1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariables analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using a sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H 30 #define LLVM_CODEGEN_LIVEVARIABLES_H 31 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/ADT/BitVector.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/IndexedMap.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/SparseBitVector.h" 42 43 namespace llvm { 44 45 class MachineRegisterInfo; 46 class TargetRegisterInfo; 47 48 class LiveVariables : public MachineFunctionPass { 49 public: 50 static char ID; // Pass identification, replacement for typeid 51 LiveVariables() : MachineFunctionPass(ID) { 52 initializeLiveVariablesPass(*PassRegistry::getPassRegistry()); 53 } 54 55 /// VarInfo - This represents the regions where a virtual register is live in 56 /// the program. We represent this with three different pieces of 57 /// information: the set of blocks in which the instruction is live 58 /// throughout, the set of blocks in which the instruction is actually used, 59 /// and the set of non-phi instructions that are the last users of the value. 60 /// 61 /// In the common case where a value is defined and killed in the same block, 62 /// There is one killing instruction, and AliveBlocks is empty. 63 /// 64 /// Otherwise, the value is live out of the block. If the value is live 65 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks 66 /// where the liveness range ends are not included in AliveBlocks, instead 67 /// being captured by the Kills set. In these blocks, the value is live into 68 /// the block (unless the value is defined and killed in the same block) and 69 /// lives until the specified instruction. Note that there cannot ever be a 70 /// value whose Kills set contains two instructions from the same basic block. 71 /// 72 /// PHI nodes complicate things a bit. If a PHI node is the last user of a 73 /// value in one of its predecessor blocks, it is not listed in the kills set, 74 /// but does include the predecessor block in the AliveBlocks set (unless that 75 /// block also defines the value). This leads to the (perfectly sensical) 76 /// situation where a value is defined in a block, and the last use is a phi 77 /// node in the successor. In this case, AliveBlocks is empty (the value is 78 /// not live across any blocks) and Kills is empty (phi nodes are not 79 /// included). This is sensical because the value must be live to the end of 80 /// the block, but is not live in any successor blocks. 81 struct VarInfo { 82 /// AliveBlocks - Set of blocks in which this value is alive completely 83 /// through. This is a bit set which uses the basic block number as an 84 /// index. 85 /// 86 SparseBitVector<> AliveBlocks; 87 88 /// NumUses - Number of uses of this register across the entire function. 89 /// 90 unsigned NumUses; 91 92 /// Kills - List of MachineInstruction's which are the last use of this 93 /// virtual register (kill it) in their basic block. 94 /// 95 std::vector<MachineInstr*> Kills; 96 97 VarInfo() : NumUses(0) {} 98 99 /// removeKill - Delete a kill corresponding to the specified 100 /// machine instruction. Returns true if there was a kill 101 /// corresponding to this instruction, false otherwise. 102 bool removeKill(MachineInstr *MI) { 103 std::vector<MachineInstr*>::iterator 104 I = std::find(Kills.begin(), Kills.end(), MI); 105 if (I == Kills.end()) 106 return false; 107 Kills.erase(I); 108 return true; 109 } 110 111 /// findKill - Find a kill instruction in MBB. Return NULL if none is found. 112 MachineInstr *findKill(const MachineBasicBlock *MBB) const; 113 114 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through 115 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in 116 /// MBB, it is not considered live in. 117 bool isLiveIn(const MachineBasicBlock &MBB, 118 unsigned Reg, 119 MachineRegisterInfo &MRI); 120 121 void dump() const; 122 }; 123 124 private: 125 /// VirtRegInfo - This list is a mapping from virtual register number to 126 /// variable information. 127 /// 128 IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo; 129 130 /// PHIJoins - list of virtual registers that are PHI joins. These registers 131 /// may have multiple definitions, and they require special handling when 132 /// building live intervals. 133 SparseBitVector<> PHIJoins; 134 135 /// ReservedRegisters - This vector keeps track of which registers 136 /// are reserved register which are not allocatable by the target machine. 137 /// We can not track liveness for values that are in this set. 138 /// 139 BitVector ReservedRegisters; 140 141 private: // Intermediate data structures 142 MachineFunction *MF; 143 144 MachineRegisterInfo* MRI; 145 146 const TargetRegisterInfo *TRI; 147 148 // PhysRegInfo - Keep track of which instruction was the last def of a 149 // physical register. This is a purely local property, because all physical 150 // register references are presumed dead across basic blocks. 151 MachineInstr **PhysRegDef; 152 153 // PhysRegInfo - Keep track of which instruction was the last use of a 154 // physical register. This is a purely local property, because all physical 155 // register references are presumed dead across basic blocks. 156 MachineInstr **PhysRegUse; 157 158 SmallVector<unsigned, 4> *PHIVarInfo; 159 160 // DistanceMap - Keep track the distance of a MI from the start of the 161 // current basic block. 162 DenseMap<MachineInstr*, unsigned> DistanceMap; 163 164 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the 165 /// uses. Pay special attention to the sub-register uses which may come below 166 /// the last use of the whole register. 