1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Target/TargetAsmBackend.h" 11 #include "X86.h" 12 #include "X86FixupKinds.h" 13 #include "llvm/ADT/Twine.h" 14 #include "llvm/MC/MCAssembler.h" 15 #include "llvm/MC/MCELFObjectWriter.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/MC/MCFixupKindInfo.h" 18 #include "llvm/MC/MCMachObjectWriter.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionCOFF.h" 21 #include "llvm/MC/MCSectionELF.h" 22 #include "llvm/MC/MCSectionMachO.h" 23 #include "llvm/Object/MachOFormat.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/ELF.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetRegistry.h" 29 #include "llvm/Target/TargetAsmBackend.h" 30 using namespace llvm; 31 32 // Option to allow disabling arithmetic relaxation to workaround PR9807, which 33 // is useful when running bitwise comparison experiments on Darwin. We should be 34 // able to remove this once PR9807 is resolved. 35 static cl::opt<bool> 36 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", 37 cl::desc("Disable relaxation of arithmetic instruction for X86")); 38 39 static unsigned getFixupKindLog2Size(unsigned Kind) { 40 switch (Kind) { 41 default: assert(0 && "invalid fixup kind!"); 42 case FK_PCRel_1: 43 case FK_Data_1: return 0; 44 case FK_PCRel_2: 45 case FK_Data_2: return 1; 46 case FK_PCRel_4: 47 case X86::reloc_riprel_4byte: 48 case X86::reloc_riprel_4byte_movq_load: 49 case X86::reloc_signed_4byte: 50 case X86::reloc_global_offset_table: 51 case FK_Data_4: return 2; 52 case FK_PCRel_8: 53 case FK_Data_8: return 3; 54 } 55 } 56 57 namespace { 58 59 class X86ELFObjectWriter : public MCELFObjectTargetWriter { 60 public: 61 X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine, 62 bool HasRelocationAddend) 63 : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {} 64 }; 65 66 class X86AsmBackend : public TargetAsmBackend { 67 public: 68 X86AsmBackend(const Target &T) 69 : TargetAsmBackend() {} 70 71 unsigned getNumFixupKinds() const { 72 return X86::NumTargetFixupKinds; 73 } 74 75 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { 76 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { 77 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, 78 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel}, 79 { "reloc_signed_4byte", 0, 4 * 8, 0}, 80 { "reloc_global_offset_table", 0, 4 * 8, 0} 81 }; 82 83 if (Kind < FirstTargetFixupKind) 84 return TargetAsmBackend::getFixupKindInfo(Kind); 85 86 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 87 "Invalid kind!"); 88 return Infos[Kind - FirstTargetFixupKind]; 89 } 90 91 void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, 92 uint64_t Value) const { 93 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); 94 95 assert(Fixup.getOffset() + Size <= DataSize && 96 "Invalid fixup offset!"); 97 for (unsigned i = 0; i != Size; ++i) 98 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); 99 } 100 101 bool MayNeedRelaxation(const MCInst &Inst) const; 102 103 void RelaxInstruction(const MCInst &Inst, MCInst &Res) const; 104 105 bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; 106 }; 107 } // end anonymous namespace 108 109 static unsigned getRelaxedOpcodeBranch(unsigned Op) { 110 switch (Op) { 111 default: 112 return Op; 113 114 case X86::JAE_1: return X86::JAE_4; 115 case X86::JA_1: return X86::JA_4; 116 case X86::JBE_1: return X86::JBE_4; 117 case X86::JB_1: return X86::JB_4; 118 case X86::JE_1: return X86::JE_4; 119 case X86::JGE_1: return X86::JGE_4; 120 case X86::JG_1: return X86::JG_4; 121 case X86::JLE_1: return X86::JLE_4; 122 case X86::JL_1: return X86::JL_4; 123 case X86::JMP_1: return X86::JMP_4; 124 case X86::JNE_1: return X86::JNE_4; 125 case X86::JNO_1: return X86::JNO_4; 126 case X86::JNP_1: return X86::JNP_4; 127 case X86::JNS_1: return X86::JNS_4; 128 case X86::JO_1: return X86::JO_4; 129 case X86::JP_1: return X86::JP_4; 130 case X86::JS_1: return X86::JS_4; 131 } 132 } 133 134 static unsigned getRelaxedOpcodeArith(unsigned Op) { 135 switch (Op) { 136 default: 137 return Op; 138 139 // IMUL 140 case X86::IMUL16rri8: return X86::IMUL16rri; 141 case X86::IMUL16rmi8: return X86::IMUL16rmi; 142 case X86::IMUL32rri8: return X86::IMUL32rri; 143 case X86::IMUL32rmi8: return X86::IMUL32rmi; 144 case X86::IMUL64rri8: return X86::IMUL64rri32; 145 case X86::IMUL64rmi8: return X86::IMUL64rmi32; 146 147 // AND 148 case X86::AND16ri8: return X86::AND16ri; 149 case X86::AND16mi8: return X86::AND16mi; 150 case X86::AND32ri8: return X86::AND32ri; 151 case X86::AND32mi8: return X86::AND32mi; 152 case X86::AND64ri8: return X86::AND64ri32; 153 case X86::AND64mi8: return X86::AND64mi32; 154 155 // OR 156 case X86::OR16ri8: return X86::OR16ri; 157 case X86::OR16mi8: return X86::OR16mi; 158 case X86::OR32ri8: return X86::OR32ri; 159 case X86::OR32mi8: return X86::OR32mi; 160 case X86::OR64ri8: return X86::OR64ri32; 161 case X86::OR64mi8: return X86::OR64mi32; 162 163 // XOR 164 case X86::XOR16ri8: return X86::XOR16ri; 165 case X86::XOR16mi8: return X86::XOR16mi; 166 case X86::XOR32ri8: return X86::XOR32ri; 167 case X86::XOR32mi8: return X86::XOR32mi; 168 case X86::XOR64ri8: return X86::XOR64ri32; 169 case X86::XOR64mi8: return X86::XOR64mi32; 170 171 // ADD 172 case X86::ADD16ri8: return X86::ADD16ri; 173 case X86::ADD16mi8: return X86::ADD16mi; 174 case X86::ADD32ri8: return X86::ADD32ri; 175 case X86::ADD32mi8: return X86::ADD32mi; 176 case X86::ADD64ri8: return X86::ADD64ri32; 177 case X86::ADD64mi8: return X86::ADD64mi32; 178 179 // SUB 180 case X86::SUB16ri8: return X86::SUB16ri; 181 case X86::SUB16mi8: return X86::SUB16mi; 182 case X86::SUB32ri8: return X86::SUB32ri; 183 case X86::SUB32mi8: return X86::SUB32mi; 184 case X86::SUB64ri8: return X86::SUB64ri32; 185 case X86::SUB64mi8: return X86::SUB64mi32; 186 187 // CMP 188 case X86::CMP16ri8: return X86::CMP16ri; 189 case X86::CMP16mi8: return X86::CMP16mi; 190 case X86::CMP32ri8: return X86::CMP32ri; 191 case X86::CMP32mi8: return X86::CMP32mi; 192 case X86::CMP64ri8: return X86::CMP64ri32; 193 case X86::CMP64mi8: return X86::CMP64mi32; 194 195 // PUSH 196 case X86::PUSHi8: return X86::PUSHi32; 197 case X86::PUSHi16: return X86::PUSHi32; 198 case X86::PUSH64i8: return X86::PUSH64i32; 199 case X86::PUSH64i16: return X86::PUSH64i32; 200 } 201 } 202 203 static unsigned getRelaxedOpcode(unsigned Op) { 204 unsigned R = getRelaxedOpcodeArith(Op); 205 if (R != Op) 206 return R; 207 return getRelaxedOpcodeBranch(Op); 208 } 209 210 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const { 211 // Branches can always be relaxed. 212 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) 213 return true; 214 215 if (MCDisableArithRelaxation) 216 return false; 217 218 // Check if this instruction is ever relaxable. 219 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) 220 return false; 221 222 223 // Check if it has an expression and is not RIP relative. 224 bool hasExp = false; 225 bool hasRIP = false; 226 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { 227 const MCOperand &Op = Inst.getOperand(i); 228 if (Op.isExpr()) 229 hasExp = true; 230 231 if (Op.isReg() && Op.getReg() == X86::RIP) 232 hasRIP = true; 233 } 234 235 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on 236 // how we do relaxations? 