Home | History | Annotate | Download | only in X86
      1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Target/TargetAsmBackend.h"
     11 #include "X86.h"
     12 #include "X86FixupKinds.h"
     13 #include "llvm/ADT/Twine.h"
     14 #include "llvm/MC/MCAssembler.h"
     15 #include "llvm/MC/MCELFObjectWriter.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/MC/MCFixupKindInfo.h"
     18 #include "llvm/MC/MCMachObjectWriter.h"
     19 #include "llvm/MC/MCObjectWriter.h"
     20 #include "llvm/MC/MCSectionCOFF.h"
     21 #include "llvm/MC/MCSectionELF.h"
     22 #include "llvm/MC/MCSectionMachO.h"
     23 #include "llvm/Object/MachOFormat.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/ELF.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetRegistry.h"
     29 #include "llvm/Target/TargetAsmBackend.h"
     30 using namespace llvm;
     31 
     32 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
     33 // is useful when running bitwise comparison experiments on Darwin. We should be
     34 // able to remove this once PR9807 is resolved.
     35 static cl::opt<bool>
     36 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
     37          cl::desc("Disable relaxation of arithmetic instruction for X86"));
     38 
     39 static unsigned getFixupKindLog2Size(unsigned Kind) {
     40   switch (Kind) {
     41   default: assert(0 && "invalid fixup kind!");
     42   case FK_PCRel_1:
     43   case FK_Data_1: return 0;
     44   case FK_PCRel_2:
     45   case FK_Data_2: return 1;
     46   case FK_PCRel_4:
     47   case X86::reloc_riprel_4byte:
     48   case X86::reloc_riprel_4byte_movq_load:
     49   case X86::reloc_signed_4byte:
     50   case X86::reloc_global_offset_table:
     51   case FK_Data_4: return 2;
     52   case FK_PCRel_8:
     53   case FK_Data_8: return 3;
     54   }
     55 }
     56 
     57 namespace {
     58 
     59 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
     60 public:
     61   X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
     62                      bool HasRelocationAddend)
     63     : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
     64 };
     65 
     66 class X86AsmBackend : public TargetAsmBackend {
     67 public:
     68   X86AsmBackend(const Target &T)
     69     : TargetAsmBackend() {}
     70 
     71   unsigned getNumFixupKinds() const {
     72     return X86::NumTargetFixupKinds;
     73   }
     74 
     75   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
     76     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
     77       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
     78       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
     79       { "reloc_signed_4byte", 0, 4 * 8, 0},
     80       { "reloc_global_offset_table", 0, 4 * 8, 0}
     81     };
     82 
     83     if (Kind < FirstTargetFixupKind)
     84       return TargetAsmBackend::getFixupKindInfo(Kind);
     85 
     86     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
     87            "Invalid kind!");
     88     return Infos[Kind - FirstTargetFixupKind];
     89   }
     90 
     91   void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
     92                   uint64_t Value) const {
     93     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
     94 
     95     assert(Fixup.getOffset() + Size <= DataSize &&
     96            "Invalid fixup offset!");
     97     for (unsigned i = 0; i != Size; ++i)
     98       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
     99   }
    100 
    101   bool MayNeedRelaxation(const MCInst &Inst) const;
    102 
    103   void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
    104 
    105   bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
    106 };
    107 } // end anonymous namespace
    108 
    109 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
    110   switch (Op) {
    111   default:
