1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Type.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/CFG.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ConstantRange.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/IRBuilder.h" 36 #include "llvm/Support/NoFolder.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <set> 40 #include <map> 41 using namespace llvm; 42 43 static cl::opt<unsigned> 44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 45 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 46 47 static cl::opt<bool> 48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 49 cl::desc("Duplicate return instructions into unconditional branches")); 50 51 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 52 53 namespace { 54 class SimplifyCFGOpt { 55 const TargetData *const TD; 56 57 Value *isValueEqualityComparison(TerminatorInst *TI); 58 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 59 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); 60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 61 BasicBlock *Pred, 62 IRBuilder<> &Builder); 63 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 64 IRBuilder<> &Builder); 65 66 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 67 bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder); 68 bool SimplifyUnreachable(UnreachableInst *UI); 69 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 70 bool SimplifyIndirectBr(IndirectBrInst *IBI); 71 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 72 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 73 74 public: 75 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 76 bool run(BasicBlock *BB); 77 }; 78 } 79 80 /// SafeToMergeTerminators - Return true if it is safe to merge these two 81 /// terminator instructions together. 82 /// 83 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 84 if (SI1 == SI2) return false; // Can't merge with self! 85 86 // It is not safe to merge these two switch instructions if they have a common 87 // successor, and if that successor has a PHI node, and if *that* PHI node has 88 // conflicting incoming values from the two switch blocks. 89 BasicBlock *SI1BB = SI1->getParent(); 90 BasicBlock *SI2BB = SI2->getParent(); 91 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 92 93 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 94 if (SI1Succs.count(*I)) 95 for (BasicBlock::iterator BBI = (*I)->begin(); 96 isa<PHINode>(BBI); ++BBI) { 97 PHINode *PN = cast<PHINode>(BBI); 98 if (PN->getIncomingValueForBlock(SI1BB) != 99 PN->getIncomingValueForBlock(SI2BB)) 100 return false; 101 } 102 103 return true; 104 } 105 106 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 107 /// now be entries in it from the 'NewPred' block. The values that will be 108 /// flowing into the PHI nodes will be the same as those coming in from 109 /// ExistPred, an existing predecessor of Succ. 110 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 111 BasicBlock *ExistPred) { 112 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 113 114 PHINode *PN; 115 for (BasicBlock::iterator I = Succ->begin(); 116 (PN = dyn_cast<PHINode>(I)); ++I) 117 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 118 } 119 120 121 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 122 /// least one PHI node in it), check to see if the merge at this block is due 123 /// to an "if condition". If so, return the boolean condition that determines 124 /// which entry into BB will be taken. Also, return by references the block 125 /// that will be entered from if the condition is true, and the block that will 126 /// be entered if the condition is false. 127 /// 128 /// This does no checking to see if the true/false blocks have large or unsavory 129 /// instructions in them. 130 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 131 BasicBlock *&IfFalse) { 132 PHINode *SomePHI = cast<PHINode>(BB->begin()); 133 assert(SomePHI->getNumIncomingValues() == 2 && 134 "Function can only handle blocks with 2 predecessors!"); 135 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 136 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 137 138 // We can only handle branches. Other control flow will be lowered to 139 // branches if possible anyway. 140 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 141 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 142 if (Pred1Br == 0 || Pred2Br == 0) 143 return 0; 144 145 // Eliminate code duplication by ensuring that Pred1Br is conditional if 146 // either are. 147 if (Pred2Br->isConditional()) { 148 // If both branches are conditional, we don't have an "if statement". In 149 // reality, we could transform this case, but since the condition will be 150 // required anyway, we stand no chance of eliminating it, so the xform is 151 // probably not profitable. 152 if (Pred1Br->isConditional()) 153 return 0; 154 155 std::swap(Pred1, Pred2); 156 std::swap(Pred1Br, Pred2Br); 157 } 158 159 if (Pred1Br->isConditional()) { 160 // The only thing we have to watch out for here is to make sure that Pred2 161 // doesn't have incoming edges from other blocks. If it does, the condition 162 // doesn't dominate BB. 163 if (Pred2->getSinglePredecessor() == 0) 164 return 0; 165 166 // If we found a conditional branch predecessor, make sure that it branches 167 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 168 if (Pred1Br->getSuccessor(0) == BB && 169 Pred1Br->getSuccessor(1) == Pred2) { 170 IfTrue = Pred1; 171 IfFalse = Pred2; 172 } else if (Pred1Br->getSuccessor(0) == Pred2 && 173 Pred1Br->getSuccessor(1) == BB) { 174 IfTrue = Pred2; 175 IfFalse = Pred1; 176 } else { 177 // We know that one arm of the conditional goes to BB, so the other must 178 // go somewhere unrelated, and this must not be an "if statement". 179 return 0; 180 } 181 182 return Pred1Br->getCondition(); 183 } 184 185 // Ok, if we got here, both predecessors end with an unconditional branch to 186 // BB. Don't panic! If both blocks only have a single (identical) 187 // predecessor, and THAT is a conditional branch, then we're all ok! 188 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 189 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 190 return 0; 191 192 // Otherwise, if this is a conditional branch, then we can use it! 193 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 194 if (BI == 0) return 0; 195 196 assert(BI->isConditional() && "Two successors but not conditional?"); 197 if (BI->getSuccessor(0) == Pred1) { 198 IfTrue = Pred1; 199 IfFalse = Pred2; 200 } else { 201 IfTrue = Pred2; 202 IfFalse = Pred1; 203 } 204 return BI->getCondition(); 205 } 206 207 /// DominatesMergePoint - If we have a merge point of an "if condition" as 208 /// accepted above, return true if the specified value dominates the block. We 209 /// don't handle the true generality of domination here, just a special case 210 /// which works well enough for us. 211 /// 212 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 213 /// see if V (which must be an instruction) and its recursive operands 214 /// that do not dominate BB have a combined cost lower than CostRemaining and 215 /// are non-trapping. If both are true, the instruction is inserted into the 216 /// set and true is returned. 217 /// 218 /// The cost for most non-trapping instructions is defined as 1 except for 219 /// Select whose cost is 2. 220 /// 221 /// After this function returns, CostRemaining is decreased by the cost of 222 /// V plus its non-dominating operands. If that cost is greater than 223 /// CostRemaining, false is returned and CostRemaining is undefined. 224 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 225 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 226 unsigned &CostRemaining) { 227 Instruction *I = dyn_cast<Instruction>(V); 228 if (!I) { 229 // Non-instructions all dominate instructions, but not all constantexprs 230 // can be executed unconditionally. 231 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 232 if (C->canTrap()) 233 return false; 234 return true; 235 } 236 BasicBlock *PBB = I->getParent(); 237 238 // We don't want to allow weird loops that might have the "if condition" in 239 // the bottom of this block. 240 if (PBB == BB) return false; 241 242 // If this instruction is defined in a block that contains an unconditional 243 // branch to BB, then it must be in the 'conditional' part of the "if 244 // statement". If not, it definitely dominates the region. 245 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 246 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 247 return true; 248 249 // If we aren't allowing aggressive promotion anymore, then don't consider 250 // instructions in the 'if region'. 251 if (AggressiveInsts == 0) return false; 252 253 // If we have seen this instruction before, don't count it again. 254 if (AggressiveInsts->count(I)) return true; 255 256 // Okay, it looks like the instruction IS in the "condition". Check to 257 // see if it's a cheap instruction to unconditionally compute, and if it 258 // only uses stuff defined outside of the condition. If so, hoist it out. 259 if (!I->isSafeToSpeculativelyExecute()) 260 return false; 261 262 unsigned Cost = 0; 263 264 switch (I->getOpcode()) { 265 default: return false; // Cannot hoist this out safely. 266 case Instruction::Load: 267 // We have to check to make sure there are no instructions before the 268 // load in its basic block, as we are going to hoist the load out to its 269 // predecessor. 270 if (PBB->getFirstNonPHIOrDbg() != I) 271 return false; 272 Cost = 1; 273 break; 274 case Instruction::GetElementPtr: 275 // GEPs are cheap if all indices are constant. 276 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices()) 277 return false; 278 Cost = 1; 279 break; 280 case Instruction::Add: 281 case Instruction::Sub: 282 case Instruction::And: 283 case Instruction::Or: 284 case Instruction::Xor: 285 case Instruction::Shl: 286 case Instruction::LShr: 287 case Instruction::AShr: 288 case Instruction::ICmp: 289 case Instruction::Trunc: 290 case Instruction::ZExt: 291 case Instruction::SExt: 292 Cost = 1; 293 break; // These are all cheap and non-trapping instructions. 294 295 case Instruction::Select: 296 Cost = 2; 297 break; 298 } 299 300 if (Cost > CostRemaining) 301 return false; 302 303 CostRemaining -= Cost; 304 305 // Okay, we can only really hoist these out if their operands do 306 // not take us over the cost threshold. 307 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 308 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 309 return false; 310 // Okay, it's safe to do this! Remember this instruction. 311 AggressiveInsts->insert(I); 312 return true; 313 } 314 315 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 316 /// and PointerNullValue. Return NULL if value is not a constant int. 317 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 318 // Normal constant int. 319 ConstantInt *CI = dyn_cast<ConstantInt>(V); 320 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 321 return CI; 322 323 // This is some kind of pointer constant. Turn it into a pointer-sized 324 // ConstantInt if possible. 325 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 326 327 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 328 if (isa<ConstantPointerNull>(V)) 329 return ConstantInt::get(PtrTy, 0); 330 331 // IntToPtr const int. 332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 333 if (CE->getOpcode() == Instruction::IntToPtr) 334 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 335 // The constant is very likely to have the right type already. 336 if (CI->getType() == PtrTy) 337 return CI; 338 else 339 return cast<ConstantInt> 340 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 341 } 342 return 0; 343 } 344 345 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 346 /// collection of icmp eq/ne instructions that compare a value against a 347 /// constant, return the value being compared, and stick the constant into the 348 /// Values vector. 349 static Value * 350 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 351 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 352 Instruction *I = dyn_cast<Instruction>(V); 353 if (I == 0) return 0; 354 355 // If this is an icmp against a constant, handle this as one of the cases. 356 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 357 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 358 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 359 UsedICmps++; 360 Vals.push_back(C); 361 return I->getOperand(0); 362 } 363 364 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 365 // the set. 366 ConstantRange Span = 367 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 368 369 // If this is an and/!= check then we want to optimize "x ugt 2" into 370 // x != 0 && x != 1. 371 if (!isEQ) 372 Span = Span.inverse(); 373 374 // If there are a ton of values, we don't want to make a ginormous switch. 