1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86InstrInfo.h" 15 #include "X86.h" 16 #include "X86InstrBuilder.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include <limits> 37 38 #define GET_INSTRINFO_CTOR 39 #include "X86GenInstrInfo.inc" 40 41 using namespace llvm; 42 43 static cl::opt<bool> 44 NoFusing("disable-spill-fusing", 45 cl::desc("Disable fusing of spill code into instructions")); 46 static cl::opt<bool> 47 PrintFailedFusing("print-failed-fuse-candidates", 48 cl::desc("Print instructions that the allocator wants to" 49 " fuse, but the X86 backend currently can't"), 50 cl::Hidden); 51 static cl::opt<bool> 52 ReMatPICStubLoad("remat-pic-stub-load", 53 cl::desc("Re-materialize load from stub in PIC mode"), 54 cl::init(false), cl::Hidden); 55 56 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) 57 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() 58 ? X86::ADJCALLSTACKDOWN64 59 : X86::ADJCALLSTACKDOWN32), 60 (tm.getSubtarget<X86Subtarget>().is64Bit() 61 ? X86::ADJCALLSTACKUP64 62 : X86::ADJCALLSTACKUP32)), 63 TM(tm), RI(tm, *this) { 64 enum { 65 TB_NOT_REVERSABLE = 1U << 31, 66 TB_FLAGS = TB_NOT_REVERSABLE 67 }; 68 69 static const unsigned OpTbl2Addr[][2] = { 70 { X86::ADC32ri, X86::ADC32mi }, 71 { X86::ADC32ri8, X86::ADC32mi8 }, 72 { X86::ADC32rr, X86::ADC32mr }, 73 { X86::ADC64ri32, X86::ADC64mi32 }, 74 { X86::ADC64ri8, X86::ADC64mi8 }, 75 { X86::ADC64rr, X86::ADC64mr }, 76 { X86::ADD16ri, X86::ADD16mi }, 77 { X86::ADD16ri8, X86::ADD16mi8 }, 78 { X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE }, 79 { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE }, 80 { X86::ADD16rr, X86::ADD16mr }, 81 { X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE }, 82 { X86::ADD32ri, X86::ADD32mi }, 83 { X86::ADD32ri8, X86::ADD32mi8 }, 84 { X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE }, 85 { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE }, 86 { X86::ADD32rr, X86::ADD32mr }, 87 { X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE }, 88 { X86::ADD64ri32, X86::ADD64mi32 }, 89 { X86::ADD64ri8, X86::ADD64mi8 }, 90 { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE }, 91 { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE }, 92 { X86::ADD64rr, X86::ADD64mr }, 93 { X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE }, 94 { X86::ADD8ri, X86::ADD8mi }, 95 { X86::ADD8rr, X86::ADD8mr }, 96 { X86::AND16ri, X86::AND16mi }, 97 { X86::AND16ri8, X86::AND16mi8 }, 98 { X86::AND16rr, X86::AND16mr }, 99 { X86::AND32ri, X86::AND32mi }, 100 { X86::AND32ri8, X86::AND32mi8 }, 101 { X86::AND32rr, X86::AND32mr }, 102 { X86::AND64ri32, X86::AND64mi32 }, 103 { X86::AND64ri8, X86::AND64mi8 }, 104 { X86::AND64rr, X86::AND64mr }, 105 { X86::AND8ri, X86::AND8mi }, 106 { X86::AND8rr, X86::AND8mr }, 107 { X86::DEC16r, X86::DEC16m }, 108 { X86::DEC32r, X86::DEC32m }, 109 { X86::DEC64_16r, X86::DEC64_16m }, 110 { X86::DEC64_32r, X86::DEC64_32m }, 111 { X86::DEC64r, X86::DEC64m }, 112 { X86::DEC8r, X86::DEC8m }, 113 { X86::INC16r, X86::INC16m }, 114 { X86::INC32r, X86::INC32m }, 115 { X86::INC64_16r, X86::INC64_16m }, 116 { X86::INC64_32r, X86::INC64_32m }, 117 { X86::INC64r, X86::INC64m }, 118 { X86::INC8r, X86::INC8m }, 119 { X86::NEG16r, X86::NEG16m }, 120 { X86::NEG32r, X86::NEG32m }, 121 { X86::NEG64r, X86::NEG64m }, 122 { X86::NEG8r, X86::NEG8m }, 123 { X86::NOT16r, X86::NOT16m }, 124 { X86::NOT32r, X86::NOT32m }, 125 { X86::NOT64r, X86::NOT64m }, 126 { X86::NOT8r, X86::NOT8m }, 127 { X86::OR16ri, X86::OR16mi }, 128 { X86::OR16ri8, X86::OR16mi8 }, 129 { X86::OR16rr, X86::OR16mr }, 130 { X86::OR32ri, X86::OR32mi }, 131 { X86::OR32ri8, X86::OR32mi8 }, 132 { X86::OR32rr, X86::OR32mr }, 133 { X86::OR64ri32, X86::OR64mi32 }, 134 { X86::OR64ri8, X86::OR64mi8 }, 135 { X86::OR64rr, X86::OR64mr }, 136 { X86::OR8ri, X86::OR8mi }, 137 { X86::OR8rr, X86::OR8mr }, 138 { X86::ROL16r1, X86::ROL16m1 }, 139 { X86::ROL16rCL, X86::ROL16mCL }, 140 { X86::ROL16ri, X86::ROL16mi }, 141 { X86::ROL32r1, X86::ROL32m1 }, 142 { X86::ROL32rCL, X86::ROL32mCL }, 143 { X86::ROL32ri, X86::ROL32mi }, 144 { X86::ROL64r1, X86::ROL64m1 }, 145 { X86::ROL64rCL, X86::ROL64mCL }, 146 { X86::ROL64ri, X86::ROL64mi }, 147 { X86::ROL8r1, X86::ROL8m1 }, 148 { X86::ROL8rCL, X86::ROL8mCL }, 149 { X86::ROL8ri, X86::ROL8mi }, 150 { X86::ROR16r1, X86::ROR16m1 }, 151 { X86::ROR16rCL, X86::ROR16mCL }, 152 { X86::ROR16ri, X86::ROR16mi }, 153 { X86::ROR32r1, X86::ROR32m1 }, 154 { X86::ROR32rCL, X86::ROR32mCL }, 155 { X86::ROR32ri, X86::ROR32mi }, 156 { X86::ROR64r1, X86::ROR64m1 }, 157 { X86::ROR64rCL, X86::ROR64mCL }, 158 { X86::ROR64ri, X86::ROR64mi }, 159 { X86::ROR8r1, X86::ROR8m1 }, 160 { X86::ROR8rCL, X86::ROR8mCL }, 161 { X86::ROR8ri, X86::ROR8mi }, 162 { X86::SAR16r1, X86::SAR16m1 }, 163 { X86::SAR16rCL, X86::SAR16mCL }, 164 { X86::SAR16ri, X86::SAR16mi }, 165 { X86::SAR32r1, X86::SAR32m1 }, 166 { X86::SAR32rCL, X86::SAR32mCL }, 167 { X86::SAR32ri, X86::SAR32mi }, 168 { X86::SAR64r1, X86::SAR64m1 }, 169 { X86::SAR64rCL, X86::SAR64mCL }, 170 { X86::SAR64ri, X86::SAR64mi }, 171 { X86::SAR8r1, X86::SAR8m1 }, 172 { X86::SAR8rCL, X86::SAR8mCL }, 173 { X86::SAR8ri, X86::SAR8mi }, 174 { X86::SBB32ri, X86::SBB32mi }, 175 { X86::SBB32ri8, X86::SBB32mi8 }, 176 { X86::SBB32rr, X86::SBB32mr }, 177 { X86::SBB64ri32, X86::SBB64mi32 }, 178 { X86::SBB64ri8, X86::SBB64mi8 }, 179 { X86::SBB64rr, X86::SBB64mr }, 180 { X86::SHL16rCL, X86::SHL16mCL }, 181 { X86::SHL16ri, X86::SHL16mi }, 182 { X86::SHL32rCL, X86::SHL32mCL }, 183 { X86::SHL32ri, X86::SHL32mi }, 184 { X86::SHL64rCL, X86::SHL64mCL }, 185 { X86::SHL64ri, X86::SHL64mi }, 186 { X86::SHL8rCL, X86::SHL8mCL }, 187 { X86::SHL8ri, X86::SHL8mi }, 188 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 189 { X86::SHLD16rri8, X86::SHLD16mri8 }, 190 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 191 { X86::SHLD32rri8, X86::SHLD32mri8 }, 192 { X86::SHLD64rrCL, X86::SHLD64mrCL }, 193 { X86::SHLD64rri8, X86::SHLD64mri8 }, 194 { X86::SHR16r1, X86::SHR16m1 }, 195 { X86::SHR16rCL, X86::SHR16mCL }, 196 { X86::SHR16ri, X86::SHR16mi }, 197 { X86::SHR32r1, X86::SHR32m1 }, 198 { X86::SHR32rCL, X86::SHR32mCL }, 199 { X86::SHR32ri, X86::SHR32mi }, 200 { X86::SHR64r1, X86::SHR64m1 }, 201 { X86::SHR64rCL, X86::SHR64mCL }, 202 { X86::SHR64ri, X86::SHR64mi }, 203 { X86::SHR8r1, X86::SHR8m1 }, 204 { X86::SHR8rCL, X86::SHR8mCL }, 205 { X86::SHR8ri, X86::SHR8mi }, 206 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 207 { X86::SHRD16rri8, X86::SHRD16mri8 }, 208 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 209 { X86::SHRD32rri8, X86::SHRD32mri8 }, 210 { X86::SHRD64rrCL, X86::SHRD64mrCL }, 211 { X86::SHRD64rri8, X86::SHRD64mri8 }, 212 { X86::SUB16ri, X86::SUB16mi }, 213 { X86::SUB16ri8, X86::SUB16mi8 }, 214 { X86::SUB16rr, X86::SUB16mr }, 215 { X86::SUB32ri, X86::SUB32mi }, 216 { X86::SUB32ri8, X86::SUB32mi8 }, 217 { X86::SUB32rr, X86::SUB32mr }, 218 { X86::SUB64ri32, X86::SUB64mi32 }, 219 { X86::SUB64ri8, X86::SUB64mi8 }, 220 { X86::SUB64rr, X86::SUB64mr }, 221 { X86::SUB8ri, X86::SUB8mi }, 222 { X86::SUB8rr, X86::SUB8mr }, 223 { X86::XOR16ri, X86::XOR16mi }, 224 { X86::XOR16ri8, X86::XOR16mi8 }, 225 { X86::XOR16rr, X86::XOR16mr }, 226 { X86::XOR32ri, X86::XOR32mi }, 227 { X86::XOR32ri8, X86::XOR32mi8 }, 228 { X86::XOR32rr, X86::XOR32mr }, 229 { X86::XOR64ri32, X86::XOR64mi32 }, 230 { X86::XOR64ri8, X86::XOR64mi8 }, 231 { X86::XOR64rr, X86::XOR64mr }, 232 { X86::XOR8ri, X86::XOR8mi }, 233 { X86::XOR8rr, X86::XOR8mr } 234 }; 235 236 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 237 unsigned RegOp = OpTbl2Addr[i][0]; 238 unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS; 239 assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?"); 240 RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U); 241 242 // If this is not a reversible operation (because there is a many->one) 243 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. 244 if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE) 245 continue; 246 247 // Index 0, folded load and store, no alignment requirement. 248 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); 249 250 assert(!MemOp2RegOpTable.count(MemOp) && 251 "Duplicated entries in unfolding maps?"); 252 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); 253 } 254 255 // If the third value is 1, then it's folding either a load or a store. 256 static const unsigned OpTbl0[][4] = { 257 { X86::BT16ri8, X86::BT16mi8, 1, 0 }, 258 { X86::BT32ri8, X86::BT32mi8, 1, 0 }, 259 { X86::BT64ri8, X86::BT64mi8, 1, 0 }, 260 { X86::CALL32r, X86::CALL32m, 1, 0 }, 261 { X86::CALL64r, X86::CALL64m, 1, 0 }, 262 { X86::WINCALL64r, X86::WINCALL64m, 1, 0 }, 263 { X86::CMP16ri, X86::CMP16mi, 1, 0 }, 264 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 }, 265 { X86::CMP16rr, X86::CMP16mr, 1, 0 }, 266 { X86::CMP32ri, X86::CMP32mi, 1, 0 }, 267 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 }, 268 { X86::CMP32rr, X86::CMP32mr, 1, 0 }, 269 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 }, 270 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 }, 271 { X86::CMP64rr, X86::CMP64mr, 1, 0 }, 272 { X86::CMP8ri, X86::CMP8mi, 1, 0 }, 273 { X86::CMP8rr, X86::CMP8mr, 1, 0 }, 274 { X86::DIV16r, X86::DIV16m, 1, 0 }, 275 { X86::DIV32r, X86::DIV32m, 1, 0 }, 276 { X86::DIV64r, X86::DIV64m, 1, 0 }, 277 { X86::DIV8r, X86::DIV8m, 1, 0 }, 278 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 }, 279 { X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 }, 280 { X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 }, 281 { X86::IDIV16r, X86::IDIV16m, 1, 0 }, 282 { X86::IDIV32r, X86::IDIV32m, 1, 0 }, 283 { X86::IDIV64r, X86::IDIV64m, 1, 0 }, 284 { X86::IDIV8r, X86::IDIV8m, 1, 0 }, 285 { X86::IMUL16r, X86::IMUL16m, 1, 0 }, 286 { X86::IMUL32r, X86::IMUL32m, 1, 0 }, 287 { X86::IMUL64r, X86::IMUL64m, 1, 0 }, 288 { X86::IMUL8r, X86::IMUL8m, 1, 0 }, 289 { X86::JMP32r, X86::JMP32m, 1, 0 }, 290 { X86::JMP64r, X86::JMP64m, 1, 0 }, 291 { X86::MOV16ri, X86::MOV16mi, 0, 0 }, 292 { X86::MOV16rr, X86::MOV16mr, 0, 0 }, 293 { X86::MOV32ri, X86::MOV32mi, 0, 0 }, 294 { X86::MOV32rr, X86::MOV32mr, 0, 0 }, 295 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 }, 296 { X86::MOV64rr, X86::MOV64mr, 0, 0 }, 297 { X86::MOV8ri, X86::MOV8mi, 0, 0 }, 298 { X86::MOV8rr, X86::MOV8mr, 0, 0 }, 299 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 }, 300 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 }, 301 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 }, 302 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 }, 303 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, 0, 32 }, 304 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, 0, 32 }, 305 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, 0, 32 }, 306 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 }, 307 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 }, 308 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 }, 309 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 }, 310 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 }, 311 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 }, 312 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, 0, 0 }, 313 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, 0, 0 }, 314 { X86::MUL16r, X86::MUL16m, 1, 0 }, 315 { X86::MUL32r, X86::MUL32m, 1, 0 }, 316 { X86::MUL64r, X86::MUL64m, 1, 0 }, 317 { X86::MUL8r, X86::MUL8m, 1, 0 }, 318 { X86::SETAEr, X86::SETAEm, 0, 0 }, 319 { X86::SETAr, X86::SETAm, 0, 0 }, 320 { X86::SETBEr, X86::SETBEm, 0, 0 }, 321 { X86::SETBr, X86::SETBm, 0, 0 }, 322 { X86::SETEr, X86::SETEm, 0, 0 }, 323 { X86::SETGEr, X86::SETGEm, 0, 0 }, 324 { X86::SETGr, X86::SETGm, 0, 0 }, 325 { X86::SETLEr, X86::SETLEm, 0, 0 }, 326 { X86::SETLr, X86::SETLm, 0, 0 }, 327 { X86::SETNEr, X86::SETNEm, 0, 0 }, 328 { X86::SETNOr, X86::SETNOm, 0, 0 }, 329 { X86::SETNPr, X86::SETNPm, 0, 0 }, 330 { X86::SETNSr, X86::SETNSm, 0, 0 }, 331 { X86::SETOr, X86::SETOm, 0, 0 }, 332 { X86::SETPr, X86::SETPm, 0, 0 }, 333 { X86::SETSr, X86::SETSm, 0, 0 }, 334 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 }, 335 { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 }, 336 { X86::TEST16ri, X86::TEST16mi, 1, 0 }, 337 { X86::TEST32ri, X86::TEST32mi, 1, 0 }, 338 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 }, 339 { X86::TEST8ri, X86::TEST8mi, 1, 0 } 340 }; 341 342 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 343 unsigned RegOp = OpTbl0[i][0]; 344 unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS; 345 unsigned FoldedLoad = OpTbl0[i][2]; 346 unsigned Align = OpTbl0[i][3]; 347 assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?"); 348 RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align); 349 350 // If this is not a reversible operation (because there is a many->one) 351 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. 352 if (OpTbl0[i][1] & TB_NOT_REVERSABLE) 353 continue; 354 355 // Index 0, folded load or store. 