Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "simplifycfg"
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/Type.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/Support/CFG.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ConstantRange.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/IRBuilder.h"
     36 #include "llvm/Support/NoFolder.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 #include <set>
     40 #include <map>
     41 using namespace llvm;
     42 
     43 static cl::opt<unsigned>
     44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     45    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     46 
     47 static cl::opt<bool>
     48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     49        cl::desc("Duplicate return instructions into unconditional branches"));
     50 
     51 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     52 
     53 namespace {
     54 class SimplifyCFGOpt {
     55   const TargetData *const TD;
     56 
     57   Value *isValueEqualityComparison(TerminatorInst *TI);
     58   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     59     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
     60   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
     61                                                      BasicBlock *Pred,
     62                                                      IRBuilder<> &Builder);
     63   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
     64                                            IRBuilder<> &Builder);
     65 
     66   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
     67   bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
     68   bool SimplifyUnreachable(UnreachableInst *UI);
     69   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
     70   bool SimplifyIndirectBr(IndirectBrInst *IBI);
     71   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
     72   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
     73 
     74 public:
     75   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
     76   bool run(BasicBlock *BB);
     77 };
     78 }
     79 
     80 /// SafeToMergeTerminators - Return true if it is safe to merge these two
     81 /// terminator instructions together.
     82 ///
     83 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
     84   if (SI1 == SI2) return false;  // Can't merge with self!
     85 
     86   // It is not safe to merge these two switch instructions if they have a common
     87   // successor, and if that successor has a PHI node, and if *that* PHI node has
     88   // conflicting incoming values from the two switch blocks.
     89   BasicBlock *SI1BB = SI1->getParent();
     90   BasicBlock *SI2BB = SI2->getParent();
     91   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
     92 
     93   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
     94     if (SI1Succs.count(*I))
     95       for (BasicBlock::iterator BBI = (*I)->begin();
     96            isa<PHINode>(BBI); ++BBI) {
     97         PHINode *PN = cast<PHINode>(BBI);
     98         if (PN->getIncomingValueForBlock(SI1BB) !=
     99             PN->getIncomingValueForBlock(SI2BB))
    100           return false;
    101       }
    102 
    103   return true;
    104 }
    105 
    106 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    107 /// now be entries in it from the 'NewPred' block.  The values that will be
    108 /// flowing into the PHI nodes will be the same as those coming in from
    109 /// ExistPred, an existing predecessor of Succ.
    110 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    111                                   BasicBlock *ExistPred) {
    112   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    113 
    114   PHINode *PN;
    115   for (BasicBlock::iterator I = Succ->begin();
    116        (PN = dyn_cast<PHINode>(I)); ++I)
    117     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    118 }
    119 
    120 
    121 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
    122 /// least one PHI node in it), check to see if the merge at this block is due
    123 /// to an "if condition".  If so, return the boolean condition that determines
    124 /// which entry into BB will be taken.  Also, return by references the block
    125 /// that will be entered from if the condition is true, and the block that will
    126 /// be entered if the condition is false.
    127 ///
    128 /// This does no checking to see if the true/false blocks have large or unsavory
    129 /// instructions in them.
    130 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    131                              BasicBlock *&IfFalse) {
    132   PHINode *SomePHI = cast<PHINode>(BB->begin());
    133   assert(SomePHI->getNumIncomingValues() == 2 &&
    134          "Function can only handle blocks with 2 predecessors!");
    135   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
    136   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
    137 
    138   // We can only handle branches.  Other control flow will be lowered to
    139   // branches if possible anyway.
    140   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    141   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    142   if (Pred1Br == 0 || Pred2Br == 0)
    143     return 0;
    144 
    145   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    146   // either are.
    147   if (Pred2Br->isConditional()) {
    148     // If both branches are conditional, we don't have an "if statement".  In
    149     // reality, we could transform this case, but since the condition will be
    150     // required anyway, we stand no chance of eliminating it, so the xform is
    151     // probably not profitable.
    152     if (Pred1Br->isConditional())
    153       return 0;
    154 
    155     std::swap(Pred1, Pred2);
    156     std::swap(Pred1Br, Pred2Br);
    157   }
    158 
    159   if (Pred1Br->isConditional()) {
    160     // The only thing we have to watch out for here is to make sure that Pred2
    161     // doesn't have incoming edges from other blocks.  If it does, the condition
    162     // doesn't dominate BB.
    163     if (Pred2->getSinglePredecessor() == 0)
    164       return 0;
    165 
    166     // If we found a conditional branch predecessor, make sure that it branches
    167     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    168     if (Pred1Br->getSuccessor(0) == BB &&
    169         Pred1Br->getSuccessor(1) == Pred2) {
    170       IfTrue = Pred1;
    171       IfFalse = Pred2;
    172     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    173                Pred1Br->getSuccessor(1) == BB) {
    174       IfTrue = Pred2;
    175       IfFalse = Pred1;
    176     } else {
    177       // We know that one arm of the conditional goes to BB, so the other must
    178       // go somewhere unrelated, and this must not be an "if statement".
    179       return 0;
    180     }
    181 
    182     return Pred1Br->getCondition();
    183   }
    184 
    185   // Ok, if we got here, both predecessors end with an unconditional branch to
    186   // BB.  Don't panic!  If both blocks only have a single (identical)
    187   // predecessor, and THAT is a conditional branch, then we're all ok!
    188   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    189   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
    190     return 0;
    191 
    192   // Otherwise, if this is a conditional branch, then we can use it!
    193   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    194   if (BI == 0) return 0;
    195 
    196   assert(BI->isConditional() && "Two successors but not conditional?");
    197   if (BI->getSuccessor(0) == Pred1) {
    198     IfTrue = Pred1;
    199     IfFalse = Pred2;
    200   } else {
    201     IfTrue = Pred2;
    202     IfFalse = Pred1;
    203   }
    204   return BI->getCondition();
    205 }
    206 
    207 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    208 /// accepted above, return true if the specified value dominates the block.  We
    209 /// don't handle the true generality of domination here, just a special case
    210 /// which works well enough for us.
    211 ///
    212 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    213 /// see if V (which must be an instruction) and its recursive operands
    214 /// that do not dominate BB have a combined cost lower than CostRemaining and
    215 /// are non-trapping.  If both are true, the instruction is inserted into the
    216 /// set and true is returned.
    217 ///
    218 /// The cost for most non-trapping instructions is defined as 1 except for
    219 /// Select whose cost is 2.
    220 ///
    221 /// After this function returns, CostRemaining is decreased by the cost of
    222 /// V plus its non-dominating operands.  If that cost is greater than
    223 /// CostRemaining, false is returned and CostRemaining is undefined.
    224 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    225                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    226                                 unsigned &CostRemaining) {
    227   Instruction *I = dyn_cast<Instruction>(V);
    228   if (!I) {
    229     // Non-instructions all dominate instructions, but not all constantexprs
    230     // can be executed unconditionally.
    231     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    232       if (C->canTrap())
    233         return false;
    234     return true;
    235   }
    236   BasicBlock *PBB = I->getParent();
    237 
    238   // We don't want to allow weird loops that might have the "if condition" in
    239   // the bottom of this block.
    240   if (PBB == BB) return false;
    241 
    242   // If this instruction is defined in a block that contains an unconditional
    243   // branch to BB, then it must be in the 'conditional' part of the "if
    244   // statement".  If not, it definitely dominates the region.
    245   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    246   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
    247     return true;
    248 
    249   // If we aren't allowing aggressive promotion anymore, then don't consider
    250   // instructions in the 'if region'.
    251   if (AggressiveInsts == 0) return false;
    252 
    253   // If we have seen this instruction before, don't count it again.
    254   if (AggressiveInsts->count(I)) return true;
    255 
    256   // Okay, it looks like the instruction IS in the "condition".  Check to
    257   // see if it's a cheap instruction to unconditionally compute, and if it
    258   // only uses stuff defined outside of the condition.  If so, hoist it out.
    259   if (!I->isSafeToSpeculativelyExecute())
    260     return false;
    261 
    262   unsigned Cost = 0;
    263 
    264   switch (I->getOpcode()) {
    265   default: return false;  // Cannot hoist this out safely.
    266   case Instruction::Load:
    267     // We have to check to make sure there are no instructions before the
    268     // load in its basic block, as we are going to hoist the load out to its
    269     // predecessor.
    270     if (PBB->getFirstNonPHIOrDbg() != I)
    271       return false;
    272     Cost = 1;
    273     break;
    274   case Instruction::GetElementPtr:
    275     // GEPs are cheap if all indices are constant.
    276     if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
    277       return false;
    278     Cost = 1;
    279     break;
    280   case Instruction::Add:
    281   case Instruction::Sub:
    282   case Instruction::And:
    283   case Instruction::Or:
    284   case Instruction::Xor:
    285   case Instruction::Shl:
    286   case Instruction::LShr:
    287   case Instruction::AShr:
    288   case Instruction::ICmp:
    289   case Instruction::Trunc:
    290   case Instruction::ZExt:
    291   case Instruction::SExt:
    292     Cost = 1;
    293     break;   // These are all cheap and non-trapping instructions.
    294 
    295   case Instruction::Select:
    296     Cost = 2;
    297     break;
    298   }
    299 
    300   if (Cost > CostRemaining)
    301     return false;
    302 
    303   CostRemaining -= Cost;
    304 
    305   // Okay, we can only really hoist these out if their operands do
    306   // not take us over the cost threshold.
    307   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    308     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
    309       return false;
    310   // Okay, it's safe to do this!  Remember this instruction.
    311   AggressiveInsts->insert(I);
    312   return true;
    313 }
    314 
    315 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    316 /// and PointerNullValue. Return NULL if value is not a constant int.
    317 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
    318   // Normal constant int.
    319   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    320   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
    321     return CI;
    322 
    323   // This is some kind of pointer constant. Turn it into a pointer-sized
    324   // ConstantInt if possible.
    325   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
    326 
    327   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    328   if (isa<ConstantPointerNull>(V))
    329     return ConstantInt::get(PtrTy, 0);
    330 
    331   // IntToPtr const int.
    332   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    333     if (CE->getOpcode() == Instruction::IntToPtr)
    334       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    335         // The constant is very likely to have the right type already.
    336         if (CI->getType() == PtrTy)
    337           return CI;
    338         else
    339           return cast<ConstantInt>
    340             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    341       }
    342   return 0;
    343 }
    344 
    345 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    346 /// collection of icmp eq/ne instructions that compare a value against a
    347 /// constant, return the value being compared, and stick the constant into the
    348 /// Values vector.
    349 static Value *
    350 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    351                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
    352   Instruction *I = dyn_cast<Instruction>(V);
    353   if (I == 0) return 0;
    354 
    355   // If this is an icmp against a constant, handle this as one of the cases.
    356   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    357     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
    358       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    359         UsedICmps++;
    360         Vals.push_back(C);
    361         return I->getOperand(0);
    362       }
    363 
    364       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    365       // the set.
    366       ConstantRange Span =
    367         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    368 
    369       // If this is an and/!= check then we want to optimize "x ugt 2" into
    370       // x != 0 && x != 1.
    371       if (!isEQ)
    372         Span = Span.inverse();
    373 
    374       // If there are a ton of values, we don't want to make a ginormous switch.
    375       if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
    376           // We don't handle wrapped sets yet.
    377           Span.isWrappedSet())
    378         return 0;
    379 
    380       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    381         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    382       UsedICmps++;
    383       return I->getOperand(0);
    384     }
    385     return 0;
    386   }
    387 
    388   // Otherwise, we can only handle an | or &, depending on isEQ.