375 if (Span.getSetSize().ugt(8) || Span.isEmptySet() || 376 // We don't handle wrapped sets yet. 377 Span.isWrappedSet()) 378 return 0; 379 380 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 381 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 382 UsedICmps++; 383 return I->getOperand(0); 384 } 385 return 0; 386 } 387 388 // Otherwise, we can only handle an | or &, depending on isEQ. 389 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 390 return 0; 391 392 unsigned NumValsBeforeLHS = Vals.size(); 393 unsigned UsedICmpsBeforeLHS = UsedICmps; 394 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 395 isEQ, UsedICmps)) { 396 unsigned NumVals = Vals.size(); 397 unsigned UsedICmpsBeforeRHS = UsedICmps; 398 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 399 isEQ, UsedICmps)) { 400 if (LHS == RHS) 401 return LHS; 402 Vals.resize(NumVals); 403 UsedICmps = UsedICmpsBeforeRHS; 404 } 405 406 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 407 // set it and return success. 408 if (Extra == 0 || Extra == I->getOperand(1)) { 409 Extra = I->getOperand(1); 410 return LHS; 411 } 412 413 Vals.resize(NumValsBeforeLHS); 414 UsedICmps = UsedICmpsBeforeLHS; 415 return 0; 416 } 417 418 // If the LHS can't be folded in, but Extra is available and RHS can, try to 419 // use LHS as Extra. 420 if (Extra == 0 || Extra == I->getOperand(0)) { 421 Value *OldExtra = Extra; 422 Extra = I->getOperand(0); 423 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 424 isEQ, UsedICmps)) 425 return RHS; 426 assert(Vals.size() == NumValsBeforeLHS); 427 Extra = OldExtra; 428 } 429 430 return 0; 431 } 432 433 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 434 Instruction* Cond = 0; 435 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 436 Cond = dyn_cast<Instruction>(SI->getCondition()); 437 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 438 if (BI->isConditional()) 439 Cond = dyn_cast<Instruction>(BI->getCondition()); 440 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 441 Cond = dyn_cast<Instruction>(IBI->getAddress()); 442 } 443 444 TI->eraseFromParent(); 445 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 446 } 447 448 /// isValueEqualityComparison - Return true if the specified terminator checks 449 /// to see if a value is equal to constant integer value. 450 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 451 Value *CV = 0; 452 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 453 // Do not permit merging of large switch instructions into their 454 // predecessors unless there is only one predecessor. 455 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 456 pred_end(SI->getParent())) <= 128) 457 CV = SI->getCondition(); 458 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 459 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 460 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 461 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 462 ICI->getPredicate() == ICmpInst::ICMP_NE) && 463 GetConstantInt(ICI->getOperand(1), TD)) 464 CV = ICI->getOperand(0); 465 466 // Unwrap any lossless ptrtoint cast. 467 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 468 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 469 CV = PTII->getOperand(0); 470 return CV; 471 } 472 473 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 474 /// decode all of the 'cases' that it represents and return the 'default' block. 475 BasicBlock *SimplifyCFGOpt:: 476 GetValueEqualityComparisonCases(TerminatorInst *TI, 477 std::vector<std::pair<ConstantInt*, 478 BasicBlock*> > &Cases) { 479 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 480 Cases.reserve(SI->getNumCases()); 481 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 482 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); 483 return SI->getDefaultDest(); 484 } 485 486 BranchInst *BI = cast<BranchInst>(TI); 487 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 488 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD), 489 BI->getSuccessor(ICI->getPredicate() == 490 ICmpInst::ICMP_NE))); 491 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 492 } 493 494 495 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 496 /// in the list that match the specified block. 497 static void EliminateBlockCases(BasicBlock *BB, 498 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { 499 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 500 if (Cases[i].second == BB) { 501 Cases.erase(Cases.begin()+i); 502 --i; --e; 503 } 504 } 505 506 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 507 /// well. 508 static bool 509 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, 510 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { 511 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; 512 513 // Make V1 be smaller than V2. 514 if (V1->size() > V2->size()) 515 std::swap(V1, V2); 516 517 if (V1->size() == 0) return false; 518 if (V1->size() == 1) { 519 // Just scan V2. 520 ConstantInt *TheVal = (*V1)[0].first; 521 for (unsigned i = 0, e = V2->size(); i != e; ++i) 522 if (TheVal == (*V2)[i].first) 523 return true; 524 } 525 526 // Otherwise, just sort both lists and compare element by element. 527 array_pod_sort(V1->begin(), V1->end()); 528 array_pod_sort(V2->begin(), V2->end()); 529 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 530 while (i1 != e1 && i2 != e2) { 531 if ((*V1)[i1].first == (*V2)[i2].first) 532 return true; 533 if ((*V1)[i1].first < (*V2)[i2].first) 534 ++i1; 535 else 536 ++i2; 537 } 538 return false; 539 } 540 541 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 542 /// terminator instruction and its block is known to only have a single 543 /// predecessor block, check to see if that predecessor is also a value 544 /// comparison with the same value, and if that comparison determines the 545 /// outcome of this comparison. If so, simplify TI. This does a very limited 546 /// form of jump threading. 547 bool SimplifyCFGOpt:: 548 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 549 BasicBlock *Pred, 550 IRBuilder<> &Builder) { 551 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 552 if (!PredVal) return false; // Not a value comparison in predecessor. 553 554 Value *ThisVal = isValueEqualityComparison(TI); 555 assert(ThisVal && "This isn't a value comparison!!"); 556 if (ThisVal != PredVal) return false; // Different predicates. 557 558 // Find out information about when control will move from Pred to TI's block. 559 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 560 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 561 PredCases); 562 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 563 564 // Find information about how control leaves this block. 565 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; 566 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 567 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 568 569 // If TI's block is the default block from Pred's comparison, potentially 570 // simplify TI based on this knowledge. 571 if (PredDef == TI->getParent()) { 572 // If we are here, we know that the value is none of those cases listed in 573 // PredCases. If there are any cases in ThisCases that are in PredCases, we 574 // can simplify TI. 575 if (!ValuesOverlap(PredCases, ThisCases)) 576 return false; 577 578 if (isa<BranchInst>(TI)) { 579 // Okay, one of the successors of this condbr is dead. Convert it to a 580 // uncond br. 581 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 582 // Insert the new branch. 583 Instruction *NI = Builder.CreateBr(ThisDef); 584 (void) NI; 585 586 // Remove PHI node entries for the dead edge. 587 ThisCases[0].second->removePredecessor(TI->getParent()); 588 589 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 590 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 591 592 EraseTerminatorInstAndDCECond(TI); 593 return true; 594 } 595 596 SwitchInst *SI = cast<SwitchInst>(TI); 597 // Okay, TI has cases that are statically dead, prune them away. 598 SmallPtrSet<Constant*, 16> DeadCases; 599 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 600 DeadCases.insert(PredCases[i].first); 601 602 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 603 << "Through successor TI: " << *TI); 604 605 for (unsigned i = SI->getNumCases()-1; i != 0; --i) 606 if (DeadCases.count(SI->getCaseValue(i))) { 607 SI->getSuccessor(i)->removePredecessor(TI->getParent()); 608 SI->removeCase(i); 609 } 610 611 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 612 return true; 613 } 614 615 // Otherwise, TI's block must correspond to some matched value. Find out 616 // which value (or set of values) this is. 617 ConstantInt *TIV = 0; 618 BasicBlock *TIBB = TI->getParent(); 619 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 620 if (PredCases[i].second == TIBB) { 621 if (TIV != 0) 622 return false; // Cannot handle multiple values coming to this block. 623 TIV = PredCases[i].first; 624 } 625 assert(TIV && "No edge from pred to succ?"); 626 627 // Okay, we found the one constant that our value can be if we get into TI's 628 // BB. Find out which successor will unconditionally be branched to. 629 BasicBlock *TheRealDest = 0; 630 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 631 if (ThisCases[i].first == TIV) { 632 TheRealDest = ThisCases[i].second; 633 break; 634 } 635 636 // If not handled by any explicit cases, it is handled by the default case. 637 if (TheRealDest == 0) TheRealDest = ThisDef; 638 639 // Remove PHI node entries for dead edges. 640 BasicBlock *CheckEdge = TheRealDest; 641 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 642 if (*SI != CheckEdge) 643 (*SI)->removePredecessor(TIBB); 644 else 645 CheckEdge = 0; 646 647 // Insert the new branch. 648 Instruction *NI = Builder.CreateBr(TheRealDest); 649 (void) NI; 650 651 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 652 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 653 654 EraseTerminatorInstAndDCECond(TI); 655 return true; 656 } 657 658 namespace { 659 /// ConstantIntOrdering - This class implements a stable ordering of constant 660 /// integers that does not depend on their address. This is important for 661 /// applications that sort ConstantInt's to ensure uniqueness. 662 struct ConstantIntOrdering { 663 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 664 return LHS->getValue().ult(RHS->getValue()); 665 } 666 }; 667 } 668 669 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 670 const ConstantInt *LHS = *(const ConstantInt**)P1; 671 const ConstantInt *RHS = *(const ConstantInt**)P2; 672 if (LHS->getValue().ult(RHS->getValue())) 673 return 1; 674 if (LHS->getValue() == RHS->getValue()) 675 return 0; 676 return -1; 677 } 678 679 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 680 /// equality comparison instruction (either a switch or a branch on "X == c"). 681 /// See if any of the predecessors of the terminator block are value comparisons 682 /// on the same value. If so, and if safe to do so, fold them together. 683 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 684 IRBuilder<> &Builder) { 685 BasicBlock *BB = TI->getParent(); 686 Value *CV = isValueEqualityComparison(TI); // CondVal 687 assert(CV && "Not a comparison?"); 688 bool Changed = false; 689 690 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 691 while (!Preds.empty()) { 692 BasicBlock *Pred = Preds.pop_back_val(); 693 694 // See if the predecessor is a comparison with the same value. 695 TerminatorInst *PTI = Pred->getTerminator(); 696 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 697 698 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 699 // Figure out which 'cases' to copy from SI to PSI. 700 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; 701 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 702 703 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 704 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 705 706 // Based on whether the default edge from PTI goes to BB or not, fill in 707 // PredCases and PredDefault with the new switch cases we would like to 708 // build. 709 SmallVector<BasicBlock*, 8> NewSuccessors; 710 711 if (PredDefault == BB) { 712 // If this is the default destination from PTI, only the edges in TI 713 // that don't occur in PTI, or that branch to BB will be activated. 714 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 715 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 716 if (PredCases[i].second != BB) 717 PTIHandled.insert(PredCases[i].first); 718 else { 719 // The default destination is BB, we don't need explicit targets. 720 std::swap(PredCases[i], PredCases.back()); 721 PredCases.pop_back(); 722 --i; --e; 723 } 724 725 // Reconstruct the new switch statement we will be building. 