356 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); 357 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?"); 358 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); 359 } 360 361 static const unsigned OpTbl1[][3] = { 362 { X86::CMP16rr, X86::CMP16rm, 0 }, 363 { X86::CMP32rr, X86::CMP32rm, 0 }, 364 { X86::CMP64rr, X86::CMP64rm, 0 }, 365 { X86::CMP8rr, X86::CMP8rm, 0 }, 366 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, 367 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, 368 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, 369 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, 370 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, 371 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, 372 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, 373 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, 374 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, 375 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, 376 { X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 }, 377 { X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 }, 378 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, 379 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, 380 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, 381 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, 382 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, 383 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, 384 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, 385 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, 386 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 }, 387 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 }, 388 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 }, 389 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 }, 390 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 }, 391 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, 392 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, 393 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, 394 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, 395 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, 396 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, 397 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, 398 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, 399 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, 400 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 }, 401 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 }, 402 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 }, 403 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 }, 404 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, 405 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, 406 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, 407 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, 408 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, 409 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, 410 { X86::MOV16rr, X86::MOV16rm, 0 }, 411 { X86::MOV32rr, X86::MOV32rm, 0 }, 412 { X86::MOV64rr, X86::MOV64rm, 0 }, 413 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, 414 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, 415 { X86::MOV8rr, X86::MOV8rm, 0 }, 416 { X86::MOVAPDrr, X86::MOVAPDrm, 16 }, 417 { X86::MOVAPSrr, X86::MOVAPSrm, 16 }, 418 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, 32 }, 419 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, 32 }, 420 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, 421 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, 422 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, 423 { X86::MOVDQArr, X86::MOVDQArm, 16 }, 424 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, 16 }, 425 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 }, 426 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 }, 427 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, 428 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, 429 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, 430 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, 431 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, 432 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, 433 { X86::MOVUPDrr, X86::MOVUPDrm, 16 }, 434 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, 435 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, 436 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, 437 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, 438 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, 439 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 }, 440 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, 441 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, 442 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, 443 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, 444 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, 445 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, 446 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, 447 { X86::PSHUFDri, X86::PSHUFDmi, 16 }, 448 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 }, 449 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 }, 450 { X86::RCPPSr, X86::RCPPSm, 16 }, 451 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 }, 452 { X86::RSQRTPSr, X86::RSQRTPSm, 16 }, 453 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 }, 454 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, 455 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, 456 { X86::SQRTPDr, X86::SQRTPDm, 16 }, 457 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 }, 458 { X86::SQRTPSr, X86::SQRTPSm, 16 }, 459 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 }, 460 { X86::SQRTSDr, X86::SQRTSDm, 0 }, 461 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, 462 { X86::SQRTSSr, X86::SQRTSSm, 0 }, 463 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, 464 { X86::TEST16rr, X86::TEST16rm, 0 }, 465 { X86::TEST32rr, X86::TEST32rm, 0 }, 466 { X86::TEST64rr, X86::TEST64rm, 0 }, 467 { X86::TEST8rr, X86::TEST8rm, 0 }, 468 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 469 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, 470 { X86::UCOMISSrr, X86::UCOMISSrm, 0 } 471 }; 472 473 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 474 unsigned RegOp = OpTbl1[i][0]; 475 unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS; 476 unsigned Align = OpTbl1[i][2]; 477 assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries"); 478 RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align); 479 480 // If this is not a reversible operation (because there is a many->one) 481 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. 482 if (OpTbl1[i][1] & TB_NOT_REVERSABLE) 483 continue; 484 485 // Index 1, folded load 486 unsigned AuxInfo = 1 | (1 << 4); 487 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries"); 488 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); 489 } 490 491 static const unsigned OpTbl2[][3] = { 492 { X86::ADC32rr, X86::ADC32rm, 0 }, 493 { X86::ADC64rr, X86::ADC64rm, 0 }, 494 { X86::ADD16rr, X86::ADD16rm, 0 }, 495 { X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 }, 496 { X86::ADD32rr, X86::ADD32rm, 0 }, 497 { X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 }, 498 { X86::ADD64rr, X86::ADD64rm, 0 }, 499 { X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 }, 500 { X86::ADD8rr, X86::ADD8rm, 0 }, 501 { X86::ADDPDrr, X86::ADDPDrm, 16 }, 502 { X86::ADDPSrr, X86::ADDPSrm, 16 }, 503 { X86::ADDSDrr, X86::ADDSDrm, 0 }, 504 { X86::ADDSSrr, X86::ADDSSrm, 0 }, 505 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 }, 506 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 }, 507 { X86::AND16rr, X86::AND16rm, 0 }, 508 { X86::AND32rr, X86::AND32rm, 0 }, 509 { X86::AND64rr, X86::AND64rm, 0 }, 510 { X86::AND8rr, X86::AND8rm, 0 }, 511 { X86::ANDNPDrr, X86::ANDNPDrm, 16 }, 512 { X86::ANDNPSrr, X86::ANDNPSrm, 16 }, 513 { X86::ANDPDrr, X86::ANDPDrm, 16 }, 514 { X86::ANDPSrr, X86::ANDPSrm, 16 }, 515 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, 516 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, 517 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, 518 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, 519 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, 520 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, 521 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, 522 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, 523 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, 524 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, 525 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, 526 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, 527 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, 528 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, 529 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, 530 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, 531 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, 532 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, 533 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, 534 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, 535 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, 536 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, 537 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, 538 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, 539 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, 540 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, 541 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, 542 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, 543 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, 544 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, 545 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, 546 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, 547 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, 548 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, 549 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, 550 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, 551 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, 552 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, 553 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, 554 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, 555 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, 556 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, 557 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, 558 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, 559 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, 560 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, 561 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, 562 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, 563 { X86::CMPPDrri, X86::CMPPDrmi, 16 }, 564 { X86::CMPPSrri, X86::CMPPSrmi, 16 }, 565 { X86::CMPSDrr, X86::CMPSDrm, 0 }, 566 { X86::CMPSSrr, X86::CMPSSrm, 0 }, 567 { X86::DIVPDrr, X86::DIVPDrm, 16 }, 568 { X86::DIVPSrr, X86::DIVPSrm, 16 }, 569 { X86::DIVSDrr, X86::DIVSDrm, 0 }, 570 { X86::DIVSSrr, X86::DIVSSrm, 0 }, 571 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 }, 572 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 }, 573 { X86::FsANDPDrr, X86::FsANDPDrm, 16 }, 574 { X86::FsANDPSrr, X86::FsANDPSrm, 16 }, 575 { X86::FsORPDrr, X86::FsORPDrm, 16 }, 576 { X86::FsORPSrr, X86::FsORPSrm, 16 }, 577 { X86::FsXORPDrr, X86::FsXORPDrm, 16 }, 578 { X86::FsXORPSrr, X86::FsXORPSrm, 16 }, 579 { X86::HADDPDrr, X86::HADDPDrm, 16 }, 580 { X86::HADDPSrr, X86::HADDPSrm, 16 }, 581 { X86::HSUBPDrr, X86::HSUBPDrm, 16 }, 582 { X86::HSUBPSrr, X86::HSUBPSrm, 16 }, 583 { X86::IMUL16rr, X86::IMUL16rm, 0 }, 584 { X86::IMUL32rr, X86::IMUL32rm, 0 }, 585 { X86::IMUL64rr, X86::IMUL64rm, 0 }, 586 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, 587 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, 588 { X86::MAXPDrr, X86::MAXPDrm, 16 }, 589 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 }, 590 { X86::MAXPSrr, X86::MAXPSrm, 16 }, 591 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 }, 592 { X86::MAXSDrr, X86::MAXSDrm, 0 }, 593 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, 594 { X86::MAXSSrr, X86::MAXSSrm, 0 }, 595 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, 596 { X86::MINPDrr, X86::MINPDrm, 16 }, 597 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 }, 598 { X86::MINPSrr, X86::MINPSrm, 16 }, 599 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 }, 600 { X86::MINSDrr, X86::MINSDrm, 0 }, 601 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, 602 { X86::MINSSrr, X86::MINSSrm, 0 }, 603 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, 604 { X86::MULPDrr, X86::MULPDrm, 16 }, 605 { X86::MULPSrr, X86::MULPSrm, 16 }, 606 { X86::MULSDrr, X86::MULSDrm, 0 }, 607 { X86::MULSSrr, X86::MULSSrm, 0 }, 608 { X86::OR16rr, X86::OR16rm, 0 }, 609 { X86::OR32rr, X86::OR32rm, 0 }, 610 { X86::OR64rr, X86::OR64rm, 0 }, 611 { X86::OR8rr, X86::OR8rm, 0 }, 612 { X86::ORPDrr, X86::ORPDrm, 16 }, 613 { X86::ORPSrr, X86::ORPSrm, 16 }, 614 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 }, 615 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 }, 616 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 }, 617 { X86::PADDBrr, X86::PADDBrm, 16 }, 618 { X86::PADDDrr, X86::PADDDrm, 16 }, 619 { X86::PADDQrr, X86::PADDQrm, 16 }, 620 { X86::PADDSBrr, X86::PADDSBrm, 16 }, 621 { X86::PADDSWrr, X86::PADDSWrm, 16 }, 622 { X86::PADDWrr, X86::PADDWrm, 16 }, 623 { X86::PANDNrr, X86::PANDNrm, 16 }, 624 { X86::PANDrr, X86::PANDrm, 16 }, 625 { X86::PAVGBrr, X86::PAVGBrm, 16 }, 626 { X86::PAVGWrr, X86::PAVGWrm, 16 }, 627 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 }, 628 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 }, 629 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 }, 630 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 }, 631 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 }, 632 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 }, 633 { X86::PINSRWrri, X86::PINSRWrmi, 16 }, 634 { X86::PMADDWDrr, X86::PMADDWDrm, 16 }, 635 { X86::PMAXSWrr, X86::PMAXSWrm, 16 }, 636 { X86::PMAXUBrr, X86::PMAXUBrm, 16 }, 637 { X86::PMINSWrr, X86::PMINSWrm, 16 }, 638 { X86::PMINUBrr, X86::PMINUBrm, 16 }, 639 { X86::PMULDQrr, X86::PMULDQrm, 16 }, 640 { X86::PMULHUWrr, X86::PMULHUWrm, 16 }, 641 { X86::PMULHWrr, X86::PMULHWrm, 16 }, 642 { X86::PMULLDrr, X86::PMULLDrm, 16 }, 643 { X86::PMULLWrr, X86::PMULLWrm, 16 }, 644 { X86::PMULUDQrr, X86::PMULUDQrm, 16 }, 645 { X86::PORrr, X86::PORrm, 16 }, 646 { X86::PSADBWrr, X86::PSADBWrm, 16 }, 647 { X86::PSLLDrr, X86::PSLLDrm, 16 }, 648 { X86::PSLLQrr, X86::PSLLQrm, 16 }, 649 { X86::PSLLWrr, X86::PSLLWrm, 16 }, 650 { X86::PSRADrr, X86::PSRADrm, 16 }, 651 { X86::PSRAWrr, X86::PSRAWrm, 16 }, 652 { X86::PSRLDrr, X86::PSRLDrm, 16 }, 653 { X86::PSRLQrr, X86::PSRLQrm, 16 }, 654 { X86::PSRLWrr, X86::PSRLWrm, 16 }, 655 { X86::PSUBBrr, X86::PSUBBrm, 16 }, 656 { X86::PSUBDrr, X86::PSUBDrm, 16 }, 657 { X86::PSUBSBrr, X86::PSUBSBrm, 16 }, 658 { X86::PSUBSWrr, X86::PSUBSWrm, 16 }, 659 { X86::PSUBWrr, X86::PSUBWrm, 16 }, 660 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 }, 661 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 }, 662 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 }, 663 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 }, 664 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 }, 665 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 }, 666 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 }, 667 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 }, 668 { X86::PXORrr, X86::PXORrm, 16 }, 669 { X86::SBB32rr, X86::SBB32rm, 0 }, 670 { X86::SBB64rr, X86::SBB64rm, 0 }, 671 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 }, 672 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 }, 673 { X86::SUB16rr, X86::SUB16rm, 0 }, 674 { X86::SUB32rr, X86::SUB32rm, 0 }, 675 { X86::SUB64rr, X86::SUB64rm, 0 }, 676 { X86::SUB8rr, X86::SUB8rm, 0 }, 677 { X86::SUBPDrr, X86::SUBPDrm, 16 }, 678 { X86::SUBPSrr, X86::SUBPSrm, 16 }, 679 { X86::SUBSDrr, X86::SUBSDrm, 0 }, 680 { X86::SUBSSrr, X86::SUBSSrm, 0 }, 681 // FIXME: TEST*rr -> swapped operand of TEST*mr. 682 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 }, 683 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 }, 684 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 }, 685 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 }, 686 { X86::XOR16rr, X86::XOR16rm, 0 }, 687 { X86::XOR32rr, X86::XOR32rm, 0 }, 688 { X86::XOR64rr, X86::XOR64rm, 0 }, 689 { X86::XOR8rr, X86::XOR8rm, 0 }, 690 { X86::XORPDrr, X86::XORPDrm, 16 }, 691 { X86::XORPSrr, X86::XORPSrm, 16 } 692 }; 693 694 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 695 unsigned RegOp = OpTbl2[i][0]; 696 unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS; 697 unsigned Align = OpTbl2[i][2]; 698 699 assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!"); 700 RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align); 701 702 // If this is not a reversible operation (because there is a many->one) 703 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. 