Home | History | Annotate | Download | only in X86
      1 //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86MCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "mccodeemitter"
     15 #include "X86.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86FixupKinds.h"
     18 #include "llvm/MC/MCCodeEmitter.h"
     19 #include "llvm/MC/MCExpr.h"
     20 #include "llvm/MC/MCInst.h"
     21 #include "llvm/MC/MCSubtargetInfo.h"
     22 #include "llvm/MC/MCSymbol.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 
     25 using namespace llvm;
     26 
     27 namespace {
     28 class X86MCCodeEmitter : public MCCodeEmitter {
     29   X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
     30   void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
     31   const MCInstrInfo &MCII;
     32   const MCSubtargetInfo &STI;
     33   MCContext &Ctx;
     34 public:
     35   X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
     36                    MCContext &ctx)
     37     : MCII(mcii), STI(sti), Ctx(ctx) {
     38   }
     39 
     40   ~X86MCCodeEmitter() {}
     41 
     42   bool is64BitMode() const {
     43     // FIXME: Can tablegen auto-generate this?
     44     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
     45   }
     46 
     47   static unsigned GetX86RegNum(const MCOperand &MO) {
     48     return X86_MC::getX86RegNum(MO.getReg());
     49   }
     50 
     51   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
     52   // 0-7 and the difference between the 2 groups is given by the REX prefix.
     53   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
     54   // in 1's complement form, example:
     55   //
     56   //  ModRM field => XMM9 => 1
     57   //  VEX.VVVV    => XMM9 => ~9
     58   //
     59   // See table 4-35 of Intel AVX Programming Reference for details.
     60   static unsigned char getVEXRegisterEncoding(const MCInst &MI,
     61                                               unsigned OpNum) {
     62     unsigned SrcReg = MI.getOperand(OpNum).getReg();
     63     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
     64     if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
     65         (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
     66       SrcRegNum += 8;
     67 
     68     // The registers represented through VEX_VVVV should
     69     // be encoded in 1's complement form.
     70     return (~SrcRegNum) & 0xf;
     71   }
     72 
     73   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
     74     OS << (char)C;
     75     ++CurByte;
     76   }
     77 
     78   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
     79                     raw_ostream &OS) const {
     80     // Output the constant in little endian byte order.
     81     for (unsigned i = 0; i != Size; ++i) {
     82       EmitByte(Val & 255, CurByte, OS);
     83       Val >>= 8;
     84     }
     85   }
     86 
     87   void EmitImmediate(const MCOperand &Disp,
     88                      unsigned ImmSize, MCFixupKind FixupKind,
     89                      unsigned &CurByte, raw_ostream &OS,
     90                      SmallVectorImpl<MCFixup> &Fixups,
     91                      int ImmOffset = 0) const;
     92 
     93   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
     94                                         unsigned RM) {
     95     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
     96     return RM | (RegOpcode << 3) | (Mod << 6);
     97   }
     98 
     99   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
    100                         unsigned &CurByte, raw_ostream &OS) const {
    101     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
    102   }
    103 
    104   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
    105                    unsigned &CurByte, raw_ostream &OS) const {
    106     // SIB byte is in the same format as the ModRMByte.
    107     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
    108   }
    109 
    110 
    111   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
    112                         unsigned RegOpcodeField,
    113                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
    114                         SmallVectorImpl<MCFixup> &Fixups) const;
    115 
    116   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    117                          SmallVectorImpl<MCFixup> &Fixups) const;
    118 
    119   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    120                            const MCInst &MI, const MCInstrDesc &Desc,
    121                            raw_ostream &OS) const;
    122 
    123   void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
    124                                  int MemOperand, const MCInst &MI,
    125                                  raw_ostream &OS) const;
    126 
    127   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    128                         const MCInst &MI, const MCInstrDesc &Desc,
    129                         raw_ostream &OS) const;
    130 };
    131 
    132 } // end anonymous namespace
    133 
    134 
    135 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
    136                                             const MCSubtargetInfo &STI,
    137                                             MCContext &Ctx) {
    138   return new X86MCCodeEmitter(MCII, STI, Ctx);
    139 }
    140 
    141 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    142 /// sign-extended field.
    143 static bool isDisp8(int Value) {
    144   return Value == (signed char)Value;
    145 }
    146 
    147 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
    148 /// in an instruction with the specified TSFlags.