726 if (PredDefault != BBDefault) { 727 PredDefault->removePredecessor(Pred); 728 PredDefault = BBDefault; 729 NewSuccessors.push_back(BBDefault); 730 } 731 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 732 if (!PTIHandled.count(BBCases[i].first) && 733 BBCases[i].second != BBDefault) { 734 PredCases.push_back(BBCases[i]); 735 NewSuccessors.push_back(BBCases[i].second); 736 } 737 738 } else { 739 // If this is not the default destination from PSI, only the edges 740 // in SI that occur in PSI with a destination of BB will be 741 // activated. 742 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 743 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 744 if (PredCases[i].second == BB) { 745 PTIHandled.insert(PredCases[i].first); 746 std::swap(PredCases[i], PredCases.back()); 747 PredCases.pop_back(); 748 --i; --e; 749 } 750 751 // Okay, now we know which constants were sent to BB from the 752 // predecessor. Figure out where they will all go now. 753 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 754 if (PTIHandled.count(BBCases[i].first)) { 755 // If this is one we are capable of getting... 756 PredCases.push_back(BBCases[i]); 757 NewSuccessors.push_back(BBCases[i].second); 758 PTIHandled.erase(BBCases[i].first);// This constant is taken care of 759 } 760 761 // If there are any constants vectored to BB that TI doesn't handle, 762 // they must go to the default destination of TI. 763 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 764 PTIHandled.begin(), 765 E = PTIHandled.end(); I != E; ++I) { 766 PredCases.push_back(std::make_pair(*I, BBDefault)); 767 NewSuccessors.push_back(BBDefault); 768 } 769 } 770 771 // Okay, at this point, we know which new successor Pred will get. Make 772 // sure we update the number of entries in the PHI nodes for these 773 // successors. 774 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 775 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 776 777 Builder.SetInsertPoint(PTI); 778 // Convert pointer to int before we switch. 779 if (CV->getType()->isPointerTy()) { 780 assert(TD && "Cannot switch on pointer without TargetData"); 781 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 782 "magicptr"); 783 } 784 785 // Now that the successors are updated, create the new Switch instruction. 786 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 787 PredCases.size()); 788 NewSI->setDebugLoc(PTI->getDebugLoc()); 789 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 790 NewSI->addCase(PredCases[i].first, PredCases[i].second); 791 792 EraseTerminatorInstAndDCECond(PTI); 793 794 // Okay, last check. If BB is still a successor of PSI, then we must 795 // have an infinite loop case. If so, add an infinitely looping block 796 // to handle the case to preserve the behavior of the code. 797 BasicBlock *InfLoopBlock = 0; 798 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 799 if (NewSI->getSuccessor(i) == BB) { 800 if (InfLoopBlock == 0) { 801 // Insert it at the end of the function, because it's either code, 802 // or it won't matter if it's hot. :) 803 InfLoopBlock = BasicBlock::Create(BB->getContext(), 804 "infloop", BB->getParent()); 805 BranchInst::Create(InfLoopBlock, InfLoopBlock); 806 } 807 NewSI->setSuccessor(i, InfLoopBlock); 808 } 809 810 Changed = true; 811 } 812 } 813 return Changed; 814 } 815 816 // isSafeToHoistInvoke - If we would need to insert a select that uses the 817 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 818 // would need to do this), we can't hoist the invoke, as there is nowhere 819 // to put the select in this case. 820 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 821 Instruction *I1, Instruction *I2) { 822 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 823 PHINode *PN; 824 for (BasicBlock::iterator BBI = SI->begin(); 825 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 826 Value *BB1V = PN->getIncomingValueForBlock(BB1); 827 Value *BB2V = PN->getIncomingValueForBlock(BB2); 828 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 829 return false; 830 } 831 } 832 } 833 return true; 834 } 835 836 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 837 /// BB2, hoist any common code in the two blocks up into the branch block. The 838 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 839 static bool HoistThenElseCodeToIf(BranchInst *BI) { 840 // This does very trivial matching, with limited scanning, to find identical 841 // instructions in the two blocks. In particular, we don't want to get into 842 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 843 // such, we currently just scan for obviously identical instructions in an 844 // identical order. 845 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 846 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 847 848 BasicBlock::iterator BB1_Itr = BB1->begin(); 849 BasicBlock::iterator BB2_Itr = BB2->begin(); 850 851 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 852 // Skip debug info if it is not identical. 853 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 854 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 855 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 856 while (isa<DbgInfoIntrinsic>(I1)) 857 I1 = BB1_Itr++; 858 while (isa<DbgInfoIntrinsic>(I2)) 859 I2 = BB2_Itr++; 860 } 861 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 862 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 863 return false; 864 865 // If we get here, we can hoist at least one instruction. 866 BasicBlock *BIParent = BI->getParent(); 867 868 do { 869 // If we are hoisting the terminator instruction, don't move one (making a 870 // broken BB), instead clone it, and remove BI. 871 if (isa<TerminatorInst>(I1)) 872 goto HoistTerminator; 873 874 // For a normal instruction, we just move one to right before the branch, 875 // then replace all uses of the other with the first. Finally, we remove 876 // the now redundant second instruction. 877 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 878 if (!I2->use_empty()) 879 I2->replaceAllUsesWith(I1); 880 I1->intersectOptionalDataWith(I2); 881 I2->eraseFromParent(); 882 883 I1 = BB1_Itr++; 884 I2 = BB2_Itr++; 885 // Skip debug info if it is not identical. 886 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 887 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 888 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 889 while (isa<DbgInfoIntrinsic>(I1)) 890 I1 = BB1_Itr++; 891 while (isa<DbgInfoIntrinsic>(I2)) 892 I2 = BB2_Itr++; 893 } 894 } while (I1->isIdenticalToWhenDefined(I2)); 895 896 return true; 897 898 HoistTerminator: 899 // It may not be possible to hoist an invoke. 900 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 901 return true; 902 903 // Okay, it is safe to hoist the terminator. 904 Instruction *NT = I1->clone(); 905 BIParent->getInstList().insert(BI, NT); 906 if (!NT->getType()->isVoidTy()) { 907 I1->replaceAllUsesWith(NT); 908 I2->replaceAllUsesWith(NT); 909 NT->takeName(I1); 910 } 911 912 IRBuilder<true, NoFolder> Builder(NT); 913 // Hoisting one of the terminators from our successor is a great thing. 914 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 915 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 916 // nodes, so we insert select instruction to compute the final result. 917 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 918 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 919 PHINode *PN; 920 for (BasicBlock::iterator BBI = SI->begin(); 921 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 922 Value *BB1V = PN->getIncomingValueForBlock(BB1); 923 Value *BB2V = PN->getIncomingValueForBlock(BB2); 924 if (BB1V == BB2V) continue; 925 926 // These values do not agree. Insert a select instruction before NT 927 // that determines the right value. 928 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 929 if (SI == 0) 930 SI = cast<SelectInst> 931 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 932 BB1V->getName()+"."+BB2V->getName())); 933 934 // Make the PHI node use the select for all incoming values for BB1/BB2 935 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 936 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 937 PN->setIncomingValue(i, SI); 938 } 939 } 940 941 // Update any PHI nodes in our new successors. 942 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 943 AddPredecessorToBlock(*SI, BIParent, BB1); 944 945 EraseTerminatorInstAndDCECond(BI); 946 return true; 947 } 948 949 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 950 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 951 /// (for now, restricted to a single instruction that's side effect free) from 952 /// the BB1 into the branch block to speculatively execute it. 953 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 954 // Only speculatively execution a single instruction (not counting the 955 // terminator) for now. 956 Instruction *HInst = NULL; 957 Instruction *Term = BB1->getTerminator(); 958 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 959 BBI != BBE; ++BBI) { 960 Instruction *I = BBI; 961 // Skip debug info. 962 if (isa<DbgInfoIntrinsic>(I)) continue; 963 if (I == Term) break; 964 965 if (HInst) 966 return false; 967 HInst = I; 968 } 969 if (!HInst) 970 return false; 971 972 // Be conservative for now. FP select instruction can often be expensive. 973 Value *BrCond = BI->getCondition(); 974 if (isa<FCmpInst>(BrCond)) 975 return false; 976 977 // If BB1 is actually on the false edge of the conditional branch, remember 978 // to swap the select operands later. 979 bool Invert = false; 980 if (BB1 != BI->getSuccessor(0)) { 981 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 982 Invert = true; 983 } 984 985 // Turn 986 // BB: 987 // %t1 = icmp 988 // br i1 %t1, label %BB1, label %BB2 989 // BB1: 990 // %t3 = add %t2, c 991 // br label BB2 992 // BB2: 993 // => 994 // BB: 995 // %t1 = icmp 996 // %t4 = add %t2, c 997 // %t3 = select i1 %t1, %t2, %t3 998 switch (HInst->getOpcode()) { 999 default: return false; // Not safe / profitable to hoist. 1000 case Instruction::Add: 1001 case Instruction::Sub: 1002 // Not worth doing for vector ops. 1003 if (HInst->getType()->isVectorTy()) 1004 return false; 1005 break; 1006 case Instruction::And: 1007 case Instruction::Or: 1008 case Instruction::Xor: 1009 case Instruction::Shl: 1010 case Instruction::LShr: 1011 case Instruction::AShr: 1012 // Don't mess with vector operations. 1013 if (HInst->getType()->isVectorTy()) 1014 return false; 1015 break; // These are all cheap and non-trapping instructions. 1016 } 1017 1018 // If the instruction is obviously dead, don't try to predicate it. 1019 if (HInst->use_empty()) { 1020 HInst->eraseFromParent(); 1021 return true; 1022 } 1023 1024 // Can we speculatively execute the instruction? And what is the value 1025 // if the condition is false? Consider the phi uses, if the incoming value 1026 // from the "if" block are all the same V, then V is the value of the 1027 // select if the condition is false. 1028 BasicBlock *BIParent = BI->getParent(); 1029 SmallVector<PHINode*, 4> PHIUses; 1030 Value *FalseV = NULL; 1031 1032 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1033 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); 1034 UI != E; ++UI) { 1035 // Ignore any user that is not a PHI node in BB2. These can only occur in 1036 // unreachable blocks, because they would not be dominated by the instr. 1037 PHINode *PN = dyn_cast<PHINode>(*UI); 1038 if (!PN || PN->getParent() != BB2) 1039 return false; 1040 PHIUses.push_back(PN); 1041 1042 Value *PHIV = PN->getIncomingValueForBlock(BIParent); 1043 if (!FalseV) 1044 FalseV = PHIV; 1045 else if (FalseV != PHIV) 1046 return false; // Inconsistent value when condition is false. 1047 } 1048 1049 assert(FalseV && "Must have at least one user, and it must be a PHI"); 1050 1051 // Do not hoist the instruction if any of its operands are defined but not 1052 // used in this BB. The transformation will prevent the operand from 1053 // being sunk into the use block. 1054 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1055 i != e; ++i) { 1056 Instruction *OpI = dyn_cast<Instruction>(*i); 1057 if (OpI && OpI->getParent() == BIParent && 1058 !OpI->isUsedInBasicBlock(BIParent)) 1059 return false; 1060 } 1061 1062 // If we get here, we can hoist the instruction. Try to place it 1063 // before the icmp instruction preceding the conditional branch. 1064 BasicBlock::iterator InsertPos = BI; 1065 if (InsertPos != BIParent->begin()) 1066 --InsertPos; 1067 // Skip debug info between condition and branch. 1068 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) 1069 --InsertPos; 1070 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { 1071 SmallPtrSet<Instruction *, 4> BB1Insns; 1072 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 1073 BB1I != BB1E; ++BB1I) 1074 BB1Insns.insert(BB1I); 1075 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); 1076 UI != UE; ++UI) { 1077 Instruction *Use = cast<Instruction>(*UI); 1078 if (!BB1Insns.count(Use)) continue; 1079 1080 // If BrCond uses the instruction that place it just before 1081 // branch instruction. 