Home | History | Annotate | Download | only in X86
      1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef X86INSTRUCTIONINFO_H
     15 #define X86INSTRUCTIONINFO_H
     16 
     17 #include "llvm/Target/TargetInstrInfo.h"
     18 #include "X86.h"
     19 #include "X86RegisterInfo.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 
     22 #define GET_INSTRINFO_HEADER
     23 #include "X86GenInstrInfo.inc"
     24 
     25 namespace llvm {
     26   class X86RegisterInfo;
     27   class X86TargetMachine;
     28 
     29 namespace X86 {
     30   // Enums for memory operand decoding.  Each memory operand is represented with
     31   // a 5 operand sequence in the form:
     32   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     33   // These enums help decode this.
     34   enum {
     35     AddrBaseReg = 0,
     36     AddrScaleAmt = 1,
     37     AddrIndexReg = 2,
     38     AddrDisp = 3,
     39 
     40     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     41     AddrSegmentReg = 4,
     42 
     43     /// AddrNumOperands - Total number of operands in a memory reference.
     44     AddrNumOperands = 5
     45   };
     46 
     47 
     48   // X86 specific condition code. These correspond to X86_*_COND in
     49   // X86InstrInfo.td. They must be kept in synch.
     50   enum CondCode {
     51     COND_A  = 0,
     52     COND_AE = 1,
     53     COND_B  = 2,
     54     COND_BE = 3,
     55     COND_E  = 4,
     56     COND_G  = 5,
     57     COND_GE = 6,
     58     COND_L  = 7,
     59     COND_LE = 8,
     60     COND_NE = 9,
     61     COND_NO = 10,
     62     COND_NP = 11,
     63     COND_NS = 12,
     64     COND_O  = 13,
     65     COND_P  = 14,
     66     COND_S  = 15,
     67 
     68     // Artificial condition codes. These are used by AnalyzeBranch
     69     // to indicate a block terminated with two conditional branches to
     70     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
     71     // which can't be represented on x86 with a single condition. These
     72     // are never used in MachineInstrs.
     73     COND_NE_OR_P,
     74     COND_NP_OR_E,
     75 
     76     COND_INVALID
     77   };
     78 
     79   // Turn condition code into conditional branch opcode.
     80   unsigned GetCondBranchFromCond(CondCode CC);
     81 
     82   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
     83   /// e.g. turning COND_E to COND_NE.
     84   CondCode GetOppositeBranchCondition(X86::CondCode CC);
     85 
     86 }
     87 
     88 /// X86II - This namespace holds all of the target specific flags that
     89 /// instruction info tracks.
     90 ///
     91 namespace X86II {
     92   /// Target Operand Flag enum.
     93   enum TOF {
     94     //===------------------------------------------------------------------===//
     95     // X86 Specific MachineOperand flags.
     96 
     97     MO_NO_FLAG,
     98 
     99     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
    100     /// relocation of:
    101     ///    SYMBOL_LABEL + [. - PICBASELABEL]
    102     MO_GOT_ABSOLUTE_ADDRESS,
    103 
    104     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
    105     /// immediate should get the value of the symbol minus the PIC base label:
    106     ///    SYMBOL_LABEL - PICBASELABEL
    107     MO_PIC_BASE_OFFSET,
    108 
    109     /// MO_GOT - On a symbol operand this indicates that the immediate is the
    110     /// offset to the GOT entry for the symbol name from the base of the GOT.
    111     ///
    112     /// See the X86-64 ELF ABI supplement for more details.
    113     ///    SYMBOL_LABEL @GOT
    114     MO_GOT,
    115 
    116     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
    117     /// the offset to the location of the symbol name from the base of the GOT.
    118     ///
    119     /// See the X86-64 ELF ABI supplement for more details.
    120     ///    SYMBOL_LABEL @GOTOFF
    121     MO_GOTOFF,
    122 
    123     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
    124     /// offset to the GOT entry for the symbol name from the current code
    125     /// location.