    149 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
    150   unsigned Size = X86II::getSizeOfImm(TSFlags);
    151   bool isPCRel = X86II::isImmPCRel(TSFlags);
    152 
    153   return MCFixup::getKindForSize(Size, isPCRel);
    154 }
    155 
    156 /// Is32BitMemOperand - Return true if the specified instruction with a memory
    157 /// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
    158 /// memory operand.  Op specifies the operand # of the memoperand.
    159 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
    160   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    161   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    162 
    163   if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
    164       (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
    165     return true;
    166   return false;
    167 }
    168 
    169 /// StartsWithGlobalOffsetTable - Return true for the simple cases where this
    170 /// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
    171 /// PIC on ELF i386 as that symbol is magic. We check only simple case that
    172 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
    173 /// of a binary expression.
    174 static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
    175   if (Expr->getKind() == MCExpr::Binary) {
    176     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    177     Expr = BE->getLHS();
    178   }
    179 
    180   if (Expr->getKind() != MCExpr::SymbolRef)
    181     return false;
    182 
    183   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    184   const MCSymbol &S = Ref->getSymbol();
    185   return S.getName() == "_GLOBAL_OFFSET_TABLE_";
    186 }
    187 
    188 void X86MCCodeEmitter::
    189 EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
    190               unsigned &CurByte, raw_ostream &OS,
    191               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
    192   const MCExpr *Expr = NULL;
    193   if (DispOp.isImm()) {
    194     // If this is a simple integer displacement that doesn't require a relocation,
    195     // emit it now.
    196     if (FixupKind != FK_PCRel_1 &&
    197 	FixupKind != FK_PCRel_2 &&
    198 	FixupKind != FK_PCRel_4) {
    199       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    200       return;
    201     }
    202     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
    203   } else {
    204     Expr = DispOp.getExpr();
    205   }
    206 
    207   // If we have an immoffset, add it to the expression.
    208   if (FixupKind == FK_Data_4 && StartsWithGlobalOffsetTable(Expr)) {
    209     assert(ImmOffset == 0);
    210 
    211     FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    212     ImmOffset = CurByte;
    213   }
    214 
    215   // If the fixup is pc-relative, we need to bias the value to be relative to
    216   // the start of the field, not the end of the field.
    217   if (FixupKind == FK_PCRel_4 ||
    218       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
    219       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
    220     ImmOffset -= 4;
    221   if (FixupKind == FK_PCRel_2)
    222     ImmOffset -= 2;
    223   if (FixupKind == FK_PCRel_1)
    224     ImmOffset -= 1;
    225 
    226   if (ImmOffset)
    227     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
    228                                    Ctx);
    229 
    230   // Emit a symbolic constant as a fixup and 4 zeros.
    231   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
    232   EmitConstant(0, Size, CurByte, OS);
    233 }
    234 
    235 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
    236                                         unsigned RegOpcodeField,
    237                                         uint64_t TSFlags, unsigned &CurByte,
    238                                         raw_ostream &OS,
    239                                         SmallVectorImpl<MCFixup> &Fixups) const{
    240   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
    241   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
    242   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
    243   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    244   unsigned BaseReg = Base.getReg();
    245 
    246   // Handle %rip relative addressing.
    247   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    248     assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
    249     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    250     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    251 
    252     unsigned FixupKind = X86::reloc_riprel_4byte;
    253 
    254     // movq loads are handled with a special relocation form which allows the
    255     // linker to eliminate some loads for GOT references which end up in the
    256     // same linkage unit.
    257     if (MI.getOpcode() == X86::MOV64rm)
    258       FixupKind = X86::reloc_riprel_4byte_movq_load;
    259 
    260     // rip-relative addressing is actually relative to the *next* instruction.
    261     // Since an immediate can follow the mod/rm byte for an instruction, this
    262     // means that we need to bias the immediate field of the instruction with
    263     // the size of the immediate field.  If we have this case, add it into the
    264     // expression to emit.
    265     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
    266 
    267     EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
    268                   CurByte, OS, Fixups, -ImmSize);
    269     return;
    270   }
    271 
    272   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
    273 
    274   // Determine whether a SIB byte is needed.
    275   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    276   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    277   // 2-7) and absolute references.
    278 
    279   if (// The SIB byte must be used if there is an index register.
    280       IndexReg.getReg() == 0 &&
    281       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    282       // encode to an R/M value of 4, which indicates that a SIB byte is
    283       // present.
