Home | History | Annotate | Download | only in CodeGen
      1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates PHI instructions by aggressively coalescing the copies
     11 // that would be inserted by a naive algorithm and only inserting the copies
     12 // that are necessary. The coalescing technique initially assumes that all
     13 // registers appearing in a PHI instruction do not interfere. It then eliminates
     14 // proven interferences, using dominators to only perform a linear number of
     15 // interference tests instead of the quadratic number of interference tests
     16 // that this would naively require. This is a technique derived from:
     17 //
     18 //    Budimlic, et al. Fast copy coalescing and live-range identification.
     19 //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
     20 //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
     21 //    PLDI '02. ACM, New York, NY, 25-32.
     22 //
     23 // The original implementation constructs a data structure they call a dominance
     24 // forest for this purpose. The dominance forest was shown to be unnecessary,
     25 // as it is possible to emulate the creation and traversal of a dominance forest
     26 // by directly using the dominator tree, rather than actually constructing the
     27 // dominance forest.  This technique is explained in:
     28 //
     29 //   Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
     30 //     Quality and Efficiency,
     31 //   In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
     32 //   Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
     33 //   CGO '09. IEEE, Washington, DC, 114-125.
     34 //
     35 // Careful implementation allows for all of the dominator forest interference
     36 // checks to be performed at once in a single depth-first traversal of the
     37 // dominator tree, which is what is implemented here.
     38 //
     39 //===----------------------------------------------------------------------===//
     40 
     41 #define DEBUG_TYPE "strongphielim"
     42 #include "PHIEliminationUtils.h"
     43 #include "llvm/CodeGen/Passes.h"
     44 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     45 #include "llvm/CodeGen/MachineDominators.h"
     46 #include "llvm/CodeGen/MachineFunctionPass.h"
     47 #include "llvm/CodeGen/MachineInstrBuilder.h"
     48 #include "llvm/CodeGen/MachineRegisterInfo.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/ADT/Statistic.h"
     51 #include "llvm/Support/Debug.h"
     52 using namespace llvm;
     53 
     54 namespace {
     55   class StrongPHIElimination : public MachineFunctionPass {
     56   public:
     57     static char ID; // Pass identification, replacement for typeid
     58     StrongPHIElimination() : MachineFunctionPass(ID) {
     59       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
     60     }
     61 
     62     virtual void getAnalysisUsage(AnalysisUsage&) const;
     63     bool runOnMachineFunction(MachineFunction&);
     64 
     65   private:
     66     /// This struct represents a single node in the union-find data structure
     67     /// representing the variable congruence classes. There is one difference
     68     /// from a normal union-find data structure. We steal two bits from the parent
     69     /// pointer . One of these bits is used to represent whether the register
     70     /// itself has been isolated, and the other is used to represent whether the
     71     /// PHI with that register as its destination has been isolated.
     72     ///
     73     /// Note that this leads to the strange situation where the leader of a
     74     /// congruence class may no longer logically be a member, due to being
     75     /// isolated.
     76     struct Node {
     77       enum Flags {
     78         kRegisterIsolatedFlag = 1,
     79         kPHIIsolatedFlag = 2
     80       };
     81       Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
     82 
     83       Node *getLeader();
     84 
     85       PointerIntPair<Node*, 2> parent;
     86       unsigned value;
     87       unsigned rank;
     88     };
     89 
     90     /// Add a register in a new congruence class containing only itself.
     91     void addReg(unsigned);
     92 
     93     /// Join the congruence classes of two registers. This function is biased
     94     /// towards the left argument, i.e. after
     95     ///
     96     /// addReg(r2);
     97     /// unionRegs(r1, r2);
     98     ///
     99     /// the leader of the unioned congruence class is the same as the leader of
    100     /// r1's congruence class prior to the union. This is actually relied upon
    101     /// in the copy insertion code.
    102     void unionRegs(unsigned, unsigned);
    103 
    104     /// Get the color of a register. The color is 0 if the register has been
    105     /// isolated.
    106     unsigned getRegColor(unsigned);
    107 
    108     // Isolate a register.
    109     void isolateReg(unsigned);
    110 
    111     /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
    112     /// isolated. Otherwise, it is the original color of its destination and
    113     /// all of its operands (before they were isolated, if they were).
    114     unsigned getPHIColor(MachineInstr*);
    115 
    116     /// Isolate a PHI.