    126     ///
    127     /// See the X86-64 ELF ABI supplement for more details.
    128     ///    SYMBOL_LABEL @GOTPCREL
    129     MO_GOTPCREL,
    130 
    131     /// MO_PLT - On a symbol operand this indicates that the immediate is
    132     /// offset to the PLT entry of symbol name from the current code location.
    133     ///
    134     /// See the X86-64 ELF ABI supplement for more details.
    135     ///    SYMBOL_LABEL @PLT
    136     MO_PLT,
    137 
    138     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    139     /// some TLS offset.
    140     ///
    141     /// See 'ELF Handling for Thread-Local Storage' for more details.
    142     ///    SYMBOL_LABEL @TLSGD
    143     MO_TLSGD,
    144 
    145     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    146     /// some TLS offset.
    147     ///
    148     /// See 'ELF Handling for Thread-Local Storage' for more details.
    149     ///    SYMBOL_LABEL @GOTTPOFF
    150     MO_GOTTPOFF,
    151 
    152     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    153     /// some TLS offset.
    154     ///
    155     /// See 'ELF Handling for Thread-Local Storage' for more details.
    156     ///    SYMBOL_LABEL @INDNTPOFF
    157     MO_INDNTPOFF,
    158 
    159     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    160     /// some TLS offset.
    161     ///
    162     /// See 'ELF Handling for Thread-Local Storage' for more details.
    163     ///    SYMBOL_LABEL @TPOFF
    164     MO_TPOFF,
    165 
    166     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    167     /// some TLS offset.
    168     ///
    169     /// See 'ELF Handling for Thread-Local Storage' for more details.
    170     ///    SYMBOL_LABEL @NTPOFF
    171     MO_NTPOFF,
    172 
    173     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    174     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    175     /// dllimport linkage on windows.
    176     MO_DLLIMPORT,
    177 
    178     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
    179     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
    180     /// and jumps to external functions on Tiger and earlier.
    181     MO_DARWIN_STUB,
    182 
    183     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    184     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    185     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    186     MO_DARWIN_NONLAZY,
    187 
    188     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    189     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    190     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    191     MO_DARWIN_NONLAZY_PIC_BASE,
    192 
    193     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
    194     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
    195     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
    196     /// stub.
    197     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
    198 
    199     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    200     /// some TLS offset.
    201     ///
    202     /// This is the TLS offset for the Darwin TLS mechanism.
    203     MO_TLVP,
    204 
    205     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    206     /// is some TLS offset from the picbase.
    207     ///
    208     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    209     MO_TLVP_PIC_BASE
    210   };
    211 }
    212 
    213 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
    214 /// a reference to a stub for a global, not the global itself.
    215 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
    216   switch (TargetFlag) {
    217   case X86II::MO_DLLIMPORT: // dllimport stub.
    218   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
    219   case X86II::MO_GOT:       // normal GOT reference.
    220   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
    221   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
    222   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
    223     return true;
    224   default:
    225     return false;
    226   }
    227 }
    228 
    229 /// isGlobalRelativeToPICBase - Return true if the specified global value
    230 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
    231 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
    232 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
    233   switch (TargetFlag) {
    234   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
    235   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
    236   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
    237   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
    238   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
    239   case X86II::MO_TLVP:                           // ??? Pretty sure..
    240     return true;
    241   default:
    242     return false;
    243   }
    244 }
    245 
    246 /// X86II - This namespace holds all of the target specific flags that
    247 /// instruction info tracks.
    248 ///
    249 namespace X86II {
    250   enum {
    251     //===------------------------------------------------------------------===//
    252     // Instruction encodings.  These are the standard/most common forms for X86
    253     // instructions.
    254     //
    255 
    256     // PseudoFrm - This represents an instruction that is a pseudo instruction
    257     // or one that has not been implemented yet.  It is illegal to code generate
    258     // it, but tolerated for intermediate implementation stages.
