1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/Intrinsics.h" 25 #include "llvm/Target/TargetData.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===--------------------------------------------------------------------===// 30 // Miscellaneous Helper Methods 31 //===--------------------------------------------------------------------===// 32 33 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 34 unsigned addressSpace = 35 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 36 37 llvm::PointerType *destType = Int8PtrTy; 38 if (addressSpace) 39 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 40 41 if (value->getType() == destType) return value; 42 return Builder.CreateBitCast(value, destType); 43 } 44 45 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 46 /// block. 47 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 48 const llvm::Twine &Name) { 49 if (!Builder.isNamePreserving()) 50 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 51 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 52 } 53 54 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 55 llvm::Value *Init) { 56 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 57 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 58 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 59 } 60 61 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 62 const llvm::Twine &Name) { 63 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 64 // FIXME: Should we prefer the preferred type alignment here? 65 CharUnits Align = getContext().getTypeAlignInChars(Ty); 66 Alloc->setAlignment(Align.getQuantity()); 67 return Alloc; 68 } 69 70 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 71 const llvm::Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77 } 78 79 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 80 /// expression and compare the result against zero, returning an Int1Ty value. 81 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 82 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 83 llvm::Value *MemPtr = EmitScalarExpr(E); 84 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 85 } 86 87 QualType BoolTy = getContext().BoolTy; 88 if (!E->getType()->isAnyComplexType()) 89 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 90 91 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 92 } 93 94 /// EmitIgnoredExpr - Emit code to compute the specified expression, 95 /// ignoring the result. 96 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 97 if (E->isRValue()) 98 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 99 100 // Just emit it as an l-value and drop the result. 101 EmitLValue(E); 102 } 103 104 /// EmitAnyExpr - Emit code to compute the specified expression which 105 /// can have any type. The result is returned as an RValue struct. 106 /// If this is an aggregate expression, AggSlot indicates where the 107 /// result should be returned. 108 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 109 bool IgnoreResult) { 110 if (!hasAggregateLLVMType(E->getType())) 111 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 112 else if (E->getType()->isAnyComplexType()) 113 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 114 115 EmitAggExpr(E, AggSlot, IgnoreResult); 116 return AggSlot.asRValue(); 117 } 118 119 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 120 /// always be accessible even if no aggregate location is provided. 121 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 122 AggValueSlot AggSlot = AggValueSlot::ignored(); 123 124 if (hasAggregateLLVMType(E->getType()) && 125 !E->getType()->isAnyComplexType()) 126 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 127 return EmitAnyExpr(E, AggSlot); 128 } 129 130 /// EmitAnyExprToMem - Evaluate an expression into a given memory 131 /// location. 132 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 133 llvm::Value *Location, 134 Qualifiers Quals, 135 bool IsInit) { 136 if (E->getType()->isAnyComplexType()) 137 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 138 else if (hasAggregateLLVMType(E->getType())) 139 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, IsInit)); 140 else { 141 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 142 LValue LV = MakeAddrLValue(Location, E->getType()); 143 EmitStoreThroughLValue(RV, LV); 144 } 145 } 146 147 namespace { 148 /// \brief An adjustment to be made to the temporary created when emitting a 149 /// reference binding, which accesses a particular subobject of that temporary. 150 struct SubobjectAdjustment { 151 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 152 153 union { 154 struct { 155 const CastExpr *BasePath; 156 const CXXRecordDecl *DerivedClass; 157 } DerivedToBase; 158 159 FieldDecl *Field; 160 }; 161 162 SubobjectAdjustment(const CastExpr *BasePath, 163 const CXXRecordDecl *DerivedClass) 164 : Kind(DerivedToBaseAdjustment) { 165 DerivedToBase.BasePath = BasePath; 166 DerivedToBase.DerivedClass = DerivedClass; 167 } 168 169 SubobjectAdjustment(FieldDecl *Field) 170 : Kind(FieldAdjustment) { 171 this->Field = Field; 172 } 173 }; 174 } 175 176 static llvm::Value * 177 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 178 const NamedDecl *InitializedDecl) { 179 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 180 if (VD->hasGlobalStorage()) { 181 llvm::SmallString<256> Name; 182 llvm::raw_svector_ostream Out(Name); 183 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 184 Out.flush(); 185 186 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 187 188 // Create the reference temporary. 189 llvm::GlobalValue *RefTemp = 190 new llvm::GlobalVariable(CGF.CGM.getModule(), 191 RefTempTy, /*isConstant=*/false, 192 llvm::GlobalValue::InternalLinkage, 193 llvm::Constant::getNullValue(RefTempTy), 194 Name.str()); 195 return RefTemp; 196 } 197 } 198 199 return CGF.CreateMemTemp(Type, "ref.tmp"); 200 } 201 202 static llvm::Value * 203 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 204 llvm::Value *&ReferenceTemporary, 205 const CXXDestructorDecl *&ReferenceTemporaryDtor, 206 QualType &ObjCARCReferenceLifetimeType, 207 const NamedDecl *InitializedDecl) { 208 // Look through expressions for materialized temporaries (for now). 209 if (const MaterializeTemporaryExpr *M 210 = dyn_cast<MaterializeTemporaryExpr>(E)) { 211 // Objective-C++ ARC: 212 // If we are binding a reference to a temporary that has ownership, we 213 // need to perform retain/release operations on the temporary. 214 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 215 E->getType()->isObjCLifetimeType() && 216 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 217 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 218 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 219 ObjCARCReferenceLifetimeType = E->getType(); 220 221 E = M->GetTemporaryExpr(); 222 } 223 224 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 225 E = DAE->getExpr(); 226 227 if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) { 228 CodeGenFunction::RunCleanupsScope Scope(CGF); 229 230 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 231 ReferenceTemporary, 232 ReferenceTemporaryDtor, 233 ObjCARCReferenceLifetimeType, 234 InitializedDecl); 235 } 236 237 if (const ObjCPropertyRefExpr *PRE = 238 dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts())) 239 if (PRE->getGetterResultType()->isReferenceType()) 240 E = PRE; 241 242 RValue RV; 243 if (E->isGLValue()) { 244 // Emit the expression as an lvalue. 245 LValue LV = CGF.EmitLValue(E); 246 if (LV.isPropertyRef()) { 247 RV = CGF.EmitLoadOfPropertyRefLValue(LV); 248 return RV.getScalarVal(); 249 } 250 251 if (LV.isSimple()) 252 return LV.getAddress(); 253 254 // We have to load the lvalue. 255 RV = CGF.EmitLoadOfLValue(LV); 256 } else { 257 if (!ObjCARCReferenceLifetimeType.isNull()) { 258 ReferenceTemporary = CreateReferenceTemporary(CGF, 259 ObjCARCReferenceLifetimeType, 260 InitializedDecl); 261 262 263 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 264 ObjCARCReferenceLifetimeType); 265 266 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 267 RefTempDst, false); 268 269 bool ExtendsLifeOfTemporary = false; 270 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 271 if (Var->extendsLifetimeOfTemporary()) 272 ExtendsLifeOfTemporary = true; 273 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 274 ExtendsLifeOfTemporary = true; 275 } 276 277 if (!ExtendsLifeOfTemporary) { 278 // Since the lifetime of this temporary isn't going to be extended, 279 // we need to clean it up ourselves at the end of the full expression. 280 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 case Qualifiers::OCL_Autoreleasing: 284 break; 285 286 case Qualifiers::OCL_Strong: { 287 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 288 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 289 CGF.pushDestroy(cleanupKind, 290 ReferenceTemporary, 291 ObjCARCReferenceLifetimeType, 292 CodeGenFunction::destroyARCStrongImprecise, 293 cleanupKind & EHCleanup); 294 break; 295 } 296 297 case Qualifiers::OCL_Weak: 298 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 299 CGF.pushDestroy(NormalAndEHCleanup, 300 ReferenceTemporary, 301 ObjCARCReferenceLifetimeType, 302 CodeGenFunction::destroyARCWeak, 303 /*useEHCleanupForArray*/ true); 304 break; 305 } 306 307 ObjCARCReferenceLifetimeType = QualType(); 308 } 309 310 return ReferenceTemporary; 311 } 312 313 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 314 while (true) { 315 E = E->IgnoreParens(); 316 317 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 318 if ((CE->getCastKind() == CK_DerivedToBase || 319 CE->getCastKind() == CK_UncheckedDerivedToBase) && 320 E->getType()->isRecordType()) { 321 E = CE->getSubExpr(); 322 CXXRecordDecl *Derived 323 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 324 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 325 continue; 326 } 327 328 if (CE->getCastKind() == CK_NoOp) { 329 E = CE->getSubExpr(); 330 continue; 331 } 332 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 333 if (!ME->isArrow() && ME->getBase()->isRValue()) { 334 assert(ME->getBase()->getType()->isRecordType()); 335 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 336 E = ME->getBase(); 337 Adjustments.push_back(SubobjectAdjustment(Field)); 338 continue; 339 } 340 } 341 } 342 343 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 344 if (opaque->getType()->isRecordType()) 345 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 346 347 // Nothing changed. 348 break; 349 } 350 351 // Create a reference temporary if necessary. 