237 return hasExp && !hasRIP; 238 } 239 240 // FIXME: Can tblgen help at all here to verify there aren't other instructions 241 // we can relax? 242 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const { 243 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. 244 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); 245 246 if (RelaxedOp == Inst.getOpcode()) { 247 SmallString<256> Tmp; 248 raw_svector_ostream OS(Tmp); 249 Inst.dump_pretty(OS); 250 OS << "\n"; 251 report_fatal_error("unexpected instruction to relax: " + OS.str()); 252 } 253 254 Res = Inst; 255 Res.setOpcode(RelaxedOp); 256 } 257 258 /// WriteNopData - Write optimal nops to the output file for the \arg Count 259 /// bytes. This returns the number of bytes written. It may return 0 if 260 /// the \arg Count is more than the maximum optimal nops. 261 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { 262 static const uint8_t Nops[10][10] = { 263 // nop 264 {0x90}, 265 // xchg %ax,%ax 266 {0x66, 0x90}, 267 // nopl (%[re]ax) 268 {0x0f, 0x1f, 0x00}, 269 // nopl 0(%[re]ax) 270 {0x0f, 0x1f, 0x40, 0x00}, 271 // nopl 0(%[re]ax,%[re]ax,1) 272 {0x0f, 0x1f, 0x44, 0x00, 0x00}, 273 // nopw 0(%[re]ax,%[re]ax,1) 274 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, 275 // nopl 0L(%[re]ax) 276 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, 277 // nopl 0L(%[re]ax,%[re]ax,1) 278 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 279 // nopw 0L(%[re]ax,%[re]ax,1) 280 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 281 // nopw %cs:0L(%[re]ax,%[re]ax,1) 282 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, 283 }; 284 285 // Write an optimal sequence for the first 15 bytes. 286 const uint64_t OptimalCount = (Count < 16) ? Count : 15; 287 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10; 288 for (uint64_t i = 0, e = Prefixes; i != e; i++) 289 OW->Write8(0x66); 290 const uint64_t Rest = OptimalCount - Prefixes; 291 for (uint64_t i = 0, e = Rest; i != e; i++) 292 OW->Write8(Nops[Rest - 1][i]); 293 294 // Finish with single byte nops. 295 for (uint64_t i = OptimalCount, e = Count; i != e; ++i) 296 OW->Write8(0x90); 297 298 return true; 299 } 300 301 /* *** */ 302 303 namespace { 304 class ELFX86AsmBackend : public X86AsmBackend { 305 public: 306 Triple::OSType OSType; 307 ELFX86AsmBackend(const Target &T, Triple::OSType _OSType) 308 : X86AsmBackend(T), OSType(_OSType) { 309 HasReliableSymbolDifference = true; 310 } 311 312 virtual bool doesSectionRequireSymbols(const MCSection &Section) const { 313 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section); 314 return ES.getFlags() & ELF::SHF_MERGE; 315 } 316 }; 317 318 class ELFX86_32AsmBackend : public ELFX86AsmBackend { 319 public: 320 ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType) 321 : ELFX86AsmBackend(T, OSType) {} 322 323 MCObjectWriter *createObjectWriter(raw_ostream &OS) const { 324 return createELFObjectWriter(createELFObjectTargetWriter(), 325 OS, /*IsLittleEndian*/ true); 326 } 327 328 MCELFObjectTargetWriter *createELFObjectTargetWriter() const { 329 return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false); 330 } 331 }; 332 333 class ELFX86_64AsmBackend : public ELFX86AsmBackend { 334 public: 335 ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType) 336 : ELFX86AsmBackend(T, OSType) {} 337 338 MCObjectWriter *createObjectWriter(raw_ostream &OS) const { 339 return createELFObjectWriter(createELFObjectTargetWriter(), 340 OS, /*IsLittleEndian*/ true); 341 } 342 343 MCELFObjectTargetWriter *createELFObjectTargetWriter() const { 344 return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true); 345 } 346 }; 347 348 class WindowsX86AsmBackend : public X86AsmBackend { 349 bool Is64Bit; 350 351 public: 352 WindowsX86AsmBackend(const Target &T, bool is64Bit) 353 : X86AsmBackend(T) 354 , Is64Bit(is64Bit) { 355 } 356 357 MCObjectWriter *createObjectWriter(raw_ostream &OS) const { 358 return createWinCOFFObjectWriter(OS, Is64Bit); 359 } 360 }; 361 362 class DarwinX86AsmBackend : public X86AsmBackend { 363 public: 364 DarwinX86AsmBackend(const Target &T) 365 : X86AsmBackend(T) { } 366 }; 367 368 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { 369 public: 370 DarwinX86_32AsmBackend(const Target &T) 371 : DarwinX86AsmBackend(T) {} 372 373 MCObjectWriter *createObjectWriter(raw_ostream &OS) const { 374 return createX86MachObjectWriter(OS, /*Is64Bit=*/false, 375 object::mach::CTM_i386, 376 object::mach::CSX86_ALL); 377 } 378 }; 379 380 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { 381 public: 382 DarwinX86_64AsmBackend(const Target &T) 383 : DarwinX86AsmBackend(T) { 384 HasReliableSymbolDifference = true; 385 } 386 387 MCObjectWriter *createObjectWriter(raw_ostream &OS) const { 388 return createX86MachObjectWriter(OS, /*Is64Bit=*/true, 389 object::mach::CTM_x86_64, 390 object::mach::CSX86_ALL); 391 } 392 393 virtual bool doesSectionRequireSymbols(const MCSection &Section) const { 394 // Temporary labels in the string literals sections require symbols. The 395 // issue is that the x86_64 relocation format does not allow symbol + 396 // offset, and so the linker does not have enough information to resolve the 397 // access to the appropriate atom unless an external relocation is used. For 398 // non-cstring sections, we expect the compiler to use a non-temporary label 399 // for anything that could have an addend pointing outside the symbol. 400 // 401 // See <rdar://problem/4765733>. 402 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); 403 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS; 404 } 405 406 virtual bool isSectionAtomizable(const MCSection &Section) const { 407 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); 408 // Fixed sized data sections are uniqued, they cannot be diced into atoms. 409 switch (SMO.getType()) { 410 default: 411 return true; 412 413 case MCSectionMachO::S_4BYTE_LITERALS: 414 case MCSectionMachO::S_8BYTE_LITERALS: 415 case MCSectionMachO::S_16BYTE_LITERALS: 416 case MCSectionMachO::S_LITERAL_POINTERS: 417 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS: 418 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS: 419 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS: 420 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS: 421 case MCSectionMachO::S_INTERPOSING: 422 return false; 423 } 424 } 425 }; 426 427 } // end anonymous namespace 428 429 TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T, 430 const std::string &TT) { 431 Triple TheTriple(TT); 432 433 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) 434 return new DarwinX86_32AsmBackend(T); 435 436 if (TheTriple.isOSWindows()) 437 return new WindowsX86AsmBackend(T, false); 438 439 return new ELFX86_32AsmBackend(T, TheTriple.getOS()); 440 } 441 442 TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T, 443 const std::string &TT) { 444 Triple TheTriple(TT); 445 446 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) 447 return new DarwinX86_64AsmBackend(T); 448 449 if (TheTriple.isOSWindows()) 450 return new WindowsX86AsmBackend(T, true); 451 452 return new ELFX86_64AsmBackend(T, TheTriple.getOS()); 453 } 454