1082 InsertPos = BI; 1083 break; 1084 } 1085 } else 1086 InsertPos = BI; 1087 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); 1088 1089 // Create a select whose true value is the speculatively executed value and 1090 // false value is the previously determined FalseV. 1091 IRBuilder<true, NoFolder> Builder(BI); 1092 SelectInst *SI; 1093 if (Invert) 1094 SI = cast<SelectInst> 1095 (Builder.CreateSelect(BrCond, FalseV, HInst, 1096 FalseV->getName() + "." + HInst->getName())); 1097 else 1098 SI = cast<SelectInst> 1099 (Builder.CreateSelect(BrCond, HInst, FalseV, 1100 HInst->getName() + "." + FalseV->getName())); 1101 1102 // Make the PHI node use the select for all incoming values for "then" and 1103 // "if" blocks. 1104 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { 1105 PHINode *PN = PHIUses[i]; 1106 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) 1107 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent) 1108 PN->setIncomingValue(j, SI); 1109 } 1110 1111 ++NumSpeculations; 1112 return true; 1113 } 1114 1115 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1116 /// across this block. 1117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1118 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1119 unsigned Size = 0; 1120 1121 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1122 if (isa<DbgInfoIntrinsic>(BBI)) 1123 continue; 1124 if (Size > 10) return false; // Don't clone large BB's. 1125 ++Size; 1126 1127 // We can only support instructions that do not define values that are 1128 // live outside of the current basic block. 1129 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1130 UI != E; ++UI) { 1131 Instruction *U = cast<Instruction>(*UI); 1132 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1133 } 1134 1135 // Looks ok, continue checking. 1136 } 1137 1138 return true; 1139 } 1140 1141 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1142 /// that is defined in the same block as the branch and if any PHI entries are 1143 /// constants, thread edges corresponding to that entry to be branches to their 1144 /// ultimate destination. 1145 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1146 BasicBlock *BB = BI->getParent(); 1147 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1148 // NOTE: we currently cannot transform this case if the PHI node is used 1149 // outside of the block. 1150 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1151 return false; 1152 1153 // Degenerate case of a single entry PHI. 1154 if (PN->getNumIncomingValues() == 1) { 1155 FoldSingleEntryPHINodes(PN->getParent()); 1156 return true; 1157 } 1158 1159 // Now we know that this block has multiple preds and two succs. 1160 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1161 1162 // Okay, this is a simple enough basic block. See if any phi values are 1163 // constants. 1164 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1165 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1166 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1167 1168 // Okay, we now know that all edges from PredBB should be revectored to 1169 // branch to RealDest. 1170 BasicBlock *PredBB = PN->getIncomingBlock(i); 1171 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1172 1173 if (RealDest == BB) continue; // Skip self loops. 1174 // Skip if the predecessor's terminator is an indirect branch. 1175 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1176 1177 // The dest block might have PHI nodes, other predecessors and other 1178 // difficult cases. Instead of being smart about this, just insert a new 1179 // block that jumps to the destination block, effectively splitting 1180 // the edge we are about to create. 1181 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1182 RealDest->getName()+".critedge", 1183 RealDest->getParent(), RealDest); 1184 BranchInst::Create(RealDest, EdgeBB); 1185 1186 // Update PHI nodes. 1187 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1188 1189 // BB may have instructions that are being threaded over. Clone these 1190 // instructions into EdgeBB. We know that there will be no uses of the 1191 // cloned instructions outside of EdgeBB. 1192 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1193 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1194 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1195 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1196 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1197 continue; 1198 } 1199 // Clone the instruction. 1200 Instruction *N = BBI->clone(); 1201 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1202 1203 // Update operands due to translation. 1204 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1205 i != e; ++i) { 1206 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1207 if (PI != TranslateMap.end()) 1208 *i = PI->second; 1209 } 1210 1211 // Check for trivial simplification. 1212 if (Value *V = SimplifyInstruction(N, TD)) { 1213 TranslateMap[BBI] = V; 1214 delete N; // Instruction folded away, don't need actual inst 1215 } else { 1216 // Insert the new instruction into its new home. 1217 EdgeBB->getInstList().insert(InsertPt, N); 1218 if (!BBI->use_empty()) 1219 TranslateMap[BBI] = N; 1220 } 1221 } 1222 1223 // Loop over all of the edges from PredBB to BB, changing them to branch 1224 // to EdgeBB instead. 1225 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1226 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1227 if (PredBBTI->getSuccessor(i) == BB) { 1228 BB->removePredecessor(PredBB); 1229 PredBBTI->setSuccessor(i, EdgeBB); 1230 } 1231 1232 // Recurse, simplifying any other constants. 1233 return FoldCondBranchOnPHI(BI, TD) | true; 1234 } 1235 1236 return false; 1237 } 1238 1239 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1240 /// PHI node, see if we can eliminate it. 1241 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1242 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1243 // statement", which has a very simple dominance structure. Basically, we 1244 // are trying to find the condition that is being branched on, which 1245 // subsequently causes this merge to happen. We really want control 1246 // dependence information for this check, but simplifycfg can't keep it up 1247 // to date, and this catches most of the cases we care about anyway. 1248 BasicBlock *BB = PN->getParent(); 1249 BasicBlock *IfTrue, *IfFalse; 1250 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1251 if (!IfCond || 1252 // Don't bother if the branch will be constant folded trivially. 1253 isa<ConstantInt>(IfCond)) 1254 return false; 1255 1256 // Okay, we found that we can merge this two-entry phi node into a select. 1257 // Doing so would require us to fold *all* two entry phi nodes in this block. 1258 // At some point this becomes non-profitable (particularly if the target 1259 // doesn't support cmov's). Only do this transformation if there are two or 1260 // fewer PHI nodes in this block. 1261 unsigned NumPhis = 0; 1262 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1263 if (NumPhis > 2) 1264 return false; 1265 1266 // Loop over the PHI's seeing if we can promote them all to select 1267 // instructions. While we are at it, keep track of the instructions 1268 // that need to be moved to the dominating block. 1269 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1270 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1271 MaxCostVal1 = PHINodeFoldingThreshold; 1272 1273 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1274 PHINode *PN = cast<PHINode>(II++); 1275 if (Value *V = SimplifyInstruction(PN, TD)) { 1276 PN->replaceAllUsesWith(V); 1277 PN->eraseFromParent(); 1278 continue; 1279 } 1280 1281 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1282 MaxCostVal0) || 1283 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1284 MaxCostVal1)) 1285 return false; 1286 } 1287 1288 // If we folded the the first phi, PN dangles at this point. Refresh it. If 1289 // we ran out of PHIs then we simplified them all. 1290 PN = dyn_cast<PHINode>(BB->begin()); 1291 if (PN == 0) return true; 1292 1293 // Don't fold i1 branches on PHIs which contain binary operators. These can 1294 // often be turned into switches and other things. 1295 if (PN->getType()->isIntegerTy(1) && 1296 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1297 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1298 isa<BinaryOperator>(IfCond))) 1299 return false; 1300 1301 // If we all PHI nodes are promotable, check to make sure that all 1302 // instructions in the predecessor blocks can be promoted as well. If 1303 // not, we won't be able to get rid of the control flow, so it's not 1304 // worth promoting to select instructions. 1305 BasicBlock *DomBlock = 0; 1306 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1307 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1308 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1309 IfBlock1 = 0; 1310 } else { 1311 DomBlock = *pred_begin(IfBlock1); 1312 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1313 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1314 // This is not an aggressive instruction that we can promote. 1315 // Because of this, we won't be able to get rid of the control 1316 // flow, so the xform is not worth it. 1317 return false; 1318 } 1319 } 1320 1321 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1322 IfBlock2 = 0; 1323 } else { 1324 DomBlock = *pred_begin(IfBlock2); 1325 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1326 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1327 // This is not an aggressive instruction that we can promote. 1328 // Because of this, we won't be able to get rid of the control 1329 // flow, so the xform is not worth it. 1330 return false; 1331 } 1332 } 1333 1334 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1335 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1336 1337 // If we can still promote the PHI nodes after this gauntlet of tests, 1338 // do all of the PHI's now. 1339 Instruction *InsertPt = DomBlock->getTerminator(); 1340 IRBuilder<true, NoFolder> Builder(InsertPt); 1341 1342 // Move all 'aggressive' instructions, which are defined in the 1343 // conditional parts of the if's up to the dominating block. 1344 if (IfBlock1) 1345 DomBlock->getInstList().splice(InsertPt, 1346 IfBlock1->getInstList(), IfBlock1->begin(), 1347 IfBlock1->getTerminator()); 1348 if (IfBlock2) 1349 DomBlock->getInstList().splice(InsertPt, 1350 IfBlock2->getInstList(), IfBlock2->begin(), 1351 IfBlock2->getTerminator()); 1352 1353 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1354 // Change the PHI node into a select instruction. 1355 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1356 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1357 1358 SelectInst *NV = 1359 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1360 PN->replaceAllUsesWith(NV); 1361 NV->takeName(PN); 1362 PN->eraseFromParent(); 1363 } 1364 1365 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1366 // has been flattened. Change DomBlock to jump directly to our new block to 1367 // avoid other simplifycfg's kicking in on the diamond. 1368 TerminatorInst *OldTI = DomBlock->getTerminator(); 1369 Builder.SetInsertPoint(OldTI); 1370 Builder.CreateBr(BB); 1371 OldTI->eraseFromParent(); 1372 return true; 1373 } 1374 1375 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1376 /// to two returning blocks, try to merge them together into one return, 1377 /// introducing a select if the return values disagree. 1378 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1379 IRBuilder<> &Builder) { 1380 assert(BI->isConditional() && "Must be a conditional branch"); 1381 BasicBlock *TrueSucc = BI->getSuccessor(0); 1382 BasicBlock *FalseSucc = BI->getSuccessor(1); 1383 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1384 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1385 1386 // Check to ensure both blocks are empty (just a return) or optionally empty 1387 // with PHI nodes. If there are other instructions, merging would cause extra 1388 // computation on one path or the other. 1389 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1390 return false; 1391 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1392 return false; 1393 1394 Builder.SetInsertPoint(BI); 1395 // Okay, we found a branch that is going to two return nodes. If 1396 // there is no return value for this function, just change the 1397 // branch into a return. 1398 if (FalseRet->getNumOperands() == 0) { 1399 TrueSucc->removePredecessor(BI->getParent()); 1400 FalseSucc->removePredecessor(BI->getParent()); 1401 Builder.CreateRetVoid(); 1402 EraseTerminatorInstAndDCECond(BI); 1403 return true; 1404 } 1405 1406 // Otherwise, figure out what the true and false return values are 1407 // so we can insert a new select instruction. 