Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class wraps target description classes used by the various code
     11 // generation TableGen backends.  This makes it easier to access the data and
     12 // provides a single place that needs to check it for validity.  All of these
     13 // classes throw exceptions on error conditions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CodeGenTarget.h"
     18 #include "CodeGenIntrinsics.h"
     19 #include "Record.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include <algorithm>
     24 using namespace llvm;
     25 
     26 static cl::opt<unsigned>
     27 AsmParserNum("asmparsernum", cl::init(0),
     28              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
     29 
     30 static cl::opt<unsigned>
     31 AsmWriterNum("asmwriternum", cl::init(0),
     32              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
     33 
     34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
     35 /// record corresponds to.
     36 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
     37   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
     38 }
     39 
     40 std::string llvm::getName(MVT::SimpleValueType T) {
     41   switch (T) {
     42   case MVT::Other:   return "UNKNOWN";
     43   case MVT::iPTR:    return "TLI.getPointerTy()";
     44   case MVT::iPTRAny: return "TLI.getPointerTy()";
     45   default: return getEnumName(T);
     46   }
     47 }
     48 
     49 std::string llvm::getEnumName(MVT::SimpleValueType T) {
     50   switch (T) {
     51   case MVT::Other:    return "MVT::Other";
     52   case MVT::i1:       return "MVT::i1";
     53   case MVT::i8:       return "MVT::i8";
     54   case MVT::i16:      return "MVT::i16";
     55   case MVT::i32:      return "MVT::i32";
     56   case MVT::i64:      return "MVT::i64";
     57   case MVT::i128:     return "MVT::i128";
     58   case MVT::iAny:     return "MVT::iAny";
     59   case MVT::fAny:     return "MVT::fAny";
     60   case MVT::vAny:     return "MVT::vAny";
     61   case MVT::f32:      return "MVT::f32";
     62   case MVT::f64:      return "MVT::f64";
     63   case MVT::f80:      return "MVT::f80";
     64   case MVT::f128:     return "MVT::f128";
     65   case MVT::ppcf128:  return "MVT::ppcf128";
     66   case MVT::x86mmx:   return "MVT::x86mmx";
     67   case MVT::Glue:     return "MVT::Glue";
     68   case MVT::isVoid:   return "MVT::isVoid";
     69   case MVT::v2i8:     return "MVT::v2i8";
     70   case MVT::v4i8:     return "MVT::v4i8";
     71   case MVT::v8i8:     return "MVT::v8i8";
     72   case MVT::v16i8:    return "MVT::v16i8";
     73   case MVT::v32i8:    return "MVT::v32i8";
     74   case MVT::v2i16:    return "MVT::v2i16";
     75   case MVT::v4i16:    return "MVT::v4i16";
     76   case MVT::v8i16:    return "MVT::v8i16";
     77   case MVT::v16i16:   return "MVT::v16i16";
     78   case MVT::v2i32:    return "MVT::v2i32";
     79   case MVT::v4i32:    return "MVT::v4i32";
     80   case MVT::v8i32:    return "MVT::v8i32";
     81   case MVT::v1i64:    return "MVT::v1i64";
     82   case MVT::v2i64:    return "MVT::v2i64";
     83   case MVT::v4i64:    return "MVT::v4i64";
     84   case MVT::v8i64:    return "MVT::v8i64";
     85   case MVT::v2f32:    return "MVT::v2f32";
     86   case MVT::v4f32:    return "MVT::v4f32";
     87   case MVT::v8f32:    return "MVT::v8f32";
     88   case MVT::v2f64:    return "MVT::v2f64";
     89   case MVT::v4f64:    return "MVT::v4f64";
     90   case MVT::Metadata: return "MVT::Metadata";
     91   case MVT::iPTR:     return "MVT::iPTR";
     92   case MVT::iPTRAny:  return "MVT::iPTRAny";
     93   case MVT::untyped:  return "MVT::untyped";
     94   default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
     95   }
     96 }
     97 
     98 /// getQualifiedName - Return the name of the specified record, with a
     99 /// namespace qualifier if the record contains one.
    100 ///
    101 std::string llvm::getQualifiedName(const Record *R) {
    102   std::string Namespace;
    103   if (R->getValue("Namespace"))
    104      Namespace = R->getValueAsString("Namespace");
    105   if (Namespace.empty()) return R->getName();
    106   return Namespace + "::" + R->getName();
    107 }
    108 
    109 
    110 /// getTarget - Return the current instance of the Target class.
