Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGCall.h"
     17 #include "CGCXXABI.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGRecordLayout.h"
     20 #include "CGObjCRuntime.h"
     21 #include "clang/AST/ASTContext.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/Frontend/CodeGenOptions.h"
     24 #include "llvm/Intrinsics.h"
     25 #include "llvm/Target/TargetData.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 //===--------------------------------------------------------------------===//
     30 //                        Miscellaneous Helper Methods
     31 //===--------------------------------------------------------------------===//
     32 
     33 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     34   unsigned addressSpace =
     35     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     36 
     37   llvm::PointerType *destType = Int8PtrTy;
     38   if (addressSpace)
     39     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     40 
     41   if (value->getType() == destType) return value;
     42   return Builder.CreateBitCast(value, destType);
     43 }
     44 
     45 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     46 /// block.
     47 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     48                                                     const llvm::Twine &Name) {
     49   if (!Builder.isNamePreserving())
     50     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
     51   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
     52 }
     53 
     54 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
     55                                      llvm::Value *Init) {
     56   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
     57   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     58   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
     59 }
     60 
     61 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
     62                                                 const llvm::Twine &Name) {
     63   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
     64   // FIXME: Should we prefer the preferred type alignment here?
     65   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     66   Alloc->setAlignment(Align.getQuantity());
     67   return Alloc;
     68 }
     69 
     70 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
     71                                                  const llvm::Twine &Name) {
     72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
     73   // FIXME: Should we prefer the preferred type alignment here?
     74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     75   Alloc->setAlignment(Align.getQuantity());
     76   return Alloc;
     77 }
     78 
     79 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
     80 /// expression and compare the result against zero, returning an Int1Ty value.
     81 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
     82   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
     83     llvm::Value *MemPtr = EmitScalarExpr(E);
     84     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
     85   }
     86 
     87   QualType BoolTy = getContext().BoolTy;
     88   if (!E->getType()->isAnyComplexType())
     89     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
     90 
     91   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
     92 }
     93 
     94 /// EmitIgnoredExpr - Emit code to compute the specified expression,
     95 /// ignoring the result.
     96 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
     97   if (E->isRValue())
     98     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
     99 
    100   // Just emit it as an l-value and drop the result.
    101   EmitLValue(E);
    102 }
    103 
    104 /// EmitAnyExpr - Emit code to compute the specified expression which
    105 /// can have any type.  The result is returned as an RValue struct.
    106 /// If this is an aggregate expression, AggSlot indicates where the
    107 /// result should be returned.
    108 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
    109                                     bool IgnoreResult) {
    110   if (!hasAggregateLLVMType(E->getType()))
    111     return RValue::get(EmitScalarExpr(E, IgnoreResult));
    112   else if (E->getType()->isAnyComplexType())
    113     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
    114 
    115   EmitAggExpr(E, AggSlot, IgnoreResult);
    116   return AggSlot.asRValue();
    117 }
    118 
    119 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    120 /// always be accessible even if no aggregate location is provided.
    121 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    122   AggValueSlot AggSlot = AggValueSlot::ignored();
    123 
    124   if (hasAggregateLLVMType(E->getType()) &&
    125       !E->getType()->isAnyComplexType())
    126     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    127   return EmitAnyExpr(E, AggSlot);
    128 }
    129 
    130 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    131 /// location.
    132 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    133                                        llvm::Value *Location,
    134                                        Qualifiers Quals,
    135                                        bool IsInit) {
    136   if (E->getType()->isAnyComplexType())
    137     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
    138   else if (hasAggregateLLVMType(E->getType()))
    139     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, IsInit));
    140   else {
    141     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    142     LValue LV = MakeAddrLValue(Location, E->getType());
    143     EmitStoreThroughLValue(RV, LV);
    144   }
    145 }
    146 
    147 namespace {
    148 /// \brief An adjustment to be made to the temporary created when emitting a
    149 /// reference binding, which accesses a particular subobject of that temporary.