704 if (OpTbl2[i][1] & TB_NOT_REVERSABLE) 705 continue; 706 707 // Index 2, folded load 708 unsigned AuxInfo = 2 | (1 << 4); 709 assert(!MemOp2RegOpTable.count(MemOp) && 710 "Duplicated entries in unfolding maps?"); 711 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); 712 } 713 } 714 715 bool 716 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 717 unsigned &SrcReg, unsigned &DstReg, 718 unsigned &SubIdx) const { 719 switch (MI.getOpcode()) { 720 default: break; 721 case X86::MOVSX16rr8: 722 case X86::MOVZX16rr8: 723 case X86::MOVSX32rr8: 724 case X86::MOVZX32rr8: 725 case X86::MOVSX64rr8: 726 case X86::MOVZX64rr8: 727 if (!TM.getSubtarget<X86Subtarget>().is64Bit()) 728 // It's not always legal to reference the low 8-bit of the larger 729 // register in 32-bit mode. 730 return false; 731 case X86::MOVSX32rr16: 732 case X86::MOVZX32rr16: 733 case X86::MOVSX64rr16: 734 case X86::MOVZX64rr16: 735 case X86::MOVSX64rr32: 736 case X86::MOVZX64rr32: { 737 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 738 // Be conservative. 739 return false; 740 SrcReg = MI.getOperand(1).getReg(); 741 DstReg = MI.getOperand(0).getReg(); 742 switch (MI.getOpcode()) { 743 default: 744 llvm_unreachable(0); 745 break; 746 case X86::MOVSX16rr8: 747 case X86::MOVZX16rr8: 748 case X86::MOVSX32rr8: 749 case X86::MOVZX32rr8: 750 case X86::MOVSX64rr8: 751 case X86::MOVZX64rr8: 752 SubIdx = X86::sub_8bit; 753 break; 754 case X86::MOVSX32rr16: 755 case X86::MOVZX32rr16: 756 case X86::MOVSX64rr16: 757 case X86::MOVZX64rr16: 758 SubIdx = X86::sub_16bit; 759 break; 760 case X86::MOVSX64rr32: 761 case X86::MOVZX64rr32: 762 SubIdx = X86::sub_32bit; 763 break; 764 } 765 return true; 766 } 767 } 768 return false; 769 } 770 771 /// isFrameOperand - Return true and the FrameIndex if the specified 772 /// operand and follow operands form a reference to the stack frame. 773 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, 774 int &FrameIndex) const { 775 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && 776 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && 777 MI->getOperand(Op+1).getImm() == 1 && 778 MI->getOperand(Op+2).getReg() == 0 && 779 MI->getOperand(Op+3).getImm() == 0) { 780 FrameIndex = MI->getOperand(Op).getIndex(); 781 return true; 782 } 783 return false; 784 } 785 786 static bool isFrameLoadOpcode(int Opcode) { 787 switch (Opcode) { 788 default: break; 789 case X86::MOV8rm: 790 case X86::MOV16rm: 791 case X86::MOV32rm: 792 case X86::MOV64rm: 793 case X86::LD_Fp64m: 794 case X86::MOVSSrm: 795 case X86::MOVSDrm: 796 case X86::MOVAPSrm: 797 case X86::MOVAPDrm: 798 case X86::MOVDQArm: 799 case X86::VMOVAPSYrm: 800 case X86::VMOVAPDYrm: 801 case X86::VMOVDQAYrm: 802 case X86::MMX_MOVD64rm: 803 case X86::MMX_MOVQ64rm: 804 return true; 805 break; 806 } 807 return false; 808 } 809 810 static bool isFrameStoreOpcode(int Opcode) { 811 switch (Opcode) { 812 default: break; 813 case X86::MOV8mr: 814 case X86::MOV16mr: 815 case X86::MOV32mr: 816 case X86::MOV64mr: 817 case X86::ST_FpP64m: 818 case X86::MOVSSmr: 819 case X86::MOVSDmr: 820 case X86::MOVAPSmr: 821 case X86::MOVAPDmr: 822 case X86::MOVDQAmr: 823 case X86::VMOVAPSYmr: 824 case X86::VMOVAPDYmr: 825 case X86::VMOVDQAYmr: 826 case X86::MMX_MOVD64mr: 827 case X86::MMX_MOVQ64mr: 828 case X86::MMX_MOVNTQmr: 829 return true; 830 } 831 return false; 832 } 833 834 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 835 int &FrameIndex) const { 836 if (isFrameLoadOpcode(MI->getOpcode())) 837 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 838 return MI->getOperand(0).getReg(); 839 return 0; 840 } 841 842 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 843 int &FrameIndex) const { 844 if (isFrameLoadOpcode(MI->getOpcode())) { 845 unsigned Reg; 846 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 847 return Reg; 848 // Check for post-frame index elimination operations 849 const MachineMemOperand *Dummy; 850 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); 851 } 852 return 0; 853 } 854 855 bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 856 const MachineMemOperand *&MMO, 857 int &FrameIndex) const { 858 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 859 oe = MI->memoperands_end(); 860 o != oe; 861 ++o) { 862 if ((*o)->isLoad() && (*o)->getValue()) 863 if (const FixedStackPseudoSourceValue *Value = 864 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 865 FrameIndex = Value->getFrameIndex(); 866 MMO = *o; 867 return true; 868 } 869 } 870 return false; 871 } 872 873 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, 874 int &FrameIndex) const { 875 if (isFrameStoreOpcode(MI->getOpcode())) 876 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && 877 isFrameOperand(MI, 0, FrameIndex)) 878 return MI->getOperand(X86::AddrNumOperands).getReg(); 879 return 0; 880 } 881 882 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 883 int &FrameIndex) const { 884 if (isFrameStoreOpcode(MI->getOpcode())) { 885 unsigned Reg; 886 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 887 return Reg; 888 // Check for post-frame index elimination operations 889 const MachineMemOperand *Dummy; 890 return hasStoreToStackSlot(MI, Dummy, FrameIndex); 891 } 892 return 0; 893 } 894 895 bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 896 const MachineMemOperand *&MMO, 897 int &FrameIndex) const { 898 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 899 oe = MI->memoperands_end(); 900 o != oe; 901 ++o) { 902 if ((*o)->isStore() && (*o)->getValue()) 903 if (const FixedStackPseudoSourceValue *Value = 904 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 905 FrameIndex = Value->getFrameIndex(); 906 MMO = *o; 907 return true; 908 } 909 } 910 return false; 911 } 912 913 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by 914 /// X86::MOVPC32r. 915 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 916 bool isPICBase = false; 917 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 918 E = MRI.def_end(); I != E; ++I) { 919 MachineInstr *DefMI = I.getOperand().getParent(); 920 if (DefMI->getOpcode() != X86::MOVPC32r) 921 return false; 922 assert(!isPICBase && "More than one PIC base?"); 923 isPICBase = true; 924 } 925 return isPICBase; 926 } 927 928 bool 929 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 930 AliasAnalysis *AA) const { 931 switch (MI->getOpcode()) { 932 default: break; 933 case X86::MOV8rm: 934 case X86::MOV16rm: 935 case X86::MOV32rm: 936 case X86::MOV64rm: 937 case X86::LD_Fp64m: 938 case X86::MOVSSrm: 939 case X86::MOVSDrm: 940 case X86::MOVAPSrm: 941 case X86::MOVUPSrm: 942 case X86::MOVAPDrm: 943 case X86::MOVDQArm: 944 case X86::VMOVAPSYrm: 945 case X86::VMOVUPSYrm: 946 case X86::VMOVAPDYrm: 947 case X86::VMOVDQAYrm: 948 case X86::MMX_MOVD64rm: 949 case X86::MMX_MOVQ64rm: 950 case X86::FsMOVAPSrm: 951 case X86::FsMOVAPDrm: { 952 // Loads from constant pools are trivially rematerializable. 953 if (MI->getOperand(1).isReg() && 954 MI->getOperand(2).isImm() && 955 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 956 MI->isInvariantLoad(AA)) { 957 unsigned BaseReg = MI->getOperand(1).getReg(); 958 if (BaseReg == 0 || BaseReg == X86::RIP) 959 return true; 960 // Allow re-materialization of PIC load. 961 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) 962 return false; 963 const MachineFunction &MF = *MI->getParent()->getParent(); 964 const MachineRegisterInfo &MRI = MF.getRegInfo(); 965 bool isPICBase = false; 966 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 967 E = MRI.def_end(); I != E; ++I) { 968 MachineInstr *DefMI = I.getOperand().getParent(); 969 if (DefMI->getOpcode() != X86::MOVPC32r) 970 return false; 971 assert(!isPICBase && "More than one PIC base?"); 972 isPICBase = true; 973 } 974 return isPICBase; 975 } 976 return false; 977 } 978 979 case X86::LEA32r: 980 case X86::LEA64r: { 981 if (MI->getOperand(2).isImm() && 982 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 983 !MI->getOperand(4).isReg()) { 984 // lea fi#, lea GV, etc. are all rematerializable. 985 if (!MI->getOperand(1).isReg()) 986 return true; 987 unsigned BaseReg = MI->getOperand(1).getReg(); 988 if (BaseReg == 0) 989 return true; 990 // Allow re-materialization of lea PICBase + x. 991 const MachineFunction &MF = *MI->getParent()->getParent(); 992 const MachineRegisterInfo &MRI = MF.getRegInfo(); 993 return regIsPICBase(BaseReg, MRI); 994 } 995 return false; 996 } 997 } 998 999 // All other instructions marked M_REMATERIALIZABLE are always trivially 1000 // rematerializable. 1001 return true; 1002 } 1003 1004 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that 1005 /// would clobber the EFLAGS condition register. Note the result may be 1006 /// conservative. If it cannot definitely determine the safety after visiting 1007 /// a few instructions in each direction it assumes it's not safe. 1008 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, 1009 MachineBasicBlock::iterator I) { 1010 MachineBasicBlock::iterator E = MBB.end(); 1011 1012 // It's always safe to clobber EFLAGS at the end of a block. 1013 if (I == E) 1014 return true; 1015 1016 // For compile time consideration, if we are not able to determine the 1017 // safety after visiting 4 instructions in each direction, we will assume 1018 // it's not safe. 1019 MachineBasicBlock::iterator Iter = I; 1020 for (unsigned i = 0; i < 4; ++i) { 1021 bool SeenDef = false; 1022 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1023 MachineOperand &MO = Iter->getOperand(j); 1024 if (!MO.isReg()) 1025 continue; 1026 if (MO.getReg() == X86::EFLAGS) { 1027 if (MO.isUse()) 1028 return false; 1029 SeenDef = true; 1030 } 1031 } 1032 1033 if (SeenDef) 1034 // This instruction defines EFLAGS, no need to look any further. 1035 return true; 1036 ++Iter; 1037 // Skip over DBG_VALUE. 1038 while (Iter != E && Iter->isDebugValue()) 1039 ++Iter; 1040 1041 // If we make it to the end of the block, it's safe to clobber EFLAGS. 1042 if (Iter == E) 1043 return true; 1044 } 1045 1046 MachineBasicBlock::iterator B = MBB.begin(); 1047 Iter = I; 1048 for (unsigned i = 0; i < 4; ++i) { 1049 // If we make it to the beginning of the block, it's safe to clobber 1050 // EFLAGS iff EFLAGS is not live-in. 1051 if (Iter == B) 1052 return !MBB.isLiveIn(X86::EFLAGS); 1053 1054 --Iter; 1055 // Skip over DBG_VALUE. 1056 while (Iter != B && Iter->isDebugValue()) 1057 --Iter; 1058 1059 bool SawKill = false; 1060 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1061 MachineOperand &MO = Iter->getOperand(j); 1062 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { 1063 if (MO.isDef()) return MO.isDead(); 1064 if (MO.isKill()) SawKill = true; 1065 } 1066 } 1067 1068 if (SawKill) 1069 // This instruction kills EFLAGS and doesn't redefine it, so 1070 // there's no need to look further. 1071 return true; 1072 } 1073 1074 // Conservative answer. 1075 return false; 1076 } 1077 1078 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 1079 MachineBasicBlock::iterator I, 1080 unsigned DestReg, unsigned SubIdx, 1081 const MachineInstr *Orig, 1082 const TargetRegisterInfo &TRI) const { 1083 DebugLoc DL = Orig->getDebugLoc(); 1084 1085 // MOV32r0 etc. are implemented with xor which clobbers condition code. 1086 // Re-materialize them as movri instructions to avoid side effects. 1087 bool Clone = true; 1088 unsigned Opc = Orig->getOpcode(); 1089 switch (Opc) { 1090 default: break; 1091 case X86::MOV8r0: 1092 case X86::MOV16r0: 1093 case X86::MOV32r0: 1094 case X86::MOV64r0: { 1095 if (!isSafeToClobberEFLAGS(MBB, I)) { 1096 switch (Opc) { 1097 default: break; 1098 case X86::MOV8r0: Opc = X86::MOV8ri; break; 1099 case X86::MOV16r0: Opc = X86::MOV16ri; break; 1100 case X86::MOV32r0: Opc = X86::MOV32ri; break; 1101 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; 1102 } 1103 Clone = false; 1104 } 1105 break; 1106 } 1107 } 1108 1109 if (Clone) { 1110 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1111 MBB.insert(I, MI); 1112 } else { 1113 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); 1114 } 1115 1116 MachineInstr *NewMI = prior(I); 1117 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1118 } 1119 1120 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that 1121 /// is not marked dead. 1122 static bool hasLiveCondCodeDef(MachineInstr *MI) { 1123 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1124 MachineOperand &MO = MI->getOperand(i); 1125 if (MO.isReg() && MO.isDef() && 1126 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 1127 return true; 1128 } 1129 } 1130 return false; 1131 } 1132 1133 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when 1134 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting 1135 /// to a 32-bit superregister and then truncating back down to a 16-bit 1136 /// subregister. 1137 MachineInstr * 1138 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1139 MachineFunction::iterator &MFI, 1140 MachineBasicBlock::iterator &MBBI, 1141 LiveVariables *LV) const { 1142 MachineInstr *MI = MBBI; 1143 unsigned Dest = MI->getOperand(0).getReg(); 1144 unsigned Src = MI->getOperand(1).getReg(); 1145 bool isDead = MI->getOperand(0).isDead(); 1146 bool isKill = MI->getOperand(1).isKill(); 1147 1148 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() 1149 ? X86::LEA64_32r : X86::LEA32r; 1150 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 1151 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1152 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1153 1154 // Build and insert into an implicit UNDEF value. This is OK because 1155 // well be shifting and then extracting the lower 16-bits. 1156 // This has the potential to cause partial register stall. e.g. 1157 // movw (%rbp,%rcx,2), %dx 1158 // leal -65(%rdx), %esi 1159 // But testing has shown this *does* help performance in 64-bit mode (at 1160 // least on modern x86 machines). 