    259     Pseudo         = 0,
    260 
    261     /// Raw - This form is for instructions that don't have any operands, so
    262     /// they are just a fixed opcode value, like 'leave'.
    263     RawFrm         = 1,
    264 
    265     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    266     /// their one register operand added to their opcode.
    267     AddRegFrm      = 2,
    268 
    269     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    270     /// to specify a destination, which in this case is a register.
    271     ///
    272     MRMDestReg     = 3,
    273 
    274     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    275     /// to specify a destination, which in this case is memory.
    276     ///
    277     MRMDestMem     = 4,
    278 
    279     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    280     /// to specify a source, which in this case is a register.
    281     ///
    282     MRMSrcReg      = 5,
    283 
    284     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    285     /// to specify a source, which in this case is memory.
    286     ///
    287     MRMSrcMem      = 6,
    288 
    289     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    290     /// a Mod/RM byte, and use the middle field to hold extended opcode
    291     /// information.  In the intel manual these are represented as /0, /1, ...
    292     ///
    293 
    294     // First, instructions that operate on a register r/m operand...
    295     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    296     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    297 
    298     // Next, instructions that operate on a memory r/m operand...
    299     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    300     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    301 
    302     // MRMInitReg - This form is used for instructions whose source and
    303     // destinations are the same register.
    304     MRMInitReg = 32,
    305 
    306     //// MRM_C1 - A mod/rm byte of exactly 0xC1.
    307     MRM_C1 = 33,
    308     MRM_C2 = 34,
    309     MRM_C3 = 35,
    310     MRM_C4 = 36,
    311     MRM_C8 = 37,
    312     MRM_C9 = 38,
    313     MRM_E8 = 39,
    314     MRM_F0 = 40,
    315     MRM_F8 = 41,
    316     MRM_F9 = 42,
    317     MRM_D0 = 45,
    318     MRM_D1 = 46,
    319 
    320     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    321     /// immediates, the first of which is a 16-bit immediate (specified by
    322     /// the imm encoding) and the second is a 8-bit fixed value.
    323     RawFrmImm8 = 43,
    324 
    325     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    326     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    327     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    328     /// manual, this operand is described as pntr16:32 and pntr16:16
    329     RawFrmImm16 = 44,
    330 
    331     FormMask       = 63,
    332 
    333     //===------------------------------------------------------------------===//
    334     // Actual flags...
    335 
    336     // OpSize - Set if this instruction requires an operand size prefix (0x66),
    337     // which most often indicates that the instruction operates on 16 bit data
    338     // instead of 32 bit data.
    339     OpSize      = 1 << 6,
    340 
    341     // AsSize - Set if this instruction requires an operand size prefix (0x67),
    342     // which most often indicates that the instruction address 16 bit address
    343     // instead of 32 bit address (or 32 bit address in 64 bit mode).
    344     AdSize      = 1 << 7,
    345 
    346     //===------------------------------------------------------------------===//
    347     // Op0Mask - There are several prefix bytes that are used to form two byte
    348     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
    349     // used to obtain the setting of this field.  If no bits in this field is
    350     // set, there is no prefix byte for obtaining a multibyte opcode.
    351     //
    352     Op0Shift    = 8,
    353     Op0Mask     = 0x1F << Op0Shift,
    354 
    355     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    356     // starts with a 0x0F byte before the real opcode.
    357     TB          = 1 << Op0Shift,
    358 
    359     // REP - The 0xF3 prefix byte indicating repetition of the following
    360     // instruction.
    361     REP         = 2 << Op0Shift,
    362 
    363     // D8-DF - These escape opcodes are used by the floating point unit.  These
    364     // values must remain sequential.
    365     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
    366     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
    367     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
    368     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
    369 
    370     // XS, XD - These prefix codes are for single and double precision scalar
    371     // floating point operations performed in the SSE registers.