    389   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    390     return 0;
    391 
    392   unsigned NumValsBeforeLHS = Vals.size();
    393   unsigned UsedICmpsBeforeLHS = UsedICmps;
    394   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
    395                                           isEQ, UsedICmps)) {
    396     unsigned NumVals = Vals.size();
    397     unsigned UsedICmpsBeforeRHS = UsedICmps;
    398     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    399                                             isEQ, UsedICmps)) {
    400       if (LHS == RHS)
    401         return LHS;
    402       Vals.resize(NumVals);
    403       UsedICmps = UsedICmpsBeforeRHS;
    404     }
    405 
    406     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    407     // set it and return success.
    408     if (Extra == 0 || Extra == I->getOperand(1)) {
    409       Extra = I->getOperand(1);
    410       return LHS;
    411     }
    412 
    413     Vals.resize(NumValsBeforeLHS);
    414     UsedICmps = UsedICmpsBeforeLHS;
    415     return 0;
    416   }
    417 
    418   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    419   // use LHS as Extra.
    420   if (Extra == 0 || Extra == I->getOperand(0)) {
    421     Value *OldExtra = Extra;
    422     Extra = I->getOperand(0);
    423     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    424                                             isEQ, UsedICmps))
    425       return RHS;
    426     assert(Vals.size() == NumValsBeforeLHS);
    427     Extra = OldExtra;
    428   }
    429 
    430   return 0;
    431 }
    432 
    433 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    434   Instruction* Cond = 0;
    435   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    436     Cond = dyn_cast<Instruction>(SI->getCondition());
    437   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    438     if (BI->isConditional())
    439       Cond = dyn_cast<Instruction>(BI->getCondition());
    440   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    441     Cond = dyn_cast<Instruction>(IBI->getAddress());
    442   }
    443 
    444   TI->eraseFromParent();
    445   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    446 }
    447 
    448 /// isValueEqualityComparison - Return true if the specified terminator checks
    449 /// to see if a value is equal to constant integer value.
    450 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    451   Value *CV = 0;
    452   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    453     // Do not permit merging of large switch instructions into their
    454     // predecessors unless there is only one predecessor.
    455     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    456                                              pred_end(SI->getParent())) <= 128)
    457       CV = SI->getCondition();
    458   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    459     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    460       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    461         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
    462              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
    463             GetConstantInt(ICI->getOperand(1), TD))
    464           CV = ICI->getOperand(0);
    465 
    466   // Unwrap any lossless ptrtoint cast.
    467   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
    468     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
    469       CV = PTII->getOperand(0);
    470   return CV;
    471 }
    472 
    473 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    474 /// decode all of the 'cases' that it represents and return the 'default' block.
    475 BasicBlock *SimplifyCFGOpt::
    476 GetValueEqualityComparisonCases(TerminatorInst *TI,
    477                                 std::vector<std::pair<ConstantInt*,
    478                                                       BasicBlock*> > &Cases) {
    479   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    480     Cases.reserve(SI->getNumCases());
    481     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
    482       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
    483     return SI->getDefaultDest();
    484   }
    485 
    486   BranchInst *BI = cast<BranchInst>(TI);
    487   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    488   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
    489                                  BI->getSuccessor(ICI->getPredicate() ==
    490                                                   ICmpInst::ICMP_NE)));
    491   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    492 }
    493 
    494 
    495 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    496 /// in the list that match the specified block.
    497 static void EliminateBlockCases(BasicBlock *BB,
    498                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
    499   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    500     if (Cases[i].second == BB) {
    501       Cases.erase(Cases.begin()+i);
    502       --i; --e;
    503     }
    504 }
    505 
    506 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    507 /// well.
    508 static bool
    509 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
    510               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
    511   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
    512 
    513   // Make V1 be smaller than V2.
    514   if (V1->size() > V2->size())
    515     std::swap(V1, V2);
    516 
    517   if (V1->size() == 0) return false;
    518   if (V1->size() == 1) {
    519     // Just scan V2.
    520     ConstantInt *TheVal = (*V1)[0].first;
    521     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    522       if (TheVal == (*V2)[i].first)
    523         return true;
    524   }
    525 
    526   // Otherwise, just sort both lists and compare element by element.
    527   array_pod_sort(V1->begin(), V1->end());
    528   array_pod_sort(V2->begin(), V2->end());
    529   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    530   while (i1 != e1 && i2 != e2) {
    531     if ((*V1)[i1].first == (*V2)[i2].first)
    532       return true;
    533     if ((*V1)[i1].first < (*V2)[i2].first)
    534       ++i1;
    535     else
    536       ++i2;
    537   }
    538   return false;
    539 }
    540 
    541 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    542 /// terminator instruction and its block is known to only have a single
    543 /// predecessor block, check to see if that predecessor is also a value
    544 /// comparison with the same value, and if that comparison determines the
    545 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    546 /// form of jump threading.
    547 bool SimplifyCFGOpt::
    548 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    549                                               BasicBlock *Pred,
    550                                               IRBuilder<> &Builder) {
    551   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    552   if (!PredVal) return false;  // Not a value comparison in predecessor.
    553 
    554   Value *ThisVal = isValueEqualityComparison(TI);
    555   assert(ThisVal && "This isn't a value comparison!!");
    556   if (ThisVal != PredVal) return false;  // Different predicates.
    557 
    558   // Find out information about when control will move from Pred to TI's block.
    559   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    560   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    561                                                         PredCases);
    562   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    563 
    564   // Find information about how control leaves this block.
    565   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
    566   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    567   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    568 
    569   // If TI's block is the default block from Pred's comparison, potentially
    570   // simplify TI based on this knowledge.
    571   if (PredDef == TI->getParent()) {
    572     // If we are here, we know that the value is none of those cases listed in
    573     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    574     // can simplify TI.
    575     if (!ValuesOverlap(PredCases, ThisCases))
    576       return false;
    577 
    578     if (isa<BranchInst>(TI)) {
    579       // Okay, one of the successors of this condbr is dead.  Convert it to a
    580       // uncond br.
    581       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    582       // Insert the new branch.
    583       Instruction *NI = Builder.CreateBr(ThisDef);
    584       (void) NI;
    585 
    586       // Remove PHI node entries for the dead edge.
    587       ThisCases[0].second->removePredecessor(TI->getParent());
    588 
    589       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    590            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    591 
    592       EraseTerminatorInstAndDCECond(TI);
    593       return true;
    594     }
    595 
    596     SwitchInst *SI = cast<SwitchInst>(TI);
    597     // Okay, TI has cases that are statically dead, prune them away.
    598     SmallPtrSet<Constant*, 16> DeadCases;
    599     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    600       DeadCases.insert(PredCases[i].first);
    601 
    602     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    603                  << "Through successor TI: " << *TI);
    604 
    605     for (unsigned i = SI->getNumCases()-1; i != 0; --i)
    606       if (DeadCases.count(SI->getCaseValue(i))) {
    607         SI->getSuccessor(i)->removePredecessor(TI->getParent());
    608         SI->removeCase(i);
    609       }
    610 
    611     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    612     return true;
    613   }
    614 
    615   // Otherwise, TI's block must correspond to some matched value.  Find out
    616   // which value (or set of values) this is.
    617   ConstantInt *TIV = 0;
    618   BasicBlock *TIBB = TI->getParent();
    619   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    620     if (PredCases[i].second == TIBB) {
    621       if (TIV != 0)
    622         return false;  // Cannot handle multiple values coming to this block.
    623       TIV = PredCases[i].first;
    624     }
    625   assert(TIV && "No edge from pred to succ?");
    626 
    627   // Okay, we found the one constant that our value can be if we get into TI's
    628   // BB.  Find out which successor will unconditionally be branched to.
    629   BasicBlock *TheRealDest = 0;
    630   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    631     if (ThisCases[i].first == TIV) {
    632       TheRealDest = ThisCases[i].second;
    633       break;
    634     }
    635 
    636   // If not handled by any explicit cases, it is handled by the default case.
    637   if (TheRealDest == 0) TheRealDest = ThisDef;
    638 
    639   // Remove PHI node entries for dead edges.
    640   BasicBlock *CheckEdge = TheRealDest;
    641   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    642     if (*SI != CheckEdge)
    643       (*SI)->removePredecessor(TIBB);
    644     else
    645       CheckEdge = 0;
    646 
    647   // Insert the new branch.
    648   Instruction *NI = Builder.CreateBr(TheRealDest);
    649   (void) NI;
    650 
    651   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    652             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    653 
    654   EraseTerminatorInstAndDCECond(TI);
    655   return true;
    656 }
    657 
    658 namespace {
    659   /// ConstantIntOrdering - This class implements a stable ordering of constant
    660   /// integers that does not depend on their address.  This is important for
    661   /// applications that sort ConstantInt's to ensure uniqueness.
    662   struct ConstantIntOrdering {
    663     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    664       return LHS->getValue().ult(RHS->getValue());
    665     }
    666   };
    667 }
    668 
    669 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
    670   const ConstantInt *LHS = *(const ConstantInt**)P1;
    671   const ConstantInt *RHS = *(const ConstantInt**)P2;
    672   if (LHS->getValue().ult(RHS->getValue()))
    673     return 1;
    674   if (LHS->getValue() == RHS->getValue())
    675     return 0;
    676   return -1;
    677 }
    678 
    679 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    680 /// equality comparison instruction (either a switch or a branch on "X == c").
    681 /// See if any of the predecessors of the terminator block are value comparisons
    682 /// on the same value.  If so, and if safe to do so, fold them together.
    683 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    684                                                          IRBuilder<> &Builder) {
    685   BasicBlock *BB = TI->getParent();
    686   Value *CV = isValueEqualityComparison(TI);  // CondVal
    687   assert(CV && "Not a comparison?");
    688   bool Changed = false;
    689 
    690   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    691   while (!Preds.empty()) {
    692     BasicBlock *Pred = Preds.pop_back_val();
    693 
    694     // See if the predecessor is a comparison with the same value.
    695     TerminatorInst *PTI = Pred->getTerminator();
    696     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    697 
    698     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    699       // Figure out which 'cases' to copy from SI to PSI.
    700       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
    701       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    702 
    703       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    704       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    705 
    706       // Based on whether the default edge from PTI goes to BB or not, fill in
    707       // PredCases and PredDefault with the new switch cases we would like to
    708       // build.
    709       SmallVector<BasicBlock*, 8> NewSuccessors;
    710 
    711       if (PredDefault == BB) {
    712         // If this is the default destination from PTI, only the edges in TI
    713         // that don't occur in PTI, or that branch to BB will be activated.
    714         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    715         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    716           if (PredCases[i].second != BB)
    717             PTIHandled.insert(PredCases[i].first);
    718           else {
    719             // The default destination is BB, we don't need explicit targets.
    720             std::swap(PredCases[i], PredCases.back());
    721             PredCases.pop_back();
    722             --i; --e;
    723           }
    724 
    725         // Reconstruct the new switch statement we will be building.
    726         if (PredDefault != BBDefault) {
    727           PredDefault->removePredecessor(Pred);
    728           PredDefault = BBDefault;
    729           NewSuccessors.push_back(BBDefault);
    730         }
    731         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    732           if (!PTIHandled.count(BBCases[i].first) &&
    733               BBCases[i].second != BBDefault) {
    734             PredCases.push_back(BBCases[i]);
    735             NewSuccessors.push_back(BBCases[i].second);
    736           }
    737 
    738       } else {
    739         // If this is not the default destination from PSI, only the edges
    740         // in SI that occur in PSI with a destination of BB will be
    741         // activated.
    742         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    743         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    744           if (PredCases[i].second == BB) {
    745             PTIHandled.insert(PredCases[i].first);
    746             std::swap(PredCases[i], PredCases.back());
    747             PredCases.pop_back();
    748             --i; --e;
    749           }
    750 
    751         // Okay, now we know which constants were sent to BB from the
    752         // predecessor.  Figure out where they will all go now.