    150   struct SubobjectAdjustment {
    151     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
    152 
    153     union {
    154       struct {
    155         const CastExpr *BasePath;
    156         const CXXRecordDecl *DerivedClass;
    157       } DerivedToBase;
    158 
    159       FieldDecl *Field;
    160     };
    161 
    162     SubobjectAdjustment(const CastExpr *BasePath,
    163                         const CXXRecordDecl *DerivedClass)
    164       : Kind(DerivedToBaseAdjustment) {
    165       DerivedToBase.BasePath = BasePath;
    166       DerivedToBase.DerivedClass = DerivedClass;
    167     }
    168 
    169     SubobjectAdjustment(FieldDecl *Field)
    170       : Kind(FieldAdjustment) {
    171       this->Field = Field;
    172     }
    173   };
    174 }
    175 
    176 static llvm::Value *
    177 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
    178                          const NamedDecl *InitializedDecl) {
    179   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
    180     if (VD->hasGlobalStorage()) {
    181       llvm::SmallString<256> Name;
    182       llvm::raw_svector_ostream Out(Name);
    183       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
    184       Out.flush();
    185 
    186       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
    187 
    188       // Create the reference temporary.
    189       llvm::GlobalValue *RefTemp =
    190         new llvm::GlobalVariable(CGF.CGM.getModule(),
    191                                  RefTempTy, /*isConstant=*/false,
    192                                  llvm::GlobalValue::InternalLinkage,
    193                                  llvm::Constant::getNullValue(RefTempTy),
    194                                  Name.str());
    195       return RefTemp;
    196     }
    197   }
    198 
    199   return CGF.CreateMemTemp(Type, "ref.tmp");
    200 }
    201 
    202 static llvm::Value *
    203 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
    204                             llvm::Value *&ReferenceTemporary,
    205                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
    206                             QualType &ObjCARCReferenceLifetimeType,
    207                             const NamedDecl *InitializedDecl) {
    208   // Look through expressions for materialized temporaries (for now).
    209   if (const MaterializeTemporaryExpr *M
    210                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
    211     // Objective-C++ ARC:
    212     //   If we are binding a reference to a temporary that has ownership, we
    213     //   need to perform retain/release operations on the temporary.
    214     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
    215         E->getType()->isObjCLifetimeType() &&
    216         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
    217          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
    218          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
    219       ObjCARCReferenceLifetimeType = E->getType();
    220 
    221     E = M->GetTemporaryExpr();
    222   }
    223 
    224   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
    225     E = DAE->getExpr();
    226 
    227   if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
    228     CodeGenFunction::RunCleanupsScope Scope(CGF);
    229 
    230     return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
    231                                        ReferenceTemporary,
    232                                        ReferenceTemporaryDtor,
    233                                        ObjCARCReferenceLifetimeType,
    234                                        InitializedDecl);
    235   }
    236 
    237   if (const ObjCPropertyRefExpr *PRE =
    238       dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts()))
    239     if (PRE->getGetterResultType()->isReferenceType())
    240       E = PRE;
    241 
    242   RValue RV;
    243   if (E->isGLValue()) {
    244     // Emit the expression as an lvalue.
    245     LValue LV = CGF.EmitLValue(E);
    246     if (LV.isPropertyRef()) {
    247       RV = CGF.EmitLoadOfPropertyRefLValue(LV);
    248       return RV.getScalarVal();
    249     }
    250 
    251     if (LV.isSimple())
    252       return LV.getAddress();
    253 
    254     // We have to load the lvalue.
    255     RV = CGF.EmitLoadOfLValue(LV);
    256   } else {
    257     if (!ObjCARCReferenceLifetimeType.isNull()) {
    258       ReferenceTemporary = CreateReferenceTemporary(CGF,
    259                                                   ObjCARCReferenceLifetimeType,
    260                                                     InitializedDecl);
    261 
    262 
    263       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
    264                                              ObjCARCReferenceLifetimeType);
    265 
    266       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
    267                          RefTempDst, false);
    268 
    269       bool ExtendsLifeOfTemporary = false;
    270       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
    271         if (Var->extendsLifetimeOfTemporary())
    272           ExtendsLifeOfTemporary = true;
    273       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
    274         ExtendsLifeOfTemporary = true;
    275       }
    276 
    277       if (!ExtendsLifeOfTemporary) {
    278         // Since the lifetime of this temporary isn't going to be extended,
    279         // we need to clean it up ourselves at the end of the full expression.