    284       BaseRegNo != N86::ESP &&
    285       // If there is no base register and we're in 64-bit mode, we need a SIB
    286       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    287       (!is64BitMode() || BaseReg != 0)) {
    288 
    289     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
    290       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    291       EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
    292       return;
    293     }
    294 
    295     // If the base is not EBP/ESP and there is no displacement, use simple
    296     // indirect register encoding, this handles addresses like [EAX].  The
    297     // encoding for [EBP] with no displacement means [disp32] so we handle it
    298     // by emitting a displacement of 0 below.
    299     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    300       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
    301       return;
    302     }
    303 
    304     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    305     if (Disp.isImm() && isDisp8(Disp.getImm())) {
    306       EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    307       EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
    308       return;
    309     }
    310 
    311     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    312     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    313     EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
    314                   Fixups);
    315     return;
    316   }
    317 
    318   // We need a SIB byte, so start by outputting the ModR/M byte first
    319   assert(IndexReg.getReg() != X86::ESP &&
    320          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    321 
    322   bool ForceDisp32 = false;
    323   bool ForceDisp8  = false;
    324   if (BaseReg == 0) {
    325     // If there is no base register, we emit the special case SIB byte with
    326     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    327     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    328     ForceDisp32 = true;
    329   } else if (!Disp.isImm()) {
    330     // Emit the normal disp32 encoding.
    331     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    332     ForceDisp32 = true;
    333   } else if (Disp.getImm() == 0 &&
    334              // Base reg can't be anything that ends up with '5' as the base
    335              // reg, it is the magic [*] nomenclature that indicates no base.
    336              BaseRegNo != N86::EBP) {
    337     // Emit no displacement ModR/M byte
    338     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    339   } else if (isDisp8(Disp.getImm())) {
    340     // Emit the disp8 encoding.
    341     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    342     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    343   } else {
    344     // Emit the normal disp32 encoding.
    345     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    346   }
    347 
    348   // Calculate what the SS field value should be...
    349   static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
    350   unsigned SS = SSTable[Scale.getImm()];
    351 
    352   if (BaseReg == 0) {
    353     // Handle the SIB byte for the case where there is no base, see Intel
    354     // Manual 2A, table 2-7. The displacement has already been output.
    355     unsigned IndexRegNo;
    356     if (IndexReg.getReg())
    357       IndexRegNo = GetX86RegNum(IndexReg);
    358     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    359       IndexRegNo = 4;
    360     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
    361   } else {
    362     unsigned IndexRegNo;
    363     if (IndexReg.getReg())
    364       IndexRegNo = GetX86RegNum(IndexReg);
    365     else
    366       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    367     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
    368   }
    369 
    370   // Do we need to output a displacement?
    371   if (ForceDisp8)
    372     EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
    373   else if (ForceDisp32 || Disp.getImm() != 0)
    374     EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
    375                   Fixups);
    376 }
    377 
    378 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
    379 /// called VEX.
    380 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    381                                            int MemOperand, const MCInst &MI,
    382                                            const MCInstrDesc &Desc,
    383                                            raw_ostream &OS) const {
    384   bool HasVEX_4V = false;
    385   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
    386     HasVEX_4V = true;
    387 
    388   // VEX_R: opcode externsion equivalent to REX.R in
    389   // 1's complement (inverted) form
    390   //
    391   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    392   //  0: Same as REX_R=1 (64 bit mode only)
    393   //
    394   unsigned char VEX_R = 0x1;
    395 
    396   // VEX_X: equivalent to REX.X, only used when a
    397   // register is used for index in SIB Byte.
    398   //
    399   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    400   //  0: Same as REX.X=1 (64-bit mode only)
    401   unsigned char VEX_X = 0x1;
    402 
    403   // VEX_B:
    404   //
    405   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    406   //  0: Same as REX_B=1 (64 bit mode only)
    407   //
    408   unsigned char VEX_B = 0x1;
    409 
    410   // VEX_W: opcode specific (use like REX.W, or used for
    411   // opcode extension, or ignored, depending on the opcode byte)
    412   unsigned char VEX_W = 0;
    413 
    414   // VEX_5M (VEX m-mmmmm field):
    415   //
    416   //  0b00000: Reserved for future use
    417   //  0b00001: implied 0F leading opcode
    418   //  0b00010: implied 0F 38 leading opcode bytes
    419   //  0b00011: implied 0F 3A leading opcode bytes
    420   //  0b00100-0b11111: Reserved for future use
    421   //
    422   unsigned char VEX_5M = 0x1;
    423 
    424   // VEX_4V (VEX vvvv field): a register specifier
    425   // (in 1's complement form) or 1111 if unused.