    117     void isolatePHI(MachineInstr*);
    118 
    119     /// Traverses a basic block, splitting any interferences found between
    120     /// registers in the same congruence class. It takes two DenseMaps as
    121     /// arguments that it also updates: CurrentDominatingParent, which maps
    122     /// a color to the register in that congruence class whose definition was
    123     /// most recently seen, and ImmediateDominatingParent, which maps a register
    124     /// to the register in the same congruence class that most immediately
    125     /// dominates it.
    126     ///
    127     /// This function assumes that it is being called in a depth-first traversal
    128     /// of the dominator tree.
    129     void SplitInterferencesForBasicBlock(
    130       MachineBasicBlock&,
    131       DenseMap<unsigned, unsigned> &CurrentDominatingParent,
    132       DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
    133 
    134     // Lowers a PHI instruction, inserting copies of the source and destination
    135     // registers as necessary.
    136     void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
    137 
    138     // Merges the live interval of Reg into NewReg and renames Reg to NewReg
    139     // everywhere that Reg appears. Requires Reg and NewReg to have non-
    140     // overlapping lifetimes.
    141     void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
    142 
    143     MachineRegisterInfo *MRI;
    144     const TargetInstrInfo *TII;
    145     MachineDominatorTree *DT;
    146     LiveIntervals *LI;
    147 
    148     BumpPtrAllocator Allocator;
    149 
    150     DenseMap<unsigned, Node*> RegNodeMap;
    151 
    152     // Maps a basic block to a list of its defs of registers that appear as PHI
    153     // sources.
    154     DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
    155 
    156     // Maps a color to a pair of a MachineInstr* and a virtual register, which
    157     // is the operand of that PHI corresponding to the current basic block.
    158     DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
    159 
    160     // FIXME: Can these two data structures be combined? Would a std::multimap
    161     // be any better?
    162 
    163     // Stores pairs of predecessor basic blocks and the source registers of
    164     // inserted copy instructions.
    165     typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
    166     SrcCopySet InsertedSrcCopySet;
    167 
    168     // Maps pairs of predecessor basic blocks and colors to their defining copy
    169     // instructions.
    170     typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
    171       SrcCopyMap;
    172     SrcCopyMap InsertedSrcCopyMap;
    173 
    174     // Maps inserted destination copy registers to their defining copy
    175     // instructions.
    176     typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
    177     DestCopyMap InsertedDestCopies;
    178   };
    179 
    180   struct MIIndexCompare {
    181     MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
    182 
    183     bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
    184       return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
    185     }
    186 
    187     LiveIntervals *LI;
    188   };
    189 } // namespace
    190 
    191 STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
    192 STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
    193 STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
    194 
    195 char StrongPHIElimination::ID = 0;
    196 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
    197   "Eliminate PHI nodes for register allocation, intelligently", false, false)
    198 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    201 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
    202   "Eliminate PHI nodes for register allocation, intelligently", false, false)
    203 
    204 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
    205 
    206 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    207   AU.setPreservesCFG();
    208   AU.addRequired<MachineDominatorTree>();
    209   AU.addRequired<SlotIndexes>();
    210   AU.addPreserved<SlotIndexes>();
    211   AU.addRequired<LiveIntervals>();
    212   AU.addPreserved<LiveIntervals>();
    213   MachineFunctionPass::getAnalysisUsage(AU);
    214 }
    215 
    216 static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
    217   // FIXME: This only needs to check from the first terminator, as only the
    218   // first terminator can use a virtual register.
    219   for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
    220     assert (RI != MBB->rend());
    221     MachineInstr *MI = &*RI;
    222 
    223     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
    224          OE = MI->operands_end(); OI != OE; ++OI) {
    225       MachineOperand &MO = *OI;
    226       if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
    227         return &MO;
    228     }
    229   }
    230   return NULL;
    231 }
    232 
    233 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
    234   MRI = &MF.getRegInfo();
    235   TII = MF.getTarget().getInstrInfo();
    236   DT = &getAnalysis<MachineDominatorTree>();
    237   LI = &getAnalysis<LiveIntervals>();
    238 
    239   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    240        I != E; ++I) {
    241     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
    242          BBI != BBE && BBI->isPHI(); ++BBI) {
    243       unsigned DestReg = BBI->getOperand(0).getReg();
    244       addReg(DestReg);
    245       PHISrcDefs[I].push_back(BBI);
    246 
    247       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
    248         MachineOperand &SrcMO = BBI->getOperand(i);
    249         unsigned SrcReg = SrcMO.getReg();
    250         addReg(SrcReg);
    251         unionRegs(DestReg, SrcReg);
    252 
    253         MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    254         if (DefMI)
    255           PHISrcDefs[DefMI->getParent()].push_back(DefMI);
    256       }
    257     }
    258   }
    259 
    260   // Perform a depth-first traversal of the dominator tree, splitting
    261   // interferences amongst PHI-congruence classes.