    280         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    281         case Qualifiers::OCL_None:
    282         case Qualifiers::OCL_ExplicitNone:
    283         case Qualifiers::OCL_Autoreleasing:
    284           break;
    285 
    286         case Qualifiers::OCL_Strong: {
    287           assert(!ObjCARCReferenceLifetimeType->isArrayType());
    288           CleanupKind cleanupKind = CGF.getARCCleanupKind();
    289           CGF.pushDestroy(cleanupKind,
    290                           ReferenceTemporary,
    291                           ObjCARCReferenceLifetimeType,
    292                           CodeGenFunction::destroyARCStrongImprecise,
    293                           cleanupKind & EHCleanup);
    294           break;
    295         }
    296 
    297         case Qualifiers::OCL_Weak:
    298           assert(!ObjCARCReferenceLifetimeType->isArrayType());
    299           CGF.pushDestroy(NormalAndEHCleanup,
    300                           ReferenceTemporary,
    301                           ObjCARCReferenceLifetimeType,
    302                           CodeGenFunction::destroyARCWeak,
    303                           /*useEHCleanupForArray*/ true);
    304           break;
    305         }
    306 
    307         ObjCARCReferenceLifetimeType = QualType();
    308       }
    309 
    310       return ReferenceTemporary;
    311     }
    312 
    313     llvm::SmallVector<SubobjectAdjustment, 2> Adjustments;
    314     while (true) {
    315       E = E->IgnoreParens();
    316 
    317       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
    318         if ((CE->getCastKind() == CK_DerivedToBase ||
    319              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
    320             E->getType()->isRecordType()) {
    321           E = CE->getSubExpr();
    322           CXXRecordDecl *Derived
    323             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
    324           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
    325           continue;
    326         }
    327 
    328         if (CE->getCastKind() == CK_NoOp) {
    329           E = CE->getSubExpr();
    330           continue;
    331         }
    332       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
    333         if (!ME->isArrow() && ME->getBase()->isRValue()) {
    334           assert(ME->getBase()->getType()->isRecordType());
    335           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    336             E = ME->getBase();
    337             Adjustments.push_back(SubobjectAdjustment(Field));
    338             continue;
    339           }
    340         }
    341       }
    342 
    343       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
    344         if (opaque->getType()->isRecordType())
    345           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
    346 
    347       // Nothing changed.
    348       break;
    349     }
    350 
    351     // Create a reference temporary if necessary.
    352     AggValueSlot AggSlot = AggValueSlot::ignored();
    353     if (CGF.hasAggregateLLVMType(E->getType()) &&
    354         !E->getType()->isAnyComplexType()) {
    355       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
    356                                                     InitializedDecl);
    357       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(),
    358                                       InitializedDecl != 0);
    359     }
    360 
    361     if (InitializedDecl) {
    362       // Get the destructor for the reference temporary.
    363       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    364         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    365         if (!ClassDecl->hasTrivialDestructor())
    366           ReferenceTemporaryDtor = ClassDecl->getDestructor();
    367       }
    368     }
    369 
    370     RV = CGF.EmitAnyExpr(E, AggSlot);
    371 
    372     // Check if need to perform derived-to-base casts and/or field accesses, to
    373     // get from the temporary object we created (and, potentially, for which we
    374     // extended the lifetime) to the subobject we're binding the reference to.