352 AggValueSlot AggSlot = AggValueSlot::ignored(); 353 if (CGF.hasAggregateLLVMType(E->getType()) && 354 !E->getType()->isAnyComplexType()) { 355 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 356 InitializedDecl); 357 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(), 358 InitializedDecl != 0); 359 } 360 361 if (InitializedDecl) { 362 // Get the destructor for the reference temporary. 363 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 364 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 365 if (!ClassDecl->hasTrivialDestructor()) 366 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 367 } 368 } 369 370 RV = CGF.EmitAnyExpr(E, AggSlot); 371 372 // Check if need to perform derived-to-base casts and/or field accesses, to 373 // get from the temporary object we created (and, potentially, for which we 374 // extended the lifetime) to the subobject we're binding the reference to. 375 if (!Adjustments.empty()) { 376 llvm::Value *Object = RV.getAggregateAddr(); 377 for (unsigned I = Adjustments.size(); I != 0; --I) { 378 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 379 switch (Adjustment.Kind) { 380 case SubobjectAdjustment::DerivedToBaseAdjustment: 381 Object = 382 CGF.GetAddressOfBaseClass(Object, 383 Adjustment.DerivedToBase.DerivedClass, 384 Adjustment.DerivedToBase.BasePath->path_begin(), 385 Adjustment.DerivedToBase.BasePath->path_end(), 386 /*NullCheckValue=*/false); 387 break; 388 389 case SubobjectAdjustment::FieldAdjustment: { 390 LValue LV = 391 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 392 if (LV.isSimple()) { 393 Object = LV.getAddress(); 394 break; 395 } 396 397 // For non-simple lvalues, we actually have to create a copy of 398 // the object we're binding to. 399 QualType T = Adjustment.Field->getType().getNonReferenceType() 400 .getUnqualifiedType(); 401 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 402 LValue TempLV = CGF.MakeAddrLValue(Object, 403 Adjustment.Field->getType()); 404 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 405 break; 406 } 407 408 } 409 } 410 411 return Object; 412 } 413 } 414 415 if (RV.isAggregate()) 416 return RV.getAggregateAddr(); 417 418 // Create a temporary variable that we can bind the reference to. 419 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 420 InitializedDecl); 421 422 423 unsigned Alignment = 424 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 425 if (RV.isScalar()) 426 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 427 /*Volatile=*/false, Alignment, E->getType()); 428 else 429 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 430 /*Volatile=*/false); 431 return ReferenceTemporary; 432 } 433 434 RValue 435 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 436 const NamedDecl *InitializedDecl) { 437 llvm::Value *ReferenceTemporary = 0; 438 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 439 QualType ObjCARCReferenceLifetimeType; 440 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 441 ReferenceTemporaryDtor, 442 ObjCARCReferenceLifetimeType, 443 InitializedDecl); 444 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 445 return RValue::get(Value); 446 447 // Make sure to call the destructor for the reference temporary. 448 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 449 if (VD && VD->hasGlobalStorage()) { 450 if (ReferenceTemporaryDtor) { 451 llvm::Constant *DtorFn = 452 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 453 EmitCXXGlobalDtorRegistration(DtorFn, 454 cast<llvm::Constant>(ReferenceTemporary)); 455 } else { 456 assert(!ObjCARCReferenceLifetimeType.isNull()); 457 // Note: We intentionally do not register a global "destructor" to 458 // release the object. 459 } 460 461 return RValue::get(Value); 462 } 463 464 if (ReferenceTemporaryDtor) 465 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 466 else { 467 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 468 case Qualifiers::OCL_None: 469 assert(0 && "Not a reference temporary that needs to be deallocated"); 470 case Qualifiers::OCL_ExplicitNone: 471 case Qualifiers::OCL_Autoreleasing: 472 // Nothing to do. 473 break; 474 475 case Qualifiers::OCL_Strong: { 476 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 477 CleanupKind cleanupKind = getARCCleanupKind(); 478 // This local is a GCC and MSVC compiler workaround. 479 Destroyer *destroyer = precise ? &destroyARCStrongPrecise : 480 &destroyARCStrongImprecise; 481 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 482 *destroyer, cleanupKind & EHCleanup); 483 break; 484 } 485 486 case Qualifiers::OCL_Weak: { 487 // This local is a GCC and MSVC compiler workaround. 488 Destroyer *destroyer = &destroyARCWeak; 489 // __weak objects always get EH cleanups; otherwise, exceptions 490 // could cause really nasty crashes instead of mere leaks. 491 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 492 ObjCARCReferenceLifetimeType, *destroyer, true); 493 break; 494 } 495 } 496 } 497 498 return RValue::get(Value); 499 } 500 501 502 /// getAccessedFieldNo - Given an encoded value and a result number, return the 503 /// input field number being accessed. 504 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 505 const llvm::Constant *Elts) { 506 if (isa<llvm::ConstantAggregateZero>(Elts)) 507 return 0; 508 509 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 510 } 511 512 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 513 if (!CatchUndefined) 514 return; 515 516 // This needs to be to the standard address space. 517 Address = Builder.CreateBitCast(Address, Int8PtrTy); 518 519 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 520 521 // In time, people may want to control this and use a 1 here. 522 llvm::Value *Arg = Builder.getFalse(); 523 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 524 llvm::BasicBlock *Cont = createBasicBlock(); 525 llvm::BasicBlock *Check = createBasicBlock(); 526 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 527 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 528 529 EmitBlock(Check); 530 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 531 llvm::ConstantInt::get(IntPtrTy, Size)), 532 Cont, getTrapBB()); 533 EmitBlock(Cont); 534 } 535 536 537 CodeGenFunction::ComplexPairTy CodeGenFunction:: 538 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 539 bool isInc, bool isPre) { 540 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 541 LV.isVolatileQualified()); 542 543 llvm::Value *NextVal; 544 if (isa<llvm::IntegerType>(InVal.first->getType())) { 545 uint64_t AmountVal = isInc ? 1 : -1; 546 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 547 548 // Add the inc/dec to the real part. 549 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 550 } else { 551 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 552 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 553 if (!isInc) 554 FVal.changeSign(); 555 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 556 557 // Add the inc/dec to the real part. 558 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 559 } 560 561 ComplexPairTy IncVal(NextVal, InVal.second); 562 563 // Store the updated result through the lvalue. 564 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 565 566 // If this is a postinc, return the value read from memory, otherwise use the 567 // updated value. 568 return isPre ? IncVal : InVal; 569 } 570 571 572 //===----------------------------------------------------------------------===// 573 // LValue Expression Emission 574 //===----------------------------------------------------------------------===// 575 576 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 577 if (Ty->isVoidType()) 578 return RValue::get(0); 579 580 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 581 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 582 llvm::Value *U = llvm::UndefValue::get(EltTy); 583 return RValue::getComplex(std::make_pair(U, U)); 584 } 585 586 // If this is a use of an undefined aggregate type, the aggregate must have an 587 // identifiable address. Just because the contents of the value are undefined 588 // doesn't mean that the address can't be taken and compared. 589 if (hasAggregateLLVMType(Ty)) { 590 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 591 return RValue::getAggregate(DestPtr); 592 } 593 594 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 595 } 596 597 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 598 const char *Name) { 599 ErrorUnsupported(E, Name); 600 return GetUndefRValue(E->getType()); 601 } 602 603 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 607 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 608 } 609 610 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 611 LValue LV = EmitLValue(E); 612 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 613 EmitCheck(LV.getAddress(), 614 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 615 return LV; 616 } 617 618 /// EmitLValue - Emit code to compute a designator that specifies the location 619 /// of the expression. 620 /// 621 /// This can return one of two things: a simple address or a bitfield reference. 622 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 623 /// an LLVM pointer type. 624 /// 625 /// If this returns a bitfield reference, nothing about the pointee type of the 626 /// LLVM value is known: For example, it may not be a pointer to an integer. 627 /// 628 /// If this returns a normal address, and if the lvalue's C type is fixed size, 629 /// this method guarantees that the returned pointer type will point to an LLVM 630 /// type of the same size of the lvalue's type. If the lvalue has a variable 631 /// length type, this is not possible. 