1161 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); 1162 MachineInstr *InsMI = 1163 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1164 .addReg(leaInReg, RegState::Define, X86::sub_16bit) 1165 .addReg(Src, getKillRegState(isKill)); 1166 1167 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), 1168 get(Opc), leaOutReg); 1169 switch (MIOpc) { 1170 default: 1171 llvm_unreachable(0); 1172 break; 1173 case X86::SHL16ri: { 1174 unsigned ShAmt = MI->getOperand(2).getImm(); 1175 MIB.addReg(0).addImm(1 << ShAmt) 1176 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); 1177 break; 1178 } 1179 case X86::INC16r: 1180 case X86::INC64_16r: 1181 addRegOffset(MIB, leaInReg, true, 1); 1182 break; 1183 case X86::DEC16r: 1184 case X86::DEC64_16r: 1185 addRegOffset(MIB, leaInReg, true, -1); 1186 break; 1187 case X86::ADD16ri: 1188 case X86::ADD16ri8: 1189 case X86::ADD16ri_DB: 1190 case X86::ADD16ri8_DB: 1191 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); 1192 break; 1193 case X86::ADD16rr: 1194 case X86::ADD16rr_DB: { 1195 unsigned Src2 = MI->getOperand(2).getReg(); 1196 bool isKill2 = MI->getOperand(2).isKill(); 1197 unsigned leaInReg2 = 0; 1198 MachineInstr *InsMI2 = 0; 1199 if (Src == Src2) { 1200 // ADD16rr %reg1028<kill>, %reg1028 1201 // just a single insert_subreg. 1202 addRegReg(MIB, leaInReg, true, leaInReg, false); 1203 } else { 1204 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1205 // Build and insert into an implicit UNDEF value. This is OK because 1206 // well be shifting and then extracting the lower 16-bits. 1207 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); 1208 InsMI2 = 1209 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1210 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) 1211 .addReg(Src2, getKillRegState(isKill2)); 1212 addRegReg(MIB, leaInReg, true, leaInReg2, true); 1213 } 1214 if (LV && isKill2 && InsMI2) 1215 LV->replaceKillInstruction(Src2, MI, InsMI2); 1216 break; 1217 } 1218 } 1219 1220 MachineInstr *NewMI = MIB; 1221 MachineInstr *ExtMI = 1222 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1223 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1224 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); 1225 1226 if (LV) { 1227 // Update live variables 1228 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); 1229 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); 1230 if (isKill) 1231 LV->replaceKillInstruction(Src, MI, InsMI); 1232 if (isDead) 1233 LV->replaceKillInstruction(Dest, MI, ExtMI); 1234 } 1235 1236 return ExtMI; 1237 } 1238 1239 /// convertToThreeAddress - This method must be implemented by targets that 1240 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1241 /// may be able to convert a two-address instruction into a true 1242 /// three-address instruction on demand. This allows the X86 target (for 1243 /// example) to convert ADD and SHL instructions into LEA instructions if they 1244 /// would require register copies due to two-addressness. 1245 /// 1246 /// This method returns a null pointer if the transformation cannot be 1247 /// performed, otherwise it returns the new instruction. 1248 /// 1249 MachineInstr * 1250 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 1251 MachineBasicBlock::iterator &MBBI, 1252 LiveVariables *LV) const { 1253 MachineInstr *MI = MBBI; 1254 MachineFunction &MF = *MI->getParent()->getParent(); 1255 // All instructions input are two-addr instructions. Get the known operands. 1256 unsigned Dest = MI->getOperand(0).getReg(); 1257 unsigned Src = MI->getOperand(1).getReg(); 1258 bool isDead = MI->getOperand(0).isDead(); 1259 bool isKill = MI->getOperand(1).isKill(); 1260 1261 MachineInstr *NewMI = NULL; 1262 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When 1263 // we have better subtarget support, enable the 16-bit LEA generation here. 1264 // 16-bit LEA is also slow on Core2. 1265 bool DisableLEA16 = true; 1266 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); 1267 1268 unsigned MIOpc = MI->getOpcode(); 1269 switch (MIOpc) { 1270 case X86::SHUFPSrri: { 1271 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); 1272 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; 1273 1274 unsigned B = MI->getOperand(1).getReg(); 1275 unsigned C = MI->getOperand(2).getReg(); 1276 if (B != C) return 0; 1277 unsigned A = MI->getOperand(0).getReg(); 1278 unsigned M = MI->getOperand(3).getImm(); 1279 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 1280 .addReg(A, RegState::Define | getDeadRegState(isDead)) 1281 .addReg(B, getKillRegState(isKill)).addImm(M); 1282 break; 1283 } 1284 case X86::SHL64ri: { 1285 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1286 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1287 // the flags produced by a shift yet, so this is safe. 1288 unsigned ShAmt = MI->getOperand(2).getImm(); 1289 if (ShAmt == 0 || ShAmt >= 4) return 0; 1290 1291 // LEA can't handle RSP. 1292 if (TargetRegisterInfo::isVirtualRegister(Src) && 1293 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) 1294 return 0; 1295 1296 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1297 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1298 .addReg(0).addImm(1 << ShAmt) 1299 .addReg(Src, getKillRegState(isKill)) 1300 .addImm(0).addReg(0); 1301 break; 1302 } 1303 case X86::SHL32ri: { 1304 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1305 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1306 // the flags produced by a shift yet, so this is safe. 1307 unsigned ShAmt = MI->getOperand(2).getImm(); 1308 if (ShAmt == 0 || ShAmt >= 4) return 0; 1309 1310 // LEA can't handle ESP. 1311 if (TargetRegisterInfo::isVirtualRegister(Src) && 1312 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) 1313 return 0; 1314 1315 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1316 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1317 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1318 .addReg(0).addImm(1 << ShAmt) 1319 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); 1320 break; 1321 } 1322 case X86::SHL16ri: { 1323 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1324 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1325 // the flags produced by a shift yet, so this is safe. 1326 unsigned ShAmt = MI->getOperand(2).getImm(); 1327 if (ShAmt == 0 || ShAmt >= 4) return 0; 1328 1329 if (DisableLEA16) 1330 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1331 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1332 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1333 .addReg(0).addImm(1 << ShAmt) 1334 .addReg(Src, getKillRegState(isKill)) 1335 .addImm(0).addReg(0); 1336 break; 1337 } 1338 default: { 1339 // The following opcodes also sets the condition code register(s). Only 1340 // convert them to equivalent lea if the condition code register def's 1341 // are dead! 1342 if (hasLiveCondCodeDef(MI)) 1343 return 0; 1344 1345 switch (MIOpc) { 1346 default: return 0; 1347 case X86::INC64r: 1348 case X86::INC32r: 1349 case X86::INC64_32r: { 1350 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1351 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r 1352 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1353 1354 // LEA can't handle RSP. 1355 if (TargetRegisterInfo::isVirtualRegister(Src) && 1356 !MF.getRegInfo().constrainRegClass(Src, 1357 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : 1358 X86::GR32_NOSPRegisterClass)) 1359 return 0; 1360 1361 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1362 .addReg(Dest, RegState::Define | 1363 getDeadRegState(isDead)), 1364 Src, isKill, 1); 1365 break; 1366 } 1367 case X86::INC16r: 1368 case X86::INC64_16r: 1369 if (DisableLEA16) 1370 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1371 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1372 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1373 .addReg(Dest, RegState::Define | 1374 getDeadRegState(isDead)), 1375 Src, isKill, 1); 1376 break; 1377 case X86::DEC64r: 1378 case X86::DEC32r: 1379 case X86::DEC64_32r: { 1380 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1381 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1382 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1383 // LEA can't handle RSP. 1384 if (TargetRegisterInfo::isVirtualRegister(Src) && 1385 !MF.getRegInfo().constrainRegClass(Src, 1386 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : 1387 X86::GR32_NOSPRegisterClass)) 1388 return 0; 1389 1390 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1391 .addReg(Dest, RegState::Define | 1392 getDeadRegState(isDead)), 1393 Src, isKill, -1); 1394 break; 1395 } 1396 case X86::DEC16r: 1397 case X86::DEC64_16r: 1398 if (DisableLEA16) 1399 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1400 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1401 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1402 .addReg(Dest, RegState::Define | 1403 getDeadRegState(isDead)), 1404 Src, isKill, -1); 1405 break; 1406 case X86::ADD64rr: 1407 case X86::ADD64rr_DB: 1408 case X86::ADD32rr: 1409 case X86::ADD32rr_DB: { 1410 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1411 unsigned Opc; 1412 TargetRegisterClass *RC; 1413 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { 1414 Opc = X86::LEA64r; 1415 RC = X86::GR64_NOSPRegisterClass; 1416 } else { 1417 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1418 RC = X86::GR32_NOSPRegisterClass; 1419 } 1420 1421 1422 unsigned Src2 = MI->getOperand(2).getReg(); 1423 bool isKill2 = MI->getOperand(2).isKill(); 1424 1425 // LEA can't handle RSP. 1426 if (TargetRegisterInfo::isVirtualRegister(Src2) && 1427 !MF.getRegInfo().constrainRegClass(Src2, RC)) 1428 return 0; 1429 1430 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1431 .addReg(Dest, RegState::Define | 1432 getDeadRegState(isDead)), 1433 Src, isKill, Src2, isKill2); 1434 if (LV && isKill2) 1435 LV->replaceKillInstruction(Src2, MI, NewMI); 1436 break; 1437 } 1438 case X86::ADD16rr: 1439 case X86::ADD16rr_DB: { 1440 if (DisableLEA16) 1441 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1442 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1443 unsigned Src2 = MI->getOperand(2).getReg(); 1444 bool isKill2 = MI->getOperand(2).isKill(); 1445 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1446 .addReg(Dest, RegState::Define | 1447 getDeadRegState(isDead)), 1448 Src, isKill, Src2, isKill2); 1449 if (LV && isKill2) 1450 LV->replaceKillInstruction(Src2, MI, NewMI); 1451 break; 1452 } 1453 case X86::ADD64ri32: 1454 case X86::ADD64ri8: 1455 case X86::ADD64ri32_DB: 1456 case X86::ADD64ri8_DB: 1457 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1458 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1459 .addReg(Dest, RegState::Define | 1460 getDeadRegState(isDead)), 1461 Src, isKill, MI->getOperand(2).getImm()); 1462 break; 1463 case X86::ADD32ri: 1464 case X86::ADD32ri8: 1465 case X86::ADD32ri_DB: 1466 case X86::ADD32ri8_DB: { 1467 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1468 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1469 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1470 .addReg(Dest, RegState::Define | 1471 getDeadRegState(isDead)), 1472 Src, isKill, MI->getOperand(2).getImm()); 1473 break; 1474 } 1475 case X86::ADD16ri: 1476 case X86::ADD16ri8: 1477 case X86::ADD16ri_DB: 1478 case X86::ADD16ri8_DB: 1479 if (DisableLEA16) 1480 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1481 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1482 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1483 .addReg(Dest, RegState::Define | 1484 getDeadRegState(isDead)), 1485 Src, isKill, MI->getOperand(2).getImm()); 1486 break; 1487 } 1488 } 1489 } 1490 1491 if (!NewMI) return 0; 1492 1493 if (LV) { // Update live variables 1494 if (isKill) 1495 LV->replaceKillInstruction(Src, MI, NewMI); 1496 if (isDead) 1497 LV->replaceKillInstruction(Dest, MI, NewMI); 1498 } 1499 1500 MFI->insert(MBBI, NewMI); // Insert the new inst 1501 return NewMI; 1502 } 1503 1504 /// commuteInstruction - We have a few instructions that must be hacked on to 1505 /// commute them. 1506 /// 1507 MachineInstr * 1508 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 1509 switch (MI->getOpcode()) { 1510 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 1511 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 1512 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 1513 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 1514 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 1515 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 1516 unsigned Opc; 1517 unsigned Size; 1518 switch (MI->getOpcode()) { 1519 default: llvm_unreachable("Unreachable!"); 1520 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 1521 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 1522 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 1523 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 1524 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 1525 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 1526 } 1527 unsigned Amt = MI->getOperand(3).getImm(); 1528 if (NewMI) { 1529 MachineFunction &MF = *MI->getParent()->getParent(); 1530 MI = MF.CloneMachineInstr(MI); 1531 NewMI = false; 1532 } 1533 MI->setDesc(get(Opc)); 1534 MI->getOperand(3).setImm(Size-Amt); 1535 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 1536 } 1537 case X86::CMOVB16rr: 1538 case X86::CMOVB32rr: 1539 case X86::CMOVB64rr: 1540 case X86::CMOVAE16rr: 1541 case X86::CMOVAE32rr: 1542 case X86::CMOVAE64rr: 1543 case X86::CMOVE16rr: 1544 case X86::CMOVE32rr: 1545 case X86::CMOVE64rr: 1546 case X86::CMOVNE16rr: 1547 case X86::CMOVNE32rr: 1548 case X86::CMOVNE64rr: 1549 case X86::CMOVBE16rr: 1550 case X86::CMOVBE32rr: 1551 case X86::CMOVBE64rr: 1552 case X86::CMOVA16rr: 1553 case X86::CMOVA32rr: 1554 case X86::CMOVA64rr: 1555 case X86::CMOVL16rr: 1556 case X86::CMOVL32rr: 1557 case X86::CMOVL64rr: 1558 case X86::CMOVGE16rr: 1559 case X86::CMOVGE32rr: 1560 case X86::CMOVGE64rr: 1561 case X86::CMOVLE16rr: 1562 case X86::CMOVLE32rr: 1563 case X86::CMOVLE64rr: 1564 case X86::CMOVG16rr: 1565 case X86::CMOVG32rr: 1566 case X86::CMOVG64rr: 1567 case X86::CMOVS16rr: 1568 case X86::CMOVS32rr: 1569 case X86::CMOVS64rr: 1570 case X86::CMOVNS16rr: 1571 case X86::CMOVNS32rr: 1572 case X86::CMOVNS64rr: 1573 case X86::CMOVP16rr: 1574 case X86::CMOVP32rr: 1575 case X86::CMOVP64rr: 1576 case X86::CMOVNP16rr: 1577 case X86::CMOVNP32rr: 1578 case X86::CMOVNP64rr: 1579 case X86::CMOVO16rr: 1580 case X86::CMOVO32rr: 1581 case X86::CMOVO64rr: 1582 case X86::CMOVNO16rr: 1583 case