    375     if (!Adjustments.empty()) {
    376       llvm::Value *Object = RV.getAggregateAddr();
    377       for (unsigned I = Adjustments.size(); I != 0; --I) {
    378         SubobjectAdjustment &Adjustment = Adjustments[I-1];
    379         switch (Adjustment.Kind) {
    380         case SubobjectAdjustment::DerivedToBaseAdjustment:
    381           Object =
    382               CGF.GetAddressOfBaseClass(Object,
    383                                         Adjustment.DerivedToBase.DerivedClass,
    384                               Adjustment.DerivedToBase.BasePath->path_begin(),
    385                               Adjustment.DerivedToBase.BasePath->path_end(),
    386                                         /*NullCheckValue=*/false);
    387           break;
    388 
    389         case SubobjectAdjustment::FieldAdjustment: {
    390           LValue LV =
    391             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
    392           if (LV.isSimple()) {
    393             Object = LV.getAddress();
    394             break;
    395           }
    396 
    397           // For non-simple lvalues, we actually have to create a copy of
    398           // the object we're binding to.
    399           QualType T = Adjustment.Field->getType().getNonReferenceType()
    400                                                   .getUnqualifiedType();
    401           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
    402           LValue TempLV = CGF.MakeAddrLValue(Object,
    403                                              Adjustment.Field->getType());
    404           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
    405           break;
    406         }
    407 
    408         }
    409       }
    410 
    411       return Object;
    412     }
    413   }
    414 
    415   if (RV.isAggregate())
    416     return RV.getAggregateAddr();
    417 
    418   // Create a temporary variable that we can bind the reference to.
    419   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
    420                                                 InitializedDecl);
    421 
    422 
    423   unsigned Alignment =
    424     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
    425   if (RV.isScalar())
    426     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
    427                           /*Volatile=*/false, Alignment, E->getType());
    428   else
    429     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
    430                            /*Volatile=*/false);
    431   return ReferenceTemporary;
    432 }
    433 
    434 RValue
    435 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
    436                                             const NamedDecl *InitializedDecl) {
    437   llvm::Value *ReferenceTemporary = 0;
    438   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
    439   QualType ObjCARCReferenceLifetimeType;
    440   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
    441                                                    ReferenceTemporaryDtor,
    442                                                    ObjCARCReferenceLifetimeType,
    443                                                    InitializedDecl);
    444   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
    445     return RValue::get(Value);
    446 
    447   // Make sure to call the destructor for the reference temporary.
    448   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
    449   if (VD && VD->hasGlobalStorage()) {
    450     if (ReferenceTemporaryDtor) {
    451       llvm::Constant *DtorFn =
    452         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
    453       EmitCXXGlobalDtorRegistration(DtorFn,
    454                                     cast<llvm::Constant>(ReferenceTemporary));
    455     } else {
    456       assert(!ObjCARCReferenceLifetimeType.isNull());
    457       // Note: We intentionally do not register a global "destructor" to
    458       // release the object.
    459     }
    460 
    461     return RValue::get(Value);
    462   }
    463 
    464   if (ReferenceTemporaryDtor)
    465     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
    466   else {
    467     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    468     case Qualifiers::OCL_None:
    469       assert(0 && "Not a reference temporary that needs to be deallocated");
    470     case Qualifiers::OCL_ExplicitNone:
    471     case Qualifiers::OCL_Autoreleasing:
    472       // Nothing to do.
    473       break;
    474 
    475     case Qualifiers::OCL_Strong: {
    476       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    477       CleanupKind cleanupKind = getARCCleanupKind();
    478       // This local is a GCC and MSVC compiler workaround.
    479       Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
    480                                        &destroyARCStrongImprecise;
    481       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
    482                   *destroyer, cleanupKind & EHCleanup);
    483       break;
    484     }
    485 
    486     case Qualifiers::OCL_Weak: {
    487       // This local is a GCC and MSVC compiler workaround.
    488       Destroyer *destroyer = &destroyARCWeak;
    489       // __weak objects always get EH cleanups; otherwise, exceptions
    490       // could cause really nasty crashes instead of mere leaks.
    491       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
    492                   ObjCARCReferenceLifetimeType, *destroyer, true);
    493       break;
    494     }
    495     }
    496   }
    497 
    498   return RValue::get(Value);
    499 }
    500 
    501 
    502 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    503 /// input field number being accessed.