    426   unsigned char VEX_4V = 0xf;
    427 
    428   // VEX_L (Vector Length):
    429   //
    430   //  0: scalar or 128-bit vector
    431   //  1: 256-bit vector
    432   //
    433   unsigned char VEX_L = 0;
    434 
    435   // VEX_PP: opcode extension providing equivalent
    436   // functionality of a SIMD prefix
    437   //
    438   //  0b00: None
    439   //  0b01: 66
    440   //  0b10: F3
    441   //  0b11: F2
    442   //
    443   unsigned char VEX_PP = 0;
    444 
    445   // Encode the operand size opcode prefix as needed.
    446   if (TSFlags & X86II::OpSize)
    447     VEX_PP = 0x01;
    448 
    449   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
    450     VEX_W = 1;
    451 
    452   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
    453     VEX_L = 1;
    454 
    455   switch (TSFlags & X86II::Op0Mask) {
    456   default: assert(0 && "Invalid prefix!");
    457   case X86II::T8:  // 0F 38
    458     VEX_5M = 0x2;
    459     break;
    460   case X86II::TA:  // 0F 3A
    461     VEX_5M = 0x3;
    462     break;
    463   case X86II::TF:  // F2 0F 38
    464     VEX_PP = 0x3;
    465     VEX_5M = 0x2;
    466     break;
    467   case X86II::XS:  // F3 0F
    468     VEX_PP = 0x2;
    469     break;
    470   case X86II::XD:  // F2 0F
    471     VEX_PP = 0x3;
    472     break;
    473   case X86II::A6:  // Bypass: Not used by VEX
    474   case X86II::A7:  // Bypass: Not used by VEX
    475   case X86II::TB:  // Bypass: Not used by VEX
    476   case 0:
    477     break;  // No prefix!
    478   }
    479 
    480   // Set the vector length to 256-bit if YMM0-YMM15 is used
    481   for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
    482     if (!MI.getOperand(i).isReg())
    483       continue;
    484     unsigned SrcReg = MI.getOperand(i).getReg();
    485     if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
    486       VEX_L = 1;
    487   }
    488 
    489   unsigned NumOps = MI.getNumOperands();
    490   unsigned CurOp = 0;
    491   bool IsDestMem = false;
    492 
    493   switch (TSFlags & X86II::FormMask) {
    494   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
    495   case X86II::MRMDestMem:
    496     IsDestMem = true;
    497     // The important info for the VEX prefix is never beyond the address
    498     // registers. Don't check beyond that.
    499     NumOps = CurOp = X86::AddrNumOperands;
    500   case X86II::MRM0m: case X86II::MRM1m:
    501   case X86II::MRM2m: case X86II::MRM3m:
    502   case X86II::MRM4m: case X86II::MRM5m:
    503   case X86II::MRM6m: case X86II::MRM7m:
    504   case X86II::MRMSrcMem:
    505   case X86II::MRMSrcReg:
    506     if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
    507         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    508       VEX_R = 0x0;
    509     CurOp++;
    510 
    511     if (HasVEX_4V) {
    512       VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
    513       CurOp++;
    514     }
    515 
    516     // To only check operands before the memory address ones, start
    517     // the search from the beginning
    518     if (IsDestMem)
    519       CurOp = 0;
    520 
    521     // If the last register should be encoded in the immediate field
    522     // do not use any bit from VEX prefix to this register, ignore it
    523     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM)
    524       NumOps--;
    525 
    526     for (; CurOp != NumOps; ++CurOp) {
    527       const MCOperand &MO = MI.getOperand(CurOp);
    528       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    529         VEX_B = 0x0;
    530       if (!VEX_B && MO.isReg() &&
    531           ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
    532           X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    533         VEX_X = 0x0;
    534     }
    535     break;
    536   default: // MRMDestReg, MRM0r-MRM7r, RawFrm
    537     if (!MI.getNumOperands())
    538       break;
    539 
    540     if (MI.getOperand(CurOp).isReg() &&
    541         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    542       VEX_B = 0;
    543 
    544     if (HasVEX_4V)
    545       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    546 
    547     CurOp++;
    548     for (; CurOp != NumOps; ++CurOp) {
    549       const MCOperand &MO = MI.getOperand(CurOp);
    550       if (MO.isReg() && !HasVEX_4V &&
    551           X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    552         VEX_R = 0x0;
    553     }
    554     break;
    555   }
    556 
    557   // Emit segment override opcode prefix as needed.