    753         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    754           if (PTIHandled.count(BBCases[i].first)) {
    755             // If this is one we are capable of getting...
    756             PredCases.push_back(BBCases[i]);
    757             NewSuccessors.push_back(BBCases[i].second);
    758             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
    759           }
    760 
    761         // If there are any constants vectored to BB that TI doesn't handle,
    762         // they must go to the default destination of TI.
    763         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    764                                     PTIHandled.begin(),
    765                E = PTIHandled.end(); I != E; ++I) {
    766           PredCases.push_back(std::make_pair(*I, BBDefault));
    767           NewSuccessors.push_back(BBDefault);
    768         }
    769       }
    770 
    771       // Okay, at this point, we know which new successor Pred will get.  Make
    772       // sure we update the number of entries in the PHI nodes for these
    773       // successors.
    774       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    775         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    776 
    777       Builder.SetInsertPoint(PTI);
    778       // Convert pointer to int before we switch.
    779       if (CV->getType()->isPointerTy()) {
    780         assert(TD && "Cannot switch on pointer without TargetData");
    781         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
    782                                     "magicptr");
    783       }
    784 
    785       // Now that the successors are updated, create the new Switch instruction.
    786       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    787                                                PredCases.size());
    788       NewSI->setDebugLoc(PTI->getDebugLoc());
    789       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    790         NewSI->addCase(PredCases[i].first, PredCases[i].second);
    791 
    792       EraseTerminatorInstAndDCECond(PTI);
    793 
    794       // Okay, last check.  If BB is still a successor of PSI, then we must
    795       // have an infinite loop case.  If so, add an infinitely looping block
    796       // to handle the case to preserve the behavior of the code.
    797       BasicBlock *InfLoopBlock = 0;
    798       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
    799         if (NewSI->getSuccessor(i) == BB) {
    800           if (InfLoopBlock == 0) {
    801             // Insert it at the end of the function, because it's either code,
    802             // or it won't matter if it's hot. :)
    803             InfLoopBlock = BasicBlock::Create(BB->getContext(),
    804                                               "infloop", BB->getParent());
    805             BranchInst::Create(InfLoopBlock, InfLoopBlock);
    806           }
    807           NewSI->setSuccessor(i, InfLoopBlock);
    808         }
    809 
    810       Changed = true;
    811     }
    812   }
    813   return Changed;
    814 }
    815 
    816 // isSafeToHoistInvoke - If we would need to insert a select that uses the
    817 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
    818 // would need to do this), we can't hoist the invoke, as there is nowhere
    819 // to put the select in this case.
    820 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
    821                                 Instruction *I1, Instruction *I2) {
    822   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    823     PHINode *PN;
    824     for (BasicBlock::iterator BBI = SI->begin();
    825          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    826       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    827       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    828       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
    829         return false;
    830       }
    831     }
    832   }
    833   return true;
    834 }
    835 
    836 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
    837 /// BB2, hoist any common code in the two blocks up into the branch block.  The
    838 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
    839 static bool HoistThenElseCodeToIf(BranchInst *BI) {
    840   // This does very trivial matching, with limited scanning, to find identical
    841   // instructions in the two blocks.  In particular, we don't want to get into
    842   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
    843   // such, we currently just scan for obviously identical instructions in an
    844   // identical order.
    845   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
    846   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
    847 
    848   BasicBlock::iterator BB1_Itr = BB1->begin();
    849   BasicBlock::iterator BB2_Itr = BB2->begin();
    850 
    851   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
    852   // Skip debug info if it is not identical.
    853   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    854   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    855   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    856     while (isa<DbgInfoIntrinsic>(I1))
    857       I1 = BB1_Itr++;
    858     while (isa<DbgInfoIntrinsic>(I2))
    859       I2 = BB2_Itr++;
    860   }
    861   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
    862       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
    863     return false;
    864 
    865   // If we get here, we can hoist at least one instruction.
    866   BasicBlock *BIParent = BI->getParent();
    867 
    868   do {
    869     // If we are hoisting the terminator instruction, don't move one (making a
    870     // broken BB), instead clone it, and remove BI.
    871     if (isa<TerminatorInst>(I1))
    872       goto HoistTerminator;
    873 
    874     // For a normal instruction, we just move one to right before the branch,
    875     // then replace all uses of the other with the first.  Finally, we remove
    876     // the now redundant second instruction.
    877     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    878     if (!I2->use_empty())
    879       I2->replaceAllUsesWith(I1);
    880     I1->intersectOptionalDataWith(I2);
    881     I2->eraseFromParent();
    882 
    883     I1 = BB1_Itr++;
    884     I2 = BB2_Itr++;
    885     // Skip debug info if it is not identical.
    886     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    887     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    888     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    889       while (isa<DbgInfoIntrinsic>(I1))
    890         I1 = BB1_Itr++;
    891       while (isa<DbgInfoIntrinsic>(I2))
    892         I2 = BB2_Itr++;
    893     }
    894   } while (I1->isIdenticalToWhenDefined(I2));
    895 
    896   return true;
    897 
    898 HoistTerminator:
    899   // It may not be possible to hoist an invoke.
    900   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    901     return true;
    902 
    903   // Okay, it is safe to hoist the terminator.
    904   Instruction *NT = I1->clone();
    905   BIParent->getInstList().insert(BI, NT);
    906   if (!NT->getType()->isVoidTy()) {
    907     I1->replaceAllUsesWith(NT);
    908     I2->replaceAllUsesWith(NT);
    909     NT->takeName(I1);
    910   }
    911 
    912   IRBuilder<true, NoFolder> Builder(NT);
    913   // Hoisting one of the terminators from our successor is a great thing.
    914   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
    915   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
    916   // nodes, so we insert select instruction to compute the final result.
    917   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
    918   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    919     PHINode *PN;
    920     for (BasicBlock::iterator BBI = SI->begin();
    921          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    922       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    923       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    924       if (BB1V == BB2V) continue;
    925 
    926       // These values do not agree.  Insert a select instruction before NT
    927       // that determines the right value.
    928       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
    929       if (SI == 0)
    930         SI = cast<SelectInst>
    931           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
    932                                 BB1V->getName()+"."+BB2V->getName()));
    933 
    934       // Make the PHI node use the select for all incoming values for BB1/BB2
    935       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    936         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
    937           PN->setIncomingValue(i, SI);
    938     }
    939   }
    940 
    941   // Update any PHI nodes in our new successors.
    942   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    943     AddPredecessorToBlock(*SI, BIParent, BB1);
    944 
    945   EraseTerminatorInstAndDCECond(BI);
    946   return true;
    947 }
    948 
    949 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
    950 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
    951 /// (for now, restricted to a single instruction that's side effect free) from
    952 /// the BB1 into the branch block to speculatively execute it.
    953 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
    954   // Only speculatively execution a single instruction (not counting the
    955   // terminator) for now.
    956   Instruction *HInst = NULL;
    957   Instruction *Term = BB1->getTerminator();
    958   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
    959        BBI != BBE; ++BBI) {
    960     Instruction *I = BBI;
    961     // Skip debug info.
    962     if (isa<DbgInfoIntrinsic>(I)) continue;
    963     if (I == Term) break;
    964 
    965     if (HInst)
    966       return false;
    967     HInst = I;
    968   }
    969   if (!HInst)
    970     return false;
    971 
    972   // Be conservative for now. FP select instruction can often be expensive.
    973   Value *BrCond = BI->getCondition();
    974   if (isa<FCmpInst>(BrCond))
    975     return false;
    976 
    977   // If BB1 is actually on the false edge of the conditional branch, remember
    978   // to swap the select operands later.
    979   bool Invert = false;
    980   if (BB1 != BI->getSuccessor(0)) {
    981     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
    982     Invert = true;
    983   }
    984 
    985   // Turn
    986   // BB:
    987   //     %t1 = icmp
    988   //     br i1 %t1, label %BB1, label %BB2
    989   // BB1:
    990   //     %t3 = add %t2, c
    991   //     br label BB2
    992   // BB2:
    993   // =>
    994   // BB:
    995   //     %t1 = icmp
    996   //     %t4 = add %t2, c
    997   //     %t3 = select i1 %t1, %t2, %t3
    998   switch (HInst->getOpcode()) {
    999   default: return false;  // Not safe / profitable to hoist.
   1000   case Instruction::Add:
   1001   case Instruction::Sub:
   1002     // Not worth doing for vector ops.
   1003     if (HInst->getType()->isVectorTy())
   1004       return false;
   1005     break;
   1006   case Instruction::And:
   1007   case Instruction::Or:
   1008   case Instruction::Xor:
   1009   case Instruction::Shl:
   1010   case Instruction::LShr:
   1011   case Instruction::AShr:
   1012     // Don't mess with vector operations.
   1013     if (HInst->getType()->isVectorTy())
   1014       return false;
   1015     break;   // These are all cheap and non-trapping instructions.
   1016   }
   1017 
   1018   // If the instruction is obviously dead, don't try to predicate it.
   1019   if (HInst->use_empty()) {
   1020     HInst->eraseFromParent();
   1021     return true;
   1022   }
   1023 
   1024   // Can we speculatively execute the instruction? And what is the value
   1025   // if the condition is false? Consider the phi uses, if the incoming value
   1026   // from the "if" block are all the same V, then V is the value of the
   1027   // select if the condition is false.
   1028   BasicBlock *BIParent = BI->getParent();
   1029   SmallVector<PHINode*, 4> PHIUses;
   1030   Value *FalseV = NULL;
   1031 
   1032   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
   1033   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
   1034        UI != E; ++UI) {
   1035     // Ignore any user that is not a PHI node in BB2.  These can only occur in
   1036     // unreachable blocks, because they would not be dominated by the instr.
   1037     PHINode *PN = dyn_cast<PHINode>(*UI);
   1038     if (!PN || PN->getParent() != BB2)
   1039       return false;
   1040     PHIUses.push_back(PN);
   1041 
   1042     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
   1043     if (!FalseV)
   1044       FalseV = PHIV;
   1045     else if (FalseV != PHIV)
   1046       return false;  // Inconsistent value when condition is false.
   1047   }
   1048 
   1049   assert(FalseV && "Must have at least one user, and it must be a PHI");
   1050 
   1051   // Do not hoist the instruction if any of its operands are defined but not
   1052   // used in this BB. The transformation will prevent the operand from
   1053   // being sunk into the use block.
   1054   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
   1055        i != e; ++i) {
   1056     Instruction *OpI = dyn_cast<Instruction>(*i);
   1057     if (OpI && OpI->getParent() == BIParent &&
   1058         !OpI->isUsedInBasicBlock(BIParent))
   1059       return false;
   1060   }
   1061 
   1062   // If we get here, we can hoist the instruction. Try to place it
   1063   // before the icmp instruction preceding the conditional branch.
   1064   BasicBlock::iterator InsertPos = BI;
   1065   if (InsertPos != BIParent->begin())
   1066     --InsertPos;
   1067   // Skip debug info between condition and branch.
   1068   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
   1069     --InsertPos;
   1070   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
   1071     SmallPtrSet<Instruction *, 4> BB1Insns;
   1072     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
   1073         BB1I != BB1E; ++BB1I)
   1074       BB1Insns.insert(BB1I);
   1075     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
   1076         UI != UE; ++UI) {
   1077       Instruction *Use = cast<Instruction>(*UI);
   1078       if (!BB1Insns.count(Use)) continue;
   1079 
   1080       // If BrCond uses the instruction that place it just before
   1081       // branch instruction.
   1082       InsertPos = BI;
   1083       break;
   1084     }
   1085   } else
   1086     InsertPos = BI;
   1087   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
   1088 
   1089   // Create a select whose true value is the speculatively executed value and
   1090   // false value is the previously determined FalseV.