X86::CMOVNO32rr: 1584 case X86::CMOVNO64rr: { 1585 unsigned Opc = 0; 1586 switch (MI->getOpcode()) { 1587 default: break; 1588 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; 1589 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; 1590 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; 1591 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; 1592 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; 1593 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; 1594 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; 1595 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; 1596 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; 1597 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; 1598 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; 1599 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; 1600 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; 1601 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; 1602 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; 1603 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; 1604 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; 1605 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; 1606 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; 1607 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; 1608 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; 1609 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; 1610 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; 1611 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; 1612 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; 1613 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; 1614 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; 1615 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; 1616 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; 1617 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; 1618 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; 1619 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; 1620 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; 1621 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; 1622 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; 1623 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; 1624 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; 1625 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; 1626 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; 1627 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; 1628 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; 1629 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; 1630 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; 1631 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; 1632 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; 1633 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; 1634 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; 1635 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; 1636 } 1637 if (NewMI) { 1638 MachineFunction &MF = *MI->getParent()->getParent(); 1639 MI = MF.CloneMachineInstr(MI); 1640 NewMI = false; 1641 } 1642 MI->setDesc(get(Opc)); 1643 // Fallthrough intended. 1644 } 1645 default: 1646 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 1647 } 1648 } 1649 1650 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { 1651 switch (BrOpc) { 1652 default: return X86::COND_INVALID; 1653 case X86::JE_4: return X86::COND_E; 1654 case X86::JNE_4: return X86::COND_NE; 1655 case X86::JL_4: return X86::COND_L; 1656 case X86::JLE_4: return X86::COND_LE; 1657 case X86::JG_4: return X86::COND_G; 1658 case X86::JGE_4: return X86::COND_GE; 1659 case X86::JB_4: return X86::COND_B; 1660 case X86::JBE_4: return X86::COND_BE; 1661 case X86::JA_4: return X86::COND_A; 1662 case X86::JAE_4: return X86::COND_AE; 1663 case X86::JS_4: return X86::COND_S; 1664 case X86::JNS_4: return X86::COND_NS; 1665 case X86::JP_4: return X86::COND_P; 1666 case X86::JNP_4: return X86::COND_NP; 1667 case X86::JO_4: return X86::COND_O; 1668 case X86::JNO_4: return X86::COND_NO; 1669 } 1670 } 1671 1672 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { 1673 switch (CC) { 1674 default: llvm_unreachable("Illegal condition code!"); 1675 case X86::COND_E: return X86::JE_4; 1676 case X86::COND_NE: return X86::JNE_4; 1677 case X86::COND_L: return X86::JL_4; 1678 case X86::COND_LE: return X86::JLE_4; 1679 case X86::COND_G: return X86::JG_4; 1680 case X86::COND_GE: return X86::JGE_4; 1681 case X86::COND_B: return X86::JB_4; 1682 case X86::COND_BE: return X86::JBE_4; 1683 case X86::COND_A: return X86::JA_4; 1684 case X86::COND_AE: return X86::JAE_4; 1685 case X86::COND_S: return X86::JS_4; 1686 case X86::COND_NS: return X86::JNS_4; 1687 case X86::COND_P: return X86::JP_4; 1688 case X86::COND_NP: return X86::JNP_4; 1689 case X86::COND_O: return X86::JO_4; 1690 case X86::COND_NO: return X86::JNO_4; 1691 } 1692 } 1693 1694 /// GetOppositeBranchCondition - Return the inverse of the specified condition, 1695 /// e.g. turning COND_E to COND_NE. 1696 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 1697 switch (CC) { 1698 default: llvm_unreachable("Illegal condition code!"); 1699 case X86::COND_E: return X86::COND_NE; 1700 case X86::COND_NE: return X86::COND_E; 1701 case X86::COND_L: return X86::COND_GE; 1702 case X86::COND_LE: return X86::COND_G; 1703 case X86::COND_G: return X86::COND_LE; 1704 case X86::COND_GE: return X86::COND_L; 1705 case X86::COND_B: return X86::COND_AE; 1706 case X86::COND_BE: return X86::COND_A; 1707 case X86::COND_A: return X86::COND_BE; 1708 case X86::COND_AE: return X86::COND_B; 1709 case X86::COND_S: return X86::COND_NS; 1710 case X86::COND_NS: return X86::COND_S; 1711 case X86::COND_P: return X86::COND_NP; 1712 case X86::COND_NP: return X86::COND_P; 1713 case X86::COND_O: return X86::COND_NO; 1714 case X86::COND_NO: return X86::COND_O; 1715 } 1716 } 1717 1718 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1719 const MCInstrDesc &MCID = MI->getDesc(); 1720 if (!MCID.isTerminator()) return false; 1721 1722 // Conditional branch is a special case. 1723 if (MCID.isBranch() && !MCID.isBarrier()) 1724 return true; 1725 if (!MCID.isPredicable()) 1726 return true; 1727 return !isPredicated(MI); 1728 } 1729 1730 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1731 MachineBasicBlock *&TBB, 1732 MachineBasicBlock *&FBB, 1733 SmallVectorImpl<MachineOperand> &Cond, 1734 bool AllowModify) const { 1735 // Start from the bottom of the block and work up, examining the 1736 // terminator instructions. 1737 MachineBasicBlock::iterator I = MBB.end(); 1738 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 1739 while (I != MBB.begin()) { 1740 --I; 1741 if (I->isDebugValue()) 1742 continue; 1743 1744 // Working from the bottom, when we see a non-terminator instruction, we're 1745 // done. 1746 if (!isUnpredicatedTerminator(I)) 1747 break; 1748 1749 // A terminator that isn't a branch can't easily be handled by this 1750 // analysis. 1751 if (!I->getDesc().isBranch()) 1752 return true; 1753 1754 // Handle unconditional branches. 1755 if (I->getOpcode() == X86::JMP_4) { 1756 UnCondBrIter = I; 1757 1758 if (!AllowModify) { 1759 TBB = I->getOperand(0).getMBB(); 1760 continue; 1761 } 1762 1763 // If the block has any instructions after a JMP, delete them. 1764 while (llvm::next(I) != MBB.end()) 1765 llvm::next(I)->eraseFromParent(); 1766 1767 Cond.clear(); 1768 FBB = 0; 1769 1770 // Delete the JMP if it's equivalent to a fall-through. 1771 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1772 TBB = 0; 1773 I->eraseFromParent(); 1774 I = MBB.end(); 1775 UnCondBrIter = MBB.end(); 1776 continue; 1777 } 1778 1779 // TBB is used to indicate the unconditional destination. 1780 TBB = I->getOperand(0).getMBB(); 1781 continue; 1782 } 1783 1784 // Handle conditional branches. 1785 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); 1786 if (BranchCode == X86::COND_INVALID) 1787 return true; // Can't handle indirect branch. 1788 1789 // Working from the bottom, handle the first conditional branch. 1790 if (Cond.empty()) { 1791 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 1792 if (AllowModify && UnCondBrIter != MBB.end() && 1793 MBB.isLayoutSuccessor(TargetBB)) { 1794 // If we can modify the code and it ends in something like: 1795 // 1796 // jCC L1 1797 // jmp L2 1798 // L1: 1799 // ... 1800 // L2: 1801 // 1802 // Then we can change this to: 1803 // 1804 // jnCC L2 1805 // L1: 1806 // ... 1807 // L2: 1808 // 1809 // Which is a bit more efficient. 1810 // We conditionally jump to the fall-through block. 1811 BranchCode = GetOppositeBranchCondition(BranchCode); 1812 unsigned JNCC = GetCondBranchFromCond(BranchCode); 1813 MachineBasicBlock::iterator OldInst = I; 1814 1815 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) 1816 .addMBB(UnCondBrIter->getOperand(0).getMBB()); 1817 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) 1818 .addMBB(TargetBB); 1819 1820 OldInst->eraseFromParent(); 1821 UnCondBrIter->eraseFromParent(); 1822 1823 // Restart the analysis. 1824 UnCondBrIter = MBB.end(); 1825 I = MBB.end(); 1826 continue; 1827 } 1828 1829 FBB = TBB; 1830 TBB = I->getOperand(0).getMBB(); 1831 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 1832 continue; 1833 } 1834 1835 // Handle subsequent conditional branches. Only handle the case where all 1836 // conditional branches branch to the same destination and their condition 1837 // opcodes fit one of the special multi-branch idioms. 1838 assert(Cond.size() == 1); 1839 assert(TBB); 1840 1841 // Only handle the case where all conditional branches branch to the same 1842 // destination. 1843 if (TBB != I->getOperand(0).getMBB()) 1844 return true; 1845 1846 // If the conditions are the same, we can leave them alone. 1847 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 1848 if (OldBranchCode == BranchCode) 1849 continue; 1850 1851 // If they differ, see if they fit one of the known patterns. Theoretically, 1852 // we could handle more patterns here, but we shouldn't expect to see them 1853 // if instruction selection has done a reasonable job. 1854 if ((OldBranchCode == X86::COND_NP && 1855 BranchCode == X86::COND_E) || 1856 (OldBranchCode == X86::COND_E && 1857 BranchCode == X86::COND_NP)) 1858 BranchCode = X86::COND_NP_OR_E; 1859 else if ((OldBranchCode == X86::COND_P && 1860 BranchCode == X86::COND_NE) || 1861 (OldBranchCode == X86::COND_NE && 1862 BranchCode == X86::COND_P)) 1863 BranchCode = X86::COND_NE_OR_P; 1864 else 1865 return true; 1866 1867 // Update the MachineOperand. 1868 Cond[0].setImm(BranchCode); 1869 } 1870 1871 return false; 1872 } 1873 1874 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 1875 MachineBasicBlock::iterator I = MBB.end(); 1876 unsigned Count = 0; 1877 1878 while (I != MBB.begin()) { 1879 --I; 1880 if (I->isDebugValue()) 1881 continue; 1882 if (I->getOpcode() != X86::JMP_4 && 1883 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) 1884 break; 1885 // Remove the branch. 1886 I->eraseFromParent(); 1887 I = MBB.end(); 1888 ++Count; 1889 } 1890 1891 return Count; 1892 } 1893 1894 unsigned 1895 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 1896 MachineBasicBlock *FBB, 1897 const SmallVectorImpl<MachineOperand> &Cond, 1898 DebugLoc DL) const { 1899 // Shouldn't be a fall through. 1900 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 1901 assert((Cond.size() == 1 || Cond.size() == 0) && 1902 "X86 branch conditions have one component!"); 1903 1904 if (Cond.empty()) { 1905 // Unconditional branch? 1906 assert(!FBB && "Unconditional branch with multiple successors!"); 1907 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); 1908 return 1; 1909 } 1910 1911 // Conditional branch. 1912 unsigned Count = 0; 1913 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 1914 switch (CC) { 1915 case X86::COND_NP_OR_E: 1916 // Synthesize NP_OR_E with two branches. 1917 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); 1918 ++Count; 1919 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); 1920 ++Count; 1921 break; 1922 case X86::COND_NE_OR_P: 1923 // Synthesize NE_OR_P with two branches. 1924 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); 1925 ++Count; 1926 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); 1927 ++Count; 1928 break; 1929 default: { 1930 unsigned Opc = GetCondBranchFromCond(CC); 1931 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); 1932 ++Count; 1933 } 1934 } 1935 if (FBB) { 1936 // Two-way Conditional branch. Insert the second branch. 1937 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); 1938 ++Count; 1939 } 1940 return Count; 1941 } 1942 1943 /// isHReg - Test if the given register is a physical h register. 1944 static bool isHReg(unsigned Reg) { 1945 return X86::GR8_ABCD_HRegClass.contains(Reg); 1946 } 1947 1948 // Try and copy between VR128/VR64 and GR64 registers. 1949 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) { 1950 // SrcReg(VR128) -> DestReg(GR64) 1951 // SrcReg(VR64) -> DestReg(GR64) 1952 // SrcReg(GR64) -> DestReg(VR128) 1953 // SrcReg(GR64) -> DestReg(VR64) 1954 1955 if (X86::GR64RegClass.contains(DestReg)) { 1956 if (X86::VR128RegClass.contains(SrcReg)) { 1957 // Copy from a VR128 register to a GR64 register. 1958 return X86::MOVPQIto64rr; 1959 } else if (X86::VR64RegClass.contains(SrcReg)) { 1960 // Copy from a VR64 register to a GR64 register. 1961 return X86::MOVSDto64rr; 1962 } 1963 } else if (X86::GR64RegClass.contains(SrcReg)) { 1964 // Copy from a GR64 register to a VR128 register. 1965 if (X86::VR128RegClass.contains(DestReg)) 1966 return X86::MOV64toPQIrr; 1967 // Copy from a GR64 register to a VR64 register. 1968 else if (X86::VR64RegClass.contains(DestReg)) 1969 return X86::MOV64toSDrr; 1970 } 1971 1972 return 0; 1973 } 1974 1975 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1976 MachineBasicBlock::iterator MI, DebugLoc DL, 1977 unsigned DestReg, unsigned SrcReg, 1978 bool KillSrc) const { 1979 // First deal with the normal symmetric copies. 