    262   DenseMap<unsigned, unsigned> CurrentDominatingParent;
    263   DenseMap<unsigned, unsigned> ImmediateDominatingParent;
    264   for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
    265        DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
    266     SplitInterferencesForBasicBlock(*DI->getBlock(),
    267                                     CurrentDominatingParent,
    268                                     ImmediateDominatingParent);
    269   }
    270 
    271   // Insert copies for all PHI source and destination registers.
    272   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    273        I != E; ++I) {
    274     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
    275          BBI != BBE && BBI->isPHI(); ++BBI) {
    276       InsertCopiesForPHI(BBI, I);
    277     }
    278   }
    279 
    280   // FIXME: Preserve the equivalence classes during copy insertion and use
    281   // the preversed equivalence classes instead of recomputing them.
    282   RegNodeMap.clear();
    283   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    284        I != E; ++I) {
    285     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
    286          BBI != BBE && BBI->isPHI(); ++BBI) {
    287       unsigned DestReg = BBI->getOperand(0).getReg();
    288       addReg(DestReg);
    289 
    290       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
    291         unsigned SrcReg = BBI->getOperand(i).getReg();
    292         addReg(SrcReg);
    293         unionRegs(DestReg, SrcReg);
    294       }
    295     }
    296   }
    297 
    298   DenseMap<unsigned, unsigned> RegRenamingMap;
    299   bool Changed = false;
    300   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    301        I != E; ++I) {
    302     MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
    303     while (BBI != BBE && BBI->isPHI()) {
    304       MachineInstr *PHI = BBI;
    305 
    306       assert(PHI->getNumOperands() > 0);
    307 
    308       unsigned SrcReg = PHI->getOperand(1).getReg();
    309       unsigned SrcColor = getRegColor(SrcReg);
    310       unsigned NewReg = RegRenamingMap[SrcColor];
    311       if (!NewReg) {
    312         NewReg = SrcReg;
    313         RegRenamingMap[SrcColor] = SrcReg;
    314       }
    315       MergeLIsAndRename(SrcReg, NewReg);
    316 
    317       unsigned DestReg = PHI->getOperand(0).getReg();
    318       if (!InsertedDestCopies.count(DestReg))
    319         MergeLIsAndRename(DestReg, NewReg);
    320 
    321       for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
    322         unsigned SrcReg = PHI->getOperand(i).getReg();
    323         MergeLIsAndRename(SrcReg, NewReg);
    324       }
    325 
    326       ++BBI;
    327       LI->RemoveMachineInstrFromMaps(PHI);
    328       PHI->eraseFromParent();
    329       Changed = true;
    330     }
    331   }
    332 
    333   // Due to the insertion of copies to split live ranges, the live intervals are
    334   // guaranteed to not overlap, except in one case: an original PHI source and a
    335   // PHI destination copy. In this case, they have the same value and thus don't
    336   // truly intersect, so we merge them into the value live at that point.
    337   // FIXME: Is there some better way we can handle this?
    338   for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
    339        E = InsertedDestCopies.end(); I != E; ++I) {
    340     unsigned DestReg = I->first;
    341     unsigned DestColor = getRegColor(DestReg);
    342     unsigned NewReg = RegRenamingMap[DestColor];
    343 
    344     LiveInterval &DestLI = LI->getInterval(DestReg);
    345     LiveInterval &NewLI = LI->getInterval(NewReg);
    346 
    347     assert(DestLI.ranges.size() == 1
    348            && "PHI destination copy's live interval should be a single live "
    349                "range from the beginning of the BB to the copy instruction.");
    350     LiveRange *DestLR = DestLI.begin();
    351     VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
    352     if (!NewVNI) {
    353       NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
    354       MachineInstr *CopyInstr = I->second;
    355       CopyInstr->getOperand(1).setIsKill(true);
    356     }
    357 
    358     LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
    359     NewLI.addRange(NewLR);
    360 
    361     LI->removeInterval(DestReg);
    362     MRI->replaceRegWith(DestReg, NewReg);
    363   }
    364 
    365   // Adjust the live intervals of all PHI source registers to handle the case
    366   // where the PHIs in successor blocks were the only later uses of the source
    367   // register.