   1091   IRBuilder<true, NoFolder> Builder(BI);
   1092   SelectInst *SI;
   1093   if (Invert)
   1094     SI = cast<SelectInst>
   1095       (Builder.CreateSelect(BrCond, FalseV, HInst,
   1096                             FalseV->getName() + "." + HInst->getName()));
   1097   else
   1098     SI = cast<SelectInst>
   1099       (Builder.CreateSelect(BrCond, HInst, FalseV,
   1100                             HInst->getName() + "." + FalseV->getName()));
   1101 
   1102   // Make the PHI node use the select for all incoming values for "then" and
   1103   // "if" blocks.
   1104   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
   1105     PHINode *PN = PHIUses[i];
   1106     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
   1107       if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
   1108         PN->setIncomingValue(j, SI);
   1109   }
   1110 
   1111   ++NumSpeculations;
   1112   return true;
   1113 }
   1114 
   1115 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1116 /// across this block.
   1117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1118   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1119   unsigned Size = 0;
   1120 
   1121   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1122     if (isa<DbgInfoIntrinsic>(BBI))
   1123       continue;
   1124     if (Size > 10) return false;  // Don't clone large BB's.
   1125     ++Size;
   1126 
   1127     // We can only support instructions that do not define values that are
   1128     // live outside of the current basic block.
   1129     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
   1130          UI != E; ++UI) {
   1131       Instruction *U = cast<Instruction>(*UI);
   1132       if (U->getParent() != BB || isa<PHINode>(U)) return false;
   1133     }
   1134 
   1135     // Looks ok, continue checking.
   1136   }
   1137 
   1138   return true;
   1139 }
   1140 
   1141 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1142 /// that is defined in the same block as the branch and if any PHI entries are
   1143 /// constants, thread edges corresponding to that entry to be branches to their
   1144 /// ultimate destination.
   1145 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
   1146   BasicBlock *BB = BI->getParent();
   1147   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1148   // NOTE: we currently cannot transform this case if the PHI node is used
   1149   // outside of the block.
   1150   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1151     return false;
   1152 
   1153   // Degenerate case of a single entry PHI.
   1154   if (PN->getNumIncomingValues() == 1) {
   1155     FoldSingleEntryPHINodes(PN->getParent());
   1156     return true;
   1157   }
   1158 
   1159   // Now we know that this block has multiple preds and two succs.
   1160   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1161 
   1162   // Okay, this is a simple enough basic block.  See if any phi values are
   1163   // constants.
   1164   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1165     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1166     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
   1167 
   1168     // Okay, we now know that all edges from PredBB should be revectored to
   1169     // branch to RealDest.
   1170     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1171     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1172 
   1173     if (RealDest == BB) continue;  // Skip self loops.
   1174     // Skip if the predecessor's terminator is an indirect branch.
   1175     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1176 
   1177     // The dest block might have PHI nodes, other predecessors and other
   1178     // difficult cases.  Instead of being smart about this, just insert a new
   1179     // block that jumps to the destination block, effectively splitting
   1180     // the edge we are about to create.
   1181     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1182                                             RealDest->getName()+".critedge",
   1183                                             RealDest->getParent(), RealDest);
   1184     BranchInst::Create(RealDest, EdgeBB);
   1185 
   1186     // Update PHI nodes.
   1187     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1188 
   1189     // BB may have instructions that are being threaded over.  Clone these
   1190     // instructions into EdgeBB.  We know that there will be no uses of the
   1191     // cloned instructions outside of EdgeBB.
   1192     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1193     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1194     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1195       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1196         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1197         continue;
   1198       }
   1199       // Clone the instruction.
   1200       Instruction *N = BBI->clone();
   1201       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1202 
   1203       // Update operands due to translation.
   1204       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1205            i != e; ++i) {
   1206         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1207         if (PI != TranslateMap.end())
   1208           *i = PI->second;
   1209       }
   1210 
   1211       // Check for trivial simplification.
   1212       if (Value *V = SimplifyInstruction(N, TD)) {
   1213         TranslateMap[BBI] = V;
   1214         delete N;   // Instruction folded away, don't need actual inst
   1215       } else {
   1216         // Insert the new instruction into its new home.
   1217         EdgeBB->getInstList().insert(InsertPt, N);
   1218         if (!BBI->use_empty())
   1219           TranslateMap[BBI] = N;
   1220       }
   1221     }
   1222 
   1223     // Loop over all of the edges from PredBB to BB, changing them to branch
   1224     // to EdgeBB instead.
   1225     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1226     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1227       if (PredBBTI->getSuccessor(i) == BB) {
   1228         BB->removePredecessor(PredBB);
   1229         PredBBTI->setSuccessor(i, EdgeBB);
   1230       }
   1231 
   1232     // Recurse, simplifying any other constants.
   1233     return FoldCondBranchOnPHI(BI, TD) | true;
   1234   }
   1235 
   1236   return false;
   1237 }
   1238 
   1239 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1240 /// PHI node, see if we can eliminate it.
   1241 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
   1242   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1243   // statement", which has a very simple dominance structure.  Basically, we
   1244   // are trying to find the condition that is being branched on, which
   1245   // subsequently causes this merge to happen.  We really want control
   1246   // dependence information for this check, but simplifycfg can't keep it up
   1247   // to date, and this catches most of the cases we care about anyway.
   1248   BasicBlock *BB = PN->getParent();
   1249   BasicBlock *IfTrue, *IfFalse;
   1250   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1251   if (!IfCond ||
   1252       // Don't bother if the branch will be constant folded trivially.
   1253       isa<ConstantInt>(IfCond))
   1254     return false;
   1255 
   1256   // Okay, we found that we can merge this two-entry phi node into a select.
   1257   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1258   // At some point this becomes non-profitable (particularly if the target
   1259   // doesn't support cmov's).  Only do this transformation if there are two or
   1260   // fewer PHI nodes in this block.
   1261   unsigned NumPhis = 0;
   1262   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1263     if (NumPhis > 2)
   1264       return false;
   1265 
   1266   // Loop over the PHI's seeing if we can promote them all to select
   1267   // instructions.  While we are at it, keep track of the instructions
   1268   // that need to be moved to the dominating block.
   1269   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1270   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1271            MaxCostVal1 = PHINodeFoldingThreshold;
   1272 
   1273   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1274     PHINode *PN = cast<PHINode>(II++);
   1275     if (Value *V = SimplifyInstruction(PN, TD)) {
   1276       PN->replaceAllUsesWith(V);
   1277       PN->eraseFromParent();
   1278       continue;
   1279     }
   1280 
   1281     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1282                              MaxCostVal0) ||
   1283         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1284                              MaxCostVal1))
   1285       return false;
   1286   }
   1287 
   1288   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
   1289   // we ran out of PHIs then we simplified them all.
   1290   PN = dyn_cast<PHINode>(BB->begin());
   1291   if (PN == 0) return true;
   1292 
   1293   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1294   // often be turned into switches and other things.
   1295   if (PN->getType()->isIntegerTy(1) &&
   1296       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1297        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1298        isa<BinaryOperator>(IfCond)))
   1299     return false;
   1300 
   1301   // If we all PHI nodes are promotable, check to make sure that all
   1302   // instructions in the predecessor blocks can be promoted as well.  If
   1303   // not, we won't be able to get rid of the control flow, so it's not
   1304   // worth promoting to select instructions.
   1305   BasicBlock *DomBlock = 0;
   1306   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1307   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1308   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1309     IfBlock1 = 0;
   1310   } else {
   1311     DomBlock = *pred_begin(IfBlock1);
   1312     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1313       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1314         // This is not an aggressive instruction that we can promote.
   1315         // Because of this, we won't be able to get rid of the control
   1316         // flow, so the xform is not worth it.
   1317         return false;
   1318       }
   1319   }
   1320 
   1321   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1322     IfBlock2 = 0;
   1323   } else {
   1324     DomBlock = *pred_begin(IfBlock2);
   1325     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1326       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1327         // This is not an aggressive instruction that we can promote.
   1328         // Because of this, we won't be able to get rid of the control
   1329         // flow, so the xform is not worth it.
   1330         return false;
   1331       }
   1332   }
   1333 
   1334   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1335                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1336 
   1337   // If we can still promote the PHI nodes after this gauntlet of tests,
   1338   // do all of the PHI's now.
   1339   Instruction *InsertPt = DomBlock->getTerminator();
   1340   IRBuilder<true, NoFolder> Builder(InsertPt);
   1341 
   1342   // Move all 'aggressive' instructions, which are defined in the
   1343   // conditional parts of the if's up to the dominating block.
   1344   if (IfBlock1)
   1345     DomBlock->getInstList().splice(InsertPt,
   1346                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1347                                    IfBlock1->getTerminator());
   1348   if (IfBlock2)
   1349     DomBlock->getInstList().splice(InsertPt,
   1350                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1351                                    IfBlock2->getTerminator());
   1352 
   1353   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1354     // Change the PHI node into a select instruction.
   1355     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1356     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1357 
   1358     SelectInst *NV =
   1359       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1360     PN->replaceAllUsesWith(NV);
   1361     NV->takeName(PN);
   1362     PN->eraseFromParent();
   1363   }
   1364 
   1365   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1366   // has been flattened.  Change DomBlock to jump directly to our new block to
   1367   // avoid other simplifycfg's kicking in on the diamond.
   1368   TerminatorInst *OldTI = DomBlock->getTerminator();
   1369   Builder.SetInsertPoint(OldTI);
   1370   Builder.CreateBr(BB);
   1371   OldTI->eraseFromParent();
   1372   return true;
   1373 }
   1374 
   1375 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1376 /// to two returning blocks, try to merge them together into one return,
   1377 /// introducing a select if the return values disagree.
   1378 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1379                                            IRBuilder<> &Builder) {
   1380   assert(BI->isConditional() && "Must be a conditional branch");
   1381   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1382   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1383   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1384   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1385 
   1386   // Check to ensure both blocks are empty (just a return) or optionally empty
   1387   // with PHI nodes.  If there are other instructions, merging would cause extra
   1388   // computation on one path or the other.
   1389   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1390     return false;
   1391   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1392     return false;
   1393 
   1394   Builder.SetInsertPoint(BI);
   1395   // Okay, we found a branch that is going to two return nodes.  If
   1396   // there is no return value for this function, just change the
   1397   // branch into a return.
   1398   if (FalseRet->getNumOperands() == 0) {
   1399     TrueSucc->removePredecessor(BI->getParent());
   1400     FalseSucc->removePredecessor(BI->getParent());
   1401     Builder.CreateRetVoid();
   1402     EraseTerminatorInstAndDCECond(BI);
   1403     return true;
   1404   }
   1405 
   1406   // Otherwise, figure out what the true and false return values are
   1407   // so we can insert a new select instruction.
   1408   Value *TrueValue = TrueRet->getReturnValue();
   1409   Value *FalseValue = FalseRet->getReturnValue();
   1410 
   1411   // Unwrap any PHI nodes in the return blocks.
   1412   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1413     if (TVPN->getParent() == TrueSucc)
   1414       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1415   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1416     if (FVPN->getParent() == FalseSucc)
   1417       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1418 
   1419   // In order for this transformation to be safe, we must be able to
   1420   // unconditionally execute both operands to the return.  This is
   1421   // normally the case, but we could have a potentially-trapping
   1422   // constant expression that prevents this transformation from being
   1423   // safe.
   1424   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1425     if (TCV->canTrap())
   1426       return false;
   1427   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1428     if (FCV->canTrap())
   1429       return false;
   1430 
   1431   // Okay, we collected all the mapped values and checked them for sanity, and
   1432   // defined to really do this transformation.  First, update the CFG.