632 /// 633 LValue CodeGenFunction::EmitLValue(const Expr *E) { 634 switch (E->getStmtClass()) { 635 default: return EmitUnsupportedLValue(E, "l-value expression"); 636 637 case Expr::ObjCSelectorExprClass: 638 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 639 case Expr::ObjCIsaExprClass: 640 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 641 case Expr::BinaryOperatorClass: 642 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 643 case Expr::CompoundAssignOperatorClass: 644 if (!E->getType()->isAnyComplexType()) 645 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 646 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 647 case Expr::CallExprClass: 648 case Expr::CXXMemberCallExprClass: 649 case Expr::CXXOperatorCallExprClass: 650 return EmitCallExprLValue(cast<CallExpr>(E)); 651 case Expr::VAArgExprClass: 652 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 653 case Expr::DeclRefExprClass: 654 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 655 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 656 case Expr::GenericSelectionExprClass: 657 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 658 case Expr::PredefinedExprClass: 659 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 660 case Expr::StringLiteralClass: 661 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 662 case Expr::ObjCEncodeExprClass: 663 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 664 665 case Expr::BlockDeclRefExprClass: 666 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 667 668 case Expr::CXXTemporaryObjectExprClass: 669 case Expr::CXXConstructExprClass: 670 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 671 case Expr::CXXBindTemporaryExprClass: 672 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 673 case Expr::ExprWithCleanupsClass: 674 return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E)); 675 case Expr::CXXScalarValueInitExprClass: 676 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 677 case Expr::CXXDefaultArgExprClass: 678 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 679 case Expr::CXXTypeidExprClass: 680 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 681 682 case Expr::ObjCMessageExprClass: 683 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 684 case Expr::ObjCIvarRefExprClass: 685 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 686 case Expr::ObjCPropertyRefExprClass: 687 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 688 case Expr::StmtExprClass: 689 return EmitStmtExprLValue(cast<StmtExpr>(E)); 690 case Expr::UnaryOperatorClass: 691 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 692 case Expr::ArraySubscriptExprClass: 693 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 694 case Expr::ExtVectorElementExprClass: 695 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 696 case Expr::MemberExprClass: 697 return EmitMemberExpr(cast<MemberExpr>(E)); 698 case Expr::CompoundLiteralExprClass: 699 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 700 case Expr::ConditionalOperatorClass: 701 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 702 case Expr::BinaryConditionalOperatorClass: 703 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 704 case Expr::ChooseExprClass: 705 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 706 case Expr::OpaqueValueExprClass: 707 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 708 case Expr::SubstNonTypeTemplateParmExprClass: 709 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 710 case Expr::ImplicitCastExprClass: 711 case Expr::CStyleCastExprClass: 712 case Expr::CXXFunctionalCastExprClass: 713 case Expr::CXXStaticCastExprClass: 714 case Expr::CXXDynamicCastExprClass: 715 case Expr::CXXReinterpretCastExprClass: 716 case Expr::CXXConstCastExprClass: 717 case Expr::ObjCBridgedCastExprClass: 718 return EmitCastLValue(cast<CastExpr>(E)); 719 720 case Expr::MaterializeTemporaryExprClass: 721 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 722 } 723 } 724 725 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 726 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 727 lvalue.getAlignment(), lvalue.getType(), 728 lvalue.getTBAAInfo()); 729 } 730 731 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 732 unsigned Alignment, QualType Ty, 733 llvm::MDNode *TBAAInfo) { 734 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 735 if (Volatile) 736 Load->setVolatile(true); 737 if (Alignment) 738 Load->setAlignment(Alignment); 739 if (TBAAInfo) 740 CGM.DecorateInstruction(Load, TBAAInfo); 741 742 return EmitFromMemory(Load, Ty); 743 } 744 745 static bool isBooleanUnderlyingType(QualType Ty) { 746 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 747 return ET->getDecl()->getIntegerType()->isBooleanType(); 748 return false; 749 } 750 751 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 752 // Bool has a different representation in memory than in registers. 753 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 754 // This should really always be an i1, but sometimes it's already 755 // an i8, and it's awkward to track those cases down. 756 if (Value->getType()->isIntegerTy(1)) 757 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 758 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 759 } 760 761 return Value; 762 } 763 764 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 765 // Bool has a different representation in memory than in registers. 766 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 767 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 768 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 769 } 770 771 return Value; 772 } 773 774 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 775 bool Volatile, unsigned Alignment, 776 QualType Ty, 777 llvm::MDNode *TBAAInfo) { 778 Value = EmitToMemory(Value, Ty); 779 780 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 781 if (Alignment) 782 Store->setAlignment(Alignment); 783 if (TBAAInfo) 784 CGM.DecorateInstruction(Store, TBAAInfo); 785 } 786 787 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) { 788 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 789 lvalue.getAlignment(), lvalue.getType(), 790 lvalue.getTBAAInfo()); 791 } 792 793 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 794 /// method emits the address of the lvalue, then loads the result as an rvalue, 795 /// returning the rvalue. 796 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 797 if (LV.isObjCWeak()) { 798 // load of a __weak object. 799 llvm::Value *AddrWeakObj = LV.getAddress(); 800 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 801 AddrWeakObj)); 802 } 803 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 804 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 805 806 if (LV.isSimple()) { 807 assert(!LV.getType()->isFunctionType()); 808 809 // Everything needs a load. 810 return RValue::get(EmitLoadOfScalar(LV)); 811 } 812 813 if (LV.isVectorElt()) { 814 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 815 LV.isVolatileQualified(), "tmp"); 816 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 817 "vecext")); 818 } 819 820 // If this is a reference to a subset of the elements of a vector, either 821 // shuffle the input or extract/insert them as appropriate. 822 if (LV.isExtVectorElt()) 823 return EmitLoadOfExtVectorElementLValue(LV); 824 825 if (LV.isBitField()) 826 return EmitLoadOfBitfieldLValue(LV); 827 828 assert(LV.isPropertyRef() && "Unknown LValue type!"); 829 return EmitLoadOfPropertyRefLValue(LV); 830 } 831 832 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 833 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 834 835 // Get the output type. 836 llvm::Type *ResLTy = ConvertType(LV.getType()); 837 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 838 839 // Compute the result as an OR of all of the individual component accesses. 840 llvm::Value *Res = 0; 841 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 842 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 843 844 // Get the field pointer. 845 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 846 847 // Only offset by the field index if used, so that incoming values are not 848 // required to be structures. 849 if (AI.FieldIndex) 850 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 851 852 // Offset by the byte offset, if used. 853 if (!AI.FieldByteOffset.isZero()) { 854 Ptr = EmitCastToVoidPtr(Ptr); 855 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 856 "bf.field.offs"); 857 } 858 859 // Cast to the access type. 860 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 861 AI.AccessWidth, 862 CGM.getContext().getTargetAddressSpace(LV.getType())); 863 Ptr = Builder.CreateBitCast(Ptr, PTy); 864 865 // Perform the load. 866 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 867 if (!AI.AccessAlignment.isZero()) 868 Load->setAlignment(AI.AccessAlignment.getQuantity()); 869 870 // Shift out unused low bits and mask out unused high bits. 871 llvm::Value *Val = Load; 872 if (AI.FieldBitStart) 873 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 874 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 875 AI.TargetBitWidth), 876 "bf.clear"); 877 878 // Extend or truncate to the target size. 879 if (AI.AccessWidth < ResSizeInBits) 880 Val = Builder.CreateZExt(Val, ResLTy); 881 else if (AI.AccessWidth > ResSizeInBits) 882 Val = Builder.CreateTrunc(Val, ResLTy); 883 884 // Shift into place, and OR into the result. 885 if (AI.TargetBitOffset) 886 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 887 Res = Res ? Builder.CreateOr(Res, Val) : Val; 888 } 889 890 // If the bit-field is signed, perform the sign-extension. 891 // 892 // FIXME: This can easily be folded into the load of the high bits, which 893 // could also eliminate the mask of high bits in some situations. 894 if (Info.isSigned()) { 895 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 896 if (ExtraBits) 897 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 898 ExtraBits, "bf.val.sext"); 899 } 900 901 return RValue::get(Res); 902 } 903 904 // If this is a reference to a subset of the elements of a vector, create an 905 // appropriate shufflevector. 906 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 907 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 908 LV.isVolatileQualified(), "tmp"); 909 910 const llvm::Constant *Elts = LV.getExtVectorElts(); 911 912 // If the result of the expression is a non-vector type, we must be extracting 913 // a single element. Just codegen as an extractelement. 914 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 915 if (!ExprVT) { 916 unsigned InIdx = getAccessedFieldNo(0, Elts); 917 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 918 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 919 } 920 921 // Always use shuffle vector to try to retain the original program structure 922 unsigned NumResultElts = ExprVT->getNumElements(); 923 924 llvm::SmallVector<llvm::Constant*, 4> Mask; 925 for (unsigned i = 0; i != NumResultElts; ++i) { 926 unsigned InIdx = getAccessedFieldNo(i, Elts); 927 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 928 } 929 930 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 931 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 932 MaskV, "tmp"); 933 return RValue::get(Vec); 934 } 935 936 937 938 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 939 /// lvalue, where both are guaranteed to the have the same type, and that type 940 /// is 'Ty'. 941 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) { 942 if (!Dst.isSimple()) { 943 if (Dst.isVectorElt()) { 944 // Read/modify/write the vector, inserting the new element. 