    504 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    505                                              const llvm::Constant *Elts) {
    506   if (isa<llvm::ConstantAggregateZero>(Elts))
    507     return 0;
    508 
    509   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
    510 }
    511 
    512 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
    513   if (!CatchUndefined)
    514     return;
    515 
    516   // This needs to be to the standard address space.
    517   Address = Builder.CreateBitCast(Address, Int8PtrTy);
    518 
    519   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
    520 
    521   // In time, people may want to control this and use a 1 here.
    522   llvm::Value *Arg = Builder.getFalse();
    523   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
    524   llvm::BasicBlock *Cont = createBasicBlock();
    525   llvm::BasicBlock *Check = createBasicBlock();
    526   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
    527   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
    528 
    529   EmitBlock(Check);
    530   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
    531                                         llvm::ConstantInt::get(IntPtrTy, Size)),
    532                        Cont, getTrapBB());
    533   EmitBlock(Cont);
    534 }
    535 
    536 
    537 CodeGenFunction::ComplexPairTy CodeGenFunction::
    538 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    539                          bool isInc, bool isPre) {
    540   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
    541                                             LV.isVolatileQualified());
    542 
    543   llvm::Value *NextVal;
    544   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    545     uint64_t AmountVal = isInc ? 1 : -1;
    546     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    547 
    548     // Add the inc/dec to the real part.
    549     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    550   } else {
    551     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    552     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    553     if (!isInc)
    554       FVal.changeSign();
    555     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    556 
    557     // Add the inc/dec to the real part.
    558     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    559   }
    560 
    561   ComplexPairTy IncVal(NextVal, InVal.second);
    562 
    563   // Store the updated result through the lvalue.
    564   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
    565 
    566   // If this is a postinc, return the value read from memory, otherwise use the
    567   // updated value.
    568   return isPre ? IncVal : InVal;
    569 }
    570 
    571 
    572 //===----------------------------------------------------------------------===//
    573 //                         LValue Expression Emission
    574 //===----------------------------------------------------------------------===//
    575 
    576 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    577   if (Ty->isVoidType())
    578     return RValue::get(0);
    579 
    580   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
    581     llvm::Type *EltTy = ConvertType(CTy->getElementType());
    582     llvm::Value *U = llvm::UndefValue::get(EltTy);
    583     return RValue::getComplex(std::make_pair(U, U));
    584   }
    585 
    586   // If this is a use of an undefined aggregate type, the aggregate must have an
    587   // identifiable address.  Just because the contents of the value are undefined
    588   // doesn't mean that the address can't be taken and compared.
    589   if (hasAggregateLLVMType(Ty)) {
    590     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    591     return RValue::getAggregate(DestPtr);
    592   }
    593 
    594   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    595 }
    596 
    597 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    598                                               const char *Name) {
    599   ErrorUnsupported(E, Name);
    600   return GetUndefRValue(E->getType());
    601 }
    602 
    603 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    604                                               const char *Name) {
    605   ErrorUnsupported(E, Name);
    606   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    607   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
    608 }
    609 
    610 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
    611   LValue LV = EmitLValue(E);
    612   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    613     EmitCheck(LV.getAddress(),
    614               getContext().getTypeSizeInChars(E->getType()).getQuantity());
    615   return LV;
    616 }
    617 
    618 /// EmitLValue - Emit code to compute a designator that specifies the location
    619 /// of the expression.
    620 ///
    621 /// This can return one of two things: a simple address or a bitfield reference.
    622 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    623 /// an LLVM pointer type.
    624 ///
    625 /// If this returns a bitfield reference, nothing about the pointee type of the
    626 /// LLVM value is known: For example, it may not be a pointer to an integer.
    627 ///
    628 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    629 /// this method guarantees that the returned pointer type will point to an LLVM
    630 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    631 /// length type, this is not possible.