    112     return Op;
    113 
    114   case X86::JAE_1: return X86::JAE_4;
    115   case X86::JA_1:  return X86::JA_4;
    116   case X86::JBE_1: return X86::JBE_4;
    117   case X86::JB_1:  return X86::JB_4;
    118   case X86::JE_1:  return X86::JE_4;
    119   case X86::JGE_1: return X86::JGE_4;
    120   case X86::JG_1:  return X86::JG_4;
    121   case X86::JLE_1: return X86::JLE_4;
    122   case X86::JL_1:  return X86::JL_4;
    123   case X86::JMP_1: return X86::JMP_4;
    124   case X86::JNE_1: return X86::JNE_4;
    125   case X86::JNO_1: return X86::JNO_4;
    126   case X86::JNP_1: return X86::JNP_4;
    127   case X86::JNS_1: return X86::JNS_4;
    128   case X86::JO_1:  return X86::JO_4;
    129   case X86::JP_1:  return X86::JP_4;
    130   case X86::JS_1:  return X86::JS_4;
    131   }
    132 }
    133 
    134 static unsigned getRelaxedOpcodeArith(unsigned Op) {
    135   switch (Op) {
    136   default:
    137     return Op;
    138 
    139     // IMUL
    140   case X86::IMUL16rri8: return X86::IMUL16rri;
    141   case X86::IMUL16rmi8: return X86::IMUL16rmi;
    142   case X86::IMUL32rri8: return X86::IMUL32rri;
    143   case X86::IMUL32rmi8: return X86::IMUL32rmi;
    144   case X86::IMUL64rri8: return X86::IMUL64rri32;
    145   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
    146 
    147     // AND
    148   case X86::AND16ri8: return X86::AND16ri;
    149   case X86::AND16mi8: return X86::AND16mi;
    150   case X86::AND32ri8: return X86::AND32ri;
    151   case X86::AND32mi8: return X86::AND32mi;
    152   case X86::AND64ri8: return X86::AND64ri32;
    153   case X86::AND64mi8: return X86::AND64mi32;
    154 
    155     // OR
    156   case X86::OR16ri8: return X86::OR16ri;
    157   case X86::OR16mi8: return X86::OR16mi;
    158   case X86::OR32ri8: return X86::OR32ri;
    159   case X86::OR32mi8: return X86::OR32mi;
    160   case X86::OR64ri8: return X86::OR64ri32;
    161   case X86::OR64mi8: return X86::OR64mi32;
    162 
    163     // XOR
    164   case X86::XOR16ri8: return X86::XOR16ri;
    165   case X86::XOR16mi8: return X86::XOR16mi;
    166   case X86::XOR32ri8: return X86::XOR32ri;
    167   case X86::XOR32mi8: return X86::XOR32mi;
    168   case X86::XOR64ri8: return X86::XOR64ri32;
    169   case X86::XOR64mi8: return X86::XOR64mi32;
    170 
    171     // ADD
    172   case X86::ADD16ri8: return X86::ADD16ri;
    173   case X86::ADD16mi8: return X86::ADD16mi;
    174   case X86::ADD32ri8: return X86::ADD32ri;
    175   case X86::ADD32mi8: return X86::ADD32mi;
    176   case X86::ADD64ri8: return X86::ADD64ri32;
    177   case X86::ADD64mi8: return X86::ADD64mi32;
    178 
    179     // SUB
    180   case X86::SUB16ri8: return X86::SUB16ri;
    181   case X86::SUB16mi8: return X86::SUB16mi;
    182   case X86::SUB32ri8: return X86::SUB32ri;
    183   case X86::SUB32mi8: return X86::SUB32mi;
    184   case X86::SUB64ri8: return X86::SUB64ri32;
    185   case X86::SUB64mi8: return X86::SUB64mi32;
    186 
    187     // CMP
    188   case X86::CMP16ri8: return X86::CMP16ri;
    189   case X86::CMP16mi8: return X86::CMP16mi;
    190   case X86::CMP32ri8: return X86::CMP32ri;
    191   case X86::CMP32mi8: return X86::CMP32mi;
    192   case X86::CMP64ri8: return X86::CMP64ri32;
    193   case X86::CMP64mi8: return X86::CMP64mi32;
    194 
    195     // PUSH
    196   case X86::PUSHi8: return X86::PUSHi32;
    197   case X86::PUSHi16: return X86::PUSHi32;
    198   case X86::PUSH64i8: return X86::PUSH64i32;
    199   case X86::PUSH64i16: return X86::PUSH64i32;
    200   }
    201 }
    202 
    203 static unsigned getRelaxedOpcode(unsigned Op) {
    204   unsigned R = getRelaxedOpcodeArith(Op);
    205   if (R != Op)
    206     return R;
    207   return getRelaxedOpcodeBranch(Op);
    208 }
    209 
    210 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
    211   // Branches can always be relaxed.