945 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 946 Dst.isVolatileQualified(), "tmp"); 947 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 948 Dst.getVectorIdx(), "vecins"); 949 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 950 return; 951 } 952 953 // If this is an update of extended vector elements, insert them as 954 // appropriate. 955 if (Dst.isExtVectorElt()) 956 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 957 958 if (Dst.isBitField()) 959 return EmitStoreThroughBitfieldLValue(Src, Dst); 960 961 assert(Dst.isPropertyRef() && "Unknown LValue type"); 962 return EmitStoreThroughPropertyRefLValue(Src, Dst); 963 } 964 965 // There's special magic for assigning into an ARC-qualified l-value. 966 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 967 switch (Lifetime) { 968 case Qualifiers::OCL_None: 969 llvm_unreachable("present but none"); 970 971 case Qualifiers::OCL_ExplicitNone: 972 // nothing special 973 break; 974 975 case Qualifiers::OCL_Strong: 976 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 977 return; 978 979 case Qualifiers::OCL_Weak: 980 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 981 return; 982 983 case Qualifiers::OCL_Autoreleasing: 984 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 985 Src.getScalarVal())); 986 // fall into the normal path 987 break; 988 } 989 } 990 991 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 992 // load of a __weak object. 993 llvm::Value *LvalueDst = Dst.getAddress(); 994 llvm::Value *src = Src.getScalarVal(); 995 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 996 return; 997 } 998 999 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1000 // load of a __strong object. 1001 llvm::Value *LvalueDst = Dst.getAddress(); 1002 llvm::Value *src = Src.getScalarVal(); 1003 if (Dst.isObjCIvar()) { 1004 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1005 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1006 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1007 llvm::Value *dst = RHS; 1008 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1009 llvm::Value *LHS = 1010 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1011 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1012 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1013 BytesBetween); 1014 } else if (Dst.isGlobalObjCRef()) { 1015 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1016 Dst.isThreadLocalRef()); 1017 } 1018 else 1019 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1020 return; 1021 } 1022 1023 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1024 EmitStoreOfScalar(Src.getScalarVal(), Dst); 1025 } 1026 1027 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1028 llvm::Value **Result) { 1029 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1030 1031 // Get the output type. 1032 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1033 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1034 1035 // Get the source value, truncated to the width of the bit-field. 1036 llvm::Value *SrcVal = Src.getScalarVal(); 1037 1038 if (Dst.getType()->isBooleanType()) 1039 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1040 1041 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1042 Info.getSize()), 1043 "bf.value"); 1044 1045 // Return the new value of the bit-field, if requested. 1046 if (Result) { 1047 // Cast back to the proper type for result. 1048 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1049 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1050 "bf.reload.val"); 1051 1052 // Sign extend if necessary. 1053 if (Info.isSigned()) { 1054 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1055 if (ExtraBits) 1056 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1057 ExtraBits, "bf.reload.sext"); 1058 } 1059 1060 *Result = ReloadVal; 1061 } 1062 1063 // Iterate over the components, writing each piece to memory. 1064 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1065 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1066 1067 // Get the field pointer. 1068 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1069 unsigned addressSpace = 1070 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1071 1072 // Only offset by the field index if used, so that incoming values are not 1073 // required to be structures. 1074 if (AI.FieldIndex) 1075 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1076 1077 // Offset by the byte offset, if used. 1078 if (!AI.FieldByteOffset.isZero()) { 1079 Ptr = EmitCastToVoidPtr(Ptr); 1080 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1081 "bf.field.offs"); 1082 } 1083 1084 // Cast to the access type. 1085 llvm::Type *AccessLTy = 1086 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1087 1088 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1089 Ptr = Builder.CreateBitCast(Ptr, PTy); 1090 1091 // Extract the piece of the bit-field value to write in this access, limited 1092 // to the values that are part of this access. 1093 llvm::Value *Val = SrcVal; 1094 if (AI.TargetBitOffset) 1095 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1096 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1097 AI.TargetBitWidth)); 1098 1099 // Extend or truncate to the access size. 1100 if (ResSizeInBits < AI.AccessWidth) 1101 Val = Builder.CreateZExt(Val, AccessLTy); 1102 else if (ResSizeInBits > AI.AccessWidth) 1103 Val = Builder.CreateTrunc(Val, AccessLTy); 1104 1105 // Shift into the position in memory. 1106 if (AI.FieldBitStart) 1107 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1108 1109 // If necessary, load and OR in bits that are outside of the bit-field. 1110 if (AI.TargetBitWidth != AI.AccessWidth) { 1111 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1112 if (!AI.AccessAlignment.isZero()) 1113 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1114 1115 // Compute the mask for zeroing the bits that are part of the bit-field. 1116 llvm::APInt InvMask = 1117 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1118 AI.FieldBitStart + AI.TargetBitWidth); 1119 1120 // Apply the mask and OR in to the value to write. 1121 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1122 } 1123 1124 // Write the value. 1125 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1126 Dst.isVolatileQualified()); 1127 if (!AI.AccessAlignment.isZero()) 1128 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1129 } 1130 } 1131 1132 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1133 LValue Dst) { 1134 // This access turns into a read/modify/write of the vector. Load the input 1135 // value now. 1136 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1137 Dst.isVolatileQualified(), "tmp"); 1138 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1139 1140 llvm::Value *SrcVal = Src.getScalarVal(); 1141 1142 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1143 unsigned NumSrcElts = VTy->getNumElements(); 1144 unsigned NumDstElts = 1145 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1146 if (NumDstElts == NumSrcElts) { 1147 // Use shuffle vector is the src and destination are the same number of 1148 // elements and restore the vector mask since it is on the side it will be 1149 // stored. 1150 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1151 for (unsigned i = 0; i != NumSrcElts; ++i) { 1152 unsigned InIdx = getAccessedFieldNo(i, Elts); 1153 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 1154 } 1155 1156 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1157 Vec = Builder.CreateShuffleVector(SrcVal, 1158 llvm::UndefValue::get(Vec->getType()), 1159 MaskV, "tmp"); 1160 } else if (NumDstElts > NumSrcElts) { 1161 // Extended the source vector to the same length and then shuffle it 1162 // into the destination. 1163 // FIXME: since we're shuffling with undef, can we just use the indices 1164 // into that? This could be simpler. 1165 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 1166 unsigned i; 1167 for (i = 0; i != NumSrcElts; ++i) 1168 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1169 for (; i != NumDstElts; ++i) 1170 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1171 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1172 llvm::Value *ExtSrcVal = 1173 Builder.CreateShuffleVector(SrcVal, 1174 llvm::UndefValue::get(SrcVal->getType()), 1175 ExtMaskV, "tmp"); 1176 // build identity 1177 llvm::SmallVector<llvm::Constant*, 4> Mask; 1178 for (unsigned i = 0; i != NumDstElts; ++i) 1179 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1180 1181 // modify when what gets shuffled in 1182 for (unsigned i = 0; i != NumSrcElts; ++i) { 1183 unsigned Idx = getAccessedFieldNo(i, Elts); 1184 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1185 } 1186 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1187 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1188 } else { 1189 // We should never shorten the vector 1190 assert(0 && "unexpected shorten vector length"); 1191 } 1192 } else { 1193 // If the Src is a scalar (not a vector) it must be updating one element. 1194 unsigned InIdx = getAccessedFieldNo(0, Elts); 1195 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1196 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1197 } 1198 1199 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1200 } 1201 1202 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1203 // generating write-barries API. It is currently a global, ivar, 1204 // or neither. 1205 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1206 LValue &LV) { 1207 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1208 return; 1209 1210 if (isa<ObjCIvarRefExpr>(E)) { 1211 LV.setObjCIvar(true); 1212 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1213 LV.setBaseIvarExp(Exp->getBase()); 1214 LV.setObjCArray(E->getType()->isArrayType()); 1215 return; 1216 } 1217 1218 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1219 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1220 if (VD->hasGlobalStorage()) { 1221 LV.setGlobalObjCRef(true); 1222 LV.setThreadLocalRef(VD->isThreadSpecified()); 1223 } 1224 } 1225 LV.setObjCArray(E->getType()->isArrayType()); 1226 return; 1227 } 1228 1229 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1230 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1231 return; 1232 } 1233 1234 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1235 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1236 if (LV.isObjCIvar()) { 1237 // If cast is to a structure pointer, follow gcc's behavior and make it 1238 // a non-ivar write-barrier. 