   1433   TrueSucc->removePredecessor(BI->getParent());
   1434   FalseSucc->removePredecessor(BI->getParent());
   1435 
   1436   // Insert select instructions where needed.
   1437   Value *BrCond = BI->getCondition();
   1438   if (TrueValue) {
   1439     // Insert a select if the results differ.
   1440     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1441     } else if (isa<UndefValue>(TrueValue)) {
   1442       TrueValue = FalseValue;
   1443     } else {
   1444       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1445                                        FalseValue, "retval");
   1446     }
   1447   }
   1448 
   1449   Value *RI = !TrueValue ?
   1450     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1451 
   1452   (void) RI;
   1453 
   1454   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1455                << "\n  " << *BI << "NewRet = " << *RI
   1456                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1457 
   1458   EraseTerminatorInstAndDCECond(BI);
   1459 
   1460   return true;
   1461 }
   1462 
   1463 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1464 /// predecessor branches to us and one of our successors, fold the block into
   1465 /// the predecessor and use logical operations to pick the right destination.
   1466 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
   1467   BasicBlock *BB = BI->getParent();
   1468 
   1469   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   1470   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   1471     Cond->getParent() != BB || !Cond->hasOneUse())
   1472   return false;
   1473 
   1474   // Only allow this if the condition is a simple instruction that can be
   1475   // executed unconditionally.  It must be in the same block as the branch, and
   1476   // must be at the front of the block.
   1477   BasicBlock::iterator FrontIt = BB->front();
   1478 
   1479   // Ignore dbg intrinsics.
   1480   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1481 
   1482   // Allow a single instruction to be hoisted in addition to the compare
   1483   // that feeds the branch.  We later ensure that any values that _it_ uses
   1484   // were also live in the predecessor, so that we don't unnecessarily create
   1485   // register pressure or inhibit out-of-order execution.
   1486   Instruction *BonusInst = 0;
   1487   if (&*FrontIt != Cond &&
   1488       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
   1489       FrontIt->isSafeToSpeculativelyExecute()) {
   1490     BonusInst = &*FrontIt;
   1491     ++FrontIt;
   1492 
   1493     // Ignore dbg intrinsics.
   1494     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1495   }
   1496 
   1497   // Only a single bonus inst is allowed.
   1498   if (&*FrontIt != Cond)
   1499     return false;
   1500 
   1501   // Make sure the instruction after the condition is the cond branch.
   1502   BasicBlock::iterator CondIt = Cond; ++CondIt;
   1503 
   1504   // Ingore dbg intrinsics.
   1505   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   1506 
   1507   if (&*CondIt != BI)
   1508     return false;
   1509 
   1510   // Cond is known to be a compare or binary operator.  Check to make sure that
   1511   // neither operand is a potentially-trapping constant expression.
   1512   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   1513     if (CE->canTrap())
   1514       return false;
   1515   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   1516     if (CE->canTrap())
   1517       return false;
   1518 
   1519   // Finally, don't infinitely unroll conditional loops.
   1520   BasicBlock *TrueDest  = BI->getSuccessor(0);
   1521   BasicBlock *FalseDest = BI->getSuccessor(1);
   1522   if (TrueDest == BB || FalseDest == BB)
   1523     return false;
   1524 
   1525   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   1526     BasicBlock *PredBlock = *PI;
   1527     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   1528 
   1529     // Check that we have two conditional branches.  If there is a PHI node in
   1530     // the common successor, verify that the same value flows in from both
   1531     // blocks.
   1532     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
   1533       continue;
   1534 
   1535     // Determine if the two branches share a common destination.
   1536     Instruction::BinaryOps Opc;
   1537     bool InvertPredCond = false;
   1538 
   1539     if (PBI->getSuccessor(0) == TrueDest)
   1540       Opc = Instruction::Or;
   1541     else if (PBI->getSuccessor(1) == FalseDest)
   1542       Opc = Instruction::And;
   1543     else if (PBI->getSuccessor(0) == FalseDest)
   1544       Opc = Instruction::And, InvertPredCond = true;
   1545     else if (PBI->getSuccessor(1) == TrueDest)
   1546       Opc = Instruction::Or, InvertPredCond = true;
   1547     else
   1548       continue;
   1549 
   1550     // Ensure that any values used in the bonus instruction are also used
   1551     // by the terminator of the predecessor.  This means that those values
   1552     // must already have been resolved, so we won't be inhibiting the
   1553     // out-of-order core by speculating them earlier.
   1554     if (BonusInst) {
   1555       // Collect the values used by the bonus inst
   1556       SmallPtrSet<Value*, 4> UsedValues;
   1557       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   1558            OE = BonusInst->op_end(); OI != OE; ++OI) {
   1559         Value* V = *OI;
   1560         if (!isa<Constant>(V))
   1561           UsedValues.insert(V);
   1562       }
   1563 
   1564       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   1565       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   1566 
   1567       // Walk up to four levels back up the use-def chain of the predecessor's
   1568       // terminator to see if all those values were used.  The choice of four
   1569       // levels is arbitrary, to provide a compile-time-cost bound.
   1570       while (!Worklist.empty()) {
   1571         std::pair<Value*, unsigned> Pair = Worklist.back();
   1572         Worklist.pop_back();
   1573 
   1574         if (Pair.second >= 4) continue;
   1575         UsedValues.erase(Pair.first);
   1576         if (UsedValues.empty()) break;
   1577 
   1578         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   1579           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   1580                OI != OE; ++OI)
   1581             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   1582         }
   1583       }
   1584 
   1585       if (!UsedValues.empty()) return false;
   1586     }
   1587 
   1588     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   1589     IRBuilder<> Builder(PBI);
   1590 
   1591     // If we need to invert the condition in the pred block to match, do so now.
   1592     if (InvertPredCond) {
   1593       Value *NewCond = PBI->getCondition();
   1594 
   1595       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   1596         CmpInst *CI = cast<CmpInst>(NewCond);
   1597         CI->setPredicate(CI->getInversePredicate());
   1598       } else {
   1599         NewCond = Builder.CreateNot(NewCond,
   1600                                     PBI->getCondition()->getName()+".not");
   1601       }
   1602 
   1603       PBI->setCondition(NewCond);
   1604       BasicBlock *OldTrue = PBI->getSuccessor(0);
   1605       BasicBlock *OldFalse = PBI->getSuccessor(1);
   1606       PBI->setSuccessor(0, OldFalse);
   1607       PBI->setSuccessor(1, OldTrue);
   1608     }
   1609 
   1610     // If we have a bonus inst, clone it into the predecessor block.
   1611     Instruction *NewBonus = 0;
   1612     if (BonusInst) {
   1613       NewBonus = BonusInst->clone();
   1614       PredBlock->getInstList().insert(PBI, NewBonus);
   1615       NewBonus->takeName(BonusInst);
   1616       BonusInst->setName(BonusInst->getName()+".old");
   1617     }
   1618 
   1619     // Clone Cond into the predecessor basic block, and or/and the
   1620     // two conditions together.
   1621     Instruction *New = Cond->clone();
   1622     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   1623     PredBlock->getInstList().insert(PBI, New);
   1624     New->takeName(Cond);
   1625     Cond->setName(New->getName()+".old");
   1626 
   1627     Instruction *NewCond =
   1628       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   1629                                             New, "or.cond"));
   1630     PBI->setCondition(NewCond);
   1631     if (PBI->getSuccessor(0) == BB) {
   1632       AddPredecessorToBlock(TrueDest, PredBlock, BB);
   1633       PBI->setSuccessor(0, TrueDest);
   1634     }
   1635     if (PBI->getSuccessor(1) == BB) {
   1636       AddPredecessorToBlock(FalseDest, PredBlock, BB);
   1637       PBI->setSuccessor(1, FalseDest);
   1638     }
   1639 
   1640     // Copy any debug value intrinsics into the end of PredBlock.
   1641     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   1642       if (isa<DbgInfoIntrinsic>(*I))
   1643         I->clone()->insertBefore(PBI);
   1644 
   1645     return true;
   1646   }
   1647   return false;
   1648 }
   1649 
   1650 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   1651 /// predecessor of another block, this function tries to simplify it.  We know
   1652 /// that PBI and BI are both conditional branches, and BI is in one of the
   1653 /// successor blocks of PBI - PBI branches to BI.
   1654 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   1655   assert(PBI->isConditional() && BI->isConditional());
   1656   BasicBlock *BB = BI->getParent();
   1657 
   1658   // If this block ends with a branch instruction, and if there is a
   1659   // predecessor that ends on a branch of the same condition, make
   1660   // this conditional branch redundant.
   1661   if (PBI->getCondition() == BI->getCondition() &&
   1662       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1663     // Okay, the outcome of this conditional branch is statically
   1664     // knowable.  If this block had a single pred, handle specially.
   1665     if (BB->getSinglePredecessor()) {
   1666       // Turn this into a branch on constant.
   1667       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1668       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1669                                         CondIsTrue));
   1670       return true;  // Nuke the branch on constant.
   1671     }
   1672 
   1673     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   1674     // in the constant and simplify the block result.  Subsequent passes of
   1675     // simplifycfg will thread the block.
   1676     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   1677       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   1678       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   1679                                        std::distance(PB, PE),
   1680                                        BI->getCondition()->getName() + ".pr",
   1681                                        BB->begin());
   1682       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   1683       // predecessor, compute the PHI'd conditional value for all of the preds.
   1684       // Any predecessor where the condition is not computable we keep symbolic.
   1685       for (pred_iterator PI = PB; PI != PE; ++PI) {
   1686         BasicBlock *P = *PI;
   1687         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   1688             PBI != BI && PBI->isConditional() &&
   1689             PBI->getCondition() == BI->getCondition() &&
   1690             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1691           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1692           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1693                                               CondIsTrue), P);
   1694         } else {
   1695           NewPN->addIncoming(BI->getCondition(), P);
   1696         }
   1697       }
   1698 
   1699       BI->setCondition(NewPN);
   1700       return true;
   1701     }
   1702   }
   1703 
   1704   // If this is a conditional branch in an empty block, and if any
   1705   // predecessors is a conditional branch to one of our destinations,
   1706   // fold the conditions into logical ops and one cond br.
   1707   BasicBlock::iterator BBI = BB->begin();
   1708   // Ignore dbg intrinsics.
   1709   while (isa<DbgInfoIntrinsic>(BBI))
   1710     ++BBI;
   1711   if (&*BBI != BI)
   1712     return false;
   1713 
   1714 
   1715   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   1716     if (CE->canTrap())
   1717       return false;
   1718 
   1719   int PBIOp, BIOp;
   1720   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   1721     PBIOp = BIOp = 0;
   1722   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   1723     PBIOp = 0, BIOp = 1;
   1724   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   1725     PBIOp = 1, BIOp = 0;
   1726   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   1727     PBIOp = BIOp = 1;
   1728   else
   1729     return false;
   1730 
   1731   // Check to make sure that the other destination of this branch
   1732   // isn't BB itself.  If so, this is an infinite loop that will
   1733   // keep getting unwound.
   1734   if (PBI->getSuccessor(PBIOp) == BB)
   1735     return false;
   1736 
   1737   // Do not perform this transformation if it would require
   1738   // insertion of a large number of select instructions. For targets
   1739   // without predication/cmovs, this is a big pessimization.
   1740   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   1741 
   1742   unsigned NumPhis = 0;
   1743   for (BasicBlock::iterator II = CommonDest->begin();
   1744        isa<PHINode>(II); ++II, ++NumPhis)
   1745     if (NumPhis > 2) // Disable this xform.
   1746       return false;
   1747 
   1748   // Finally, if everything is ok, fold the branches to logical ops.