    372     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
    373 
    374     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
    375     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
    376     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
    377 
    378     // TF - Prefix before and after 0x0F
    379     TF = 17 << Op0Shift,
    380 
    381     //===------------------------------------------------------------------===//
    382     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    383     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    384     // etc. We only cares about REX.W and REX.R bits and only the former is
    385     // statically determined.
    386     //
    387     REXShift    = Op0Shift + 5,
    388     REX_W       = 1 << REXShift,
    389 
    390     //===------------------------------------------------------------------===//
    391     // This three-bit field describes the size of an immediate operand.  Zero is
    392     // unused so that we can tell if we forgot to set a value.
    393     ImmShift = REXShift + 1,
    394     ImmMask    = 7 << ImmShift,
    395     Imm8       = 1 << ImmShift,
    396     Imm8PCRel  = 2 << ImmShift,
    397     Imm16      = 3 << ImmShift,
    398     Imm16PCRel = 4 << ImmShift,
    399     Imm32      = 5 << ImmShift,
    400     Imm32PCRel = 6 << ImmShift,
    401     Imm64      = 7 << ImmShift,
    402 
    403     //===------------------------------------------------------------------===//
    404     // FP Instruction Classification...  Zero is non-fp instruction.
    405 
    406     // FPTypeMask - Mask for all of the FP types...
    407     FPTypeShift = ImmShift + 3,
    408     FPTypeMask  = 7 << FPTypeShift,
    409 
    410     // NotFP - The default, set for instructions that do not use FP registers.
    411     NotFP      = 0 << FPTypeShift,
    412 
    413     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    414     ZeroArgFP  = 1 << FPTypeShift,
    415 
    416     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    417     OneArgFP   = 2 << FPTypeShift,
    418 
    419     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    420     // result back to ST(0).  For example, fcos, fsqrt, etc.
    421     //
    422     OneArgFPRW = 3 << FPTypeShift,
    423 
    424     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    425     // explicit argument, storing the result to either ST(0) or the implicit
    426     // argument.  For example: fadd, fsub, fmul, etc...
    427     TwoArgFP   = 4 << FPTypeShift,
    428 
    429     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    430     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    431     CompareFP  = 5 << FPTypeShift,
    432 
    433     // CondMovFP - "2 operand" floating point conditional move instructions.
    434     CondMovFP  = 6 << FPTypeShift,
    435 
    436     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    437     SpecialFP  = 7 << FPTypeShift,
    438 
    439     // Lock prefix
    440     LOCKShift = FPTypeShift + 3,
    441     LOCK = 1 << LOCKShift,
    442 
    443     // Segment override prefixes. Currently we just need ability to address
    444     // stuff in gs and fs segments.
    445     SegOvrShift = LOCKShift + 1,
    446     SegOvrMask  = 3 << SegOvrShift,
    447     FS          = 1 << SegOvrShift,
    448     GS          = 2 << SegOvrShift,
    449 
    450     // Execution domain for SSE instructions in bits 23, 24.
    451     // 0 in bits 23-24 means normal, non-SSE instruction.
    452     SSEDomainShift = SegOvrShift + 2,
    453 
    454     OpcodeShift   = SSEDomainShift + 2,
    455 
    456     //===------------------------------------------------------------------===//
    457     /// VEX - The opcode prefix used by AVX instructions
    458     VEXShift = OpcodeShift + 8,
    459     VEX         = 1U << 0,
    460 
    461     /// VEX_W - Has a opcode specific functionality, but is used in the same
    462     /// way as REX_W is for regular SSE instructions.
    463     VEX_W       = 1U << 1,
    464 
    465     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    466     /// address instructions in SSE are represented as 3 address ones in AVX
    467     /// and the additional register is encoded in VEX_VVVV prefix.
    468     VEX_4V      = 1U << 2,
    469 
    470     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    471     /// must be encoded in the i8 immediate field. This usually happens in
    472     /// instructions with 4 operands.