    558   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    559 
    560   // VEX opcode prefix can have 2 or 3 bytes
    561   //
    562   //  3 bytes:
    563   //    +-----+ +--------------+ +-------------------+
    564   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    565   //    +-----+ +--------------+ +-------------------+
    566   //  2 bytes:
    567   //    +-----+ +-------------------+
    568   //    | C5h | | R | vvvv | L | pp |
    569   //    +-----+ +-------------------+
    570   //
    571   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
    572 
    573   if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
    574     EmitByte(0xC5, CurByte, OS);
    575     EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    576     return;
    577   }
    578 
    579   // 3 byte VEX prefix
    580   EmitByte(0xC4, CurByte, OS);
    581   EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    582   EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
    583 }
    584 
    585 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
    586 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    587 /// size, and 3) use of X86-64 extended registers.
    588 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
    589                                    const MCInstrDesc &Desc) {
    590   unsigned REX = 0;
    591   if (TSFlags & X86II::REX_W)
    592     REX |= 1 << 3; // set REX.W
    593 
    594   if (MI.getNumOperands() == 0) return REX;
    595 
    596   unsigned NumOps = MI.getNumOperands();
    597   // FIXME: MCInst should explicitize the two-addrness.
    598   bool isTwoAddr = NumOps > 1 &&
    599                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
    600 
    601   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    602   unsigned i = isTwoAddr ? 1 : 0;
    603   for (; i != NumOps; ++i) {
    604     const MCOperand &MO = MI.getOperand(i);
    605     if (!MO.isReg()) continue;
    606     unsigned Reg = MO.getReg();
    607     if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
    608     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
    609     // that returns non-zero.
    610     REX |= 0x40; // REX fixed encoding prefix
    611     break;
    612   }
    613 
    614   switch (TSFlags & X86II::FormMask) {
    615   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
    616   case X86II::MRMSrcReg:
    617     if (MI.getOperand(0).isReg() &&
    618         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    619       REX |= 1 << 2; // set REX.R
    620     i = isTwoAddr ? 2 : 1;
    621     for (; i != NumOps; ++i) {
    622       const MCOperand &MO = MI.getOperand(i);
    623       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    624         REX |= 1 << 0; // set REX.B
    625     }
    626     break;
    627   case X86II::MRMSrcMem: {
    628     if (MI.getOperand(0).isReg() &&
    629         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    630       REX |= 1 << 2; // set REX.R
    631     unsigned Bit = 0;
    632     i = isTwoAddr ? 2 : 1;
    633     for (; i != NumOps; ++i) {
    634       const MCOperand &MO = MI.getOperand(i);
    635       if (MO.isReg()) {
    636         if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    637           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
    638         Bit++;
    639       }
    640     }
    641     break;
    642   }
    643   case X86II::MRM0m: case X86II::MRM1m:
    644   case X86II::MRM2m: case X86II::MRM3m:
    645   case X86II::MRM4m: case X86II::MRM5m:
    646   case X86II::MRM6m: case X86II::MRM7m:
    647   case X86II::MRMDestMem: {
    648     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    649     i = isTwoAddr ? 1 : 0;
    650     if (NumOps > e && MI.getOperand(e).isReg() &&
    651         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
    652       REX |= 1 << 2; // set REX.R
    653     unsigned Bit = 0;
    654     for (; i != e; ++i) {
    655       const MCOperand &MO = MI.getOperand(i);
    656       if (MO.isReg()) {
    657         if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    658           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
    659         Bit++;
    660       }
    661     }
    662     break;
    663   }
    664   default:
    665     if (MI.getOperand(0).isReg() &&
    666         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    667       REX |= 1 << 0; // set REX.B
    668     i = isTwoAddr ? 2 : 1;
    669     for (unsigned e = NumOps; i != e; ++i) {
    670       const MCOperand &MO = MI.getOperand(i);
    671       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
    672         REX |= 1 << 2; // set REX.R
    673     }
    674     break;
    675   }
    676   return REX;
    677 }
    678 
    679 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
    680 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
    681                                         unsigned &CurByte, int MemOperand,
    682                                         const MCInst &MI,
    683                                         raw_ostream &OS) const {
    684   switch (TSFlags & X86II::SegOvrMask) {
    685   default: assert(0 && "Invalid segment!");
    686   case 0:
    687     // No segment override, check for explicit one on memory operand.