1980 unsigned Opc = 0; 1981 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 1982 Opc = X86::MOV64rr; 1983 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 1984 Opc = X86::MOV32rr; 1985 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 1986 Opc = X86::MOV16rr; 1987 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 1988 // Copying to or from a physical H register on x86-64 requires a NOREX 1989 // move. Otherwise use a normal move. 1990 if ((isHReg(DestReg) || isHReg(SrcReg)) && 1991 TM.getSubtarget<X86Subtarget>().is64Bit()) 1992 Opc = X86::MOV8rr_NOREX; 1993 else 1994 Opc = X86::MOV8rr; 1995 } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 1996 Opc = X86::MOVAPSrr; 1997 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 1998 Opc = X86::VMOVAPSYrr; 1999 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 2000 Opc = X86::MMX_MOVQ64rr; 2001 else 2002 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg); 2003 2004 if (Opc) { 2005 BuildMI(MBB, MI, DL, get(Opc), DestReg) 2006 .addReg(SrcReg, getKillRegState(KillSrc)); 2007 return; 2008 } 2009 2010 // Moving EFLAGS to / from another register requires a push and a pop. 2011 if (SrcReg == X86::EFLAGS) { 2012 if (X86::GR64RegClass.contains(DestReg)) { 2013 BuildMI(MBB, MI, DL, get(X86::PUSHF64)); 2014 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); 2015 return; 2016 } else if (X86::GR32RegClass.contains(DestReg)) { 2017 BuildMI(MBB, MI, DL, get(X86::PUSHF32)); 2018 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); 2019 return; 2020 } 2021 } 2022 if (DestReg == X86::EFLAGS) { 2023 if (X86::GR64RegClass.contains(SrcReg)) { 2024 BuildMI(MBB, MI, DL, get(X86::PUSH64r)) 2025 .addReg(SrcReg, getKillRegState(KillSrc)); 2026 BuildMI(MBB, MI, DL, get(X86::POPF64)); 2027 return; 2028 } else if (X86::GR32RegClass.contains(SrcReg)) { 2029 BuildMI(MBB, MI, DL, get(X86::PUSH32r)) 2030 .addReg(SrcReg, getKillRegState(KillSrc)); 2031 BuildMI(MBB, MI, DL, get(X86::POPF32)); 2032 return; 2033 } 2034 } 2035 2036 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) 2037 << " to " << RI.getName(DestReg) << '\n'); 2038 llvm_unreachable("Cannot emit physreg copy instruction"); 2039 } 2040 2041 static unsigned getLoadStoreRegOpcode(unsigned Reg, 2042 const TargetRegisterClass *RC, 2043 bool isStackAligned, 2044 const TargetMachine &TM, 2045 bool load) { 2046 switch (RC->getSize()) { 2047 default: 2048 llvm_unreachable("Unknown spill size"); 2049 case 1: 2050 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 2051 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 2052 // Copying to or from a physical H register on x86-64 requires a NOREX 2053 // move. Otherwise use a normal move. 2054 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 2055 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 2056 return load ? X86::MOV8rm : X86::MOV8mr; 2057 case 2: 2058 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 2059 return load ? X86::MOV16rm : X86::MOV16mr; 2060 case 4: 2061 if (X86::GR32RegClass.hasSubClassEq(RC)) 2062 return load ? X86::MOV32rm : X86::MOV32mr; 2063 if (X86::FR32RegClass.hasSubClassEq(RC)) 2064 return load ? X86::MOVSSrm : X86::MOVSSmr; 2065 if (X86::RFP32RegClass.hasSubClassEq(RC)) 2066 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 2067 llvm_unreachable("Unknown 4-byte regclass"); 2068 case 8: 2069 if (X86::GR64RegClass.hasSubClassEq(RC)) 2070 return load ? X86::MOV64rm : X86::MOV64mr; 2071 if (X86::FR64RegClass.hasSubClassEq(RC)) 2072 return load ? X86::MOVSDrm : X86::MOVSDmr; 2073 if (X86::VR64RegClass.hasSubClassEq(RC)) 2074 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 2075 if (X86::RFP64RegClass.hasSubClassEq(RC)) 2076 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 2077 llvm_unreachable("Unknown 8-byte regclass"); 2078 case 10: 2079 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 2080 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 2081 case 16: 2082 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); 2083 // If stack is realigned we can use aligned stores. 2084 if (isStackAligned) 2085 return load ? X86::MOVAPSrm : X86::MOVAPSmr; 2086 else 2087 return load ? X86::MOVUPSrm : X86::MOVUPSmr; 2088 case 32: 2089 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 2090 // If stack is realigned we can use aligned stores. 2091 if (isStackAligned) 2092 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; 2093 else 2094 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; 2095 } 2096 } 2097 2098 static unsigned getStoreRegOpcode(unsigned SrcReg, 2099 const TargetRegisterClass *RC, 2100 bool isStackAligned, 2101 TargetMachine &TM) { 2102 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); 2103 } 2104 2105 2106 static unsigned getLoadRegOpcode(unsigned DestReg, 2107 const TargetRegisterClass *RC, 2108 bool isStackAligned, 2109 const TargetMachine &TM) { 2110 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); 2111 } 2112 2113 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 2114 MachineBasicBlock::iterator MI, 2115 unsigned SrcReg, bool isKill, int FrameIdx, 2116 const TargetRegisterClass *RC, 2117 const TargetRegisterInfo *TRI) const { 2118 const MachineFunction &MF = *MBB.getParent(); 2119 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && 2120 "Stack slot too small for store"); 2121 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) || 2122 RI.canRealignStack(MF); 2123 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2124 DebugLoc DL = MBB.findDebugLoc(MI); 2125 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) 2126 .addReg(SrcReg, getKillRegState(isKill)); 2127 } 2128 2129 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 2130 bool isKill, 2131 SmallVectorImpl<MachineOperand> &Addr, 2132 const TargetRegisterClass *RC, 2133 MachineInstr::mmo_iterator MMOBegin, 2134 MachineInstr::mmo_iterator MMOEnd, 2135 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2136 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; 2137 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2138 DebugLoc DL; 2139 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 2140 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2141 MIB.addOperand(Addr[i]); 2142 MIB.addReg(SrcReg, getKillRegState(isKill)); 2143 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2144 NewMIs.push_back(MIB); 2145 } 2146 2147 2148 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2149 MachineBasicBlock::iterator MI, 2150 unsigned DestReg, int FrameIdx, 2151 const TargetRegisterClass *RC, 2152 const TargetRegisterInfo *TRI) const { 2153 const MachineFunction &MF = *MBB.getParent(); 2154 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) || 2155 RI.canRealignStack(MF); 2156 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2157 DebugLoc DL = MBB.findDebugLoc(MI); 2158 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); 2159 } 2160 2161 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 2162 SmallVectorImpl<MachineOperand> &Addr, 2163 const TargetRegisterClass *RC, 2164 MachineInstr::mmo_iterator MMOBegin, 2165 MachineInstr::mmo_iterator MMOEnd, 2166 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2167 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; 2168 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2169 DebugLoc DL; 2170 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 2171 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2172 MIB.addOperand(Addr[i]); 2173 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2174 NewMIs.push_back(MIB); 2175 } 2176 2177 MachineInstr* 2178 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, 2179 int FrameIx, uint64_t Offset, 2180 const MDNode *MDPtr, 2181 DebugLoc DL) const { 2182 X86AddressMode AM; 2183 AM.BaseType = X86AddressMode::FrameIndexBase; 2184 AM.Base.FrameIndex = FrameIx; 2185 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); 2186 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); 2187 return &*MIB; 2188 } 2189 2190 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 2191 const SmallVectorImpl<MachineOperand> &MOs, 2192 MachineInstr *MI, 2193 const TargetInstrInfo &TII) { 2194 // Create the base instruction with the memory operand as the first part. 2195 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2196 MI->getDebugLoc(), true); 2197 MachineInstrBuilder MIB(NewMI); 2198 unsigned NumAddrOps = MOs.size(); 2199 for (unsigned i = 0; i != NumAddrOps; ++i) 2200 MIB.addOperand(MOs[i]); 2201 if (NumAddrOps < 4) // FrameIndex only 2202 addOffset(MIB, 0); 2203 2204 // Loop over the rest of the ri operands, converting them over. 2205 unsigned NumOps = MI->getDesc().getNumOperands()-2; 2206 for (unsigned i = 0; i != NumOps; ++i) { 2207 MachineOperand &MO = MI->getOperand(i+2); 2208 MIB.addOperand(MO); 2209 } 2210 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { 2211 MachineOperand &MO = MI->getOperand(i); 2212 MIB.addOperand(MO); 2213 } 2214 return MIB; 2215 } 2216 2217 static MachineInstr *FuseInst(MachineFunction &MF, 2218 unsigned Opcode, unsigned OpNo, 2219 const SmallVectorImpl<MachineOperand> &MOs, 2220 MachineInstr *MI, const TargetInstrInfo &TII) { 2221 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2222 MI->getDebugLoc(), true); 2223 MachineInstrBuilder MIB(NewMI); 2224 2225 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2226 MachineOperand &MO = MI->getOperand(i); 2227 if (i == OpNo) { 2228 assert(MO.isReg() && "Expected to fold into reg operand!"); 2229 unsigned NumAddrOps = MOs.size(); 2230 for (unsigned i = 0; i != NumAddrOps; ++i) 2231 MIB.addOperand(MOs[i]); 2232 if (NumAddrOps < 4) // FrameIndex only 2233 addOffset(MIB, 0); 2234 } else { 2235 MIB.addOperand(MO); 2236 } 2237 } 2238 return MIB; 2239 } 2240 2241 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 2242 const SmallVectorImpl<MachineOperand> &MOs, 2243 MachineInstr *MI) { 2244 MachineFunction &MF = *MI->getParent()->getParent(); 2245 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); 2246 2247 unsigned NumAddrOps = MOs.size(); 2248 for (unsigned i = 0; i != NumAddrOps; ++i) 2249 MIB.addOperand(MOs[i]); 2250 if (NumAddrOps < 4) // FrameIndex only 2251 addOffset(MIB, 0); 2252 return MIB.addImm(0); 2253 } 2254 2255 MachineInstr* 2256 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2257 MachineInstr *MI, unsigned i, 2258 const SmallVectorImpl<MachineOperand> &MOs, 2259 unsigned Size, unsigned Align) const { 2260 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 2261 bool isTwoAddrFold = false; 2262 unsigned NumOps = MI->getDesc().getNumOperands(); 2263 bool isTwoAddr = NumOps > 1 && 2264 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 2265 2266 // FIXME: AsmPrinter doesn't know how to handle 2267 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 2268 if (MI->getOpcode() == X86::ADD32ri && 2269 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 2270 return NULL; 2271 2272 MachineInstr *NewMI = NULL; 2273 // Folding a memory location into the two-address part of a two-address 2274 // instruction is different than folding it other places. It requires 2275 // replacing the *two* registers with the memory location. 2276 if (isTwoAddr && NumOps >= 2 && i < 2 && 2277 MI->getOperand(0).isReg() && 2278 MI->getOperand(1).isReg() && 2279 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 2280 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 2281 isTwoAddrFold = true; 2282 } else if (i == 0) { // If operand 0 2283 if (MI->getOpcode() == X86::MOV64r0) 2284 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); 2285 else if (MI->getOpcode() == X86::MOV32r0) 2286 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); 2287 else if (MI->getOpcode() == X86::MOV16r0) 2288 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); 2289 else if (MI->getOpcode() == X86::MOV8r0) 2290 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); 2291 if (NewMI) 2292 return NewMI; 2293 2294 OpcodeTablePtr = &RegOp2MemOpTable0; 2295 } else if (i == 1) { 2296 OpcodeTablePtr = &RegOp2MemOpTable1; 2297 } else if (i == 2) { 2298 OpcodeTablePtr = &RegOp2MemOpTable2; 2299 } 2300 2301 // If table selected... 2302 if (OpcodeTablePtr) { 2303 // Find the Opcode to fuse 2304 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2305 OpcodeTablePtr->find(MI->getOpcode()); 2306 if (I != OpcodeTablePtr->end()) { 2307 unsigned Opcode = I->second.first; 2308 unsigned MinAlign = I->second.second; 2309 if (Align < MinAlign) 2310 return NULL; 2311 bool NarrowToMOV32rm = false; 2312 if (Size) { 2313 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize(); 2314 if (Size < RCSize) { 2315 // Check if it's safe to fold the load. If the size of the object is 2316 // narrower than the load width, then it's not. 2317 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 2318 return NULL; 2319 // If this is a 64-bit load, but the spill slot is 32, then we can do 2320 // a 32-bit load which is implicitly zero-extended. This likely is due 2321 // to liveintervalanalysis remat'ing a load from stack slot. 2322 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) 2323 return NULL; 2324 Opcode = X86::MOV32rm; 2325 NarrowToMOV32rm = true; 2326 } 2327 } 2328 2329 if (isTwoAddrFold) 2330 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); 2331 else 2332 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); 2333 2334 if (NarrowToMOV32rm) { 2335 // If this is the special case where we use a MOV32rm to load a 32-bit 2336 // value and zero-extend the top bits. Change the destination register 2337 // to a 32-bit one. 2338 unsigned DstReg = NewMI->getOperand(0).getReg(); 2339 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 2340 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, 2341 X86::sub_32bit)); 2342 else 2343 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 2344 } 2345 return NewMI; 2346 } 2347 } 2348 2349 // No fusion 2350 if (PrintFailedFusing && !MI->isCopy()) 2351 dbgs() << "We failed to fuse operand " << i << " in " << *MI; 2352 return NULL; 2353 } 2354 2355 2356 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2357 MachineInstr *MI, 2358 const SmallVectorImpl<unsigned> &Ops, 2359 int FrameIndex) const { 2360 // Check switch flag 2361 if (NoFusing) return NULL; 2362 2363 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) 2364 switch (MI->getOpcode()) { 2365 case X86::CVTSD2SSrr: 2366 case X86::Int_CVTSD2SSrr: 2367 case X86::CVTSS2SDrr: 2368 case X86::Int_CVTSS2SDrr: 2369 case X86::RCPSSr: 2370 case X86::RCPSSr_Int: 2371 case X86::ROUNDSDr: 2372 case X86::ROUNDSSr: 2373 case X86::RSQRTSSr: 2374 case X86::RSQRTSSr_Int: 2375 case X86::SQRTSSr: 2376 case X86::SQRTSSr_Int: 2377 return 0; 2378 } 2379 2380 const MachineFrameInfo *MFI = MF.getFrameInfo(); 2381 unsigned Size = MFI->getObjectSize(FrameIndex); 2382 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); 2383 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2384 unsigned NewOpc = 0; 2385 unsigned RCSize = 0; 2386 switch (MI->getOpcode()) { 2387 default: return NULL; 2388 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 2389 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 2390 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 2391 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 2392 } 2393 // Check if it's safe to fold the load. If the size of the object is 2394 // narrower than the load width, then it's not. 2395 if (Size < RCSize) 2396 return NULL; 2397 // Change to CMPXXri r, 0 first. 