   1749   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
   1750 
   1751   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   1752                << "AND: " << *BI->getParent());
   1753 
   1754 
   1755   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   1756   // branch in it, where one edge (OtherDest) goes back to itself but the other
   1757   // exits.  We don't *know* that the program avoids the infinite loop
   1758   // (even though that seems likely).  If we do this xform naively, we'll end up
   1759   // recursively unpeeling the loop.  Since we know that (after the xform is
   1760   // done) that the block *is* infinite if reached, we just make it an obviously
   1761   // infinite loop with no cond branch.
   1762   if (OtherDest == BB) {
   1763     // Insert it at the end of the function, because it's either code,
   1764     // or it won't matter if it's hot. :)
   1765     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1766                                                   "infloop", BB->getParent());
   1767     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1768     OtherDest = InfLoopBlock;
   1769   }
   1770 
   1771   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1772 
   1773   // BI may have other predecessors.  Because of this, we leave
   1774   // it alone, but modify PBI.
   1775 
   1776   // Make sure we get to CommonDest on True&True directions.
   1777   Value *PBICond = PBI->getCondition();
   1778   IRBuilder<true, NoFolder> Builder(PBI);
   1779   if (PBIOp)
   1780     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   1781 
   1782   Value *BICond = BI->getCondition();
   1783   if (BIOp)
   1784     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   1785 
   1786   // Merge the conditions.
   1787   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   1788 
   1789   // Modify PBI to branch on the new condition to the new dests.
   1790   PBI->setCondition(Cond);
   1791   PBI->setSuccessor(0, CommonDest);
   1792   PBI->setSuccessor(1, OtherDest);
   1793 
   1794   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   1795   // block that are identical to the entries for BI's block.
   1796   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   1797 
   1798   // We know that the CommonDest already had an edge from PBI to
   1799   // it.  If it has PHIs though, the PHIs may have different
   1800   // entries for BB and PBI's BB.  If so, insert a select to make
   1801   // them agree.
   1802   PHINode *PN;
   1803   for (BasicBlock::iterator II = CommonDest->begin();
   1804        (PN = dyn_cast<PHINode>(II)); ++II) {
   1805     Value *BIV = PN->getIncomingValueForBlock(BB);
   1806     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   1807     Value *PBIV = PN->getIncomingValue(PBBIdx);
   1808     if (BIV != PBIV) {
   1809       // Insert a select in PBI to pick the right value.
   1810       Value *NV = cast<SelectInst>
   1811         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   1812       PN->setIncomingValue(PBBIdx, NV);
   1813     }
   1814   }
   1815 
   1816   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   1817   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1818 
   1819   // This basic block is probably dead.  We know it has at least
   1820   // one fewer predecessor.
   1821   return true;
   1822 }
   1823 
   1824 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   1825 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   1826 // Takes care of updating the successors and removing the old terminator.
   1827 // Also makes sure not to introduce new successors by assuming that edges to
   1828 // non-successor TrueBBs and FalseBBs aren't reachable.
   1829 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   1830                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
   1831   // Remove any superfluous successor edges from the CFG.
   1832   // First, figure out which successors to preserve.
   1833   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   1834   // successor.
   1835   BasicBlock *KeepEdge1 = TrueBB;
   1836   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
   1837 
   1838   // Then remove the rest.
   1839   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   1840     BasicBlock *Succ = OldTerm->getSuccessor(I);
   1841     // Make sure only to keep exactly one copy of each edge.
   1842     if (Succ == KeepEdge1)
   1843       KeepEdge1 = 0;
   1844     else if (Succ == KeepEdge2)
   1845       KeepEdge2 = 0;
   1846     else
   1847       Succ->removePredecessor(OldTerm->getParent());
   1848   }
   1849 
   1850   IRBuilder<> Builder(OldTerm);
   1851   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   1852 
   1853   // Insert an appropriate new terminator.
   1854   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
   1855     if (TrueBB == FalseBB)
   1856       // We were only looking for one successor, and it was present.
   1857       // Create an unconditional branch to it.
   1858       Builder.CreateBr(TrueBB);
   1859     else
   1860       // We found both of the successors we were looking for.
   1861       // Create a conditional branch sharing the condition of the select.
   1862       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   1863   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   1864     // Neither of the selected blocks were successors, so this
   1865     // terminator must be unreachable.
   1866     new UnreachableInst(OldTerm->getContext(), OldTerm);
   1867   } else {
   1868     // One of the selected values was a successor, but the other wasn't.
   1869     // Insert an unconditional branch to the one that was found;
   1870     // the edge to the one that wasn't must be unreachable.
   1871     if (KeepEdge1 == 0)
   1872       // Only TrueBB was found.
   1873       Builder.CreateBr(TrueBB);
   1874     else
   1875       // Only FalseBB was found.
   1876       Builder.CreateBr(FalseBB);
   1877   }
   1878 
   1879   EraseTerminatorInstAndDCECond(OldTerm);
   1880   return true;
   1881 }
   1882 
   1883 // SimplifySwitchOnSelect - Replaces
   1884 //   (switch (select cond, X, Y)) on constant X, Y
   1885 // with a branch - conditional if X and Y lead to distinct BBs,
   1886 // unconditional otherwise.
   1887 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   1888   // Check for constant integer values in the select.
   1889   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   1890   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   1891   if (!TrueVal || !FalseVal)
   1892     return false;
   1893 
   1894   // Find the relevant condition and destinations.
   1895   Value *Condition = Select->getCondition();
   1896   BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
   1897   BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
   1898 
   1899   // Perform the actual simplification.
   1900   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
   1901 }
   1902 
   1903 // SimplifyIndirectBrOnSelect - Replaces
   1904 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   1905 //                             blockaddress(@fn, BlockB)))
   1906 // with
   1907 //   (br cond, BlockA, BlockB).
   1908 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   1909   // Check that both operands of the select are block addresses.
   1910   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   1911   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   1912   if (!TBA || !FBA)
   1913     return false;
   1914 
   1915   // Extract the actual blocks.
   1916   BasicBlock *TrueBB = TBA->getBasicBlock();
   1917   BasicBlock *FalseBB = FBA->getBasicBlock();
   1918 
   1919   // Perform the actual simplification.
   1920   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
   1921 }
   1922 
   1923 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   1924 /// instruction (a seteq/setne with a constant) as the only instruction in a
   1925 /// block that ends with an uncond branch.  We are looking for a very specific
   1926 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   1927 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   1928 /// default value goes to an uncond block with a seteq in it, we get something
   1929 /// like:
   1930 ///
   1931 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   1932 /// DEFAULT:
   1933 ///   %tmp = icmp eq i8 %A, 92
   1934 ///   br label %end
   1935 /// end:
   1936 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   1937 ///
   1938 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   1939 /// the PHI, merging the third icmp into the switch.
   1940 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
   1941                                                   const TargetData *TD,
   1942                                                   IRBuilder<> &Builder) {
   1943   BasicBlock *BB = ICI->getParent();
   1944 
   1945   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   1946   // complex.
   1947   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   1948 
   1949   Value *V = ICI->getOperand(0);
   1950   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   1951 
   1952   // The pattern we're looking for is where our only predecessor is a switch on
   1953   // 'V' and this block is the default case for the switch.  In this case we can
   1954   // fold the compared value into the switch to simplify things.
   1955   BasicBlock *Pred = BB->getSinglePredecessor();
   1956   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
   1957 
   1958   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   1959   if (SI->getCondition() != V)
   1960     return false;
   1961 
   1962   // If BB is reachable on a non-default case, then we simply know the value of
   1963   // V in this block.  Substitute it and constant fold the icmp instruction
   1964   // away.
   1965   if (SI->getDefaultDest() != BB) {
   1966     ConstantInt *VVal = SI->findCaseDest(BB);
   1967     assert(VVal && "Should have a unique destination value");
   1968     ICI->setOperand(0, VVal);
   1969 
   1970     if (Value *V = SimplifyInstruction(ICI, TD)) {
   1971       ICI->replaceAllUsesWith(V);
   1972       ICI->eraseFromParent();
   1973     }
   1974     // BB is now empty, so it is likely to simplify away.
   1975     return SimplifyCFG(BB) | true;
   1976   }
   1977 
   1978   // Ok, the block is reachable from the default dest.  If the constant we're
   1979   // comparing exists in one of the other edges, then we can constant fold ICI
   1980   // and zap it.
   1981   if (SI->findCaseValue(Cst) != 0) {
   1982     Value *V;
   1983     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   1984       V = ConstantInt::getFalse(BB->getContext());
   1985     else
   1986       V = ConstantInt::getTrue(BB->getContext());
   1987 
   1988     ICI->replaceAllUsesWith(V);
   1989     ICI->eraseFromParent();
   1990     // BB is now empty, so it is likely to simplify away.
   1991     return SimplifyCFG(BB) | true;
   1992   }
   1993 
   1994   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   1995   // the block.
   1996   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   1997   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
   1998   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
   1999       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2000     return false;
   2001 
   2002   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2003   // true in the PHI.
   2004   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2005   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2006 
   2007   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2008     std::swap(DefaultCst, NewCst);
   2009 
   2010   // Replace ICI (which is used by the PHI for the default value) with true or
   2011   // false depending on if it is EQ or NE.
   2012   ICI->replaceAllUsesWith(DefaultCst);
   2013   ICI->eraseFromParent();
   2014 
   2015   // Okay, the switch goes to this block on a default value.  Add an edge from
   2016   // the switch to the merge point on the compared value.
   2017   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2018                                          BB->getParent(), BB);
   2019   SI->addCase(Cst, NewBB);
   2020 
   2021   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2022   Builder.SetInsertPoint(NewBB);
   2023   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2024   Builder.CreateBr(SuccBlock);
   2025   PHIUse->addIncoming(NewCst, NewBB);
   2026   return true;
   2027 }
   2028 
   2029 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2030 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2031 /// fold it into a switch instruction if so.
   2032 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
   2033                                       IRBuilder<> &Builder) {
   2034   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2035   if (Cond == 0) return false;
   2036 
   2037 
   2038   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2039   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2040   // 'setne's and'ed together, collect them.
   2041   Value *CompVal = 0;
   2042   std::vector<ConstantInt*> Values;
   2043   bool TrueWhenEqual = true;
   2044   Value *ExtraCase = 0;
   2045   unsigned UsedICmps = 0;
   2046 
   2047   if (Cond->getOpcode() == Instruction::Or) {
   2048     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
   2049                                      UsedICmps);
   2050   } else if (Cond->getOpcode() == Instruction::And) {
   2051     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
   2052                                      UsedICmps);
   2053     TrueWhenEqual = false;
   2054   }
   2055 
   2056   // If we didn't have a multiply compared value, fail.
   2057   if (CompVal == 0) return false;
   2058 
   2059   // Avoid turning single icmps into a switch.
   2060   if (UsedICmps <= 1)
   2061     return false;
   2062 
   2063   // There might be duplicate constants in the list, which the switch
   2064   // instruction can't handle, remove them now.
   2065   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2066   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2067 
   2068   // If Extra was used, we require at least two switch values to do the
   2069   // transformation.  A switch with one value is just an cond branch.
   2070   if (ExtraCase && Values.size() < 2) return false;
   2071 
   2072   // Figure out which block is which destination.
   2073   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2074   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2075   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2076 
   2077   BasicBlock *BB = BI->getParent();
   2078 
   2079   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2080                << " cases into SWITCH.  BB is:\n" << *BB);
   2081 
   2082   // If there are any extra values that couldn't be folded into the switch
   2083   // then we evaluate them with an explicit branch first.  Split the block
   2084   // right before the condbr to handle it.
   2085   if (ExtraCase) {
   2086     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2087     // Remove the uncond branch added to the old block.