    688     if (MemOperand != -1) {   // If the instruction has a memory operand.
    689       switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
    690       default: assert(0 && "Unknown segment register!");
    691       case 0: break;
    692       case X86::CS: EmitByte(0x2E, CurByte, OS); break;
    693       case X86::SS: EmitByte(0x36, CurByte, OS); break;
    694       case X86::DS: EmitByte(0x3E, CurByte, OS); break;
    695       case X86::ES: EmitByte(0x26, CurByte, OS); break;
    696       case X86::FS: EmitByte(0x64, CurByte, OS); break;
    697       case X86::GS: EmitByte(0x65, CurByte, OS); break;
    698       }
    699     }
    700     break;
    701   case X86II::FS:
    702     EmitByte(0x64, CurByte, OS);
    703     break;
    704   case X86II::GS:
    705     EmitByte(0x65, CurByte, OS);
    706     break;
    707   }
    708 }
    709 
    710 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
    711 ///
    712 /// MemOperand is the operand # of the start of a memory operand if present.  If
    713 /// Not present, it is -1.
    714 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    715                                         int MemOperand, const MCInst &MI,
    716                                         const MCInstrDesc &Desc,
    717                                         raw_ostream &OS) const {
    718 
    719   // Emit the lock opcode prefix as needed.
    720   if (TSFlags & X86II::LOCK)
    721     EmitByte(0xF0, CurByte, OS);
    722 
    723   // Emit segment override opcode prefix as needed.
    724   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    725 
    726   // Emit the repeat opcode prefix as needed.
    727   if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    728     EmitByte(0xF3, CurByte, OS);
    729 
    730   // Emit the address size opcode prefix as needed.
    731   if ((TSFlags & X86II::AdSize) ||
    732       (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
    733     EmitByte(0x67, CurByte, OS);
    734 
    735   // Emit the operand size opcode prefix as needed.
    736   if (TSFlags & X86II::OpSize)
    737     EmitByte(0x66, CurByte, OS);
    738 
    739   bool Need0FPrefix = false;
    740   switch (TSFlags & X86II::Op0Mask) {
    741   default: assert(0 && "Invalid prefix!");
    742   case 0: break;  // No prefix!
    743   case X86II::REP: break; // already handled.
    744   case X86II::TB:  // Two-byte opcode prefix
    745   case X86II::T8:  // 0F 38
    746   case X86II::TA:  // 0F 3A
    747   case X86II::A6:  // 0F A6
    748   case X86II::A7:  // 0F A7
    749     Need0FPrefix = true;
    750     break;
    751   case X86II::TF: // F2 0F 38
    752     EmitByte(0xF2, CurByte, OS);
    753     Need0FPrefix = true;
    754     break;
    755   case X86II::XS:   // F3 0F
    756     EmitByte(0xF3, CurByte, OS);
    757     Need0FPrefix = true;
    758     break;
    759   case X86II::XD:   // F2 0F
    760     EmitByte(0xF2, CurByte, OS);
    761     Need0FPrefix = true;
    762     break;
    763   case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
    764   case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
    765   case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
    766   case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
    767   case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
    768   case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
    769   case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
    770   case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
    771   }
    772 
    773   // Handle REX prefix.
    774   // FIXME: Can this come before F2 etc to simplify emission?
    775   if (is64BitMode()) {
    776     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
    777       EmitByte(0x40 | REX, CurByte, OS);
    778   }
    779 
    780   // 0x0F escape code must be emitted just before the opcode.
    781   if (Need0FPrefix)
    782     EmitByte(0x0F, CurByte, OS);
    783 
    784   // FIXME: Pull this up into previous switch if REX can be moved earlier.
    785   switch (TSFlags & X86II::Op0Mask) {
    786   case X86II::TF:    // F2 0F 38
    787   case X86II::T8:    // 0F 38
    788     EmitByte(0x38, CurByte, OS);
    789     break;
    790   case X86II::TA:    // 0F 3A
    791     EmitByte(0x3A, CurByte, OS);
    792     break;
    793   case X86II::A6:    // 0F A6
    794     EmitByte(0xA6, CurByte, OS);
    795     break;
    796   case X86II::A7:    // 0F A7
    797     EmitByte(0xA7, CurByte, OS);
    798     break;
    799   }
    800 }
    801 
    802 void X86MCCodeEmitter::
    803 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    804                   SmallVectorImpl<MCFixup> &Fixups) const {
    805   unsigned Opcode = MI.getOpcode();
    806   const MCInstrDesc &Desc = MCII.get(Opcode);
    807   uint64_t TSFlags = Desc.TSFlags;
    808 
    809   // Pseudo instructions don't get encoded.