    111 ///
    112 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
    113   : Records(records), RegBank(0) {
    114   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
    115   if (Targets.size() == 0)
    116     throw std::string("ERROR: No 'Target' subclasses defined!");
    117   if (Targets.size() != 1)
    118     throw std::string("ERROR: Multiple subclasses of Target defined!");
    119   TargetRec = Targets[0];
    120 }
    121 
    122 
    123 const std::string &CodeGenTarget::getName() const {
    124   return TargetRec->getName();
    125 }
    126 
    127 std::string CodeGenTarget::getInstNamespace() const {
    128   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
    129     // Make sure not to pick up "TargetOpcode" by accidentally getting
    130     // the namespace off the PHI instruction or something.
    131     if ((*i)->Namespace != "TargetOpcode")
    132       return (*i)->Namespace;
    133   }
    134 
    135   return "";
    136 }
    137 
    138 Record *CodeGenTarget::getInstructionSet() const {
    139   return TargetRec->getValueAsDef("InstructionSet");
    140 }
    141 
    142 
    143 /// getAsmParser - Return the AssemblyParser definition for this target.
    144 ///
    145 Record *CodeGenTarget::getAsmParser() const {
    146   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
    147   if (AsmParserNum >= LI.size())
    148     throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
    149   return LI[AsmParserNum];
    150 }
    151 
    152 /// getAsmWriter - Return the AssemblyWriter definition for this target.
    153 ///
    154 Record *CodeGenTarget::getAsmWriter() const {
    155   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
    156   if (AsmWriterNum >= LI.size())
    157     throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
    158   return LI[AsmWriterNum];
    159 }
    160 
    161 CodeGenRegBank &CodeGenTarget::getRegBank() const {
    162   if (!RegBank)
    163     RegBank = new CodeGenRegBank(Records);
    164   return *RegBank;
    165 }
    166 
    167 void CodeGenTarget::ReadRegAltNameIndices() const {
    168   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
    169   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
    170 }
    171 
    172 /// getRegisterByName - If there is a register with the specific AsmName,
    173 /// return it.
    174 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
    175   const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters();
    176   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    177     if (Regs[i]->TheDef->getValueAsString("AsmName") == Name)
    178       return Regs[i];
    179 
    180   return 0;
    181 }
    182 
    183 std::vector<MVT::SimpleValueType> CodeGenTarget::
    184 getRegisterVTs(Record *R) const {
    185   const CodeGenRegister *Reg = getRegBank().getReg(R);
    186   std::vector<MVT::SimpleValueType> Result;
    187   const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
    188   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
    189     const CodeGenRegisterClass &RC = RCs[i];
    190     if (RC.contains(Reg)) {
    191       const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
    192       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    193     }
    194   }
    195 
    196   // Remove duplicates.
    197   array_pod_sort(Result.begin(), Result.end());
    198   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
    199   return Result;
    200 }
    201 
    202 
    203 void CodeGenTarget::ReadLegalValueTypes() const {
    204   const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
    205   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
    206     for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
    207       LegalValueTypes.push_back(RCs[i].VTs[ri]);
    208 
    209   // Remove duplicates.
    210   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
    211   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
    212                                     LegalValueTypes.end()),
    213                         LegalValueTypes.end());
    214 }
    215 
    216 
    217 void CodeGenTarget::ReadInstructions() const {
    218   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    219   if (Insts.size() <= 2)
    220     throw std::string("No 'Instruction' subclasses defined!");
    221 
    222   // Parse the instructions defined in the .td file.
    223   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    224     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
    225 }
    226 
    227 static const CodeGenInstruction *
    228 GetInstByName(const char *Name,
    229               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
    230               RecordKeeper &Records) {
    231   const Record *Rec = Records.getDef(Name);
    232 
    233   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    234     I = Insts.find(Rec);
    235   if (Rec == 0 || I == Insts.end())
    236     throw std::string("Could not find '") + Name + "' instruction!";
    237   return I->second;
    238 }
    239 
    240 namespace {
    241 /// SortInstByName - Sorting predicate to sort instructions by name.
    242 ///
    243 struct SortInstByName {
    244   bool operator()(const CodeGenInstruction *Rec1,
    245                   const CodeGenInstruction *Rec2) const {
    246     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
    247   }
    248 };
    249 }
    250 
    251 /// getInstructionsByEnumValue - Return all of the instructions defined by the
    252 /// target, ordered by their enum value.
    253 void CodeGenTarget::ComputeInstrsByEnum() const {
    254   // The ordering here must match the ordering in TargetOpcodes.h.