1239 QualType ExpTy = E->getType(); 1240 if (ExpTy->isPointerType()) 1241 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1242 if (ExpTy->isRecordType()) 1243 LV.setObjCIvar(false); 1244 } 1245 return; 1246 } 1247 1248 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1249 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1250 return; 1251 } 1252 1253 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1254 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1255 return; 1256 } 1257 1258 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1259 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1260 return; 1261 } 1262 1263 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1264 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1265 return; 1266 } 1267 1268 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1269 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1270 if (LV.isObjCIvar() && !LV.isObjCArray()) 1271 // Using array syntax to assigning to what an ivar points to is not 1272 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1273 LV.setObjCIvar(false); 1274 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1275 // Using array syntax to assigning to what global points to is not 1276 // same as assigning to the global itself. {id *G;} G[i] = 0; 1277 LV.setGlobalObjCRef(false); 1278 return; 1279 } 1280 1281 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1282 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1283 // We don't know if member is an 'ivar', but this flag is looked at 1284 // only in the context of LV.isObjCIvar(). 1285 LV.setObjCArray(E->getType()->isArrayType()); 1286 return; 1287 } 1288 } 1289 1290 static llvm::Value * 1291 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1292 llvm::Value *V, llvm::Type *IRType, 1293 llvm::StringRef Name = llvm::StringRef()) { 1294 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1295 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1296 } 1297 1298 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1299 const Expr *E, const VarDecl *VD) { 1300 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1301 "Var decl must have external storage or be a file var decl!"); 1302 1303 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1304 if (VD->getType()->isReferenceType()) 1305 V = CGF.Builder.CreateLoad(V, "tmp"); 1306 1307 V = EmitBitCastOfLValueToProperType(CGF, V, 1308 CGF.getTypes().ConvertTypeForMem(E->getType())); 1309 1310 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1311 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1312 setObjCGCLValueClass(CGF.getContext(), E, LV); 1313 return LV; 1314 } 1315 1316 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1317 const Expr *E, const FunctionDecl *FD) { 1318 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1319 if (!FD->hasPrototype()) { 1320 if (const FunctionProtoType *Proto = 1321 FD->getType()->getAs<FunctionProtoType>()) { 1322 // Ugly case: for a K&R-style definition, the type of the definition 1323 // isn't the same as the type of a use. Correct for this with a 1324 // bitcast. 1325 QualType NoProtoType = 1326 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1327 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1328 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1329 } 1330 } 1331 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1332 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1333 } 1334 1335 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1336 const NamedDecl *ND = E->getDecl(); 1337 unsigned Alignment = getContext().getDeclAlign(ND).getQuantity(); 1338 1339 if (ND->hasAttr<WeakRefAttr>()) { 1340 const ValueDecl *VD = cast<ValueDecl>(ND); 1341 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1342 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1343 } 1344 1345 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1346 1347 // Check if this is a global variable. 1348 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1349 return EmitGlobalVarDeclLValue(*this, E, VD); 1350 1351 bool NonGCable = VD->hasLocalStorage() && 1352 !VD->getType()->isReferenceType() && 1353 !VD->hasAttr<BlocksAttr>(); 1354 1355 llvm::Value *V = LocalDeclMap[VD]; 1356 if (!V && VD->isStaticLocal()) 1357 V = CGM.getStaticLocalDeclAddress(VD); 1358 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1359 1360 if (VD->hasAttr<BlocksAttr>()) 1361 V = BuildBlockByrefAddress(V, VD); 1362 1363 if (VD->getType()->isReferenceType()) 1364 V = Builder.CreateLoad(V, "tmp"); 1365 1366 V = EmitBitCastOfLValueToProperType(*this, V, 1367 getTypes().ConvertTypeForMem(E->getType())); 1368 1369 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1370 if (NonGCable) { 1371 LV.getQuals().removeObjCGCAttr(); 1372 LV.setNonGC(true); 1373 } 1374 setObjCGCLValueClass(getContext(), E, LV); 1375 return LV; 1376 } 1377 1378 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1379 return EmitFunctionDeclLValue(*this, E, fn); 1380 1381 assert(false && "Unhandled DeclRefExpr"); 1382 1383 // an invalid LValue, but the assert will 1384 // ensure that this point is never reached. 1385 return LValue(); 1386 } 1387 1388 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1389 unsigned Alignment = 1390 getContext().getDeclAlign(E->getDecl()).getQuantity(); 1391 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1392 } 1393 1394 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1395 // __extension__ doesn't affect lvalue-ness. 1396 if (E->getOpcode() == UO_Extension) 1397 return EmitLValue(E->getSubExpr()); 1398 1399 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1400 switch (E->getOpcode()) { 1401 default: assert(0 && "Unknown unary operator lvalue!"); 1402 case UO_Deref: { 1403 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1404 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1405 1406 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1407 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1408 1409 // We should not generate __weak write barrier on indirect reference 1410 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1411 // But, we continue to generate __strong write barrier on indirect write 1412 // into a pointer to object. 1413 if (getContext().getLangOptions().ObjC1 && 1414 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1415 LV.isObjCWeak()) 1416 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1417 return LV; 1418 } 1419 case UO_Real: 1420 case UO_Imag: { 1421 LValue LV = EmitLValue(E->getSubExpr()); 1422 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1423 llvm::Value *Addr = LV.getAddress(); 1424 1425 // real and imag are valid on scalars. This is a faster way of 1426 // testing that. 1427 if (!cast<llvm::PointerType>(Addr->getType()) 1428 ->getElementType()->isStructTy()) { 1429 assert(E->getSubExpr()->getType()->isArithmeticType()); 1430 return LV; 1431 } 1432 1433 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1434 1435 unsigned Idx = E->getOpcode() == UO_Imag; 1436 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1437 Idx, "idx"), 1438 ExprTy); 1439 } 1440 case UO_PreInc: 1441 case UO_PreDec: { 1442 LValue LV = EmitLValue(E->getSubExpr()); 1443 bool isInc = E->getOpcode() == UO_PreInc; 1444 1445 if (E->getType()->isAnyComplexType()) 1446 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1447 else 1448 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1449 return LV; 1450 } 1451 } 1452 } 1453 1454 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1455 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1456 E->getType()); 1457 } 1458 1459 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1460 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1461 E->getType()); 1462 } 1463 1464 1465 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1466 switch (E->getIdentType()) { 1467 default: 1468 return EmitUnsupportedLValue(E, "predefined expression"); 1469 1470 case PredefinedExpr::Func: 1471 case PredefinedExpr::Function: 1472 case PredefinedExpr::PrettyFunction: { 1473 unsigned Type = E->getIdentType(); 1474 std::string GlobalVarName; 1475 1476 switch (Type) { 1477 default: assert(0 && "Invalid type"); 1478 case PredefinedExpr::Func: 1479 GlobalVarName = "__func__."; 1480 break; 1481 case PredefinedExpr::Function: 1482 GlobalVarName = "__FUNCTION__."; 1483 break; 1484 case PredefinedExpr::PrettyFunction: 1485 GlobalVarName = "__PRETTY_FUNCTION__."; 1486 break; 1487 } 1488 1489 llvm::StringRef FnName = CurFn->getName(); 1490 if (FnName.startswith("\01")) 1491 FnName = FnName.substr(1); 1492 GlobalVarName += FnName; 1493 1494 const Decl *CurDecl = CurCodeDecl; 1495 if (CurDecl == 0) 1496 CurDecl = getContext().getTranslationUnitDecl(); 1497 1498 std::string FunctionName = 1499 (isa<BlockDecl>(CurDecl) 1500 ? FnName.str() 1501 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1502 1503 llvm::Constant *C = 1504 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1505 return MakeAddrLValue(C, E->getType()); 1506 } 1507 } 1508 } 1509 1510 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1511 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1512 1513 // If we are not optimzing, don't collapse all calls to trap in the function 1514 // to the same call, that way, in the debugger they can see which operation 1515 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1516 // to just one per function to save on codesize. 1517 if (GCO.OptimizationLevel && TrapBB) 1518 return TrapBB; 1519 1520 llvm::BasicBlock *Cont = 0; 1521 if (HaveInsertPoint()) { 1522 Cont = createBasicBlock("cont"); 1523 EmitBranch(Cont); 1524 } 1525 TrapBB = createBasicBlock("trap"); 1526 EmitBlock(TrapBB); 1527 1528 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1529 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1530 TrapCall->setDoesNotReturn(); 1531 TrapCall->setDoesNotThrow(); 1532 Builder.CreateUnreachable(); 1533 1534 if (Cont) 1535 EmitBlock(Cont); 1536 return TrapBB; 1537 } 1538 1539 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1540 /// array to pointer, return the array subexpression. 1541 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1542 // If this isn't just an array->pointer decay, bail out. 1543 const CastExpr *CE = dyn_cast<CastExpr>(E); 1544 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1545 return 0; 1546 1547 // If this is a decay from variable width array, bail out. 1548 const Expr *SubExpr = CE->getSubExpr(); 1549 if (SubExpr->getType()->isVariableArrayType()) 1550 return 0; 1551 1552 return SubExpr; 1553 } 1554 1555 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1556 // The index must always be an integer, which is not an aggregate. Emit it. 1557 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1558 QualType IdxTy = E->getIdx()->getType(); 1559 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1560 1561 // If the base is a vector type, then we are forming a vector element lvalue 1562 // with this subscript. 