   2088     TerminatorInst *OldTI = BB->getTerminator();
   2089     Builder.SetInsertPoint(OldTI);
   2090 
   2091     if (TrueWhenEqual)
   2092       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2093     else
   2094       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2095 
   2096     OldTI->eraseFromParent();
   2097 
   2098     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2099     // for the edge we just added.
   2100     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2101 
   2102     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2103           << "\nEXTRABB = " << *BB);
   2104     BB = NewBB;
   2105   }
   2106 
   2107   Builder.SetInsertPoint(BI);
   2108   // Convert pointer to int before we switch.
   2109   if (CompVal->getType()->isPointerTy()) {
   2110     assert(TD && "Cannot switch on pointer without TargetData");
   2111     CompVal = Builder.CreatePtrToInt(CompVal,
   2112                                      TD->getIntPtrType(CompVal->getContext()),
   2113                                      "magicptr");
   2114   }
   2115 
   2116   // Create the new switch instruction now.
   2117   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2118 
   2119   // Add all of the 'cases' to the switch instruction.
   2120   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2121     New->addCase(Values[i], EdgeBB);
   2122 
   2123   // We added edges from PI to the EdgeBB.  As such, if there were any
   2124   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2125   // the number of edges added.
   2126   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2127        isa<PHINode>(BBI); ++BBI) {
   2128     PHINode *PN = cast<PHINode>(BBI);
   2129     Value *InVal = PN->getIncomingValueForBlock(BB);
   2130     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2131       PN->addIncoming(InVal, BB);
   2132   }
   2133 
   2134   // Erase the old branch instruction.
   2135   EraseTerminatorInstAndDCECond(BI);
   2136 
   2137   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2138   return true;
   2139 }
   2140 
   2141 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2142   BasicBlock *BB = RI->getParent();
   2143   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2144 
   2145   // Find predecessors that end with branches.
   2146   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2147   SmallVector<BranchInst*, 8> CondBranchPreds;
   2148   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2149     BasicBlock *P = *PI;
   2150     TerminatorInst *PTI = P->getTerminator();
   2151     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2152       if (BI->isUnconditional())
   2153         UncondBranchPreds.push_back(P);
   2154       else
   2155         CondBranchPreds.push_back(BI);
   2156     }
   2157   }
   2158 
   2159   // If we found some, do the transformation!
   2160   if (!UncondBranchPreds.empty() && DupRet) {
   2161     while (!UncondBranchPreds.empty()) {
   2162       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2163       DEBUG(dbgs() << "FOLDING: " << *BB
   2164             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2165       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2166     }
   2167 
   2168     // If we eliminated all predecessors of the block, delete the block now.
   2169     if (pred_begin(BB) == pred_end(BB))
   2170       // We know there are no successors, so just nuke the block.
   2171       BB->eraseFromParent();
   2172 
   2173     return true;
   2174   }
   2175 
   2176   // Check out all of the conditional branches going to this return
   2177   // instruction.  If any of them just select between returns, change the
   2178   // branch itself into a select/return pair.
   2179   while (!CondBranchPreds.empty()) {
   2180     BranchInst *BI = CondBranchPreds.pop_back_val();
   2181 
   2182     // Check to see if the non-BB successor is also a return block.
   2183     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2184         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2185         SimplifyCondBranchToTwoReturns(BI, Builder))
   2186       return true;
   2187   }
   2188   return false;
   2189 }
   2190 
   2191 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
   2192   // Check to see if the first instruction in this block is just an unwind.
   2193   // If so, replace any invoke instructions which use this as an exception
   2194   // destination with call instructions.
   2195   BasicBlock *BB = UI->getParent();
   2196   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2197 
   2198   bool Changed = false;
   2199   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2200   while (!Preds.empty()) {
   2201     BasicBlock *Pred = Preds.back();
   2202     InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
   2203     if (II && II->getUnwindDest() == BB) {
   2204       // Insert a new branch instruction before the invoke, because this
   2205       // is now a fall through.
   2206       Builder.SetInsertPoint(II);
   2207       BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   2208       Pred->getInstList().remove(II);   // Take out of symbol table
   2209 
   2210       // Insert the call now.
   2211       SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
   2212       Builder.SetInsertPoint(BI);
   2213       CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   2214                                         Args, II->getName());
   2215       CI->setCallingConv(II->getCallingConv());
   2216       CI->setAttributes(II->getAttributes());
   2217       // If the invoke produced a value, the Call now does instead.
   2218       II->replaceAllUsesWith(CI);
   2219       delete II;
   2220       Changed = true;
   2221     }
   2222 
   2223     Preds.pop_back();
   2224   }
   2225 
   2226   // If this block is now dead (and isn't the entry block), remove it.
   2227   if (pred_begin(BB) == pred_end(BB) &&
   2228       BB != &BB->getParent()->getEntryBlock()) {
   2229     // We know there are no successors, so just nuke the block.
   2230     BB->eraseFromParent();
   2231     return true;
   2232   }
   2233 
   2234   return Changed;
   2235 }
   2236 
   2237 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2238   BasicBlock *BB = UI->getParent();
   2239 
   2240   bool Changed = false;
   2241 
   2242   // If there are any instructions immediately before the unreachable that can
   2243   // be removed, do so.
   2244   while (UI != BB->begin()) {
   2245     BasicBlock::iterator BBI = UI;
   2246     --BBI;
   2247     // Do not delete instructions that can have side effects, like calls
   2248     // (which may never return) and volatile loads and stores.
   2249     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2250 
   2251     if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
   2252       if (SI->isVolatile())
   2253         break;
   2254 
   2255     if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
   2256       if (LI->isVolatile())
   2257         break;
   2258 
   2259     // Delete this instruction (any uses are guaranteed to be dead)
   2260     if (!BBI->use_empty())
   2261       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   2262     BBI->eraseFromParent();
   2263     Changed = true;
   2264   }
   2265 
   2266   // If the unreachable instruction is the first in the block, take a gander
   2267   // at all of the predecessors of this instruction, and simplify them.
   2268   if (&BB->front() != UI) return Changed;
   2269 
   2270   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2271   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   2272     TerminatorInst *TI = Preds[i]->getTerminator();
   2273     IRBuilder<> Builder(TI);
   2274     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2275       if (BI->isUnconditional()) {
   2276         if (BI->getSuccessor(0) == BB) {
   2277           new UnreachableInst(TI->getContext(), TI);
   2278           TI->eraseFromParent();
   2279           Changed = true;
   2280         }
   2281       } else {
   2282         if (BI->getSuccessor(0) == BB) {
   2283           Builder.CreateBr(BI->getSuccessor(1));
   2284           EraseTerminatorInstAndDCECond(BI);
   2285         } else if (BI->getSuccessor(1) == BB) {
   2286           Builder.CreateBr(BI->getSuccessor(0));
   2287           EraseTerminatorInstAndDCECond(BI);
   2288           Changed = true;
   2289         }
   2290       }
   2291     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2292       for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
   2293         if (SI->getSuccessor(i) == BB) {
   2294           BB->removePredecessor(SI->getParent());
   2295           SI->removeCase(i);
   2296           --i; --e;
   2297           Changed = true;
   2298         }
   2299       // If the default value is unreachable, figure out the most popular
   2300       // destination and make it the default.
   2301       if (SI->getSuccessor(0) == BB) {
   2302         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   2303         for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
   2304           std::pair<unsigned, unsigned>& entry =
   2305               Popularity[SI->getSuccessor(i)];
   2306           if (entry.first == 0) {
   2307             entry.first = 1;
   2308             entry.second = i;
   2309           } else {
   2310             entry.first++;
   2311           }
   2312         }
   2313 
   2314         // Find the most popular block.
   2315         unsigned MaxPop = 0;
   2316         unsigned MaxIndex = 0;
   2317         BasicBlock *MaxBlock = 0;
   2318         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   2319              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   2320           if (I->second.first > MaxPop ||
   2321               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   2322             MaxPop = I->second.first;
   2323             MaxIndex = I->second.second;
   2324             MaxBlock = I->first;
   2325           }
   2326         }
   2327         if (MaxBlock) {
   2328           // Make this the new default, allowing us to delete any explicit
   2329           // edges to it.
   2330           SI->setSuccessor(0, MaxBlock);
   2331           Changed = true;
   2332 
   2333           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   2334           // it.
   2335           if (isa<PHINode>(MaxBlock->begin()))
   2336             for (unsigned i = 0; i != MaxPop-1; ++i)
   2337               MaxBlock->removePredecessor(SI->getParent());
   2338 
   2339           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
   2340             if (SI->getSuccessor(i) == MaxBlock) {
   2341               SI->removeCase(i);
   2342               --i; --e;
   2343             }
   2344         }
   2345       }
   2346     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   2347       if (II->getUnwindDest() == BB) {
   2348         // Convert the invoke to a call instruction.  This would be a good
   2349         // place to note that the call does not throw though.
   2350         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   2351         II->removeFromParent();   // Take out of symbol table
   2352 
   2353         // Insert the call now...
   2354         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   2355         Builder.SetInsertPoint(BI);
   2356         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   2357                                           Args, II->getName());
   2358         CI->setCallingConv(II->getCallingConv());
   2359         CI->setAttributes(II->getAttributes());
   2360         // If the invoke produced a value, the call does now instead.
   2361         II->replaceAllUsesWith(CI);
   2362         delete II;
   2363         Changed = true;
   2364       }
   2365     }
   2366   }
   2367 
   2368   // If this block is now dead, remove it.
   2369   if (pred_begin(BB) == pred_end(BB) &&
   2370       BB != &BB->getParent()->getEntryBlock()) {
   2371     // We know there are no successors, so just nuke the block.
   2372     BB->eraseFromParent();
   2373     return true;
   2374   }
   2375 
   2376   return Changed;
   2377 }
   2378 
   2379 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   2380 /// integer range comparison into a sub, an icmp and a branch.
   2381 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   2382   assert(SI->getNumCases() > 2 && "Degenerate switch?");
   2383 
   2384   // Make sure all cases point to the same destination and gather the values.
   2385   SmallVector<ConstantInt *, 16> Cases;
   2386   Cases.push_back(SI->getCaseValue(1));
   2387   for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
   2388     if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
   2389       return false;
   2390     Cases.push_back(SI->getCaseValue(I));
   2391   }
   2392   assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
   2393 
   2394   // Sort the case values, then check if they form a range we can transform.
   2395   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   2396   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   2397     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   2398       return false;
   2399   }
   2400 
   2401   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   2402   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
   2403 
   2404   Value *Sub = SI->getCondition();
   2405   if (!Offset->isNullValue())
   2406     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   2407   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   2408   Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
   2409 
   2410   // Prune obsolete incoming values off the successor's PHI nodes.
   2411   for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
   2412        isa<PHINode>(BBI); ++BBI) {
   2413     for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
   2414       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   2415   }
   2416   SI->eraseFromParent();
   2417 
   2418   return true;
   2419 }
   2420 
   2421 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   2422 /// and use it to remove dead cases.
   2423 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   2424   Value *Cond = SI->getCondition();
   2425   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
   2426   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   2427   ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
   2428 
   2429   // Gather dead cases.
   2430   SmallVector<ConstantInt*, 8> DeadCases;
   2431   for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
   2432     if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
   2433         (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
   2434       DeadCases.push_back(SI->getCaseValue(I));
   2435       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   2436                    << SI->getCaseValue(I)->getValue() << "' is dead.\n");
   2437     }
   2438   }
   2439 
   2440   // Remove dead cases from the switch.
   2441   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   2442     unsigned Case = SI->findCaseValue(DeadCases[I]);
   2443     // Prune unused values from PHI nodes.