    255   const char *const FixedInstrs[] = {
    256     "PHI",
    257     "INLINEASM",
    258     "PROLOG_LABEL",
    259     "EH_LABEL",
    260     "GC_LABEL",
    261     "KILL",
    262     "EXTRACT_SUBREG",
    263     "INSERT_SUBREG",
    264     "IMPLICIT_DEF",
    265     "SUBREG_TO_REG",
    266     "COPY_TO_REGCLASS",
    267     "DBG_VALUE",
    268     "REG_SEQUENCE",
    269     "COPY",
    270     0
    271   };
    272   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
    273   for (const char *const *p = FixedInstrs; *p; ++p) {
    274     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    275     assert(Instr && "Missing target independent instruction");
    276     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    277     InstrsByEnum.push_back(Instr);
    278   }
    279   unsigned EndOfPredefines = InstrsByEnum.size();
    280 
    281   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    282        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
    283     const CodeGenInstruction *CGI = I->second;
    284     if (CGI->Namespace != "TargetOpcode")
    285       InstrsByEnum.push_back(CGI);
    286   }
    287 
    288   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
    289 
    290   // All of the instructions are now in random order based on the map iteration.
    291   // Sort them by name.
    292   std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
    293             SortInstByName());
    294 }
    295 
    296 
    297 /// isLittleEndianEncoding - Return whether this target encodes its instruction
    298 /// in little-endian format, i.e. bits laid out in the order [0..n]
    299 ///
    300 bool CodeGenTarget::isLittleEndianEncoding() const {
    301   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
    302 }
    303 
    304 //===----------------------------------------------------------------------===//
    305 // ComplexPattern implementation
    306 //
    307 ComplexPattern::ComplexPattern(Record *R) {
    308   Ty          = ::getValueType(R->getValueAsDef("Ty"));
    309   NumOperands = R->getValueAsInt("NumOperands");
    310   SelectFunc  = R->getValueAsString("SelectFunc");
    311   RootNodes   = R->getValueAsListOfDefs("RootNodes");
    312 
    313   // Parse the properties.
    314   Properties = 0;
    315   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    316   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    317     if (PropList[i]->getName() == "SDNPHasChain") {
    318       Properties |= 1 << SDNPHasChain;
    319     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    320       Properties |= 1 << SDNPOptInGlue;
    321     } else if (PropList[i]->getName() == "SDNPMayStore") {
    322       Properties |= 1 << SDNPMayStore;
    323     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    324       Properties |= 1 << SDNPMayLoad;
    325     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    326       Properties |= 1 << SDNPSideEffect;
    327     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    328       Properties |= 1 << SDNPMemOperand;
    329     } else if (PropList[i]->getName() == "SDNPVariadic") {
    330       Properties |= 1 << SDNPVariadic;
    331     } else if (PropList[i]->getName() == "SDNPWantRoot") {
    332       Properties |= 1 << SDNPWantRoot;
    333     } else if (PropList[i]->getName() == "SDNPWantParent") {
    334       Properties |= 1 << SDNPWantParent;
    335     } else {
    336       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
    337              << "' on ComplexPattern '" << R->getName() << "'!\n";
    338       exit(1);
    339     }
    340 }
    341 
    342 //===----------------------------------------------------------------------===//
    343 // CodeGenIntrinsic Implementation
    344 //===----------------------------------------------------------------------===//
    345 
    346 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
    347                                                    bool TargetOnly) {
    348   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
    349 
    350   std::vector<CodeGenIntrinsic> Result;
    351 
    352   for (unsigned i = 0, e = I.size(); i != e; ++i) {
    353     bool isTarget = I[i]->getValueAsBit("isTarget");
    354     if (isTarget == TargetOnly)
    355       Result.push_back(CodeGenIntrinsic(I[i]));
    356   }
    357   return Result;
    358 }
    359 
    360 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
    361   TheDef = R;
    362   std::string DefName = R->getName();
    363   ModRef = ReadWriteMem;
    364   isOverloaded = false;
    365   isCommutative = false;
    366   canThrow = false;
    367 
    368   if (DefName.size() <= 4 ||
    369       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    370     throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
    371 
    372   EnumName = std::string(DefName.begin()+4, DefName.end());
    373 
    374   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    375     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
    376 
    377   TargetPrefix = R->getValueAsString("TargetPrefix");
    378   Name = R->getValueAsString("LLVMName");
    379 
    380   if (Name == "") {
    381     // If an explicit name isn't specified, derive one from the DefName.
    382     Name = "llvm.";
    383 
    384     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
    385       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
    386   } else {
    387     // Verify it starts with "llvm.".