1563 if (E->getBase()->getType()->isVectorType()) { 1564 // Emit the vector as an lvalue to get its address. 1565 LValue LHS = EmitLValue(E->getBase()); 1566 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1567 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1568 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1569 E->getBase()->getType()); 1570 } 1571 1572 // Extend or truncate the index type to 32 or 64-bits. 1573 if (Idx->getType() != IntPtrTy) 1574 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1575 1576 // FIXME: As llvm implements the object size checking, this can come out. 1577 if (CatchUndefined) { 1578 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1579 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1580 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1581 if (const ConstantArrayType *CAT 1582 = getContext().getAsConstantArrayType(DRE->getType())) { 1583 llvm::APInt Size = CAT->getSize(); 1584 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1585 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1586 llvm::ConstantInt::get(Idx->getType(), Size)), 1587 Cont, getTrapBB()); 1588 EmitBlock(Cont); 1589 } 1590 } 1591 } 1592 } 1593 } 1594 1595 // We know that the pointer points to a type of the correct size, unless the 1596 // size is a VLA or Objective-C interface. 1597 llvm::Value *Address = 0; 1598 unsigned ArrayAlignment = 0; 1599 if (const VariableArrayType *vla = 1600 getContext().getAsVariableArrayType(E->getType())) { 1601 // The base must be a pointer, which is not an aggregate. Emit 1602 // it. It needs to be emitted first in case it's what captures 1603 // the VLA bounds. 1604 Address = EmitScalarExpr(E->getBase()); 1605 1606 // The element count here is the total number of non-VLA elements. 1607 llvm::Value *numElements = getVLASize(vla).first; 1608 1609 // Effectively, the multiply by the VLA size is part of the GEP. 1610 // GEP indexes are signed, and scaling an index isn't permitted to 1611 // signed-overflow, so we use the same semantics for our explicit 1612 // multiply. We suppress this if overflow is not undefined behavior. 1613 if (getLangOptions().isSignedOverflowDefined()) { 1614 Idx = Builder.CreateMul(Idx, numElements); 1615 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1616 } else { 1617 Idx = Builder.CreateNSWMul(Idx, numElements); 1618 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1619 } 1620 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1621 // Indexing over an interface, as in "NSString *P; P[4];" 1622 llvm::Value *InterfaceSize = 1623 llvm::ConstantInt::get(Idx->getType(), 1624 getContext().getTypeSizeInChars(OIT).getQuantity()); 1625 1626 Idx = Builder.CreateMul(Idx, InterfaceSize); 1627 1628 // The base must be a pointer, which is not an aggregate. Emit it. 1629 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1630 Address = EmitCastToVoidPtr(Base); 1631 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1632 Address = Builder.CreateBitCast(Address, Base->getType()); 1633 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1634 // If this is A[i] where A is an array, the frontend will have decayed the 1635 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1636 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1637 // "gep x, i" here. Emit one "gep A, 0, i". 1638 assert(Array->getType()->isArrayType() && 1639 "Array to pointer decay must have array source type!"); 1640 LValue ArrayLV = EmitLValue(Array); 1641 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1642 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1643 llvm::Value *Args[] = { Zero, Idx }; 1644 1645 // Propagate the alignment from the array itself to the result. 1646 ArrayAlignment = ArrayLV.getAlignment(); 1647 1648 if (getContext().getLangOptions().isSignedOverflowDefined()) 1649 Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1650 else 1651 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1652 } else { 1653 // The base must be a pointer, which is not an aggregate. Emit it. 1654 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1655 if (getContext().getLangOptions().isSignedOverflowDefined()) 1656 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1657 else 1658 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1659 } 1660 1661 QualType T = E->getBase()->getType()->getPointeeType(); 1662 assert(!T.isNull() && 1663 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1664 1665 // Limit the alignment to that of the result type. 1666 if (ArrayAlignment) { 1667 unsigned Align = getContext().getTypeAlignInChars(T).getQuantity(); 1668 ArrayAlignment = std::min(Align, ArrayAlignment); 1669 } 1670 1671 LValue LV = MakeAddrLValue(Address, T, ArrayAlignment); 1672 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1673 1674 if (getContext().getLangOptions().ObjC1 && 1675 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1676 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1677 setObjCGCLValueClass(getContext(), E, LV); 1678 } 1679 return LV; 1680 } 1681 1682 static 1683 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1684 llvm::SmallVector<unsigned, 4> &Elts) { 1685 llvm::SmallVector<llvm::Constant*, 4> CElts; 1686 1687 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1688 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1689 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1690 1691 return llvm::ConstantVector::get(CElts); 1692 } 1693 1694 LValue CodeGenFunction:: 1695 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1696 // Emit the base vector as an l-value. 1697 LValue Base; 1698 1699 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1700 if (E->isArrow()) { 1701 // If it is a pointer to a vector, emit the address and form an lvalue with 1702 // it. 1703 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1704 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1705 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1706 Base.getQuals().removeObjCGCAttr(); 1707 } else if (E->getBase()->isGLValue()) { 1708 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1709 // emit the base as an lvalue. 1710 assert(E->getBase()->getType()->isVectorType()); 1711 Base = EmitLValue(E->getBase()); 1712 } else { 1713 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1714 assert(E->getBase()->getType()->isVectorType() && 1715 "Result must be a vector"); 1716 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1717 1718 // Store the vector to memory (because LValue wants an address). 1719 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1720 Builder.CreateStore(Vec, VecMem); 1721 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1722 } 1723 1724 QualType type = 1725 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1726 1727 // Encode the element access list into a vector of unsigned indices. 1728 llvm::SmallVector<unsigned, 4> Indices; 1729 E->getEncodedElementAccess(Indices); 1730 1731 if (Base.isSimple()) { 1732 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); 1733 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1734 } 1735 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1736 1737 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1738 llvm::SmallVector<llvm::Constant *, 4> CElts; 1739 1740 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1741 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1742 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1743 else 1744 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1745 } 1746 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1747 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1748 } 1749 1750 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1751 bool isNonGC = false; 1752 Expr *BaseExpr = E->getBase(); 1753 llvm::Value *BaseValue = NULL; 1754 Qualifiers BaseQuals; 1755 1756 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1757 if (E->isArrow()) { 1758 BaseValue = EmitScalarExpr(BaseExpr); 1759 const PointerType *PTy = 1760 BaseExpr->getType()->getAs<PointerType>(); 1761 BaseQuals = PTy->getPointeeType().getQualifiers(); 1762 } else { 1763 LValue BaseLV = EmitLValue(BaseExpr); 1764 if (BaseLV.isNonGC()) 1765 isNonGC = true; 1766 // FIXME: this isn't right for bitfields. 1767 BaseValue = BaseLV.getAddress(); 1768 QualType BaseTy = BaseExpr->getType(); 1769 BaseQuals = BaseTy.getQualifiers(); 1770 } 1771 1772 NamedDecl *ND = E->getMemberDecl(); 1773 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1774 LValue LV = EmitLValueForField(BaseValue, Field, 1775 BaseQuals.getCVRQualifiers()); 1776 LV.setNonGC(isNonGC); 1777 setObjCGCLValueClass(getContext(), E, LV); 1778 return LV; 1779 } 1780 1781 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1782 return EmitGlobalVarDeclLValue(*this, E, VD); 1783 1784 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1785 return EmitFunctionDeclLValue(*this, E, FD); 1786 1787 assert(false && "Unhandled member declaration!"); 1788 return LValue(); 1789 } 1790 1791 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1792 const FieldDecl *Field, 1793 unsigned CVRQualifiers) { 1794 const CGRecordLayout &RL = 1795 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1796 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1797 return LValue::MakeBitfield(BaseValue, Info, 1798 Field->getType().withCVRQualifiers(CVRQualifiers)); 1799 } 1800 1801 /// EmitLValueForAnonRecordField - Given that the field is a member of 1802 /// an anonymous struct or union buried inside a record, and given 1803 /// that the base value is a pointer to the enclosing record, derive 1804 /// an lvalue for the ultimate field. 1805 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1806 const IndirectFieldDecl *Field, 1807 unsigned CVRQualifiers) { 1808 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1809 IEnd = Field->chain_end(); 1810 while (true) { 1811 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1812 CVRQualifiers); 1813 if (++I == IEnd) return LV; 1814 1815 assert(LV.isSimple()); 1816 BaseValue = LV.getAddress(); 1817 CVRQualifiers |= LV.getVRQualifiers(); 1818 } 1819 } 1820 1821 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1822 const FieldDecl *field, 1823 unsigned cvr) { 1824 if (field->isBitField()) 1825 return EmitLValueForBitfield(baseAddr, field, cvr); 1826 1827 const RecordDecl *rec = field->getParent(); 1828 QualType type = field->getType(); 1829 1830 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1831 1832 llvm::Value *addr = baseAddr; 1833 if (rec->isUnion()) { 1834 // For unions, there is no pointer adjustment. 