    368   for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
    369        E = InsertedSrcCopySet.end(); I != E; ++I) {
    370     MachineBasicBlock *MBB = I->first;
    371     unsigned SrcReg = I->second;
    372     if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
    373       SrcReg = RenamedRegister;
    374 
    375     LiveInterval &SrcLI = LI->getInterval(SrcReg);
    376 
    377     bool isLiveOut = false;
    378     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
    379          SE = MBB->succ_end(); SI != SE; ++SI) {
    380       if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
    381         isLiveOut = true;
    382         break;
    383       }
    384     }
    385 
    386     if (isLiveOut)
    387       continue;
    388 
    389     MachineOperand *LastUse = findLastUse(MBB, SrcReg);
    390     assert(LastUse);
    391     SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
    392     SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
    393     LastUse->setIsKill(true);
    394   }
    395 
    396   LI->renumber();
    397 
    398   Allocator.Reset();
    399   RegNodeMap.clear();
    400   PHISrcDefs.clear();
    401   InsertedSrcCopySet.clear();
    402   InsertedSrcCopyMap.clear();
    403   InsertedDestCopies.clear();
    404 
    405   return Changed;
    406 }
    407 
    408 void StrongPHIElimination::addReg(unsigned Reg) {
    409   if (RegNodeMap.count(Reg))
    410     return;
    411   RegNodeMap[Reg] = new (Allocator) Node(Reg);
    412 }
    413 
    414 StrongPHIElimination::Node*
    415 StrongPHIElimination::Node::getLeader() {
    416   Node *N = this;
    417   Node *Parent = parent.getPointer();
    418   Node *Grandparent = Parent->parent.getPointer();
    419 
    420   while (Parent != Grandparent) {
    421     N->parent.setPointer(Grandparent);
    422     N = Grandparent;
    423     Parent = Parent->parent.getPointer();
    424     Grandparent = Parent->parent.getPointer();
    425   }
    426 
    427   return Parent;
    428 }
    429 
    430 unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
    431   DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
    432   if (RI == RegNodeMap.end())
    433     return 0;
    434   Node *Node = RI->second;
    435   if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
    436     return 0;
    437   return Node->getLeader()->value;
    438 }
    439 
    440 void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
    441   Node *Node1 = RegNodeMap[Reg1]->getLeader();
    442   Node *Node2 = RegNodeMap[Reg2]->getLeader();
    443 
    444   if (Node1->rank > Node2->rank) {
    445     Node2->parent.setPointer(Node1->getLeader());
    446   } else if (Node1->rank < Node2->rank) {
    447     Node1->parent.setPointer(Node2->getLeader());
    448   } else if (Node1 != Node2) {
    449     Node2->parent.setPointer(Node1->getLeader());
    450     Node1->rank++;
    451   }
    452 }
    453 
    454 void StrongPHIElimination::isolateReg(unsigned Reg) {
    455   Node *Node = RegNodeMap[Reg];
    456   Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
    457 }
    458 
    459 unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
    460   assert(PHI->isPHI());
    461 
    462   unsigned DestReg = PHI->getOperand(0).getReg();
    463   Node *DestNode = RegNodeMap[DestReg];
    464   if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
    465     return 0;
    466 
    467   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
    468     unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
    469     if (SrcColor)
    470       return SrcColor;
    471   }
    472   return 0;
    473 }
    474 
    475 void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
    476   assert(PHI->isPHI());
    477   Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
    478   Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
    479 }
    480 
    481 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
    482 /// interferences found between registers in the same congruence class. It
    483 /// takes two DenseMaps as arguments that it also updates:
    484 ///
    485 /// 1) CurrentDominatingParent, which maps a color to the register in that
    486 ///    congruence class whose definition was most recently seen.
    487 ///
    488 /// 2) ImmediateDominatingParent, which maps a register to the register in the
    489 ///    same congruence class that most immediately dominates it.
    490 ///
    491 /// This function assumes that it is being called in a depth-first traversal
    492 /// of the dominator tree.