    473     VEX_I8IMM   = 1U << 3,
    474 
    475     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    476     /// instruction uses 256-bit wide registers. This is usually auto detected
    477     /// if a VR256 register is used, but some AVX instructions also have this
    478     /// field marked when using a f256 memory references.
    479     VEX_L       = 1U << 4,
    480 
    481     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    482     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    483     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    484     /// storing a classifier in the imm8 field.  To simplify our implementation,
    485     /// we handle this by storeing the classifier in the opcode field and using
    486     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    487     Has3DNow0F0FOpcode = 1U << 5
    488   };
    489 
    490   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    491   // specified machine instruction.
    492   //
    493   static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    494     return TSFlags >> X86II::OpcodeShift;
    495   }
    496 
    497   static inline bool hasImm(uint64_t TSFlags) {
    498     return (TSFlags & X86II::ImmMask) != 0;
    499   }
    500 
    501   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    502   /// of the specified instruction.
    503   static inline unsigned getSizeOfImm(uint64_t TSFlags) {
    504     switch (TSFlags & X86II::ImmMask) {
    505     default: assert(0 && "Unknown immediate size");
    506     case X86II::Imm8:
    507     case X86II::Imm8PCRel:  return 1;
    508     case X86II::Imm16:
    509     case X86II::Imm16PCRel: return 2;
    510     case X86II::Imm32:
    511     case X86II::Imm32PCRel: return 4;
    512     case X86II::Imm64:      return 8;
    513     }
    514   }
    515 
    516   /// isImmPCRel - Return true if the immediate of the specified instruction's
    517   /// TSFlags indicates that it is pc relative.
    518   static inline unsigned isImmPCRel(uint64_t TSFlags) {
    519     switch (TSFlags & X86II::ImmMask) {
    520     default: assert(0 && "Unknown immediate size");
    521     case X86II::Imm8PCRel:
    522     case X86II::Imm16PCRel:
    523     case X86II::Imm32PCRel:
    524       return true;
    525     case X86II::Imm8:
    526     case X86II::Imm16:
    527     case X86II::Imm32:
    528     case X86II::Imm64:
    529       return false;
    530     }
    531   }
    532 
    533   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    534   /// first field of the memory operand.  If the instruction doesn't have a
    535   /// memory operand, this returns -1.
    536   ///
    537   /// Note that this ignores tied operands.  If there is a tied register which
    538   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    539   /// counted as one operand.
    540   ///
    541   static inline int getMemoryOperandNo(uint64_t TSFlags) {
    542     switch (TSFlags & X86II::FormMask) {
    543     case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
    544     default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
    545     case X86II::Pseudo:
    546     case X86II::RawFrm:
    547     case X86II::AddRegFrm:
    548     case X86II::MRMDestReg:
    549     case X86II::MRMSrcReg:
    550     case X86II::RawFrmImm8:
    551     case X86II::RawFrmImm16:
    552        return -1;
    553     case X86II::MRMDestMem:
    554       return 0;
    555     case X86II::MRMSrcMem: {
    556       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    557       unsigned FirstMemOp = 1;
    558       if (HasVEX_4V)
    559         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
    560 
    561       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    562       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
    563       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
    564       return FirstMemOp;
    565     }
    566     case X86II::MRM0r: case X86II::MRM1r:
    567     case X86II::MRM2r: case X86II::MRM3r:
    568     case X86II::MRM4r: case X86II::MRM5r:
    569     case X86II::MRM6r: case X86II::MRM7r:
    570       return -1;
    571     case X86II::MRM0m: case X86II::MRM1m:
    572     case X86II::MRM2m: case X86II::MRM3m:
    573     case X86II::MRM4m: case X86II::MRM5m:
    574     case X86II::MRM6m: case X86II::MRM7m:
    575       return 0;
    576     case X86II::MRM_C1:
    577     case X86II::MRM_C2:
    578     case X86II::MRM_C3:
    579     case X86II::MRM_C4:
    580     case X86II::MRM_C8:
    581     case X86II::MRM_C9:
    582     case X86II::MRM_E8:
    583     case X86II::MRM_F0:
    584     case X86II::MRM_F8:
    585     case X86II::MRM_F9:
    586     case X86II::MRM_D0:
    587     case X86II::MRM_D1:
    588       return -1;
    589     }
    590   }
    591 }
    592 
    593 inline static bool isScale(const MachineOperand &MO) {
    594   return MO.isImm() &&
    595     (MO.getImm() == 1 || MO.getImm() == 2 ||
    596      MO.getImm() == 4 || MO.getImm() == 8);
    597 }
    598 
    599 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
    600   if (MI->getOperand(Op).isFI()) return true;
    601   return Op+4 <= MI->getNumOperands() &&
    602     MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
    603     MI->getOperand(Op+2).isReg() &&
    604     (MI->getOperand(Op+3).isImm() ||
    605      MI->getOperand(Op+3).isGlobal() ||
    606      MI->getOperand(Op+3).isCPI() ||
    607      MI->getOperand(Op+3).isJTI());
    608 }
    609 
    610 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
    611   if (MI->getOperand(Op).isFI()) return true;
    612   return Op+5 <= MI->getNumOperands() &&
    613     MI->getOperand(Op+4).isReg() &&
    614     isLeaMem(MI, Op);
    615 }
    616 
    617 class X86InstrInfo : public X86GenInstrInfo {
    618   X86TargetMachine &TM;
    619   const X86RegisterInfo RI;
    620 
    621   /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
    622   /// RegOp2MemOpTable2 - Load / store folding opcode maps.
    623   ///
    624   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
    625   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
    626   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
    627   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
    628 
    629   /// MemOp2RegOpTable - Load / store unfolding opcode map.
    630   ///
    631   DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
    632 
    633 public:
    634   explicit X86InstrInfo(X86TargetMachine &tm);
    635 
    636   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
    637   /// such, whenever a client has an instance of instruction info, it should
    638   /// always be able to get register info as well (through this method).
    639   ///
    640   virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
    641 
    642   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    643   /// extension instruction. That is, it's like a copy where it's legal for the
    644   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    645   /// true, then it's expected the pre-extension value is available as a subreg
    646   /// of the result register. This also returns the sub-register index in
    647   /// SubIdx.
    648   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    649                                      unsigned &SrcReg, unsigned &DstReg,
    650                                      unsigned &SubIdx) const;
    651 
    652   unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    653   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    654   /// stack locations as well.  This uses a heuristic so it isn't
    655   /// reliable for correctness.
    656   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    657                                      int &FrameIndex) const;
    658 
    659   /// hasLoadFromStackSlot - If the specified machine instruction has
    660   /// a load from a stack slot, return true along with the FrameIndex
    661   /// of the loaded stack slot and the machine mem operand containing
    662   /// the reference.  If not, return false.  Unlike
    663   /// isLoadFromStackSlot, this returns true for any instructions that
    664   /// loads from the stack.  This is a hint only and may not catch all
    665   /// cases.
    666   bool hasLoadFromStackSlot(const MachineInstr *MI,
    667                             const MachineMemOperand *&MMO,
    668                             int &FrameIndex) const;
    669 
    670   unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    671   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    672   /// stack locations as well.  This uses a heuristic so it isn't
    673   /// reliable for correctness.
    674   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    675                                     int &FrameIndex) const;
    676 
    677   /// hasStoreToStackSlot - If the specified machine instruction has a
    678   /// store to a stack slot, return true along with the FrameIndex of
    679   /// the loaded stack slot and the machine mem operand containing the
    680   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    681   /// this returns true for any instructions that loads from the
    682   /// stack.  This is a hint only and may not catch all cases.