1408 Value *TrueValue = TrueRet->getReturnValue(); 1409 Value *FalseValue = FalseRet->getReturnValue(); 1410 1411 // Unwrap any PHI nodes in the return blocks. 1412 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1413 if (TVPN->getParent() == TrueSucc) 1414 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1415 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1416 if (FVPN->getParent() == FalseSucc) 1417 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1418 1419 // In order for this transformation to be safe, we must be able to 1420 // unconditionally execute both operands to the return. This is 1421 // normally the case, but we could have a potentially-trapping 1422 // constant expression that prevents this transformation from being 1423 // safe. 1424 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1425 if (TCV->canTrap()) 1426 return false; 1427 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1428 if (FCV->canTrap()) 1429 return false; 1430 1431 // Okay, we collected all the mapped values and checked them for sanity, and 1432 // defined to really do this transformation. First, update the CFG. 1433 TrueSucc->removePredecessor(BI->getParent()); 1434 FalseSucc->removePredecessor(BI->getParent()); 1435 1436 // Insert select instructions where needed. 1437 Value *BrCond = BI->getCondition(); 1438 if (TrueValue) { 1439 // Insert a select if the results differ. 1440 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1441 } else if (isa<UndefValue>(TrueValue)) { 1442 TrueValue = FalseValue; 1443 } else { 1444 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1445 FalseValue, "retval"); 1446 } 1447 } 1448 1449 Value *RI = !TrueValue ? 1450 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1451 1452 (void) RI; 1453 1454 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1455 << "\n " << *BI << "NewRet = " << *RI 1456 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1457 1458 EraseTerminatorInstAndDCECond(BI); 1459 1460 return true; 1461 } 1462 1463 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1464 /// predecessor branches to us and one of our successors, fold the block into 1465 /// the predecessor and use logical operations to pick the right destination. 1466 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1467 BasicBlock *BB = BI->getParent(); 1468 1469 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 1470 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1471 Cond->getParent() != BB || !Cond->hasOneUse()) 1472 return false; 1473 1474 // Only allow this if the condition is a simple instruction that can be 1475 // executed unconditionally. It must be in the same block as the branch, and 1476 // must be at the front of the block. 1477 BasicBlock::iterator FrontIt = BB->front(); 1478 1479 // Ignore dbg intrinsics. 1480 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1481 1482 // Allow a single instruction to be hoisted in addition to the compare 1483 // that feeds the branch. We later ensure that any values that _it_ uses 1484 // were also live in the predecessor, so that we don't unnecessarily create 1485 // register pressure or inhibit out-of-order execution. 1486 Instruction *BonusInst = 0; 1487 if (&*FrontIt != Cond && 1488 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1489 FrontIt->isSafeToSpeculativelyExecute()) { 1490 BonusInst = &*FrontIt; 1491 ++FrontIt; 1492 1493 // Ignore dbg intrinsics. 1494 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1495 } 1496 1497 // Only a single bonus inst is allowed. 1498 if (&*FrontIt != Cond) 1499 return false; 1500 1501 // Make sure the instruction after the condition is the cond branch. 1502 BasicBlock::iterator CondIt = Cond; ++CondIt; 1503 1504 // Ingore dbg intrinsics. 1505 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1506 1507 if (&*CondIt != BI) 1508 return false; 1509 1510 // Cond is known to be a compare or binary operator. Check to make sure that 1511 // neither operand is a potentially-trapping constant expression. 1512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1513 if (CE->canTrap()) 1514 return false; 1515 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1516 if (CE->canTrap()) 1517 return false; 1518 1519 // Finally, don't infinitely unroll conditional loops. 1520 BasicBlock *TrueDest = BI->getSuccessor(0); 1521 BasicBlock *FalseDest = BI->getSuccessor(1); 1522 if (TrueDest == BB || FalseDest == BB) 1523 return false; 1524 1525 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1526 BasicBlock *PredBlock = *PI; 1527 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1528 1529 // Check that we have two conditional branches. If there is a PHI node in 1530 // the common successor, verify that the same value flows in from both 1531 // blocks. 1532 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 1533 continue; 1534 1535 // Determine if the two branches share a common destination. 1536 Instruction::BinaryOps Opc; 1537 bool InvertPredCond = false; 1538 1539 if (PBI->getSuccessor(0) == TrueDest) 1540 Opc = Instruction::Or; 1541 else if (PBI->getSuccessor(1) == FalseDest) 1542 Opc = Instruction::And; 1543 else if (PBI->getSuccessor(0) == FalseDest) 1544 Opc = Instruction::And, InvertPredCond = true; 1545 else if (PBI->getSuccessor(1) == TrueDest) 1546 Opc = Instruction::Or, InvertPredCond = true; 1547 else 1548 continue; 1549 1550 // Ensure that any values used in the bonus instruction are also used 1551 // by the terminator of the predecessor. This means that those values 1552 // must already have been resolved, so we won't be inhibiting the 1553 // out-of-order core by speculating them earlier. 1554 if (BonusInst) { 1555 // Collect the values used by the bonus inst 1556 SmallPtrSet<Value*, 4> UsedValues; 1557 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1558 OE = BonusInst->op_end(); OI != OE; ++OI) { 1559 Value* V = *OI; 1560 if (!isa<Constant>(V)) 1561 UsedValues.insert(V); 1562 } 1563 1564 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 1565 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 1566 1567 // Walk up to four levels back up the use-def chain of the predecessor's 1568 // terminator to see if all those values were used. The choice of four 1569 // levels is arbitrary, to provide a compile-time-cost bound. 1570 while (!Worklist.empty()) { 1571 std::pair<Value*, unsigned> Pair = Worklist.back(); 1572 Worklist.pop_back(); 1573 1574 if (Pair.second >= 4) continue; 1575 UsedValues.erase(Pair.first); 1576 if (UsedValues.empty()) break; 1577 1578 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 1579 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 1580 OI != OE; ++OI) 1581 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 1582 } 1583 } 1584 1585 if (!UsedValues.empty()) return false; 1586 } 1587 1588 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 1589 IRBuilder<> Builder(PBI); 1590 1591 // If we need to invert the condition in the pred block to match, do so now. 1592 if (InvertPredCond) { 1593 Value *NewCond = PBI->getCondition(); 1594 1595 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 1596 CmpInst *CI = cast<CmpInst>(NewCond); 1597 CI->setPredicate(CI->getInversePredicate()); 1598 } else { 1599 NewCond = Builder.CreateNot(NewCond, 1600 PBI->getCondition()->getName()+".not"); 1601 } 1602 1603 PBI->setCondition(NewCond); 1604 BasicBlock *OldTrue = PBI->getSuccessor(0); 1605 BasicBlock *OldFalse = PBI->getSuccessor(1); 1606 PBI->setSuccessor(0, OldFalse); 1607 PBI->setSuccessor(1, OldTrue); 1608 } 1609 1610 // If we have a bonus inst, clone it into the predecessor block. 1611 Instruction *NewBonus = 0; 1612 if (BonusInst) { 1613 NewBonus = BonusInst->clone(); 1614 PredBlock->getInstList().insert(PBI, NewBonus); 1615 NewBonus->takeName(BonusInst); 1616 BonusInst->setName(BonusInst->getName()+".old"); 1617 } 1618 1619 // Clone Cond into the predecessor basic block, and or/and the 1620 // two conditions together. 1621 Instruction *New = Cond->clone(); 1622 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 1623 PredBlock->getInstList().insert(PBI, New); 1624 New->takeName(Cond); 1625 Cond->setName(New->getName()+".old"); 1626 1627 Instruction *NewCond = 1628 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 1629 New, "or.cond")); 1630 PBI->setCondition(NewCond); 1631 if (PBI->getSuccessor(0) == BB) { 1632 AddPredecessorToBlock(TrueDest, PredBlock, BB); 1633 PBI->setSuccessor(0, TrueDest); 1634 } 1635 if (PBI->getSuccessor(1) == BB) { 1636 AddPredecessorToBlock(FalseDest, PredBlock, BB); 1637 PBI->setSuccessor(1, FalseDest); 1638 } 1639 1640 // Copy any debug value intrinsics into the end of PredBlock. 1641 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1642 if (isa<DbgInfoIntrinsic>(*I)) 1643 I->clone()->insertBefore(PBI); 1644 1645 return true; 1646 } 1647 return false; 1648 } 1649 1650 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 1651 /// predecessor of another block, this function tries to simplify it. We know 1652 /// that PBI and BI are both conditional branches, and BI is in one of the 1653 /// successor blocks of PBI - PBI branches to BI. 1654 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 1655 assert(PBI->isConditional() && BI->isConditional()); 1656 BasicBlock *BB = BI->getParent(); 1657 1658 // If this block ends with a branch instruction, and if there is a 1659 // predecessor that ends on a branch of the same condition, make 1660 // this conditional branch redundant. 1661 if (PBI->getCondition() == BI->getCondition() && 1662 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1663 // Okay, the outcome of this conditional branch is statically 1664 // knowable. If this block had a single pred, handle specially. 1665 if (BB->getSinglePredecessor()) { 1666 // Turn this into a branch on constant. 1667 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1668 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1669 CondIsTrue)); 1670 return true; // Nuke the branch on constant. 1671 } 1672 1673 // Otherwise, if there are multiple predecessors, insert a PHI that merges 1674 // in the constant and simplify the block result. Subsequent passes of 1675 // simplifycfg will thread the block. 1676 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 1677 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 1678 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 1679 std::distance(PB, PE), 1680 BI->getCondition()->getName() + ".pr", 1681 BB->begin()); 1682 // Okay, we're going to insert the PHI node. Since PBI is not the only 1683 // predecessor, compute the PHI'd conditional value for all of the preds. 1684 // Any predecessor where the condition is not computable we keep symbolic. 1685 for (pred_iterator PI = PB; PI != PE; ++PI) { 1686 BasicBlock *P = *PI; 1687 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 1688 PBI != BI && PBI->isConditional() && 1689 PBI->getCondition() == BI->getCondition() && 1690 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1691 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1692 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1693 CondIsTrue), P); 1694 } else { 1695 NewPN->addIncoming(BI->getCondition(), P); 1696 } 1697 } 1698 1699 BI->setCondition(NewPN); 1700 return true; 1701 } 1702 } 1703 1704 // If this is a conditional branch in an empty block, and if any 1705 // predecessors is a conditional branch to one of our destinations, 1706 // fold the conditions into logical ops and one cond br. 1707 BasicBlock::iterator BBI = BB->begin(); 1708 // Ignore dbg intrinsics. 1709 while (isa<DbgInfoIntrinsic>(BBI)) 1710 ++BBI; 1711 if (&*BBI != BI) 1712 return false; 1713 1714 1715 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 1716 if (CE->canTrap()) 1717 return false; 1718 1719 int PBIOp, BIOp; 1720 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 1721 PBIOp = BIOp = 0; 1722 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 1723 PBIOp = 0, BIOp = 1; 1724 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 1725 PBIOp = 1, BIOp = 0; 1726 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 1727 PBIOp = BIOp = 1; 1728 else 1729 return false; 1730 1731 // Check to make sure that the other destination of this branch 1732 // isn't BB itself. If so, this is an infinite loop that will 1733 // keep getting unwound. 1734 if (PBI->getSuccessor(PBIOp) == BB) 1735 return false; 1736 1737 // Do not perform this transformation if it would require 1738 // insertion of a large number of select instructions. For targets 1739 // without predication/cmovs, this is a big pessimization. 1740 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 1741 1742 unsigned NumPhis = 0; 1743 for (BasicBlock::iterator II = CommonDest->begin(); 1744 isa<PHINode>(II); ++II, ++NumPhis) 1745 if (NumPhis > 2) // Disable this xform. 