    493 ///
    494 /// The algorithm used here is a generalization of the dominance-based SSA test
    495 /// for two variables. If there are variables a_1, ..., a_n such that
    496 ///
    497 ///   def(a_1) dom ... dom def(a_n),
    498 ///
    499 /// then we can test for an interference between any two a_i by only using O(n)
    500 /// interference tests between pairs of variables. If i < j and a_i and a_j
    501 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
    502 /// Thus, in order to test for an interference involving a_i, we need only check
    503 /// for a potential interference with a_i+1.
    504 ///
    505 /// This method can be generalized to arbitrary sets of variables by performing
    506 /// a depth-first traversal of the dominator tree. As we traverse down a branch
    507 /// of the dominator tree, we keep track of the current dominating variable and
    508 /// only perform an interference test with that variable. However, when we go to
    509 /// another branch of the dominator tree, the definition of the current dominating
    510 /// variable may no longer dominate the current block. In order to correct this,
    511 /// we need to use a stack of past choices of the current dominating variable
    512 /// and pop from this stack until we find a variable whose definition actually
    513 /// dominates the current block.
    514 ///
    515 /// There will be one push on this stack for each variable that has become the
    516 /// current dominating variable, so instead of using an explicit stack we can
    517 /// simply associate the previous choice for a current dominating variable with
    518 /// the new choice. This works better in our implementation, where we test for
    519 /// interference in multiple distinct sets at once.
    520 void
    521 StrongPHIElimination::SplitInterferencesForBasicBlock(
    522     MachineBasicBlock &MBB,
    523     DenseMap<unsigned, unsigned> &CurrentDominatingParent,
    524     DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
    525   // Sort defs by their order in the original basic block, as the code below
    526   // assumes that it is processing definitions in dominance order.
    527   std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
    528   std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
    529 
    530   for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
    531        BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
    532     for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
    533          E = (*BBI)->operands_end(); I != E; ++I) {
    534       const MachineOperand &MO = *I;
    535 
    536       // FIXME: This would be faster if it were possible to bail out of checking
    537       // an instruction's operands after the explicit defs, but this is incorrect
    538       // for variadic instructions, which may appear before register allocation
    539       // in the future.
    540       if (!MO.isReg() || !MO.isDef())
    541         continue;
    542 
    543       unsigned DestReg = MO.getReg();
    544       if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
    545         continue;
    546 
    547       // If the virtual register being defined is not used in any PHI or has
    548       // already been isolated, then there are no more interferences to check.
    549       unsigned DestColor = getRegColor(DestReg);
    550       if (!DestColor)
    551         continue;
    552 
    553       // The input to this pass sometimes is not in SSA form in every basic
    554       // block, as some virtual registers have redefinitions. We could eliminate
    555       // this by fixing the passes that generate the non-SSA code, or we could
    556       // handle it here by tracking defining machine instructions rather than
    557       // virtual registers. For now, we just handle the situation conservatively
    558       // in a way that will possibly lead to false interferences.
    559       unsigned &CurrentParent = CurrentDominatingParent[DestColor];
    560       unsigned NewParent = CurrentParent;
    561       if (NewParent == DestReg)
    562         continue;
    563 
    564       // Pop registers from the stack represented by ImmediateDominatingParent
    565       // until we find a parent that dominates the current instruction.
    566       while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
    567                            || !getRegColor(NewParent)))
    568         NewParent = ImmediateDominatingParent[NewParent];
    569 
    570       // If NewParent is nonzero, then its definition dominates the current
    571       // instruction, so it is only necessary to check for the liveness of
    572       // NewParent in order to check for an interference.
    573       if (NewParent
    574           && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
    575         // If there is an interference, always isolate the new register. This
    576         // could be improved by using a heuristic that decides which of the two
    577         // registers to isolate.
    578         isolateReg(DestReg);
    579         CurrentParent = NewParent;
    580       } else {
    581         // If there is no interference, update ImmediateDominatingParent and set
    582         // the CurrentDominatingParent for this color to the current register.
    583         ImmediateDominatingParent[DestReg] = NewParent;
    584         CurrentParent = DestReg;
    585       }
    586     }
    587   }
    588 
    589   // We now walk the PHIs in successor blocks and check for interferences. This
    590   // is necessary because the use of a PHI's operands are logically contained in
    591   // the predecessor block. The def of a PHI's destination register is processed
    592   // along with the other defs in a basic block.