    810   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    811     return;
    812 
    813   // If this is a two-address instruction, skip one of the register operands.
    814   // FIXME: This should be handled during MCInst lowering.
    815   unsigned NumOps = Desc.getNumOperands();
    816   unsigned CurOp = 0;
    817   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
    818     ++CurOp;
    819   else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
    820     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
    821     --NumOps;
    822 
    823   // Keep track of the current byte being emitted.
    824   unsigned CurByte = 0;
    825 
    826   // Is this instruction encoded using the AVX VEX prefix?
    827   bool HasVEXPrefix = false;
    828 
    829   // It uses the VEX.VVVV field?
    830   bool HasVEX_4V = false;
    831 
    832   if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
    833     HasVEXPrefix = true;
    834   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
    835     HasVEX_4V = true;
    836 
    837 
    838   // Determine where the memory operand starts, if present.
    839   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
    840   if (MemoryOperand != -1) MemoryOperand += CurOp;
    841 
    842   if (!HasVEXPrefix)
    843     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
    844   else
    845     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
    846 
    847 
    848   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
    849 
    850   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
    851     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
    852 
    853   unsigned SrcRegNum = 0;
    854   switch (TSFlags & X86II::FormMask) {
    855   case X86II::MRMInitReg:
    856     assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
    857   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
    858     assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
    859   case X86II::Pseudo:
    860     assert(0 && "Pseudo instruction shouldn't be emitted");
    861   case X86II::RawFrm:
    862     EmitByte(BaseOpcode, CurByte, OS);
    863     break;
    864 
    865   case X86II::RawFrmImm8:
    866     EmitByte(BaseOpcode, CurByte, OS);
    867     EmitImmediate(MI.getOperand(CurOp++),
    868                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
    869                   CurByte, OS, Fixups);
    870     EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
    871     break;
    872   case X86II::RawFrmImm16:
    873     EmitByte(BaseOpcode, CurByte, OS);
    874     EmitImmediate(MI.getOperand(CurOp++),
    875                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
    876                   CurByte, OS, Fixups);
    877     EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
    878     break;
    879 
    880   case X86II::AddRegFrm:
    881     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
    882     break;
    883 
    884   case X86II::MRMDestReg:
    885     EmitByte(BaseOpcode, CurByte, OS);
    886     EmitRegModRMByte(MI.getOperand(CurOp),
    887                      GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
    888     CurOp += 2;
    889     break;
    890 
    891   case X86II::MRMDestMem:
    892     EmitByte(BaseOpcode, CurByte, OS);
    893     SrcRegNum = CurOp + X86::AddrNumOperands;
    894 
    895     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
    896       SrcRegNum++;
    897 
    898     EmitMemModRMByte(MI, CurOp,
    899                      GetX86RegNum(MI.getOperand(SrcRegNum)),
    900                      TSFlags, CurByte, OS, Fixups);
    901     CurOp = SrcRegNum + 1;
    902     break;
    903 
    904   case X86II::MRMSrcReg:
    905     EmitByte(BaseOpcode, CurByte, OS);
    906     SrcRegNum = CurOp + 1;
    907 
    908     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
    909       SrcRegNum++;
    910 
    911     EmitRegModRMByte(MI.getOperand(SrcRegNum),
    912                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    913     CurOp = SrcRegNum + 1;
    914     break;
    915 
    916   case X86II::MRMSrcMem: {
    917     int AddrOperands = X86::AddrNumOperands;
    918     unsigned FirstMemOp = CurOp+1;
    919     if (HasVEX_4V) {
    920       ++AddrOperands;
    921       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
    922     }
    923 
    924     EmitByte(BaseOpcode, CurByte, OS);
    925 
    926     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
    927                      TSFlags, CurByte, OS, Fixups);