1746 return false; 1747 1748 // Finally, if everything is ok, fold the branches to logical ops. 1749 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 1750 1751 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 1752 << "AND: " << *BI->getParent()); 1753 1754 1755 // If OtherDest *is* BB, then BB is a basic block with a single conditional 1756 // branch in it, where one edge (OtherDest) goes back to itself but the other 1757 // exits. We don't *know* that the program avoids the infinite loop 1758 // (even though that seems likely). If we do this xform naively, we'll end up 1759 // recursively unpeeling the loop. Since we know that (after the xform is 1760 // done) that the block *is* infinite if reached, we just make it an obviously 1761 // infinite loop with no cond branch. 1762 if (OtherDest == BB) { 1763 // Insert it at the end of the function, because it's either code, 1764 // or it won't matter if it's hot. :) 1765 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 1766 "infloop", BB->getParent()); 1767 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1768 OtherDest = InfLoopBlock; 1769 } 1770 1771 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1772 1773 // BI may have other predecessors. Because of this, we leave 1774 // it alone, but modify PBI. 1775 1776 // Make sure we get to CommonDest on True&True directions. 1777 Value *PBICond = PBI->getCondition(); 1778 IRBuilder<true, NoFolder> Builder(PBI); 1779 if (PBIOp) 1780 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 1781 1782 Value *BICond = BI->getCondition(); 1783 if (BIOp) 1784 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 1785 1786 // Merge the conditions. 1787 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 1788 1789 // Modify PBI to branch on the new condition to the new dests. 1790 PBI->setCondition(Cond); 1791 PBI->setSuccessor(0, CommonDest); 1792 PBI->setSuccessor(1, OtherDest); 1793 1794 // OtherDest may have phi nodes. If so, add an entry from PBI's 1795 // block that are identical to the entries for BI's block. 1796 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 1797 1798 // We know that the CommonDest already had an edge from PBI to 1799 // it. If it has PHIs though, the PHIs may have different 1800 // entries for BB and PBI's BB. If so, insert a select to make 1801 // them agree. 1802 PHINode *PN; 1803 for (BasicBlock::iterator II = CommonDest->begin(); 1804 (PN = dyn_cast<PHINode>(II)); ++II) { 1805 Value *BIV = PN->getIncomingValueForBlock(BB); 1806 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 1807 Value *PBIV = PN->getIncomingValue(PBBIdx); 1808 if (BIV != PBIV) { 1809 // Insert a select in PBI to pick the right value. 1810 Value *NV = cast<SelectInst> 1811 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 1812 PN->setIncomingValue(PBBIdx, NV); 1813 } 1814 } 1815 1816 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 1817 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1818 1819 // This basic block is probably dead. We know it has at least 1820 // one fewer predecessor. 1821 return true; 1822 } 1823 1824 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 1825 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 1826 // Takes care of updating the successors and removing the old terminator. 1827 // Also makes sure not to introduce new successors by assuming that edges to 1828 // non-successor TrueBBs and FalseBBs aren't reachable. 1829 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 1830 BasicBlock *TrueBB, BasicBlock *FalseBB){ 1831 // Remove any superfluous successor edges from the CFG. 1832 // First, figure out which successors to preserve. 1833 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 1834 // successor. 1835 BasicBlock *KeepEdge1 = TrueBB; 1836 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 1837 1838 // Then remove the rest. 1839 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 1840 BasicBlock *Succ = OldTerm->getSuccessor(I); 1841 // Make sure only to keep exactly one copy of each edge. 1842 if (Succ == KeepEdge1) 1843 KeepEdge1 = 0; 1844 else if (Succ == KeepEdge2) 1845 KeepEdge2 = 0; 1846 else 1847 Succ->removePredecessor(OldTerm->getParent()); 1848 } 1849 1850 IRBuilder<> Builder(OldTerm); 1851 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 1852 1853 // Insert an appropriate new terminator. 1854 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 1855 if (TrueBB == FalseBB) 1856 // We were only looking for one successor, and it was present. 1857 // Create an unconditional branch to it. 1858 Builder.CreateBr(TrueBB); 1859 else 1860 // We found both of the successors we were looking for. 1861 // Create a conditional branch sharing the condition of the select. 1862 Builder.CreateCondBr(Cond, TrueBB, FalseBB); 1863 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 1864 // Neither of the selected blocks were successors, so this 1865 // terminator must be unreachable. 1866 new UnreachableInst(OldTerm->getContext(), OldTerm); 1867 } else { 1868 // One of the selected values was a successor, but the other wasn't. 1869 // Insert an unconditional branch to the one that was found; 1870 // the edge to the one that wasn't must be unreachable. 1871 if (KeepEdge1 == 0) 1872 // Only TrueBB was found. 1873 Builder.CreateBr(TrueBB); 1874 else 1875 // Only FalseBB was found. 1876 Builder.CreateBr(FalseBB); 1877 } 1878 1879 EraseTerminatorInstAndDCECond(OldTerm); 1880 return true; 1881 } 1882 1883 // SimplifySwitchOnSelect - Replaces 1884 // (switch (select cond, X, Y)) on constant X, Y 1885 // with a branch - conditional if X and Y lead to distinct BBs, 1886 // unconditional otherwise. 1887 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 1888 // Check for constant integer values in the select. 1889 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 1890 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 1891 if (!TrueVal || !FalseVal) 1892 return false; 1893 1894 // Find the relevant condition and destinations. 1895 Value *Condition = Select->getCondition(); 1896 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal)); 1897 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal)); 1898 1899 // Perform the actual simplification. 1900 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB); 1901 } 1902 1903 // SimplifyIndirectBrOnSelect - Replaces 1904 // (indirectbr (select cond, blockaddress(@fn, BlockA), 1905 // blockaddress(@fn, BlockB))) 1906 // with 1907 // (br cond, BlockA, BlockB). 1908 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 1909 // Check that both operands of the select are block addresses. 1910 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 1911 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 1912 if (!TBA || !FBA) 1913 return false; 1914 1915 // Extract the actual blocks. 1916 BasicBlock *TrueBB = TBA->getBasicBlock(); 1917 BasicBlock *FalseBB = FBA->getBasicBlock(); 1918 1919 // Perform the actual simplification. 1920 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB); 1921 } 1922 1923 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 1924 /// instruction (a seteq/setne with a constant) as the only instruction in a 1925 /// block that ends with an uncond branch. We are looking for a very specific 1926 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 1927 /// this case, we merge the first two "or's of icmp" into a switch, but then the 1928 /// default value goes to an uncond block with a seteq in it, we get something 1929 /// like: 1930 /// 1931 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 1932 /// DEFAULT: 1933 /// %tmp = icmp eq i8 %A, 92 1934 /// br label %end 1935 /// end: 1936 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 1937 /// 1938 /// We prefer to split the edge to 'end' so that there is a true/false entry to 1939 /// the PHI, merging the third icmp into the switch. 1940 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 1941 const TargetData *TD, 1942 IRBuilder<> &Builder) { 1943 BasicBlock *BB = ICI->getParent(); 1944 1945 // If the block has any PHIs in it or the icmp has multiple uses, it is too 1946 // complex. 1947 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 1948 1949 Value *V = ICI->getOperand(0); 1950 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 1951 1952 // The pattern we're looking for is where our only predecessor is a switch on 1953 // 'V' and this block is the default case for the switch. In this case we can 1954 // fold the compared value into the switch to simplify things. 1955 BasicBlock *Pred = BB->getSinglePredecessor(); 1956 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 1957 1958 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 1959 if (SI->getCondition() != V) 1960 return false; 1961 1962 // If BB is reachable on a non-default case, then we simply know the value of 1963 // V in this block. Substitute it and constant fold the icmp instruction 1964 // away. 1965 if (SI->getDefaultDest() != BB) { 1966 ConstantInt *VVal = SI->findCaseDest(BB); 1967 assert(VVal && "Should have a unique destination value"); 1968 ICI->setOperand(0, VVal); 1969 1970 if (Value *V = SimplifyInstruction(ICI, TD)) { 1971 ICI->replaceAllUsesWith(V); 1972 ICI->eraseFromParent(); 1973 } 1974 // BB is now empty, so it is likely to simplify away. 1975 return SimplifyCFG(BB) | true; 1976 } 1977 1978 // Ok, the block is reachable from the default dest. If the constant we're 1979 // comparing exists in one of the other edges, then we can constant fold ICI 1980 // and zap it. 1981 if (SI->findCaseValue(Cst) != 0) { 1982 Value *V; 1983 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1984 V = ConstantInt::getFalse(BB->getContext()); 1985 else 1986 V = ConstantInt::getTrue(BB->getContext()); 1987 1988 ICI->replaceAllUsesWith(V); 1989 ICI->eraseFromParent(); 1990 // BB is now empty, so it is likely to simplify away. 1991 return SimplifyCFG(BB) | true; 1992 } 1993 1994 // The use of the icmp has to be in the 'end' block, by the only PHI node in 1995 // the block. 1996 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 1997 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 1998 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 1999 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2000 return false; 2001 2002 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2003 // true in the PHI. 2004 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2005 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2006 2007 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2008 std::swap(DefaultCst, NewCst); 2009 2010 // Replace ICI (which is used by the PHI for the default value) with true or 2011 // false depending on if it is EQ or NE. 2012 ICI->replaceAllUsesWith(DefaultCst); 2013 ICI->eraseFromParent(); 2014 2015 // Okay, the switch goes to this block on a default value. Add an edge from 2016 // the switch to the merge point on the compared value. 2017 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2018 BB->getParent(), BB); 2019 SI->addCase(Cst, NewBB); 2020 2021 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2022 Builder.SetInsertPoint(NewBB); 2023 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2024 Builder.CreateBr(SuccBlock); 2025 PHIUse->addIncoming(NewCst, NewBB); 2026 return true; 2027 } 2028 2029 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2030 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2031 /// fold it into a switch instruction if so. 2032 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, 2033 IRBuilder<> &Builder) { 2034 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2035 if (Cond == 0) return false; 2036 2037 2038 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2039 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2040 // 'setne's and'ed together, collect them. 2041 Value *CompVal = 0; 2042 std::vector<ConstantInt*> Values; 2043 bool TrueWhenEqual = true; 2044 Value *ExtraCase = 0; 2045 unsigned UsedICmps = 0; 2046 2047 if (Cond->getOpcode() == Instruction::Or) { 2048 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2049 UsedICmps); 2050 } else if (Cond->getOpcode() == Instruction::And) { 2051 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2052 UsedICmps); 2053 TrueWhenEqual = false; 2054 } 2055 2056 // If we didn't have a multiply compared value, fail. 2057 if (CompVal == 0) return false; 2058 2059 // Avoid turning single icmps into a switch. 2060 if (UsedICmps <= 1) 2061 return false; 2062 2063 // There might be duplicate constants in the list, which the switch 2064 // instruction can't handle, remove them now. 2065 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2066 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2067 2068 // If Extra was used, we require at least two switch values to do the 2069 // transformation. A switch with one value is just an cond branch. 2070 if (ExtraCase && Values.size() < 2) return false; 2071 2072 // Figure out which block is which destination. 