    683   bool hasStoreToStackSlot(const MachineInstr *MI,
    684                            const MachineMemOperand *&MMO,
    685                            int &FrameIndex) const;
    686 
    687   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
    688                                          AliasAnalysis *AA) const;
    689   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    690                      unsigned DestReg, unsigned SubIdx,
    691                      const MachineInstr *Orig,
    692                      const TargetRegisterInfo &TRI) const;
    693 
    694   /// convertToThreeAddress - This method must be implemented by targets that
    695   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    696   /// may be able to convert a two-address instruction into a true
    697   /// three-address instruction on demand.  This allows the X86 target (for
    698   /// example) to convert ADD and SHL instructions into LEA instructions if they
    699   /// would require register copies due to two-addressness.
    700   ///
    701   /// This method returns a null pointer if the transformation cannot be
    702   /// performed, otherwise it returns the new instruction.
    703   ///
    704   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
    705                                               MachineBasicBlock::iterator &MBBI,
    706                                               LiveVariables *LV) const;
    707 
    708   /// commuteInstruction - We have a few instructions that must be hacked on to
    709   /// commute them.
    710   ///
    711   virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
    712 
    713   // Branch analysis.
    714   virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
    715   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    716                              MachineBasicBlock *&FBB,
    717                              SmallVectorImpl<MachineOperand> &Cond,
    718                              bool AllowModify) const;
    719   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
    720   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    721                                 MachineBasicBlock *FBB,
    722                                 const SmallVectorImpl<MachineOperand> &Cond,
    723                                 DebugLoc DL) const;
    724   virtual void copyPhysReg(MachineBasicBlock &MBB,
    725                            MachineBasicBlock::iterator MI, DebugLoc DL,
    726                            unsigned DestReg, unsigned SrcReg,
    727                            bool KillSrc) const;
    728   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    729                                    MachineBasicBlock::iterator MI,
    730                                    unsigned SrcReg, bool isKill, int FrameIndex,
    731                                    const TargetRegisterClass *RC,
    732                                    const TargetRegisterInfo *TRI) const;
    733 
    734   virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
    735                               SmallVectorImpl<MachineOperand> &Addr,
    736                               const TargetRegisterClass *RC,
    737                               MachineInstr::mmo_iterator MMOBegin,
    738                               MachineInstr::mmo_iterator MMOEnd,
    739                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
    740 
    741   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    742                                     MachineBasicBlock::iterator MI,
    743                                     unsigned DestReg, int FrameIndex,
    744                                     const TargetRegisterClass *RC,
    745                                     const TargetRegisterInfo *TRI) const;
    746 
    747   virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    748                                SmallVectorImpl<MachineOperand> &Addr,
    749                                const TargetRegisterClass *RC,
    750                                MachineInstr::mmo_iterator MMOBegin,
    751                                MachineInstr::mmo_iterator MMOEnd,
    752                                SmallVectorImpl<MachineInstr*> &NewMIs) const;
    753   virtual
    754   MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    755                                          int FrameIx, uint64_t Offset,
    756                                          const MDNode *MDPtr,
    757                                          DebugLoc DL) const;
    758 
    759   /// foldMemoryOperand - If this target supports it, fold a load or store of
    760   /// the specified stack slot into the specified machine instruction for the
    761   /// specified operand(s).  If this is possible, the target should perform the
    762   /// folding and return true, otherwise it should return false.  If it folds
    763   /// the instruction, it is likely that the MachineInstruction the iterator
    764   /// references has been changed.
    765   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    766                                               MachineInstr* MI,
    767                                            const SmallVectorImpl<unsigned> &Ops,
    768                                               int FrameIndex) const;
    769 
    770   /// foldMemoryOperand - Same as the previous version except it allows folding
    771   /// of any load and store from / to any address, not just from a specific
    772   /// stack slot.
    773   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    774                                               MachineInstr* MI,
    775                                            const SmallVectorImpl<unsigned> &Ops,
    776                                               MachineInstr* LoadMI) const;
    777 
    778   /// canFoldMemoryOperand - Returns true if the specified load / store is
    779   /// folding is possible.