2398 MI->setDesc(get(NewOpc)); 2399 MI->getOperand(1).ChangeToImmediate(0); 2400 } else if (Ops.size() != 1) 2401 return NULL; 2402 2403 SmallVector<MachineOperand,4> MOs; 2404 MOs.push_back(MachineOperand::CreateFI(FrameIndex)); 2405 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); 2406 } 2407 2408 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2409 MachineInstr *MI, 2410 const SmallVectorImpl<unsigned> &Ops, 2411 MachineInstr *LoadMI) const { 2412 // Check switch flag 2413 if (NoFusing) return NULL; 2414 2415 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) 2416 switch (MI->getOpcode()) { 2417 case X86::CVTSD2SSrr: 2418 case X86::Int_CVTSD2SSrr: 2419 case X86::CVTSS2SDrr: 2420 case X86::Int_CVTSS2SDrr: 2421 case X86::RCPSSr: 2422 case X86::RCPSSr_Int: 2423 case X86::ROUNDSDr: 2424 case X86::ROUNDSSr: 2425 case X86::RSQRTSSr: 2426 case X86::RSQRTSSr_Int: 2427 case X86::SQRTSSr: 2428 case X86::SQRTSSr_Int: 2429 return 0; 2430 } 2431 2432 // Determine the alignment of the load. 2433 unsigned Alignment = 0; 2434 if (LoadMI->hasOneMemOperand()) 2435 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); 2436 else 2437 switch (LoadMI->getOpcode()) { 2438 case X86::AVX_SET0PSY: 2439 case X86::AVX_SET0PDY: 2440 Alignment = 32; 2441 break; 2442 case X86::V_SET0PS: 2443 case X86::V_SET0PD: 2444 case X86::V_SET0PI: 2445 case X86::V_SETALLONES: 2446 case X86::AVX_SET0PS: 2447 case X86::AVX_SET0PD: 2448 case X86::AVX_SET0PI: 2449 Alignment = 16; 2450 break; 2451 case X86::FsFLD0SD: 2452 case X86::VFsFLD0SD: 2453 Alignment = 8; 2454 break; 2455 case X86::FsFLD0SS: 2456 case X86::VFsFLD0SS: 2457 Alignment = 4; 2458 break; 2459 default: 2460 return 0; 2461 } 2462 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2463 unsigned NewOpc = 0; 2464 switch (MI->getOpcode()) { 2465 default: return NULL; 2466 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 2467 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 2468 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 2469 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 2470 } 2471 // Change to CMPXXri r, 0 first. 2472 MI->setDesc(get(NewOpc)); 2473 MI->getOperand(1).ChangeToImmediate(0); 2474 } else if (Ops.size() != 1) 2475 return NULL; 2476 2477 // Make sure the subregisters match. 2478 // Otherwise we risk changing the size of the load. 2479 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) 2480 return NULL; 2481 2482 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 2483 switch (LoadMI->getOpcode()) { 2484 case X86::V_SET0PS: 2485 case X86::V_SET0PD: 2486 case X86::V_SET0PI: 2487 case X86::V_SETALLONES: 2488 case X86::AVX_SET0PS: 2489 case X86::AVX_SET0PD: 2490 case X86::AVX_SET0PI: 2491 case X86::AVX_SET0PSY: 2492 case X86::AVX_SET0PDY: 2493 case X86::FsFLD0SD: 2494 case X86::FsFLD0SS: { 2495 // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure. 2496 // Create a constant-pool entry and operands to load from it. 2497 2498 // Medium and large mode can't fold loads this way. 2499 if (TM.getCodeModel() != CodeModel::Small && 2500 TM.getCodeModel() != CodeModel::Kernel) 2501 return NULL; 2502 2503 // x86-32 PIC requires a PIC base register for constant pools. 2504 unsigned PICBase = 0; 2505 if (TM.getRelocationModel() == Reloc::PIC_) { 2506 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 2507 PICBase = X86::RIP; 2508 else 2509 // FIXME: PICBase = getGlobalBaseReg(&MF); 2510 // This doesn't work for several reasons. 2511 // 1. GlobalBaseReg may have been spilled. 2512 // 2. It may not be live at MI. 2513 return NULL; 2514 } 2515 2516 // Create a constant-pool entry. 2517 MachineConstantPool &MCP = *MF.getConstantPool(); 2518 Type *Ty; 2519 unsigned Opc = LoadMI->getOpcode(); 2520 if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS) 2521 Ty = Type::getFloatTy(MF.getFunction()->getContext()); 2522 else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD) 2523 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); 2524 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) 2525 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); 2526 else 2527 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); 2528 const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ? 2529 Constant::getAllOnesValue(Ty) : 2530 Constant::getNullValue(Ty); 2531 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 2532 2533 // Create operands to load from the constant pool entry. 2534 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 2535 MOs.push_back(MachineOperand::CreateImm(1)); 2536 MOs.push_back(MachineOperand::CreateReg(0, false)); 2537 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 2538 MOs.push_back(MachineOperand::CreateReg(0, false)); 2539 break; 2540 } 2541 default: { 2542 // Folding a normal load. Just copy the load's address operands. 2543 unsigned NumOps = LoadMI->getDesc().getNumOperands(); 2544 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 2545 MOs.push_back(LoadMI->getOperand(i)); 2546 break; 2547 } 2548 } 2549 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); 2550 } 2551 2552 2553 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 2554 const SmallVectorImpl<unsigned> &Ops) const { 2555 // Check switch flag 2556 if (NoFusing) return 0; 2557 2558 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2559 switch (MI->getOpcode()) { 2560 default: return false; 2561 case X86::TEST8rr: 2562 case X86::TEST16rr: 2563 case X86::TEST32rr: 2564 case X86::TEST64rr: 2565 return true; 2566 case X86::ADD32ri: 2567 // FIXME: AsmPrinter doesn't know how to handle 2568 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 2569 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 2570 return false; 2571 break; 2572 } 2573 } 2574 2575 if (Ops.size() != 1) 2576 return false; 2577 2578 unsigned OpNum = Ops[0]; 2579 unsigned Opc = MI->getOpcode(); 2580 unsigned NumOps = MI->getDesc().getNumOperands(); 2581 bool isTwoAddr = NumOps > 1 && 2582 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 2583 2584 // Folding a memory location into the two-address part of a two-address 2585 // instruction is different than folding it other places. It requires 2586 // replacing the *two* registers with the memory location. 2587 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 2588 if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 2589 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 2590 } else if (OpNum == 0) { // If operand 0 2591 switch (Opc) { 2592 case X86::MOV8r0: 2593 case X86::MOV16r0: 2594 case X86::MOV32r0: 2595 case X86::MOV64r0: return true; 2596 default: break; 2597 } 2598 OpcodeTablePtr = &RegOp2MemOpTable0; 2599 } else if (OpNum == 1) { 2600 OpcodeTablePtr = &RegOp2MemOpTable1; 2601 } else if (OpNum == 2) { 2602 OpcodeTablePtr = &RegOp2MemOpTable2; 2603 } 2604 2605 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) 2606 return true; 2607 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); 2608 } 2609 2610 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 2611 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 2612 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2613 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2614 MemOp2RegOpTable.find(MI->getOpcode()); 2615 if (I == MemOp2RegOpTable.end()) 2616 return false; 2617 unsigned Opc = I->second.first; 2618 unsigned Index = I->second.second & 0xf; 2619 bool FoldedLoad = I->second.second & (1 << 4); 2620 bool FoldedStore = I->second.second & (1 << 5); 2621 if (UnfoldLoad && !FoldedLoad) 2622 return false; 2623 UnfoldLoad &= FoldedLoad; 2624 if (UnfoldStore && !FoldedStore) 2625 return false; 2626 UnfoldStore &= FoldedStore; 2627 2628 const MCInstrDesc &MCID = get(Opc); 2629 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 2630 if (!MI->hasOneMemOperand() && 2631 RC == &X86::VR128RegClass && 2632 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 2633 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 2634 // conservatively assume the address is unaligned. That's bad for 2635 // performance. 2636 return false; 2637 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 2638 SmallVector<MachineOperand,2> BeforeOps; 2639 SmallVector<MachineOperand,2> AfterOps; 2640 SmallVector<MachineOperand,4> ImpOps; 2641 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2642 MachineOperand &Op = MI->getOperand(i); 2643 if (i >= Index && i < Index + X86::AddrNumOperands) 2644 AddrOps.push_back(Op); 2645 else if (Op.isReg() && Op.isImplicit()) 2646 ImpOps.push_back(Op); 2647 else if (i < Index) 2648 BeforeOps.push_back(Op); 2649 else if (i > Index) 2650 AfterOps.push_back(Op); 2651 } 2652 2653 // Emit the load instruction. 2654 if (UnfoldLoad) { 2655 std::pair<MachineInstr::mmo_iterator, 2656 MachineInstr::mmo_iterator> MMOs = 2657 MF.extractLoadMemRefs(MI->memoperands_begin(), 2658 MI->memoperands_end()); 2659 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); 2660 if (UnfoldStore) { 2661 // Address operands cannot be marked isKill. 2662 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 2663 MachineOperand &MO = NewMIs[0]->getOperand(i); 2664 if (MO.isReg()) 2665 MO.setIsKill(false); 2666 } 2667 } 2668 } 2669 2670 // Emit the data processing instruction. 2671 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); 2672 MachineInstrBuilder MIB(DataMI); 2673 2674 if (FoldedStore) 2675 MIB.addReg(Reg, RegState::Define); 2676 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 2677 MIB.addOperand(BeforeOps[i]); 2678 if (FoldedLoad) 2679 MIB.addReg(Reg); 2680 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 2681 MIB.addOperand(AfterOps[i]); 2682 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 2683 MachineOperand &MO = ImpOps[i]; 2684 MIB.addReg(MO.getReg(), 2685 getDefRegState(MO.isDef()) | 2686 RegState::Implicit | 2687 getKillRegState(MO.isKill()) | 2688 getDeadRegState(MO.isDead()) | 2689 getUndefRegState(MO.isUndef())); 2690 } 2691 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 2692 unsigned NewOpc = 0; 2693 switch (DataMI->getOpcode()) { 2694 default: break; 2695 case X86::CMP64ri32: 2696 case X86::CMP64ri8: 2697 case X86::CMP32ri: 2698 case X86::CMP32ri8: 2699 case X86::CMP16ri: 2700 case X86::CMP16ri8: 2701 case X86::CMP8ri: { 2702 MachineOperand &MO0 = DataMI->getOperand(0); 2703 MachineOperand &MO1 = DataMI->getOperand(1); 2704 if (MO1.getImm() == 0) { 2705 switch (DataMI->getOpcode()) { 2706 default: break; 2707 case X86::CMP64ri8: 2708 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 2709 case X86::CMP32ri8: 2710 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 2711 case X86::CMP16ri8: 2712 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 2713 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 2714 } 2715 DataMI->setDesc(get(NewOpc)); 2716 MO1.ChangeToRegister(MO0.getReg(), false); 2717 } 2718 } 2719 } 2720 NewMIs.push_back(DataMI); 2721 2722 // Emit the store instruction. 2723 if (UnfoldStore) { 2724 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI); 2725 std::pair<MachineInstr::mmo_iterator, 2726 MachineInstr::mmo_iterator> MMOs = 2727 MF.extractStoreMemRefs(MI->memoperands_begin(), 2728 MI->memoperands_end()); 2729 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); 2730 } 2731 2732 return true; 2733 } 2734 2735 bool 2736 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 2737 SmallVectorImpl<SDNode*> &NewNodes) const { 2738 if (!N->isMachineOpcode()) 2739 return false; 2740 2741 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2742 MemOp2RegOpTable.find(N->getMachineOpcode()); 2743 if (I == MemOp2RegOpTable.end()) 2744 return false; 2745 unsigned Opc = I->second.first; 2746 unsigned Index = I->second.second & 0xf; 2747 bool FoldedLoad = I->second.second & (1 << 4); 2748 bool FoldedStore = I->second.second & (1 << 5); 2749 const MCInstrDesc &MCID = get(Opc); 2750 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 2751 unsigned NumDefs = MCID.NumDefs; 2752 std::vector<SDValue> AddrOps; 2753 std::vector<SDValue> BeforeOps; 2754 std::vector<SDValue> AfterOps; 2755 DebugLoc dl = N->getDebugLoc(); 2756 unsigned NumOps = N->getNumOperands(); 2757 for (unsigned i = 0; i != NumOps-1; ++i) { 2758 SDValue Op = N->getOperand(i); 2759 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 2760 AddrOps.push_back(Op); 2761 else if (i < Index-NumDefs) 2762 BeforeOps.push_back(Op); 2763 else if (i > Index-NumDefs) 2764 AfterOps.push_back(Op); 2765 } 2766 SDValue Chain = N->getOperand(NumOps-1); 2767 AddrOps.push_back(Chain); 2768 2769 // Emit the load instruction. 2770 SDNode *Load = 0; 2771 MachineFunction &MF = DAG.getMachineFunction(); 2772 if (FoldedLoad) { 2773 EVT VT = *RC->vt_begin(); 2774 std::pair<MachineInstr::mmo_iterator, 2775 MachineInstr::mmo_iterator> MMOs = 2776 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 2777 cast<MachineSDNode>(N)->memoperands_end()); 2778 if (!(*MMOs.first) && 2779 RC == &X86::VR128RegClass && 2780 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 2781 // Do not introduce a slow unaligned load. 2782 return false; 2783 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; 2784 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, 2785 VT, MVT::Other, &AddrOps[0], AddrOps.size()); 2786 NewNodes.push_back(Load); 2787 2788 // Preserve memory reference information. 2789 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 2790 } 2791 2792 // Emit the data processing instruction. 2793 std::vector<EVT> VTs; 2794 const TargetRegisterClass *DstRC = 0; 2795 if (MCID.getNumDefs() > 0) { 2796 DstRC = getRegClass(MCID, 0, &RI); 2797 VTs.push_back(*DstRC->vt_begin()); 2798 } 2799 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 2800 EVT VT = N->getValueType(i); 2801 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 2802 VTs.push_back(VT); 2803 } 2804 if (Load) 2805 BeforeOps.push_back(SDValue(Load, 0)); 2806 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 2807 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], 2808 BeforeOps.size()); 2809 NewNodes.push_back(NewNode); 2810 2811 // Emit the store instruction. 2812 if (FoldedStore) { 2813 AddrOps.pop_back(); 2814 AddrOps.push_back(SDValue(NewNode, 0)); 2815 AddrOps.push_back(Chain); 2816 std::pair<MachineInstr::mmo_iterator, 2817 MachineInstr::mmo_iterator> MMOs = 2818 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 2819 cast<MachineSDNode>(N)->memoperands_end()); 2820 if (!(*MMOs.first) && 2821 RC == &X86::VR128RegClass && 2822 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 2823 // Do not introduce a slow unaligned store. 