2073 BasicBlock *DefaultBB = BI->getSuccessor(1); 2074 BasicBlock *EdgeBB = BI->getSuccessor(0); 2075 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2076 2077 BasicBlock *BB = BI->getParent(); 2078 2079 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2080 << " cases into SWITCH. BB is:\n" << *BB); 2081 2082 // If there are any extra values that couldn't be folded into the switch 2083 // then we evaluate them with an explicit branch first. Split the block 2084 // right before the condbr to handle it. 2085 if (ExtraCase) { 2086 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2087 // Remove the uncond branch added to the old block. 2088 TerminatorInst *OldTI = BB->getTerminator(); 2089 Builder.SetInsertPoint(OldTI); 2090 2091 if (TrueWhenEqual) 2092 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2093 else 2094 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2095 2096 OldTI->eraseFromParent(); 2097 2098 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2099 // for the edge we just added. 2100 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2101 2102 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2103 << "\nEXTRABB = " << *BB); 2104 BB = NewBB; 2105 } 2106 2107 Builder.SetInsertPoint(BI); 2108 // Convert pointer to int before we switch. 2109 if (CompVal->getType()->isPointerTy()) { 2110 assert(TD && "Cannot switch on pointer without TargetData"); 2111 CompVal = Builder.CreatePtrToInt(CompVal, 2112 TD->getIntPtrType(CompVal->getContext()), 2113 "magicptr"); 2114 } 2115 2116 // Create the new switch instruction now. 2117 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2118 2119 // Add all of the 'cases' to the switch instruction. 2120 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2121 New->addCase(Values[i], EdgeBB); 2122 2123 // We added edges from PI to the EdgeBB. As such, if there were any 2124 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2125 // the number of edges added. 2126 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2127 isa<PHINode>(BBI); ++BBI) { 2128 PHINode *PN = cast<PHINode>(BBI); 2129 Value *InVal = PN->getIncomingValueForBlock(BB); 2130 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2131 PN->addIncoming(InVal, BB); 2132 } 2133 2134 // Erase the old branch instruction. 2135 EraseTerminatorInstAndDCECond(BI); 2136 2137 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2138 return true; 2139 } 2140 2141 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2142 BasicBlock *BB = RI->getParent(); 2143 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2144 2145 // Find predecessors that end with branches. 2146 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2147 SmallVector<BranchInst*, 8> CondBranchPreds; 2148 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2149 BasicBlock *P = *PI; 2150 TerminatorInst *PTI = P->getTerminator(); 2151 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2152 if (BI->isUnconditional()) 2153 UncondBranchPreds.push_back(P); 2154 else 2155 CondBranchPreds.push_back(BI); 2156 } 2157 } 2158 2159 // If we found some, do the transformation! 2160 if (!UncondBranchPreds.empty() && DupRet) { 2161 while (!UncondBranchPreds.empty()) { 2162 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2163 DEBUG(dbgs() << "FOLDING: " << *BB 2164 << "INTO UNCOND BRANCH PRED: " << *Pred); 2165 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2166 } 2167 2168 // If we eliminated all predecessors of the block, delete the block now. 2169 if (pred_begin(BB) == pred_end(BB)) 2170 // We know there are no successors, so just nuke the block. 2171 BB->eraseFromParent(); 2172 2173 return true; 2174 } 2175 2176 // Check out all of the conditional branches going to this return 2177 // instruction. If any of them just select between returns, change the 2178 // branch itself into a select/return pair. 2179 while (!CondBranchPreds.empty()) { 2180 BranchInst *BI = CondBranchPreds.pop_back_val(); 2181 2182 // Check to see if the non-BB successor is also a return block. 2183 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2184 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2185 SimplifyCondBranchToTwoReturns(BI, Builder)) 2186 return true; 2187 } 2188 return false; 2189 } 2190 2191 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) { 2192 // Check to see if the first instruction in this block is just an unwind. 2193 // If so, replace any invoke instructions which use this as an exception 2194 // destination with call instructions. 2195 BasicBlock *BB = UI->getParent(); 2196 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2197 2198 bool Changed = false; 2199 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2200 while (!Preds.empty()) { 2201 BasicBlock *Pred = Preds.back(); 2202 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()); 2203 if (II && II->getUnwindDest() == BB) { 2204 // Insert a new branch instruction before the invoke, because this 2205 // is now a fall through. 2206 Builder.SetInsertPoint(II); 2207 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2208 Pred->getInstList().remove(II); // Take out of symbol table 2209 2210 // Insert the call now. 2211 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); 2212 Builder.SetInsertPoint(BI); 2213 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2214 Args, II->getName()); 2215 CI->setCallingConv(II->getCallingConv()); 2216 CI->setAttributes(II->getAttributes()); 2217 // If the invoke produced a value, the Call now does instead. 2218 II->replaceAllUsesWith(CI); 2219 delete II; 2220 Changed = true; 2221 } 2222 2223 Preds.pop_back(); 2224 } 2225 2226 // If this block is now dead (and isn't the entry block), remove it. 2227 if (pred_begin(BB) == pred_end(BB) && 2228 BB != &BB->getParent()->getEntryBlock()) { 2229 // We know there are no successors, so just nuke the block. 2230 BB->eraseFromParent(); 2231 return true; 2232 } 2233 2234 return Changed; 2235 } 2236 2237 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2238 BasicBlock *BB = UI->getParent(); 2239 2240 bool Changed = false; 2241 2242 // If there are any instructions immediately before the unreachable that can 2243 // be removed, do so. 2244 while (UI != BB->begin()) { 2245 BasicBlock::iterator BBI = UI; 2246 --BBI; 2247 // Do not delete instructions that can have side effects, like calls 2248 // (which may never return) and volatile loads and stores. 2249 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2250 2251 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) 2252 if (SI->isVolatile()) 2253 break; 2254 2255 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) 2256 if (LI->isVolatile()) 2257 break; 2258 2259 // Delete this instruction (any uses are guaranteed to be dead) 2260 if (!BBI->use_empty()) 2261 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2262 BBI->eraseFromParent(); 2263 Changed = true; 2264 } 2265 2266 // If the unreachable instruction is the first in the block, take a gander 2267 // at all of the predecessors of this instruction, and simplify them. 2268 if (&BB->front() != UI) return Changed; 2269 2270 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2271 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2272 TerminatorInst *TI = Preds[i]->getTerminator(); 2273 IRBuilder<> Builder(TI); 2274 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2275 if (BI->isUnconditional()) { 2276 if (BI->getSuccessor(0) == BB) { 2277 new UnreachableInst(TI->getContext(), TI); 2278 TI->eraseFromParent(); 2279 Changed = true; 2280 } 2281 } else { 2282 if (BI->getSuccessor(0) == BB) { 2283 Builder.CreateBr(BI->getSuccessor(1)); 2284 EraseTerminatorInstAndDCECond(BI); 2285 } else if (BI->getSuccessor(1) == BB) { 2286 Builder.CreateBr(BI->getSuccessor(0)); 2287 EraseTerminatorInstAndDCECond(BI); 2288 Changed = true; 2289 } 2290 } 2291 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2292 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2293 if (SI->getSuccessor(i) == BB) { 2294 BB->removePredecessor(SI->getParent()); 2295 SI->removeCase(i); 2296 --i; --e; 2297 Changed = true; 2298 } 2299 // If the default value is unreachable, figure out the most popular 2300 // destination and make it the default. 2301 if (SI->getSuccessor(0) == BB) { 2302 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2303 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { 2304 std::pair<unsigned, unsigned>& entry = 2305 Popularity[SI->getSuccessor(i)]; 2306 if (entry.first == 0) { 2307 entry.first = 1; 2308 entry.second = i; 2309 } else { 2310 entry.first++; 2311 } 2312 } 2313 2314 // Find the most popular block. 2315 unsigned MaxPop = 0; 2316 unsigned MaxIndex = 0; 2317 BasicBlock *MaxBlock = 0; 2318 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2319 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2320 if (I->second.first > MaxPop || 2321 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2322 MaxPop = I->second.first; 2323 MaxIndex = I->second.second; 2324 MaxBlock = I->first; 2325 } 2326 } 2327 if (MaxBlock) { 2328 // Make this the new default, allowing us to delete any explicit 2329 // edges to it. 2330 SI->setSuccessor(0, MaxBlock); 2331 Changed = true; 2332 2333 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2334 // it. 2335 if (isa<PHINode>(MaxBlock->begin())) 2336 for (unsigned i = 0; i != MaxPop-1; ++i) 2337 MaxBlock->removePredecessor(SI->getParent()); 2338 2339 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2340 if (SI->getSuccessor(i) == MaxBlock) { 2341 SI->removeCase(i); 2342 --i; --e; 2343 } 2344 } 2345 } 2346 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2347 if (II->getUnwindDest() == BB) { 2348 // Convert the invoke to a call instruction. This would be a good 2349 // place to note that the call does not throw though. 2350 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2351 II->removeFromParent(); // Take out of symbol table 2352 2353 // Insert the call now... 2354 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2355 Builder.SetInsertPoint(BI); 2356 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2357 Args, II->getName()); 2358 CI->setCallingConv(II->getCallingConv()); 2359 CI->setAttributes(II->getAttributes()); 2360 // If the invoke produced a value, the call does now instead. 2361 II->replaceAllUsesWith(CI); 2362 delete II; 2363 Changed = true; 2364 } 2365 } 2366 } 2367 2368 // If this block is now dead, remove it. 2369 if (pred_begin(BB) == pred_end(BB) && 2370 BB != &BB->getParent()->getEntryBlock()) { 2371 // We know there are no successors, so just nuke the block. 2372 BB->eraseFromParent(); 2373 return true; 2374 } 2375 2376 return Changed; 2377 } 2378 2379 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2380 /// integer range comparison into a sub, an icmp and a branch. 2381 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 2382 assert(SI->getNumCases() > 2 && "Degenerate switch?"); 2383 2384 // Make sure all cases point to the same destination and gather the values. 2385 SmallVector<ConstantInt *, 16> Cases; 2386 Cases.push_back(SI->getCaseValue(1)); 2387 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) { 2388 if (SI->getSuccessor(I-1) != SI->getSuccessor(I)) 2389 return false; 2390 Cases.push_back(SI->getCaseValue(I)); 2391 } 2392 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered"); 2393 2394 // Sort the case values, then check if they form a range we can transform. 2395 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 2396 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 2397 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 2398 return false; 2399 } 2400 2401 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 2402 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1); 2403 2404 Value *Sub = SI->getCondition(); 2405 if (!Offset->isNullValue()) 2406 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 2407 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 2408 Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest()); 2409 2410 // Prune obsolete incoming values off the successor's PHI nodes. 2411 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin(); 2412 isa<PHINode>(BBI); ++BBI) { 2413 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I) 2414 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 2415 } 2416 SI->eraseFromParent(); 2417 2418 return true; 2419 } 2420 2421 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 2422 /// and use it to remove dead cases. 2423 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 2424 Value *Cond = SI->getCondition(); 2425 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 2426 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 2427 ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne); 2428 2429 // Gather dead cases. 2430 SmallVector<ConstantInt*, 8> DeadCases; 2431 for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) { 2432 if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 || 2433 (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) { 2434 DeadCases.push_back(SI->getCaseValue(I)); 2435 DEBUG(dbgs() << "SimplifyCFG: switch case '" 2436 << SI->getCaseValue(I)->getValue() << "' is dead.