    593 
    594   CurrentPHIForColor.clear();
    595 
    596   for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
    597        SE = MBB.succ_end(); SI != SE; ++SI) {
    598     for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
    599          BBI != BBE && BBI->isPHI(); ++BBI) {
    600       MachineInstr *PHI = BBI;
    601 
    602       // If a PHI is already isolated, either by being isolated directly or
    603       // having all of its operands isolated, ignore it.
    604       unsigned Color = getPHIColor(PHI);
    605       if (!Color)
    606         continue;
    607 
    608       // Find the index of the PHI operand that corresponds to this basic block.
    609       unsigned PredIndex;
    610       for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
    611         if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
    612           break;
    613       }
    614       assert(PredIndex < PHI->getNumOperands());
    615       unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
    616 
    617       // Pop registers from the stack represented by ImmediateDominatingParent
    618       // until we find a parent that dominates the current instruction.
    619       unsigned &CurrentParent = CurrentDominatingParent[Color];
    620       unsigned NewParent = CurrentParent;
    621       while (NewParent
    622              && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
    623                  || !getRegColor(NewParent)))
    624         NewParent = ImmediateDominatingParent[NewParent];
    625       CurrentParent = NewParent;
    626 
    627       // If there is an interference with a register, always isolate the
    628       // register rather than the PHI. It is also possible to isolate the
    629       // PHI, but that introduces copies for all of the registers involved
    630       // in that PHI.
    631       if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
    632                     && NewParent != PredOperandReg)
    633         isolateReg(NewParent);
    634 
    635       std::pair<MachineInstr*, unsigned>
    636         &CurrentPHI = CurrentPHIForColor[Color];
    637 
    638       // If two PHIs have the same operand from every shared predecessor, then
    639       // they don't actually interfere. Otherwise, isolate the current PHI. This
    640       // could possibly be improved, e.g. we could isolate the PHI with the
    641       // fewest operands.
    642       if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
    643         isolatePHI(PHI);
    644       else
    645         CurrentPHI = std::make_pair(PHI, PredOperandReg);
    646     }
    647   }
    648 }
    649 
    650 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
    651                                               MachineBasicBlock *MBB) {
    652   assert(PHI->isPHI());
    653   ++NumPHIsLowered;
    654   unsigned PHIColor = getPHIColor(PHI);
    655 
    656   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
    657     MachineOperand &SrcMO = PHI->getOperand(i);
    658 
    659     // If a source is defined by an implicit def, there is no need to insert a
    660     // copy in the predecessor.
    661     if (SrcMO.isUndef())
    662       continue;
    663 
    664     unsigned SrcReg = SrcMO.getReg();
    665     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    666            "Machine PHI Operands must all be virtual registers!");
    667 
    668     MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
    669     unsigned SrcColor = getRegColor(SrcReg);
    670 
    671     // If neither the PHI nor the operand were isolated, then we only need to
    672     // set the phi-kill flag on the VNInfo at this PHI.
    673     if (PHIColor && SrcColor == PHIColor) {
    674       LiveInterval &SrcInterval = LI->getInterval(SrcReg);
    675       SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
    676       VNInfo *SrcVNI = SrcInterval.getVNInfoAt(PredIndex.getPrevIndex());
    677       assert(SrcVNI);
    678       SrcVNI->setHasPHIKill(true);
    679       continue;
    680     }
    681 
    682     unsigned CopyReg = 0;
    683     if (PHIColor) {
    684       SrcCopyMap::const_iterator I
    685         = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
    686       CopyReg
    687         = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
    688     }
    689 
    690     if (!CopyReg) {
    691       const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
    692       CopyReg = MRI->createVirtualRegister(RC);
    693 
    694       MachineBasicBlock::iterator
    695         CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
    696       unsigned SrcSubReg = SrcMO.getSubReg();
    697       MachineInstr *CopyInstr = BuildMI(*PredBB,
    698                                         CopyInsertPoint,
    699                                         PHI->getDebugLoc(),
    700                                         TII->get(TargetOpcode::COPY),
    701                                         CopyReg).addReg(SrcReg, 0, SrcSubReg);
    702       LI->InsertMachineInstrInMaps(CopyInstr);
    703       ++NumSrcCopiesInserted;
    704 
    705       // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
    706       // the newly added range.