2824 return false; 2825 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; 2826 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, 2827 isAligned, TM), 2828 dl, MVT::Other, 2829 &AddrOps[0], AddrOps.size()); 2830 NewNodes.push_back(Store); 2831 2832 // Preserve memory reference information. 2833 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 2834 } 2835 2836 return true; 2837 } 2838 2839 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 2840 bool UnfoldLoad, bool UnfoldStore, 2841 unsigned *LoadRegIndex) const { 2842 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2843 MemOp2RegOpTable.find(Opc); 2844 if (I == MemOp2RegOpTable.end()) 2845 return 0; 2846 bool FoldedLoad = I->second.second & (1 << 4); 2847 bool FoldedStore = I->second.second & (1 << 5); 2848 if (UnfoldLoad && !FoldedLoad) 2849 return 0; 2850 if (UnfoldStore && !FoldedStore) 2851 return 0; 2852 if (LoadRegIndex) 2853 *LoadRegIndex = I->second.second & 0xf; 2854 return I->second.first; 2855 } 2856 2857 bool 2858 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 2859 int64_t &Offset1, int64_t &Offset2) const { 2860 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 2861 return false; 2862 unsigned Opc1 = Load1->getMachineOpcode(); 2863 unsigned Opc2 = Load2->getMachineOpcode(); 2864 switch (Opc1) { 2865 default: return false; 2866 case X86::MOV8rm: 2867 case X86::MOV16rm: 2868 case X86::MOV32rm: 2869 case X86::MOV64rm: 2870 case X86::LD_Fp32m: 2871 case X86::LD_Fp64m: 2872 case X86::LD_Fp80m: 2873 case X86::MOVSSrm: 2874 case X86::MOVSDrm: 2875 case X86::MMX_MOVD64rm: 2876 case X86::MMX_MOVQ64rm: 2877 case X86::FsMOVAPSrm: 2878 case X86::FsMOVAPDrm: 2879 case X86::MOVAPSrm: 2880 case X86::MOVUPSrm: 2881 case X86::MOVAPDrm: 2882 case X86::MOVDQArm: 2883 case X86::MOVDQUrm: 2884 case X86::VMOVAPSYrm: 2885 case X86::VMOVUPSYrm: 2886 case X86::VMOVAPDYrm: 2887 case X86::VMOVDQAYrm: 2888 case X86::VMOVDQUYrm: 2889 break; 2890 } 2891 switch (Opc2) { 2892 default: return false; 2893 case X86::MOV8rm: 2894 case X86::MOV16rm: 2895 case X86::MOV32rm: 2896 case X86::MOV64rm: 2897 case X86::LD_Fp32m: 2898 case X86::LD_Fp64m: 2899 case X86::LD_Fp80m: 2900 case X86::MOVSSrm: 2901 case X86::MOVSDrm: 2902 case X86::MMX_MOVD64rm: 2903 case X86::MMX_MOVQ64rm: 2904 case X86::FsMOVAPSrm: 2905 case X86::FsMOVAPDrm: 2906 case X86::MOVAPSrm: 2907 case X86::MOVUPSrm: 2908 case X86::MOVAPDrm: 2909 case X86::MOVDQArm: 2910 case X86::MOVDQUrm: 2911 case X86::VMOVAPSYrm: 2912 case X86::VMOVUPSYrm: 2913 case X86::VMOVAPDYrm: 2914 case X86::VMOVDQAYrm: 2915 case X86::VMOVDQUYrm: 2916 break; 2917 } 2918 2919 // Check if chain operands and base addresses match. 2920 if (Load1->getOperand(0) != Load2->getOperand(0) || 2921 Load1->getOperand(5) != Load2->getOperand(5)) 2922 return false; 2923 // Segment operands should match as well. 2924 if (Load1->getOperand(4) != Load2->getOperand(4)) 2925 return false; 2926 // Scale should be 1, Index should be Reg0. 2927 if (Load1->getOperand(1) == Load2->getOperand(1) && 2928 Load1->getOperand(2) == Load2->getOperand(2)) { 2929 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) 2930 return false; 2931 2932 // Now let's examine the displacements. 2933 if (isa<ConstantSDNode>(Load1->getOperand(3)) && 2934 isa<ConstantSDNode>(Load2->getOperand(3))) { 2935 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); 2936 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); 2937 return true; 2938 } 2939 } 2940 return false; 2941 } 2942 2943 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2944 int64_t Offset1, int64_t Offset2, 2945 unsigned NumLoads) const { 2946 assert(Offset2 > Offset1); 2947 if ((Offset2 - Offset1) / 8 > 64) 2948 return false; 2949 2950 unsigned Opc1 = Load1->getMachineOpcode(); 2951 unsigned Opc2 = Load2->getMachineOpcode(); 2952 if (Opc1 != Opc2) 2953 return false; // FIXME: overly conservative? 2954 2955 switch (Opc1) { 2956 default: break; 2957 case X86::LD_Fp32m: 2958 case X86::LD_Fp64m: 2959 case X86::LD_Fp80m: 2960 case X86::MMX_MOVD64rm: 2961 case X86::MMX_MOVQ64rm: 2962 return false; 2963 } 2964 2965 EVT VT = Load1->getValueType(0); 2966 switch (VT.getSimpleVT().SimpleTy) { 2967 default: 2968 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 2969 // have 16 of them to play with. 2970 if (TM.getSubtargetImpl()->is64Bit()) { 2971 if (NumLoads >= 3) 2972 return false; 2973 } else if (NumLoads) { 2974 return false; 2975 } 2976 break; 2977 case MVT::i8: 2978 case MVT::i16: 2979 case MVT::i32: 2980 case MVT::i64: 2981 case MVT::f32: 2982 case MVT::f64: 2983 if (NumLoads) 2984 return false; 2985 break; 2986 } 2987 2988 return true; 2989 } 2990 2991 2992 bool X86InstrInfo:: 2993 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2994 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 2995 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 2996 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) 2997 return true; 2998 Cond[0].setImm(GetOppositeBranchCondition(CC)); 2999 return false; 3000 } 3001 3002 bool X86InstrInfo:: 3003 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 3004 // FIXME: Return false for x87 stack register classes for now. We can't 3005 // allow any loads of these registers before FpGet_ST0_80. 3006 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || 3007 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); 3008 } 3009 3010 3011 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher) 3012 /// register? e.g. r8, xmm8, xmm13, etc. 3013 bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) { 3014 switch (RegNo) { 3015 default: break; 3016 case X86::R8: case X86::R9: case X86::R10: case X86::R11: 3017 case X86::R12: case X86::R13: case X86::R14: case X86::R15: 3018 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: 3019 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: 3020 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: 3021 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: 3022 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: 3023 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: 3024 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: 3025 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: 3026 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: 3027 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: 3028 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: 3029 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: 3030 return true; 3031 } 3032 return false; 3033 } 3034 3035 /// getGlobalBaseReg - Return a virtual register initialized with the 3036 /// the global base register value. Output instructions required to 3037 /// initialize the register in the function entry block, if necessary. 3038 /// 3039 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 3040 /// 3041 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 3042 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && 3043 "X86-64 PIC uses RIP relative addressing"); 3044 3045 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 3046 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3047 if (GlobalBaseReg != 0) 3048 return GlobalBaseReg; 3049 3050 // Create the register. The code to initialize it is inserted 3051 // later, by the CGBR pass (below). 3052 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 3053 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3054 X86FI->setGlobalBaseReg(GlobalBaseReg); 3055 return GlobalBaseReg; 3056 } 3057 3058 // These are the replaceable SSE instructions. Some of these have Int variants 3059 // that we don't include here. We don't want to replace instructions selected 3060 // by intrinsics. 3061 static const unsigned ReplaceableInstrs[][3] = { 3062 //PackedSingle PackedDouble PackedInt 3063 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 3064 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 3065 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 3066 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 3067 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 3068 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 3069 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 3070 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 3071 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 3072 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 3073 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 3074 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 3075 { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI }, 3076 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 3077 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 3078 // AVX 128-bit support 3079 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 3080 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 3081 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 3082 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 3083 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 3084 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 3085 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 3086 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 3087 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 3088 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 3089 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 3090 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 3091 { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI }, 3092 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 3093 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 3094 // AVX 256-bit support 3095 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 3096 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 3097 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 3098 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 3099 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 3100 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 3101 }; 3102 3103 // FIXME: Some shuffle and unpack instructions have equivalents in different 3104 // domains, but they require a bit more work than just switching opcodes. 3105 3106 static const unsigned *lookup(unsigned opcode, unsigned domain) { 3107 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) 3108 if (ReplaceableInstrs[i][domain-1] == opcode) 3109 return ReplaceableInstrs[i]; 3110 return 0; 3111 } 3112 3113 std::pair<uint16_t, uint16_t> 3114 X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const { 3115 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3116 return std::make_pair(domain, 3117 domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); 3118 } 3119 3120 void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const { 3121 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 3122 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3123 assert(dom && "Not an SSE instruction"); 3124 const unsigned *table = lookup(MI->getOpcode(), dom); 3125 assert(table && "Cannot change domain"); 3126 MI->setDesc(get(table[Domain-1])); 3127 } 3128 3129 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 3130 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 3131 NopInst.setOpcode(X86::NOOP); 3132 } 3133 3134 bool X86InstrInfo::isHighLatencyDef(int opc) const { 3135 switch (opc) { 3136 default: return false; 3137 case X86::DIVSDrm: 3138 case X86::DIVSDrm_Int: 3139 case X86::DIVSDrr: 3140 case X86::DIVSDrr_Int: 3141 case X86::DIVSSrm: 3142 case X86::DIVSSrm_Int: 3143 case X86::DIVSSrr: 3144 case X86::DIVSSrr_Int: 3145 case X86::SQRTPDm: 3146 case X86::SQRTPDm_Int: 3147 case X86::SQRTPDr: 3148 case X86::SQRTPDr_Int: 3149 case X86::SQRTPSm: 3150 case X86::SQRTPSm_Int: 3151 case X86::SQRTPSr: 3152 case X86::SQRTPSr_Int: 3153 case X86::SQRTSDm: 3154 case X86::SQRTSDm_Int: 3155 case X86::SQRTSDr: 3156 case X86::SQRTSDr_Int: 3157 case X86::SQRTSSm: 3158 case X86::SQRTSSm_Int: 3159 case X86::SQRTSSr: 3160 case X86::SQRTSSr_Int: 3161 return true; 3162 } 3163 } 3164 3165 bool X86InstrInfo:: 3166 hasHighOperandLatency(const InstrItineraryData *ItinData, 3167 const MachineRegisterInfo *MRI, 3168 const MachineInstr *DefMI, unsigned DefIdx, 3169 const MachineInstr *UseMI, unsigned UseIdx) const { 3170 return isHighLatencyDef(DefMI->getOpcode()); 3171 } 3172 3173 namespace { 3174 /// CGBR - Create Global Base Reg pass. This initializes the PIC 3175 /// global base register for x86-32. 3176 struct CGBR : public MachineFunctionPass { 3177 static char ID; 3178 CGBR() : MachineFunctionPass(ID) {} 3179 3180 virtual bool runOnMachineFunction(MachineFunction &MF) { 3181 const X86TargetMachine *TM = 3182 static_cast<const X86TargetMachine *>(&MF.getTarget()); 3183 3184 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && 3185 "X86-64 PIC uses RIP relative addressing"); 3186 3187 // Only emit a global base reg in PIC mode. 3188 if (TM->getRelocationModel() != Reloc::PIC_) 3189 return false; 3190 3191 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3192 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3193 3194 // If we didn't need a GlobalBaseReg, don't insert code. 3195 if (GlobalBaseReg == 0) 3196 return false; 3197 3198 // Insert the set of GlobalBaseReg into the first MBB of the function 3199 MachineBasicBlock &FirstMBB = MF.front(); 3200 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 3201 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 3202 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3203 const X86InstrInfo *TII = TM->getInstrInfo(); 3204 3205 unsigned PC; 3206 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) 3207 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3208 else 3209 PC = GlobalBaseReg; 3210 3211 // Operand of MovePCtoStack is completely ignored by asm printer. It's 3212 // only used in JIT code emission as displacement to pc. 3213 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 3214 3215 // If we're using vanilla 'GOT' PIC style, we should use relative addressing 3216 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 3217 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { 3218 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register 3219 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 3220 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 3221 X86II::MO_GOT_ABSOLUTE_ADDRESS); 3222 } 3223 3224 return true; 3225 } 3226 3227 virtual const char *getPassName() const { 3228 return "X86 PIC Global Base Reg Initialization"; 3229 } 3230 3231 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 3232 AU.setPreservesCFG(); 3233 MachineFunctionPass::getAnalysisUsage(AU); 3234 } 3235 }; 3236 } 3237 3238 char CGBR::ID = 0; 3239 FunctionPass* 3240 llvm::createGlobalBaseRegPass() { return new CGBR(); } 3241