    928     CurOp += AddrOperands + 1;
    929     break;
    930   }
    931 
    932   case X86II::MRM0r: case X86II::MRM1r:
    933   case X86II::MRM2r: case X86II::MRM3r:
    934   case X86II::MRM4r: case X86II::MRM5r:
    935   case X86II::MRM6r: case X86II::MRM7r:
    936     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
    937       CurOp++;
    938     EmitByte(BaseOpcode, CurByte, OS);
    939     EmitRegModRMByte(MI.getOperand(CurOp++),
    940                      (TSFlags & X86II::FormMask)-X86II::MRM0r,
    941                      CurByte, OS);
    942     break;
    943   case X86II::MRM0m: case X86II::MRM1m:
    944   case X86II::MRM2m: case X86II::MRM3m:
    945   case X86II::MRM4m: case X86II::MRM5m:
    946   case X86II::MRM6m: case X86II::MRM7m:
    947     EmitByte(BaseOpcode, CurByte, OS);
    948     EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
    949                      TSFlags, CurByte, OS, Fixups);
    950     CurOp += X86::AddrNumOperands;
    951     break;
    952   case X86II::MRM_C1:
    953     EmitByte(BaseOpcode, CurByte, OS);
    954     EmitByte(0xC1, CurByte, OS);
    955     break;
    956   case X86II::MRM_C2:
    957     EmitByte(BaseOpcode, CurByte, OS);
    958     EmitByte(0xC2, CurByte, OS);
    959     break;
    960   case X86II::MRM_C3:
    961     EmitByte(BaseOpcode, CurByte, OS);
    962     EmitByte(0xC3, CurByte, OS);
    963     break;
    964   case X86II::MRM_C4:
    965     EmitByte(BaseOpcode, CurByte, OS);
    966     EmitByte(0xC4, CurByte, OS);
    967     break;
    968   case X86II::MRM_C8:
    969     EmitByte(BaseOpcode, CurByte, OS);
    970     EmitByte(0xC8, CurByte, OS);
    971     break;
    972   case X86II::MRM_C9:
    973     EmitByte(BaseOpcode, CurByte, OS);
    974     EmitByte(0xC9, CurByte, OS);
    975     break;
    976   case X86II::MRM_E8:
    977     EmitByte(BaseOpcode, CurByte, OS);
    978     EmitByte(0xE8, CurByte, OS);
    979     break;
    980   case X86II::MRM_F0:
    981     EmitByte(BaseOpcode, CurByte, OS);
    982     EmitByte(0xF0, CurByte, OS);
    983     break;
    984   case X86II::MRM_F8:
    985     EmitByte(BaseOpcode, CurByte, OS);
    986     EmitByte(0xF8, CurByte, OS);
    987     break;
    988   case X86II::MRM_F9:
    989     EmitByte(BaseOpcode, CurByte, OS);
    990     EmitByte(0xF9, CurByte, OS);
    991     break;
    992   case X86II::MRM_D0:
    993     EmitByte(BaseOpcode, CurByte, OS);
    994     EmitByte(0xD0, CurByte, OS);
    995     break;
    996   case X86II::MRM_D1:
    997     EmitByte(BaseOpcode, CurByte, OS);
    998     EmitByte(0xD1, CurByte, OS);
    999     break;
   1000   }
   1001 
   1002   // If there is a remaining operand, it must be a trailing immediate.  Emit it
   1003   // according to the right size for the instruction.
   1004   if (CurOp != NumOps) {
   1005     // The last source register of a 4 operand instruction in AVX is encoded
   1006     // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
   1007     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
   1008       const MCOperand &MO = MI.getOperand(CurOp++);
   1009       bool IsExtReg =
   1010         X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
   1011       unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
   1012       RegNum |= GetX86RegNum(MO) << 4;
   1013       EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
   1014                     Fixups);
   1015     } else {
   1016       unsigned FixupKind;
   1017       // FIXME: Is there a better way to know that we need a signed relocation?
   1018       if (MI.getOpcode() == X86::ADD64ri32 ||
   1019           MI.getOpcode() == X86::MOV64ri32 ||
   1020           MI.getOpcode() == X86::MOV64mi32 ||
   1021           MI.getOpcode() == X86::PUSH64i32)
   1022         FixupKind = X86::reloc_signed_4byte;
   1023       else
   1024         FixupKind = getImmFixupKind(TSFlags);
   1025       EmitImmediate(MI.getOperand(CurOp++),
   1026                     X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
   1027                     CurByte, OS, Fixups);
   1028     }
   1029   }
   1030 
   1031   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
   1032     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
   1033 
   1034 
   1035 #ifndef NDEBUG
   1036   // FIXME: Verify.
   1037   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
   1038     errs() << "Cannot encode all operands of: ";
   1039     MI.dump();
   1040     errs() << '\n';
   1041     abort();
   1042   }
   1043 #endif
   1044 }
   1045