const;
    453 
    454     SDValue
    455       LowerFormalArguments_Darwin(SDValue Chain,
    456                                   CallingConv::ID CallConv, bool isVarArg,
    457                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    458                                   DebugLoc dl, SelectionDAG &DAG,
    459                                   SmallVectorImpl<SDValue> &InVals) const;
    460     SDValue
    461       LowerFormalArguments_SVR4(SDValue Chain,
    462                                 CallingConv::ID CallConv, bool isVarArg,
    463                                 const SmallVectorImpl<ISD::InputArg> &Ins,
    464                                 DebugLoc dl, SelectionDAG &DAG,
    465                                 SmallVectorImpl<SDValue> &InVals) const;
    466 
    467     SDValue
    468       LowerCall_Darwin(SDValue Chain, SDValue Callee,
    469                        CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
    470                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    471                        const SmallVectorImpl<SDValue> &OutVals,
    472                        const SmallVectorImpl<ISD::InputArg> &Ins,
    473                        DebugLoc dl, SelectionDAG &DAG,
    474                        SmallVectorImpl<SDValue> &InVals) const;
    475     SDValue
    476       LowerCall_SVR4(SDValue Chain, SDValue Callee,
    477                      CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
    478                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    479                      const SmallVectorImpl<SDValue> &OutVals,
    480                      const SmallVectorImpl<ISD::InputArg> &Ins,
    481                      DebugLoc dl, SelectionDAG &DAG,
    482                      SmallVectorImpl<SDValue> &InVals) const;
    483   };
    484 }
    485 
    486 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    487