    388     if (Name.size() <= 5 ||
    389         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
    390       throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
    391   }
    392 
    393   // If TargetPrefix is specified, make sure that Name starts with
    394   // "llvm.<targetprefix>.".
    395   if (!TargetPrefix.empty()) {
    396     if (Name.size() < 6+TargetPrefix.size() ||
    397         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
    398         != (TargetPrefix + "."))
    399       throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
    400         TargetPrefix + ".'!";
    401   }
    402 
    403   // Parse the list of return types.
    404   std::vector<MVT::SimpleValueType> OverloadedVTs;
    405   ListInit *TypeList = R->getValueAsListInit("RetTypes");
    406   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    407     Record *TyEl = TypeList->getElementAsRecord(i);
    408     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    409     MVT::SimpleValueType VT;
    410     if (TyEl->isSubClassOf("LLVMMatchType")) {
    411       unsigned MatchTy = TyEl->getValueAsInt("Number");
    412       assert(MatchTy < OverloadedVTs.size() &&
    413              "Invalid matching number!");
    414       VT = OverloadedVTs[MatchTy];
    415       // It only makes sense to use the extended and truncated vector element
    416       // variants with iAny types; otherwise, if the intrinsic is not
    417       // overloaded, all the types can be specified directly.
    418       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
    419                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
    420               VT == MVT::iAny || VT == MVT::vAny) &&
    421              "Expected iAny or vAny type");
    422     } else {
    423       VT = getValueType(TyEl->getValueAsDef("VT"));
    424     }
    425     if (EVT(VT).isOverloaded()) {
    426       OverloadedVTs.push_back(VT);
    427       isOverloaded = true;
    428     }
    429 
    430     // Reject invalid types.
    431     if (VT == MVT::isVoid)
    432       throw "Intrinsic '" + DefName + " has void in result type list!";
    433 
    434     IS.RetVTs.push_back(VT);
    435     IS.RetTypeDefs.push_back(TyEl);
    436   }
    437 
    438   // Parse the list of parameter types.
    439   TypeList = R->getValueAsListInit("ParamTypes");
    440   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    441     Record *TyEl = TypeList->getElementAsRecord(i);
    442     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    443     MVT::SimpleValueType VT;
    444     if (TyEl->isSubClassOf("LLVMMatchType")) {
    445       unsigned MatchTy = TyEl->getValueAsInt("Number");
    446       assert(MatchTy < OverloadedVTs.size() &&
    447              "Invalid matching number!");
    448       VT = OverloadedVTs[MatchTy];
    449       // It only makes sense to use the extended and truncated vector element
    450       // variants with iAny types; otherwise, if the intrinsic is not
    451       // overloaded, all the types can be specified directly.
    452       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
    453                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
    454               VT == MVT::iAny || VT == MVT::vAny) &&
    455              "Expected iAny or vAny type");
    456     } else
    457       VT = getValueType(TyEl->getValueAsDef("VT"));
    458 
    459     if (EVT(VT).isOverloaded()) {
    460       OverloadedVTs.push_back(VT);
    461       isOverloaded = true;
    462     }
    463 
    464     // Reject invalid types.
    465     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
    466       throw "Intrinsic '" + DefName + " has void in result type list!";
    467 
    468     IS.ParamVTs.push_back(VT);
    469     IS.ParamTypeDefs.push_back(TyEl);
    470   }
    471 
    472   // Parse the intrinsic properties.
    473   ListInit *PropList = R->getValueAsListInit("Properties");
    474   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
    475     Record *Property = PropList->getElementAsRecord(i);
    476     assert(Property->isSubClassOf("IntrinsicProperty") &&
    477            "Expected a property!");
    478 
    479     if (Property->getName() == "IntrNoMem")
    480       ModRef = NoMem;
    481     else if (Property->getName() == "IntrReadArgMem")
    482       ModRef = ReadArgMem;
    483     else if (Property->getName() == "IntrReadMem")
    484       ModRef = ReadMem;
    485     else if (Property->getName() == "IntrReadWriteArgMem")
    486       ModRef = ReadWriteArgMem;
    487     else if (Property->getName() == "Commutative")
    488       isCommutative = true;
    489     else if (Property->getName() == "Throws")
    490       canThrow = true;
    491     else if (Property->isSubClassOf("NoCapture")) {
    492       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    493       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
    494     } else
    495       assert(0 && "Unknown property!");
    496   }
    497 
    498   // Sort the argument attributes for later benefit.
    499   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
    500 }
    501