    212   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
    213     return true;
    214 
    215   if (MCDisableArithRelaxation)
    216     return false;
    217 
    218   // Check if this instruction is ever relaxable.
    219   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
    220     return false;
    221 
    222 
    223   // Check if it has an expression and is not RIP relative.
    224   bool hasExp = false;
    225   bool hasRIP = false;
    226   for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
    227     const MCOperand &Op = Inst.getOperand(i);
    228     if (Op.isExpr())
    229       hasExp = true;
    230 
    231     if (Op.isReg() && Op.getReg() == X86::RIP)
    232       hasRIP = true;
    233   }
    234 
    235   // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
    236   // how we do relaxations?
    237   return hasExp && !hasRIP;
    238 }
    239 
    240 // FIXME: Can tblgen help at all here to verify there aren't other instructions
    241 // we can relax?
    242 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
    243   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
    244   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    245 
    246   if (RelaxedOp == Inst.getOpcode()) {
    247     SmallString<256> Tmp;
    248     raw_svector_ostream OS(Tmp);
    249     Inst.dump_pretty(OS);
    250     OS << "\n";
    251     report_fatal_error("unexpected instruction to relax: " + OS.str());
    252   }
    253 
    254   Res = Inst;
    255   Res.setOpcode(RelaxedOp);
    256 }
    257 
    258 /// WriteNopData - Write optimal nops to the output file for the \arg Count
    259 /// bytes.  This returns the number of bytes written.  It may return 0 if
    260 /// the \arg Count is more than the maximum optimal nops.
    261 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
    262   static const uint8_t Nops[10][10] = {
    263     // nop
    264     {0x90},
    265     // xchg %ax,%ax
    266     {0x66, 0x90},
    267     // nopl (%[re]ax)
    268     {0x0f, 0x1f, 0x00},
    269     // nopl 0(%[re]ax)
    270     {0x0f, 0x1f, 0x40, 0x00},
    271     // nopl 0(%[re]ax,%[re]ax,1)
    272     {0x0f, 0x1f, 0x44, 0x00, 0x00},
    273     // nopw 0(%[re]ax,%[re]ax,1)
    274     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    275     // nopl 0L(%[re]ax)
    276     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    277     // nopl 0L(%[re]ax,%[re]ax,1)
    278     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    279     // nopw 0L(%[re]ax,%[re]ax,1)
    280     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    281     // nopw %cs:0L(%[re]ax,%[re]ax,1)
    282     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    283   };
    284 
    285   // Write an optimal sequence for the first 15 bytes.
    286   const uint64_t OptimalCount = (Count < 16) ? Count : 15;
    287   const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
    288   for (uint64_t i = 0, e = Prefixes; i != e; i++)
    289     OW->Write8(0x66);
    290   const uint64_t Rest = OptimalCount - Prefixes;
    291   for (uint64_t i = 0, e = Rest; i != e; i++)
    292     OW->Write8(Nops[Rest - 1][i]);
    293 
    294   // Finish with single byte nops.