1835 assert(!type->isReferenceType() && "union has reference member"); 1836 } else { 1837 // For structs, we GEP to the field that the record layout suggests. 1838 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1839 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1840 1841 // If this is a reference field, load the reference right now. 1842 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1843 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1844 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1845 1846 if (CGM.shouldUseTBAA()) { 1847 llvm::MDNode *tbaa; 1848 if (mayAlias) 1849 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1850 else 1851 tbaa = CGM.getTBAAInfo(type); 1852 CGM.DecorateInstruction(load, tbaa); 1853 } 1854 1855 addr = load; 1856 mayAlias = false; 1857 type = refType->getPointeeType(); 1858 cvr = 0; // qualifiers don't recursively apply to referencee 1859 } 1860 } 1861 1862 // Make sure that the address is pointing to the right type. This is critical 1863 // for both unions and structs. A union needs a bitcast, a struct element 1864 // will need a bitcast if the LLVM type laid out doesn't match the desired 1865 // type. 1866 addr = EmitBitCastOfLValueToProperType(*this, addr, 1867 CGM.getTypes().ConvertTypeForMem(type), 1868 field->getName()); 1869 1870 unsigned alignment = getContext().getDeclAlign(field).getQuantity(); 1871 LValue LV = MakeAddrLValue(addr, type, alignment); 1872 LV.getQuals().addCVRQualifiers(cvr); 1873 1874 // __weak attribute on a field is ignored. 1875 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1876 LV.getQuals().removeObjCGCAttr(); 1877 1878 // Fields of may_alias structs act like 'char' for TBAA purposes. 1879 // FIXME: this should get propagated down through anonymous structs 1880 // and unions. 1881 if (mayAlias && LV.getTBAAInfo()) 1882 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1883 1884 return LV; 1885 } 1886 1887 LValue 1888 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1889 const FieldDecl *Field, 1890 unsigned CVRQualifiers) { 1891 QualType FieldType = Field->getType(); 1892 1893 if (!FieldType->isReferenceType()) 1894 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1895 1896 const CGRecordLayout &RL = 1897 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1898 unsigned idx = RL.getLLVMFieldNo(Field); 1899 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1900 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1901 1902 1903 // Make sure that the address is pointing to the right type. This is critical 1904 // for both unions and structs. A union needs a bitcast, a struct element 1905 // will need a bitcast if the LLVM type laid out doesn't match the desired 1906 // type. 1907 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 1908 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1909 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 1910 1911 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1912 return MakeAddrLValue(V, FieldType, Alignment); 1913 } 1914 1915 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1916 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1917 const Expr *InitExpr = E->getInitializer(); 1918 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1919 1920 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1921 /*Init*/ true); 1922 1923 return Result; 1924 } 1925 1926 LValue CodeGenFunction:: 1927 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1928 if (!expr->isGLValue()) { 1929 // ?: here should be an aggregate. 1930 assert((hasAggregateLLVMType(expr->getType()) && 1931 !expr->getType()->isAnyComplexType()) && 1932 "Unexpected conditional operator!"); 1933 return EmitAggExprToLValue(expr); 1934 } 1935 1936 const Expr *condExpr = expr->getCond(); 1937 bool CondExprBool; 1938 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1939 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1940 if (!CondExprBool) std::swap(live, dead); 1941 1942 if (!ContainsLabel(dead)) 1943 return EmitLValue(live); 1944 } 1945 1946 OpaqueValueMapping binding(*this, expr); 1947 1948 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 1949 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 1950 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 1951 1952 ConditionalEvaluation eval(*this); 1953 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 1954 1955 // Any temporaries created here are conditional. 1956 EmitBlock(lhsBlock); 1957 eval.begin(*this); 1958 LValue lhs = EmitLValue(expr->getTrueExpr()); 1959 eval.end(*this); 1960 1961 if (!lhs.isSimple()) 1962 return EmitUnsupportedLValue(expr, "conditional operator"); 1963 1964 lhsBlock = Builder.GetInsertBlock(); 1965 Builder.CreateBr(contBlock); 1966 1967 // Any temporaries created here are conditional. 1968 EmitBlock(rhsBlock); 1969 eval.begin(*this); 1970 LValue rhs = EmitLValue(expr->getFalseExpr()); 1971 eval.end(*this); 1972 if (!rhs.isSimple()) 1973 return EmitUnsupportedLValue(expr, "conditional operator"); 1974 rhsBlock = Builder.GetInsertBlock(); 1975 1976 EmitBlock(contBlock); 1977 1978 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 1979 "cond-lvalue"); 1980 phi->addIncoming(lhs.getAddress(), lhsBlock); 1981 phi->addIncoming(rhs.getAddress(), rhsBlock); 1982 return MakeAddrLValue(phi, expr->getType()); 1983 } 1984 1985 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1986 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 1987 /// otherwise if a cast is needed by the code generator in an lvalue context, 1988 /// then it must mean that we need the address of an aggregate in order to 1989 /// access one of its fields. This can happen for all the reasons that casts 1990 /// are permitted with aggregate result, including noop aggregate casts, and 1991 /// cast from scalar to union. 1992 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1993 switch (E->getCastKind()) { 1994 case CK_ToVoid: 1995 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1996 1997 case CK_Dependent: 1998 llvm_unreachable("dependent cast kind in IR gen!"); 1999 2000 case CK_GetObjCProperty: { 2001 LValue LV = EmitLValue(E->getSubExpr()); 2002 assert(LV.isPropertyRef()); 2003 RValue RV = EmitLoadOfPropertyRefLValue(LV); 2004 2005 // Property is an aggregate r-value. 2006 if (RV.isAggregate()) { 2007 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2008 } 2009 2010 // Implicit property returns an l-value. 2011 assert(RV.isScalar()); 2012 return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType()); 2013 } 2014 2015 case CK_NoOp: 2016 case CK_LValueToRValue: 2017 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2018 || E->getType()->isRecordType()) 2019 return EmitLValue(E->getSubExpr()); 2020 // Fall through to synthesize a temporary. 2021 2022 case CK_BitCast: 2023 case CK_ArrayToPointerDecay: 2024 case CK_FunctionToPointerDecay: 2025 case CK_NullToMemberPointer: 2026 case CK_NullToPointer: 2027 case CK_IntegralToPointer: 2028 case CK_PointerToIntegral: 2029 case CK_PointerToBoolean: 2030 case CK_VectorSplat: 2031 case CK_IntegralCast: 2032 case CK_IntegralToBoolean: 2033 case CK_IntegralToFloating: 2034 case CK_FloatingToIntegral: 2035 case CK_FloatingToBoolean: 2036 case CK_FloatingCast: 2037 case CK_FloatingRealToComplex: 2038 case CK_FloatingComplexToReal: 2039 case CK_FloatingComplexToBoolean: 2040 case CK_FloatingComplexCast: 2041 case CK_FloatingComplexToIntegralComplex: 2042 case CK_IntegralRealToComplex: 2043 case CK_IntegralComplexToReal: 2044 case CK_IntegralComplexToBoolean: 2045 case CK_IntegralComplexCast: 2046 case CK_IntegralComplexToFloatingComplex: 2047 case CK_DerivedToBaseMemberPointer: 2048 case CK_BaseToDerivedMemberPointer: 2049 case CK_MemberPointerToBoolean: 2050 case CK_AnyPointerToBlockPointerCast: 2051 case CK_ObjCProduceObject: 2052 case CK_ObjCConsumeObject: 2053 case CK_ObjCReclaimReturnedObject: { 2054 // These casts only produce lvalues when we're binding a reference to a 2055 // temporary realized from a (converted) pure rvalue. Emit the expression 2056 // as a value, copy it into a temporary, and return an lvalue referring to 2057 // that temporary. 2058 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2059 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2060 return MakeAddrLValue(V, E->getType()); 2061 } 2062 2063 case CK_Dynamic: { 2064 LValue LV = EmitLValue(E->getSubExpr()); 2065 llvm::Value *V = LV.getAddress(); 2066 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2067 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2068 } 2069 2070 case CK_ConstructorConversion: 2071 case CK_UserDefinedConversion: 2072 case CK_AnyPointerToObjCPointerCast: 2073 return EmitLValue(E->getSubExpr()); 2074 2075 case CK_UncheckedDerivedToBase: 2076 case CK_DerivedToBase: { 2077 const RecordType *DerivedClassTy = 2078 E->getSubExpr()->getType()->getAs<RecordType>(); 2079 CXXRecordDecl *DerivedClassDecl = 2080 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2081 2082 LValue LV = EmitLValue(E->getSubExpr()); 2083 llvm::Value *This = LV.getAddress(); 2084 2085 // Perform the derived-to-base conversion 2086 llvm::Value *Base = 2087 GetAddressOfBaseClass(This, DerivedClassDecl, 2088 E->path_begin(), E->path_end(), 2089 /*NullCheckValue=*/false); 2090 2091 return MakeAddrLValue(Base, E->getType()); 2092 } 2093 case CK_ToUnion: 2094 return EmitAggExprToLValue(E); 2095 case CK_BaseToDerived: { 2096 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2097 CXXRecordDecl *DerivedClassDecl = 2098 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2099 2100 LValue LV = EmitLValue(E->getSubExpr()); 2101 2102 // Perform the base-to-derived conversion 2103 llvm::Value *Derived = 2104 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2105 E->path_begin(), E->path_end(), 2106 /*NullCheckValue=*/false); 2107 2108 return MakeAddrLValue(Derived, E->getType()); 2109 } 2110 case CK_LValueBitCast: { 2111 // This must be a reinterpret_cast (or c-style equivalent). 