    780   virtual bool canFoldMemoryOperand(const MachineInstr*,
    781                                     const SmallVectorImpl<unsigned> &) const;
    782 
    783   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    784   /// a store or a load and a store into two or more instruction. If this is
    785   /// possible, returns true as well as the new instructions by reference.
    786   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    787                            unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    788                            SmallVectorImpl<MachineInstr*> &NewMIs) const;
    789 
    790   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    791                            SmallVectorImpl<SDNode*> &NewNodes) const;
    792 
    793   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    794   /// instruction after load / store are unfolded from an instruction of the
    795   /// specified opcode. It returns zero if the specified unfolding is not
    796   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    797   /// index of the operand which will hold the register holding the loaded
    798   /// value.
    799   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    800                                       bool UnfoldLoad, bool UnfoldStore,
    801                                       unsigned *LoadRegIndex = 0) const;
    802 
    803   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    804   /// to determine if two loads are loading from the same base address. It
    805   /// should only return true if the base pointers are the same and the
    806   /// only differences between the two addresses are the offset. It also returns
    807   /// the offsets by reference.
    808   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    809                                        int64_t &Offset1, int64_t &Offset2) const;
    810 
    811   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    812   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    813   /// be scheduled togther. On some targets if two loads are loading from
    814   /// addresses in the same cache line, it's better if they are scheduled
    815   /// together. This function takes two integers that represent the load offsets
    816   /// from the common base address. It returns true if it decides it's desirable
    817   /// to schedule the two loads together. "NumLoads" is the number of loads that
    818   /// have already been scheduled after Load1.
    819   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    820                                        int64_t Offset1, int64_t Offset2,
    821                                        unsigned NumLoads) const;
    822 
    823   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
    824 
    825   virtual
    826   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
    827 
    828   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    829   /// instruction that defines the specified register class.
    830   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
    831 
    832   static bool isX86_64NonExtLowByteReg(unsigned reg) {
    833     return (reg == X86::SPL || reg == X86::BPL ||
    834           reg == X86::SIL || reg == X86::DIL);
    835   }
    836 
    837   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
    838     if (!MO.isReg()) return false;
    839     return isX86_64ExtendedReg(MO.getReg());
    840   }
    841 
    842   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    843   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    844   static bool isX86_64ExtendedReg(unsigned RegNo);
    845 
    846   /// getGlobalBaseReg - Return a virtual register initialized with the
    847   /// the global base register value. Output instructions required to
    848   /// initialize the register in the function entry block, if necessary.
    849   ///
    850   unsigned getGlobalBaseReg(MachineFunction *MF) const;
    851 
    852   /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
    853   /// and a bitmask of possible arguments to SetSSEDomain ase the second.
    854   std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
    855 
    856   /// SetSSEDomain - Set the SSEDomain of MI.
    857   void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
    858 
    859   MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    860                                       MachineInstr* MI,
    861                                       unsigned OpNum,
    862                                       const SmallVectorImpl<MachineOperand> &MOs,
    863                                       unsigned Size, unsigned Alignment) const;
    864 
    865   bool isHighLatencyDef(int opc) const;
    866 
    867   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    868                              const MachineRegisterInfo *MRI,
    869                              const MachineInstr *DefMI, unsigned DefIdx,
    870                              const MachineInstr *UseMI, unsigned UseIdx) const;
    871 
    872 private:
    873   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
    874                                               MachineFunction::iterator &MFI,
    875                                               MachineBasicBlock::iterator &MBBI,
    876                                               LiveVariables *LV) const;
    877 
    878   /// isFrameOperand - Return true and the FrameIndex if the specified
    879   /// operand and follow operands form a reference to the stack frame.
    880   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
    881                       int &FrameIndex) const;
    882 };
    883 
    884 } // End llvm namespace
    885 
    886 #endif
    887