167 bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI); 168 169 void HandlePhysRegUse(unsigned Reg, MachineInstr *MI); 170 void HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 171 SmallVector<unsigned, 4> &Defs); 172 void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs); 173 174 /// FindLastRefOrPartRef - Return the last reference or partial reference of 175 /// the specified register. 176 MachineInstr *FindLastRefOrPartRef(unsigned Reg); 177 178 /// FindLastPartialDef - Return the last partial def of the specified 179 /// register. Also returns the sub-registers that're defined by the 180 /// instruction. 181 MachineInstr *FindLastPartialDef(unsigned Reg, 182 SmallSet<unsigned,4> &PartDefRegs); 183 184 /// analyzePHINodes - Gather information about the PHI nodes in here. In 185 /// particular, we want to map the variable information of a virtual 186 /// register which is used in a PHI node. We map that to the BB the vreg 187 /// is coming from. 188 void analyzePHINodes(const MachineFunction& Fn); 189 public: 190 191 virtual bool runOnMachineFunction(MachineFunction &MF); 192 193 /// RegisterDefIsDead - Return true if the specified instruction defines the 194 /// specified register, but that definition is dead. 195 bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const; 196 197 //===--------------------------------------------------------------------===// 198 // API to update live variable information 199 200 /// replaceKillInstruction - Update register kill info by replacing a kill 201 /// instruction with a new one. 202 void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 203 MachineInstr *NewMI); 204 205 /// addVirtualRegisterKilled - Add information about the fact that the 206 /// specified register is killed after being used by the specified 207 /// instruction. If AddIfNotFound is true, add a implicit operand if it's 208 /// not found. 209 void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI, 210 bool AddIfNotFound = false) { 211 if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound)) 212 getVarInfo(IncomingReg).Kills.push_back(MI); 213 } 214 215 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual 216 /// register from the live variable information. Returns true if the 217 /// variable was marked as killed by the specified instruction, 218 /// false otherwise. 219 bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) { 220 if (!getVarInfo(reg).removeKill(MI)) 221 return false; 222 223 bool Removed = false; 224 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 225 MachineOperand &MO = MI->getOperand(i); 226 if (MO.isReg() && MO.isKill() && MO.getReg() == reg) { 227 MO.setIsKill(false); 228 Removed = true; 229 break; 230 } 231 } 232 233 assert(Removed && "Register is not used by this instruction!"); 234 return true; 235 } 236 237 /// removeVirtualRegistersKilled - Remove all killed info for the specified 238 /// instruction. 239 void removeVirtualRegistersKilled(MachineInstr *MI); 240 241 /// addVirtualRegisterDead - Add information about the fact that the specified 242 /// register is dead after being used by the specified instruction. If 243 /// AddIfNotFound is true, add a implicit operand if it's not found. 244 void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI, 245 bool AddIfNotFound = false) { 246 if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound)) 247 getVarInfo(IncomingReg).Kills.push_back(MI); 248 } 249 250 /// removeVirtualRegisterDead - Remove the specified kill of the virtual 251 /// register from the live variable information. Returns true if the 252 /// variable was marked dead at the specified instruction, false 253 /// otherwise. 254 bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) { 255 if (!getVarInfo(reg).removeKill(MI)) 256 return false; 257 258 bool Removed = false; 259 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 260 MachineOperand &MO = MI->getOperand(i); 261 if (MO.isReg() && MO.isDef() && MO.getReg() == reg) { 262 MO.setIsDead(false); 263 Removed = true; 264 break; 265 } 266 } 267 assert(Removed && "Register is not defined by this instruction!"); 268 return true; 269 } 270 271 void getAnalysisUsage(AnalysisUsage &AU) const; 272 273 virtual void releaseMemory() { 274 VirtRegInfo.clear(); 275 } 276 277 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL 278 /// register. 279 VarInfo &getVarInfo(unsigned RegIdx); 280 281 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 282 MachineBasicBlock *BB); 283 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 284 MachineBasicBlock *BB, 285 std::vector<MachineBasicBlock*> &WorkList); 286 void HandleVirtRegDef(unsigned reg, MachineInstr *MI); 287 void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 288 MachineInstr *MI); 289 290 bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) { 291 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI); 292 } 293 294 /// isLiveOut - Determine if Reg is live out from MBB, when not considering 295 /// PHI nodes. This means that Reg is either killed by a successor block or 296 /// passed through one. 297 bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB); 298 299 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All 300 /// variables that are live out of DomBB and live into SuccBB will be marked 301 /// as passing live through BB. This method assumes that the machine code is 302 /// still in SSA form. 303 void addNewBlock(MachineBasicBlock *BB, 304 MachineBasicBlock *DomBB, 305 MachineBasicBlock *SuccBB); 306 307 /// isPHIJoin - Return true if Reg is a phi join register. 308 bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); } 309 310 /// setPHIJoin - Mark Reg as a phi join register. 311 void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); } 312 }; 313 314 } // End llvm namespace 315 316 #endif 317