\n"); 2437 } 2438 } 2439 2440 // Remove dead cases from the switch. 2441 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 2442 unsigned Case = SI->findCaseValue(DeadCases[I]); 2443 // Prune unused values from PHI nodes. 2444 SI->getSuccessor(Case)->removePredecessor(SI->getParent()); 2445 SI->removeCase(Case); 2446 } 2447 2448 return !DeadCases.empty(); 2449 } 2450 2451 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 2452 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 2453 /// by an unconditional branch), look at the phi node for BB in the successor 2454 /// block and see if the incoming value is equal to CaseValue. If so, return 2455 /// the phi node, and set PhiIndex to BB's index in the phi node. 2456 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 2457 BasicBlock *BB, 2458 int *PhiIndex) { 2459 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 2460 return NULL; // BB must be empty to be a candidate for simplification. 2461 if (!BB->getSinglePredecessor()) 2462 return NULL; // BB must be dominated by the switch. 2463 2464 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 2465 if (!Branch || !Branch->isUnconditional()) 2466 return NULL; // Terminator must be unconditional branch. 2467 2468 BasicBlock *Succ = Branch->getSuccessor(0); 2469 2470 BasicBlock::iterator I = Succ->begin(); 2471 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 2472 int Idx = PHI->getBasicBlockIndex(BB); 2473 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 2474 2475 Value *InValue = PHI->getIncomingValue(Idx); 2476 if (InValue != CaseValue) continue; 2477 2478 *PhiIndex = Idx; 2479 return PHI; 2480 } 2481 2482 return NULL; 2483 } 2484 2485 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 2486 /// instruction to a phi node dominated by the switch, if that would mean that 2487 /// some of the destination blocks of the switch can be folded away. 2488 /// Returns true if a change is made. 2489 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 2490 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 2491 ForwardingNodesMap ForwardingNodes; 2492 2493 for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case. 2494 ConstantInt *CaseValue = SI->getCaseValue(I); 2495 BasicBlock *CaseDest = SI->getSuccessor(I); 2496 2497 int PhiIndex; 2498 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 2499 &PhiIndex); 2500 if (!PHI) continue; 2501 2502 ForwardingNodes[PHI].push_back(PhiIndex); 2503 } 2504 2505 bool Changed = false; 2506 2507 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 2508 E = ForwardingNodes.end(); I != E; ++I) { 2509 PHINode *Phi = I->first; 2510 SmallVector<int,4> &Indexes = I->second; 2511 2512 if (Indexes.size() < 2) continue; 2513 2514 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 2515 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 2516 Changed = true; 2517 } 2518 2519 return Changed; 2520 } 2521 2522 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 2523 // If this switch is too complex to want to look at, ignore it. 2524 if (!isValueEqualityComparison(SI)) 2525 return false; 2526 2527 BasicBlock *BB = SI->getParent(); 2528 2529 // If we only have one predecessor, and if it is a branch on this value, 2530 // see if that predecessor totally determines the outcome of this switch. 2531 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2532 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 2533 return SimplifyCFG(BB) | true; 2534 2535 Value *Cond = SI->getCondition(); 2536 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 2537 if (SimplifySwitchOnSelect(SI, Select)) 2538 return SimplifyCFG(BB) | true; 2539 2540 // If the block only contains the switch, see if we can fold the block 2541 // away into any preds. 2542 BasicBlock::iterator BBI = BB->begin(); 2543 // Ignore dbg intrinsics. 2544 while (isa<DbgInfoIntrinsic>(BBI)) 2545 ++BBI; 2546 if (SI == &*BBI) 2547 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 2548 return SimplifyCFG(BB) | true; 2549 2550 // Try to transform the switch into an icmp and a branch. 2551 if (TurnSwitchRangeIntoICmp(SI, Builder)) 2552 return SimplifyCFG(BB) | true; 2553 2554 // Remove unreachable cases. 2555 if (EliminateDeadSwitchCases(SI)) 2556 return SimplifyCFG(BB) | true; 2557 2558 if (ForwardSwitchConditionToPHI(SI)) 2559 return SimplifyCFG(BB) | true; 2560 2561 return false; 2562 } 2563 2564 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 2565 BasicBlock *BB = IBI->getParent(); 2566 bool Changed = false; 2567 2568 // Eliminate redundant destinations. 2569 SmallPtrSet<Value *, 8> Succs; 2570 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 2571 BasicBlock *Dest = IBI->getDestination(i); 2572 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 2573 Dest->removePredecessor(BB); 2574 IBI->removeDestination(i); 2575 --i; --e; 2576 Changed = true; 2577 } 2578 } 2579 2580 if (IBI->getNumDestinations() == 0) { 2581 // If the indirectbr has no successors, change it to unreachable. 2582 new UnreachableInst(IBI->getContext(), IBI); 2583 EraseTerminatorInstAndDCECond(IBI); 2584 return true; 2585 } 2586 2587 if (IBI->getNumDestinations() == 1) { 2588 // If the indirectbr has one successor, change it to a direct branch. 2589 BranchInst::Create(IBI->getDestination(0), IBI); 2590 EraseTerminatorInstAndDCECond(IBI); 2591 return true; 2592 } 2593 2594 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 2595 if (SimplifyIndirectBrOnSelect(IBI, SI)) 2596 return SimplifyCFG(BB) | true; 2597 } 2598 return Changed; 2599 } 2600 2601 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 2602 BasicBlock *BB = BI->getParent(); 2603 2604 // If the Terminator is the only non-phi instruction, simplify the block. 2605 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 2606 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 2607 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 2608 return true; 2609 2610 // If the only instruction in the block is a seteq/setne comparison 2611 // against a constant, try to simplify the block. 2612 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 2613 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 2614 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 2615 ; 2616 if (I->isTerminator() 2617 && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 2618 return true; 2619 } 2620 2621 return false; 2622 } 2623 2624 2625 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 2626 BasicBlock *BB = BI->getParent(); 2627 2628 // Conditional branch 2629 if (isValueEqualityComparison(BI)) { 2630 // If we only have one predecessor, and if it is a branch on this value, 2631 // see if that predecessor totally determines the outcome of this 2632 // switch. 2633 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2634 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 2635 return SimplifyCFG(BB) | true; 2636 2637 // This block must be empty, except for the setcond inst, if it exists. 2638 // Ignore dbg intrinsics. 2639 BasicBlock::iterator I = BB->begin(); 2640 // Ignore dbg intrinsics. 2641 while (isa<DbgInfoIntrinsic>(I)) 2642 ++I; 2643 if (&*I == BI) { 2644 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 2645 return SimplifyCFG(BB) | true; 2646 } else if (&*I == cast<Instruction>(BI->getCondition())){ 2647 ++I; 2648 // Ignore dbg intrinsics. 2649 while (isa<DbgInfoIntrinsic>(I)) 2650 ++I; 2651 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 2652 return SimplifyCFG(BB) | true; 2653 } 2654 } 2655 2656 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 2657 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 2658 return true; 2659 2660 // We have a conditional branch to two blocks that are only reachable 2661 // from BI. We know that the condbr dominates the two blocks, so see if 2662 // there is any identical code in the "then" and "else" blocks. If so, we 2663 // can hoist it up to the branching block. 2664 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 2665 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2666 if (HoistThenElseCodeToIf(BI)) 2667 return SimplifyCFG(BB) | true; 2668 } else { 2669 // If Successor #1 has multiple preds, we may be able to conditionally 2670 // execute Successor #0 if it branches to successor #1. 2671 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 2672 if (Succ0TI->getNumSuccessors() == 1 && 2673 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 2674 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 2675 return SimplifyCFG(BB) | true; 2676 } 2677 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2678 // If Successor #0 has multiple preds, we may be able to conditionally 2679 // execute Successor #1 if it branches to successor #0. 2680 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 2681 if (Succ1TI->getNumSuccessors() == 1 && 2682 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 2683 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 2684 return SimplifyCFG(BB) | true; 2685 } 2686 2687 // If this is a branch on a phi node in the current block, thread control 2688 // through this block if any PHI node entries are constants. 2689 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 2690 if (PN->getParent() == BI->getParent()) 2691 if (FoldCondBranchOnPHI(BI, TD)) 2692 return SimplifyCFG(BB) | true; 2693 2694 // If this basic block is ONLY a setcc and a branch, and if a predecessor 2695 // branches to us and one of our successors, fold the setcc into the 2696 // predecessor and use logical operations to pick the right destination. 2697 if (FoldBranchToCommonDest(BI)) 2698 return SimplifyCFG(BB) | true; 2699 2700 // Scan predecessor blocks for conditional branches. 2701 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2702 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 2703 if (PBI != BI && PBI->isConditional()) 2704 if (SimplifyCondBranchToCondBranch(PBI, BI)) 2705 return SimplifyCFG(BB) | true; 2706 2707 return false; 2708 } 2709 2710 bool SimplifyCFGOpt::run(BasicBlock *BB) { 2711 bool Changed = false; 2712 2713 assert(BB && BB->getParent() && "Block not embedded in function!"); 2714 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 2715 2716 // Remove basic blocks that have no predecessors (except the entry block)... 2717 // or that just have themself as a predecessor. These are unreachable. 2718 if ((pred_begin(BB) == pred_end(BB) && 2719 BB != &BB->getParent()->getEntryBlock()) || 2720 BB->getSinglePredecessor() == BB) { 2721 DEBUG(dbgs() << "Removing BB: \n" << *BB); 2722 DeleteDeadBlock(BB); 2723 return true; 2724 } 2725 2726 // Check to see if we can constant propagate this terminator instruction 2727 // away... 2728 Changed |= ConstantFoldTerminator(BB, true); 2729 2730 // Check for and eliminate duplicate PHI nodes in this block. 2731 Changed |= EliminateDuplicatePHINodes(BB); 2732 2733 // Merge basic blocks into their predecessor if there is only one distinct 2734 // pred, and if there is only one distinct successor of the predecessor, and 2735 // if there are no PHI nodes. 2736 // 2737 if (MergeBlockIntoPredecessor(BB)) 2738 return true; 2739 2740 IRBuilder<> Builder(BB); 2741 2742 // If there is a trivial two-entry PHI node in this basic block, and we can 2743 // eliminate it, do so now. 2744 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 2745 if (PN->getNumIncomingValues() == 2) 2746 Changed |= FoldTwoEntryPHINode(PN, TD); 2747 2748 Builder.SetInsertPoint(BB->getTerminator()); 2749 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2750 if (BI->isUnconditional()) { 2751 if (SimplifyUncondBranch(BI, Builder)) return true; 2752 } else { 2753 if (SimplifyCondBranch(BI, Builder)) return true; 2754 } 2755 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 2756 if (SimplifyReturn(RI, Builder)) return true; 2757 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2758 if (SimplifySwitch(SI, Builder)) return true; 2759 } else if (UnreachableInst *UI = 2760 dyn_cast<UnreachableInst>(BB->getTerminator())) { 2761 if (SimplifyUnreachable(UI)) return true; 2762 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 2763 if (SimplifyUnwind(UI, Builder)) return true; 2764 } else if (IndirectBrInst *IBI = 2765 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 2766 if (SimplifyIndirectBr(IBI)) return true; 2767 } 2768 2769 return Changed; 2770 } 2771 2772 /// SimplifyCFG - This function is used to do simplification of a CFG. For 2773 /// example, it adjusts branches to branches to eliminate the extra hop, it 2774 /// eliminates unreachable basic blocks, and does other "peephole" optimization 2775 /// of the CFG. It returns true if a modification was made. 2776 /// 2777 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 2778 return SimplifyCFGOpt(TD).run(BB); 2779 } 2780