   2444     SI->getSuccessor(Case)->removePredecessor(SI->getParent());
   2445     SI->removeCase(Case);
   2446   }
   2447 
   2448   return !DeadCases.empty();
   2449 }
   2450 
   2451 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   2452 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   2453 /// by an unconditional branch), look at the phi node for BB in the successor
   2454 /// block and see if the incoming value is equal to CaseValue. If so, return
   2455 /// the phi node, and set PhiIndex to BB's index in the phi node.
   2456 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   2457                                               BasicBlock *BB,
   2458                                               int *PhiIndex) {
   2459   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   2460     return NULL; // BB must be empty to be a candidate for simplification.
   2461   if (!BB->getSinglePredecessor())
   2462     return NULL; // BB must be dominated by the switch.
   2463 
   2464   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   2465   if (!Branch || !Branch->isUnconditional())
   2466     return NULL; // Terminator must be unconditional branch.
   2467 
   2468   BasicBlock *Succ = Branch->getSuccessor(0);
   2469 
   2470   BasicBlock::iterator I = Succ->begin();
   2471   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   2472     int Idx = PHI->getBasicBlockIndex(BB);
   2473     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   2474 
   2475     Value *InValue = PHI->getIncomingValue(Idx);
   2476     if (InValue != CaseValue) continue;
   2477 
   2478     *PhiIndex = Idx;
   2479     return PHI;
   2480   }
   2481 
   2482   return NULL;
   2483 }
   2484 
   2485 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   2486 /// instruction to a phi node dominated by the switch, if that would mean that
   2487 /// some of the destination blocks of the switch can be folded away.
   2488 /// Returns true if a change is made.
   2489 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   2490   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   2491   ForwardingNodesMap ForwardingNodes;
   2492 
   2493   for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
   2494     ConstantInt *CaseValue = SI->getCaseValue(I);
   2495     BasicBlock *CaseDest = SI->getSuccessor(I);
   2496 
   2497     int PhiIndex;
   2498     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   2499                                                  &PhiIndex);
   2500     if (!PHI) continue;
   2501 
   2502     ForwardingNodes[PHI].push_back(PhiIndex);
   2503   }
   2504 
   2505   bool Changed = false;
   2506 
   2507   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   2508        E = ForwardingNodes.end(); I != E; ++I) {
   2509     PHINode *Phi = I->first;
   2510     SmallVector<int,4> &Indexes = I->second;
   2511 
   2512     if (Indexes.size() < 2) continue;
   2513 
   2514     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   2515       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   2516     Changed = true;
   2517   }
   2518 
   2519   return Changed;
   2520 }
   2521 
   2522 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   2523   // If this switch is too complex to want to look at, ignore it.
   2524   if (!isValueEqualityComparison(SI))
   2525     return false;
   2526 
   2527   BasicBlock *BB = SI->getParent();
   2528 
   2529   // If we only have one predecessor, and if it is a branch on this value,
   2530   // see if that predecessor totally determines the outcome of this switch.
   2531   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2532     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   2533       return SimplifyCFG(BB) | true;
   2534 
   2535   Value *Cond = SI->getCondition();
   2536   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   2537     if (SimplifySwitchOnSelect(SI, Select))
   2538       return SimplifyCFG(BB) | true;
   2539 
   2540   // If the block only contains the switch, see if we can fold the block
   2541   // away into any preds.
   2542   BasicBlock::iterator BBI = BB->begin();
   2543   // Ignore dbg intrinsics.
   2544   while (isa<DbgInfoIntrinsic>(BBI))
   2545     ++BBI;
   2546   if (SI == &*BBI)
   2547     if (FoldValueComparisonIntoPredecessors(SI, Builder))
   2548       return SimplifyCFG(BB) | true;
   2549 
   2550   // Try to transform the switch into an icmp and a branch.
   2551   if (TurnSwitchRangeIntoICmp(SI, Builder))
   2552     return SimplifyCFG(BB) | true;
   2553 
   2554   // Remove unreachable cases.
   2555   if (EliminateDeadSwitchCases(SI))
   2556     return SimplifyCFG(BB) | true;
   2557 
   2558   if (ForwardSwitchConditionToPHI(SI))
   2559     return SimplifyCFG(BB) | true;
   2560 
   2561   return false;
   2562 }
   2563 
   2564 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   2565   BasicBlock *BB = IBI->getParent();
   2566   bool Changed = false;
   2567 
   2568   // Eliminate redundant destinations.
   2569   SmallPtrSet<Value *, 8> Succs;
   2570   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   2571     BasicBlock *Dest = IBI->getDestination(i);
   2572     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   2573       Dest->removePredecessor(BB);
   2574       IBI->removeDestination(i);
   2575       --i; --e;
   2576       Changed = true;
   2577     }
   2578   }
   2579 
   2580   if (IBI->getNumDestinations() == 0) {
   2581     // If the indirectbr has no successors, change it to unreachable.
   2582     new UnreachableInst(IBI->getContext(), IBI);
   2583     EraseTerminatorInstAndDCECond(IBI);
   2584     return true;
   2585   }
   2586 
   2587   if (IBI->getNumDestinations() == 1) {
   2588     // If the indirectbr has one successor, change it to a direct branch.
   2589     BranchInst::Create(IBI->getDestination(0), IBI);
   2590     EraseTerminatorInstAndDCECond(IBI);
   2591     return true;
   2592   }
   2593 
   2594   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   2595     if (SimplifyIndirectBrOnSelect(IBI, SI))
   2596       return SimplifyCFG(BB) | true;
   2597   }
   2598   return Changed;
   2599 }
   2600 
   2601 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   2602   BasicBlock *BB = BI->getParent();
   2603 
   2604   // If the Terminator is the only non-phi instruction, simplify the block.
   2605   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   2606   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   2607       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   2608     return true;
   2609 
   2610   // If the only instruction in the block is a seteq/setne comparison
   2611   // against a constant, try to simplify the block.
   2612   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   2613     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   2614       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   2615         ;
   2616       if (I->isTerminator()
   2617           && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
   2618         return true;
   2619     }
   2620 
   2621   return false;
   2622 }
   2623 
   2624 
   2625 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   2626   BasicBlock *BB = BI->getParent();
   2627 
   2628   // Conditional branch
   2629   if (isValueEqualityComparison(BI)) {
   2630     // If we only have one predecessor, and if it is a branch on this value,
   2631     // see if that predecessor totally determines the outcome of this
   2632     // switch.
   2633     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2634       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   2635         return SimplifyCFG(BB) | true;
   2636 
   2637     // This block must be empty, except for the setcond inst, if it exists.
   2638     // Ignore dbg intrinsics.
   2639     BasicBlock::iterator I = BB->begin();
   2640     // Ignore dbg intrinsics.
   2641     while (isa<DbgInfoIntrinsic>(I))
   2642       ++I;
   2643     if (&*I == BI) {
   2644       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   2645         return SimplifyCFG(BB) | true;
   2646     } else if (&*I == cast<Instruction>(BI->getCondition())){
   2647       ++I;
   2648       // Ignore dbg intrinsics.
   2649       while (isa<DbgInfoIntrinsic>(I))
   2650         ++I;
   2651       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   2652         return SimplifyCFG(BB) | true;
   2653     }
   2654   }
   2655 
   2656   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   2657   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
   2658     return true;
   2659 
   2660   // We have a conditional branch to two blocks that are only reachable
   2661   // from BI.  We know that the condbr dominates the two blocks, so see if
   2662   // there is any identical code in the "then" and "else" blocks.  If so, we
   2663   // can hoist it up to the branching block.
   2664   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
   2665     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2666       if (HoistThenElseCodeToIf(BI))
   2667         return SimplifyCFG(BB) | true;
   2668     } else {
   2669       // If Successor #1 has multiple preds, we may be able to conditionally
   2670       // execute Successor #0 if it branches to successor #1.
   2671       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   2672       if (Succ0TI->getNumSuccessors() == 1 &&
   2673           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   2674         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
   2675           return SimplifyCFG(BB) | true;
   2676     }
   2677   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2678     // If Successor #0 has multiple preds, we may be able to conditionally
   2679     // execute Successor #1 if it branches to successor #0.
   2680     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   2681     if (Succ1TI->getNumSuccessors() == 1 &&
   2682         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   2683       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
   2684         return SimplifyCFG(BB) | true;
   2685   }
   2686 
   2687   // If this is a branch on a phi node in the current block, thread control
   2688   // through this block if any PHI node entries are constants.
   2689   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   2690     if (PN->getParent() == BI->getParent())
   2691       if (FoldCondBranchOnPHI(BI, TD))
   2692         return SimplifyCFG(BB) | true;
   2693 
   2694   // If this basic block is ONLY a setcc and a branch, and if a predecessor
   2695   // branches to us and one of our successors, fold the setcc into the
   2696   // predecessor and use logical operations to pick the right destination.
   2697   if (FoldBranchToCommonDest(BI))
   2698     return SimplifyCFG(BB) | true;
   2699 
   2700   // Scan predecessor blocks for conditional branches.
   2701   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   2702     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   2703       if (PBI != BI && PBI->isConditional())
   2704         if (SimplifyCondBranchToCondBranch(PBI, BI))
   2705           return SimplifyCFG(BB) | true;
   2706 
   2707   return false;
   2708 }
   2709 
   2710 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   2711   bool Changed = false;
   2712 
   2713   assert(BB && BB->getParent() && "Block not embedded in function!");
   2714   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   2715 
   2716   // Remove basic blocks that have no predecessors (except the entry block)...
   2717   // or that just have themself as a predecessor.  These are unreachable.
   2718   if ((pred_begin(BB) == pred_end(BB) &&
   2719        BB != &BB->getParent()->getEntryBlock()) ||
   2720       BB->getSinglePredecessor() == BB) {
   2721     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   2722     DeleteDeadBlock(BB);
   2723     return true;
   2724   }
   2725 
   2726   // Check to see if we can constant propagate this terminator instruction
   2727   // away...
   2728   Changed |= ConstantFoldTerminator(BB, true);
   2729 
   2730   // Check for and eliminate duplicate PHI nodes in this block.
   2731   Changed |= EliminateDuplicatePHINodes(BB);
   2732 
   2733   // Merge basic blocks into their predecessor if there is only one distinct
   2734   // pred, and if there is only one distinct successor of the predecessor, and
   2735   // if there are no PHI nodes.
   2736   //
   2737   if (MergeBlockIntoPredecessor(BB))
   2738     return true;
   2739 
   2740   IRBuilder<> Builder(BB);
   2741 
   2742   // If there is a trivial two-entry PHI node in this basic block, and we can
   2743   // eliminate it, do so now.
   2744   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   2745     if (PN->getNumIncomingValues() == 2)
   2746       Changed |= FoldTwoEntryPHINode(PN, TD);
   2747 
   2748   Builder.SetInsertPoint(BB->getTerminator());
   2749   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   2750     if (BI->isUnconditional()) {
   2751       if (SimplifyUncondBranch(BI, Builder)) return true;
   2752     } else {
   2753       if (SimplifyCondBranch(BI, Builder)) return true;
   2754     }
   2755   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   2756     if (SimplifyReturn(RI, Builder)) return true;
   2757   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   2758     if (SimplifySwitch(SI, Builder)) return true;
   2759   } else if (UnreachableInst *UI =
   2760                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   2761     if (SimplifyUnreachable(UI)) return true;
   2762   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
   2763     if (SimplifyUnwind(UI, Builder)) return true;
   2764   } else if (IndirectBrInst *IBI =
   2765                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   2766     if (SimplifyIndirectBr(IBI)) return true;
   2767   }
   2768 
   2769   return Changed;
   2770 }
   2771 
   2772 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   2773 /// example, it adjusts branches to branches to eliminate the extra hop, it
   2774 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   2775 /// of the CFG.  It returns true if a modification was made.
   2776 ///
   2777 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
   2778   return SimplifyCFGOpt(TD).run(BB);
   2779 }
   2780