    707       LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
    708       InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
    709 
    710       addReg(CopyReg);
    711       if (PHIColor) {
    712         unionRegs(PHIColor, CopyReg);
    713         assert(getRegColor(CopyReg) != CopyReg);
    714       } else {
    715         PHIColor = CopyReg;
    716         assert(getRegColor(CopyReg) == CopyReg);
    717       }
    718 
    719       if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
    720         InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
    721     }
    722 
    723     SrcMO.setReg(CopyReg);
    724 
    725     // If SrcReg is not live beyond the PHI, trim its interval so that it is no
    726     // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
    727     // processed later, but this is still correct to do at this point because we
    728     // never rely on LiveIntervals being correct while inserting copies.
    729     // FIXME: Should this just count uses at PHIs like the normal PHIElimination
    730     // pass does?
    731     LiveInterval &SrcLI = LI->getInterval(SrcReg);
    732     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
    733     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
    734     SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
    735     if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
    736       SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
    737   }
    738 
    739   unsigned DestReg = PHI->getOperand(0).getReg();
    740   unsigned DestColor = getRegColor(DestReg);
    741 
    742   if (PHIColor && DestColor == PHIColor) {
    743     LiveInterval &DestLI = LI->getInterval(DestReg);
    744 
    745     // Set the phi-def flag for the VN at this PHI.
    746     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
    747     VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
    748     assert(DestVNI);
    749     DestVNI->setIsPHIDef(true);
    750 
    751     // Prior to PHI elimination, the live ranges of PHIs begin at their defining
    752     // instruction. After PHI elimination, PHI instructions are replaced by VNs
    753     // with the phi-def flag set, and the live ranges of these VNs start at the
    754     // beginning of the basic block.
    755     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
    756     DestVNI->def = MBBStartIndex;
    757     DestLI.addRange(LiveRange(MBBStartIndex,
    758                               PHIIndex.getDefIndex(),
    759                               DestVNI));
    760     return;
    761   }
    762 
    763   const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
    764   unsigned CopyReg = MRI->createVirtualRegister(RC);
    765 
    766   MachineInstr *CopyInstr = BuildMI(*MBB,
    767                                     MBB->SkipPHIsAndLabels(MBB->begin()),
    768                                     PHI->getDebugLoc(),
    769                                     TII->get(TargetOpcode::COPY),
    770                                     DestReg).addReg(CopyReg);
    771   LI->InsertMachineInstrInMaps(CopyInstr);
    772   PHI->getOperand(0).setReg(CopyReg);
    773   ++NumDestCopiesInserted;
    774 
    775   // Add the region from the beginning of MBB to the copy instruction to
    776   // CopyReg's live interval, and give the VNInfo the phidef flag.
    777   LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
    778   SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
    779   SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
    780   VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
    781                                         CopyInstr,
    782                                         LI->getVNInfoAllocator());
    783   CopyVNI->setIsPHIDef(true);
    784   CopyLI.addRange(LiveRange(MBBStartIndex,
    785                             DestCopyIndex.getDefIndex(),
    786                             CopyVNI));
    787 
    788   // Adjust DestReg's live interval to adjust for its new definition at
    789   // CopyInstr.
    790   LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
    791   SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
    792   DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
    793 
    794   VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
    795   assert(DestVNI);
    796   DestVNI->def = DestCopyIndex.getDefIndex();
    797 
    798   InsertedDestCopies[CopyReg] = CopyInstr;
    799 }
    800 
    801 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
    802   if (Reg == NewReg)
    803     return;
    804 
    805   LiveInterval &OldLI = LI->getInterval(Reg);
    806   LiveInterval &NewLI = LI->getInterval(NewReg);
    807 
    808   // Merge the live ranges of the two registers.
    809   DenseMap<VNInfo*, VNInfo*> VNMap;
    810   for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
    811        LRI != LRE; ++LRI) {
    812     LiveRange OldLR = *LRI;
    813     VNInfo *OldVN = OldLR.valno;
    814 
    815     VNInfo *&NewVN = VNMap[OldVN];
    816     if (!NewVN) {
    817       NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
    818       VNMap[OldVN] = NewVN;
    819     }
    820 
    821     LiveRange LR(OldLR.start, OldLR.end, NewVN);
    822     NewLI.addRange(LR);
    823   }
    824 
    825   // Remove the LiveInterval for the register being renamed and replace all
    826   // of its defs and uses with the new register.
    827   LI->removeInterval(Reg);
    828   MRI->replaceRegWith(Reg, NewReg);
    829 }
    830