2112 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2113 2114 LValue LV = EmitLValue(E->getSubExpr()); 2115 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2116 ConvertType(CE->getTypeAsWritten())); 2117 return MakeAddrLValue(V, E->getType()); 2118 } 2119 case CK_ObjCObjectLValueCast: { 2120 LValue LV = EmitLValue(E->getSubExpr()); 2121 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2122 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2123 ConvertType(ToType)); 2124 return MakeAddrLValue(V, E->getType()); 2125 } 2126 } 2127 2128 llvm_unreachable("Unhandled lvalue cast kind?"); 2129 } 2130 2131 LValue CodeGenFunction::EmitNullInitializationLValue( 2132 const CXXScalarValueInitExpr *E) { 2133 QualType Ty = E->getType(); 2134 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2135 EmitNullInitialization(LV.getAddress(), Ty); 2136 return LV; 2137 } 2138 2139 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2140 assert(e->isGLValue() || e->getType()->isRecordType()); 2141 return getOpaqueLValueMapping(e); 2142 } 2143 2144 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2145 const MaterializeTemporaryExpr *E) { 2146 RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(), 2147 /*InitializedDecl=*/0); 2148 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2149 } 2150 2151 2152 //===--------------------------------------------------------------------===// 2153 // Expression Emission 2154 //===--------------------------------------------------------------------===// 2155 2156 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2157 ReturnValueSlot ReturnValue) { 2158 if (CGDebugInfo *DI = getDebugInfo()) { 2159 DI->setLocation(E->getLocStart()); 2160 DI->UpdateLineDirectiveRegion(Builder); 2161 DI->EmitStopPoint(Builder); 2162 } 2163 2164 // Builtins never have block type. 2165 if (E->getCallee()->getType()->isBlockPointerType()) 2166 return EmitBlockCallExpr(E, ReturnValue); 2167 2168 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2169 return EmitCXXMemberCallExpr(CE, ReturnValue); 2170 2171 const Decl *TargetDecl = 0; 2172 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 2173 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 2174 TargetDecl = DRE->getDecl(); 2175 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 2176 if (unsigned builtinID = FD->getBuiltinID()) 2177 return EmitBuiltinExpr(FD, builtinID, E); 2178 } 2179 } 2180 2181 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2182 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2183 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2184 2185 if (const CXXPseudoDestructorExpr *PseudoDtor 2186 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2187 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2188 if (getContext().getLangOptions().ObjCAutoRefCount && 2189 DestroyedType->isObjCLifetimeType() && 2190 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2191 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2192 // Automatic Reference Counting: 2193 // If the pseudo-expression names a retainable object with weak or 2194 // strong lifetime, the object shall be released. 2195 Expr *BaseExpr = PseudoDtor->getBase(); 2196 llvm::Value *BaseValue = NULL; 2197 Qualifiers BaseQuals; 2198 2199 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2200 if (PseudoDtor->isArrow()) { 2201 BaseValue = EmitScalarExpr(BaseExpr); 2202 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2203 BaseQuals = PTy->getPointeeType().getQualifiers(); 2204 } else { 2205 LValue BaseLV = EmitLValue(BaseExpr); 2206 BaseValue = BaseLV.getAddress(); 2207 QualType BaseTy = BaseExpr->getType(); 2208 BaseQuals = BaseTy.getQualifiers(); 2209 } 2210 2211 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2212 case Qualifiers::OCL_None: 2213 case Qualifiers::OCL_ExplicitNone: 2214 case Qualifiers::OCL_Autoreleasing: 2215 break; 2216 2217 case Qualifiers::OCL_Strong: 2218 EmitARCRelease(Builder.CreateLoad(BaseValue, 2219 PseudoDtor->getDestroyedType().isVolatileQualified()), 2220 /*precise*/ true); 2221 break; 2222 2223 case Qualifiers::OCL_Weak: 2224 EmitARCDestroyWeak(BaseValue); 2225 break; 2226 } 2227 } else { 2228 // C++ [expr.pseudo]p1: 2229 // The result shall only be used as the operand for the function call 2230 // operator (), and the result of such a call has type void. The only 2231 // effect is the evaluation of the postfix-expression before the dot or 2232 // arrow. 2233 EmitScalarExpr(E->getCallee()); 2234 } 2235 2236 return RValue::get(0); 2237 } 2238 2239 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2240 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2241 E->arg_begin(), E->arg_end(), TargetDecl); 2242 } 2243 2244 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2245 // Comma expressions just emit their LHS then their RHS as an l-value. 2246 if (E->getOpcode() == BO_Comma) { 2247 EmitIgnoredExpr(E->getLHS()); 2248 EnsureInsertPoint(); 2249 return EmitLValue(E->getRHS()); 2250 } 2251 2252 if (E->getOpcode() == BO_PtrMemD || 2253 E->getOpcode() == BO_PtrMemI) 2254 return EmitPointerToDataMemberBinaryExpr(E); 2255 2256 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2257 2258 // Note that in all of these cases, __block variables need the RHS 2259 // evaluated first just in case the variable gets moved by the RHS. 2260 2261 if (!hasAggregateLLVMType(E->getType())) { 2262 switch (E->getLHS()->getType().getObjCLifetime()) { 2263 case Qualifiers::OCL_Strong: 2264 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2265 2266 case Qualifiers::OCL_Autoreleasing: 2267 return EmitARCStoreAutoreleasing(E).first; 2268 2269 // No reason to do any of these differently. 2270 case Qualifiers::OCL_None: 2271 case Qualifiers::OCL_ExplicitNone: 2272 case Qualifiers::OCL_Weak: 2273 break; 2274 } 2275 2276 RValue RV = EmitAnyExpr(E->getRHS()); 2277 LValue LV = EmitLValue(E->getLHS()); 2278 EmitStoreThroughLValue(RV, LV); 2279 return LV; 2280 } 2281 2282 if (E->getType()->isAnyComplexType()) 2283 return EmitComplexAssignmentLValue(E); 2284 2285 return EmitAggExprToLValue(E); 2286 } 2287 2288 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2289 RValue RV = EmitCallExpr(E); 2290 2291 if (!RV.isScalar()) 2292 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2293 2294 assert(E->getCallReturnType()->isReferenceType() && 2295 "Can't have a scalar return unless the return type is a " 2296 "reference type!"); 2297 2298 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2299 } 2300 2301 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2302 // FIXME: This shouldn't require another copy. 2303 return EmitAggExprToLValue(E); 2304 } 2305 2306 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2307 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2308 && "binding l-value to type which needs a temporary"); 2309 AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp"); 2310 EmitCXXConstructExpr(E, Slot); 2311 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2312 } 2313 2314 LValue 2315 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2316 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2317 } 2318 2319 LValue 2320 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2321 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2322 Slot.setLifetimeExternallyManaged(); 2323 EmitAggExpr(E->getSubExpr(), Slot); 2324 EmitCXXTemporary(E->getTemporary(), Slot.getAddr()); 2325 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2326 } 2327 2328 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2329 RValue RV = EmitObjCMessageExpr(E); 2330 2331 if (!RV.isScalar()) 2332 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2333 2334 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2335 "Can't have a scalar return unless the return type is a " 2336 "reference type!"); 2337 2338 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2339 } 2340 2341 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2342 llvm::Value *V = 2343 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2344 return MakeAddrLValue(V, E->getType()); 2345 } 2346 2347 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2348 const ObjCIvarDecl *Ivar) { 2349 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2350 } 2351 2352 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2353 llvm::Value *BaseValue, 2354 const ObjCIvarDecl *Ivar, 2355 unsigned CVRQualifiers) { 2356 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2357 Ivar, CVRQualifiers); 2358 } 2359 2360 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2361 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2362 llvm::Value *BaseValue = 0; 2363 const Expr *BaseExpr = E->getBase(); 2364 Qualifiers BaseQuals; 2365 QualType ObjectTy; 2366 if (E->isArrow()) { 2367 BaseValue = EmitScalarExpr(BaseExpr); 2368 ObjectTy = BaseExpr->getType()->getPointeeType(); 2369 BaseQuals = ObjectTy.getQualifiers(); 2370 } else { 2371 LValue BaseLV = EmitLValue(BaseExpr); 2372 // FIXME: this isn't right for bitfields. 2373 BaseValue = BaseLV.getAddress(); 2374 ObjectTy = BaseExpr->getType(); 2375 BaseQuals = ObjectTy.getQualifiers(); 2376 } 2377 2378 LValue LV = 2379 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2380 BaseQuals.getCVRQualifiers()); 2381 setObjCGCLValueClass(getContext(), E, LV); 2382 return LV; 2383 } 2384 2385 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2386 // Can only get l-value for message expression returning aggregate type 2387 RValue RV = EmitAnyExprToTemp(E); 2388 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2389 } 2390 2391 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2392 ReturnValueSlot ReturnValue, 2393 CallExpr::const_arg_iterator ArgBeg, 2394 CallExpr::const_arg_iterator ArgEnd, 2395 const Decl *TargetDecl) { 2396 // Get the actual function type. The callee type will always be a pointer to 2397 // function type or a block pointer type. 2398 assert(CalleeType->isFunctionPointerType() && 2399 "Call must have function pointer type!"); 2400 2401 CalleeType = getContext().getCanonicalType(CalleeType); 2402 2403 const FunctionType *FnType 2404 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2405 2406 CallArgList Args; 2407 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2408 2409 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2410 Callee, ReturnValue, Args, TargetDecl); 2411 } 2412 2413 LValue CodeGenFunction:: 2414 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2415 llvm::Value *BaseV; 2416 if (E->getOpcode() == BO_PtrMemI) 2417 BaseV = EmitScalarExpr(E->getLHS()); 2418 else 2419 BaseV = EmitLValue(E->getLHS()).getAddress(); 2420 2421 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2422 2423 const MemberPointerType *MPT 2424 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2425 2426 llvm::Value *AddV = 2427 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2428 2429 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2430 } 2431