    295   for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
    296    OW->Write8(0x90);
    297 
    298   return true;
    299 }
    300 
    301 /* *** */
    302 
    303 namespace {
    304 class ELFX86AsmBackend : public X86AsmBackend {
    305 public:
    306   Triple::OSType OSType;
    307   ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
    308     : X86AsmBackend(T), OSType(_OSType) {
    309     HasReliableSymbolDifference = true;
    310   }
    311 
    312   virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
    313     const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
    314     return ES.getFlags() & ELF::SHF_MERGE;
    315   }
    316 };
    317 
    318 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
    319 public:
    320   ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
    321     : ELFX86AsmBackend(T, OSType) {}
    322 
    323   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    324     return createELFObjectWriter(createELFObjectTargetWriter(),
    325                                  OS, /*IsLittleEndian*/ true);
    326   }
    327 
    328   MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
    329     return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
    330   }
    331 };
    332 
    333 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
    334 public:
    335   ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
    336     : ELFX86AsmBackend(T, OSType) {}
    337 
    338   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    339     return createELFObjectWriter(createELFObjectTargetWriter(),
    340                                  OS, /*IsLittleEndian*/ true);
    341   }
    342 
    343   MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
    344     return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
    345   }
    346 };
    347 
    348 class WindowsX86AsmBackend : public X86AsmBackend {
    349   bool Is64Bit;
    350 
    351 public:
    352   WindowsX86AsmBackend(const Target &T, bool is64Bit)
    353     : X86AsmBackend(T)
    354     , Is64Bit(is64Bit) {
    355   }
    356 
    357   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    358     return createWinCOFFObjectWriter(OS, Is64Bit);
    359   }
    360 };
    361 
    362 class DarwinX86AsmBackend : public X86AsmBackend {
    363 public:
    364   DarwinX86AsmBackend(const Target &T)
    365     : X86AsmBackend(T) { }
    366 };
    367 
    368 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
    369 public:
    370   DarwinX86_32AsmBackend(const Target &T)
    371     : DarwinX86AsmBackend(T) {}
    372 
    373   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    374     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
    375                                      object::mach::CTM_i386,
    376                                      object::mach::CSX86_ALL);
    377   }
    378 };
    379 
    380 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
    381 public:
    382   DarwinX86_64AsmBackend(const Target &T)
    383     : DarwinX86AsmBackend(T) {
    384     HasReliableSymbolDifference = true;
    385   }
    386 
    387   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    388     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
    389                                      object::mach::CTM_x86_64,
    390                                      object::mach::CSX86_ALL);
    391   }
    392 
    393   virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
    394     // Temporary labels in the string literals sections require symbols. The
    395     // issue is that the x86_64 relocation format does not allow symbol +
    396     // offset, and so the linker does not have enough information to resolve the
    397     // access to the appropriate atom unless an external relocation is used. For
    398     // non-cstring sections, we expect the compiler to use a non-temporary label
    399     // for anything that could have an addend pointing outside the symbol.
    400     //
    401     // See <rdar://problem/4765733>.
    402     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    403     return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
    404   }
    405 
    406   virtual bool isSectionAtomizable(const MCSection &Section) const {
    407     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    408     // Fixed sized data sections are uniqued, they cannot be diced into atoms.
    409     switch (SMO.getType()) {
    410     default:
    411       return true;
    412 
    413     case MCSectionMachO::S_4BYTE_LITERALS:
    414     case MCSectionMachO::S_8BYTE_LITERALS:
    415     case MCSectionMachO::S_16BYTE_LITERALS:
    416     case MCSectionMachO::S_LITERAL_POINTERS:
    417     case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
    418     case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
    419     case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
    420     case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
    421     case MCSectionMachO::S_INTERPOSING:
    422       return false;
    423     }
    424   }
    425 };
    426 
    427 } // end anonymous namespace
    428 
    429 TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
    430                                                const std::string &TT) {
    431   Triple TheTriple(TT);
    432 
    433   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
    434     return new DarwinX86_32AsmBackend(T);
    435 
    436   if (TheTriple.isOSWindows())
    437     return new WindowsX86AsmBackend(T, false);
    438 
    439   return new ELFX86_32AsmBackend(T, TheTriple.getOS());
    440 }
    441 
    442 TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
    443                                                const std::string &TT) {
    444   Triple TheTriple(TT);
    445 
    446   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
    447     return new DarwinX86_64AsmBackend(T);
    448 
    449   if (TheTriple.isOSWindows())
    450     return new WindowsX86AsmBackend(T, true);
    451 
    452   return new ELFX86_64AsmBackend(T, TheTriple.getOS());
    453 }
    454