    632 ///
    633 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    634   switch (E->getStmtClass()) {
    635   default: return EmitUnsupportedLValue(E, "l-value expression");
    636 
    637   case Expr::ObjCSelectorExprClass:
    638   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    639   case Expr::ObjCIsaExprClass:
    640     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    641   case Expr::BinaryOperatorClass:
    642     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    643   case Expr::CompoundAssignOperatorClass:
    644     if (!E->getType()->isAnyComplexType())
    645       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    646     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    647   case Expr::CallExprClass:
    648   case Expr::CXXMemberCallExprClass:
    649   case Expr::CXXOperatorCallExprClass:
    650     return EmitCallExprLValue(cast<CallExpr>(E));
    651   case Expr::VAArgExprClass:
    652     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    653   case Expr::DeclRefExprClass:
    654     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    655   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    656   case Expr::GenericSelectionExprClass:
    657     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    658   case Expr::PredefinedExprClass:
    659     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    660   case Expr::StringLiteralClass:
    661     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    662   case Expr::ObjCEncodeExprClass:
    663     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    664 
    665   case Expr::BlockDeclRefExprClass:
    666     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
    667 
    668   case Expr::CXXTemporaryObjectExprClass:
    669   case Expr::CXXConstructExprClass:
    670     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    671   case Expr::CXXBindTemporaryExprClass:
    672     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    673   case Expr::ExprWithCleanupsClass:
    674     return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
    675   case Expr::CXXScalarValueInitExprClass:
    676     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
    677   case Expr::CXXDefaultArgExprClass:
    678     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
    679   case Expr::CXXTypeidExprClass:
    680     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
    681 
    682   case Expr::ObjCMessageExprClass:
    683     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
    684   case Expr::ObjCIvarRefExprClass:
    685     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
    686   case Expr::ObjCPropertyRefExprClass:
    687     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
    688   case Expr::StmtExprClass:
    689     return EmitStmtExprLValue(cast<StmtExpr>(E));
    690   case Expr::UnaryOperatorClass:
    691     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
    692   case Expr::ArraySubscriptExprClass:
    693     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
    694   case Expr::ExtVectorElementExprClass:
    695     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
    696   case Expr::MemberExprClass:
    697     return EmitMemberExpr(cast<MemberExpr>(E));
    698   case Expr::CompoundLiteralExprClass:
    699     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
    700   case Expr::ConditionalOperatorClass:
    701     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
    702   case Expr::BinaryConditionalOperatorClass:
    703     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
    704   case Expr::ChooseExprClass:
    705     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
    706   case Expr::OpaqueValueExprClass:
    707     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
    708   case Expr::SubstNonTypeTemplateParmExprClass:
    709     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    710   case Expr::ImplicitCastExprClass:
    711   case Expr::CStyleCastExprClass:
    712   case Expr::CXXFunctionalCastExprClass:
    713   case Expr::CXXStaticCastExprClass:
    714   case Expr::CXXDynamicCastExprClass:
    715   case Expr::CXXReinterpretCastExprClass:
    716   case Expr::CXXConstCastExprClass:
    717   case Expr::ObjCBridgedCastExprClass:
    718     return EmitCastLValue(cast<CastExpr>(E));
    719 
    720   case Expr::MaterializeTemporaryExprClass:
    721     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
    722   }
    723 }
    724 
    725 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
    726   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
    727                           lvalue.getAlignment(), lvalue.getType(),
    728                           lvalue.getTBAAInfo());
    729 }
    730 
    731 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
    732                                               unsigned Alignment, QualType Ty,
    733                                               llvm::MDNode *TBAAInfo) {
    734   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
    735   if (Volatile)
    736     Load->setVolatile(true);
    737   if (Alignment)
    738     Load->setAlignment(Alignment);
    739   if (TBAAInfo)
    740     CGM.DecorateInstruction(Load, TBAAInfo);
    741 
    742   return EmitFromMemory(Load, Ty);
    743 }
    744 
    745 static bool isBooleanUnderlyingType(QualType Ty) {
    746   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
    747     return ET->getDecl()->getIntegerType()->isBooleanType();
    748   return false;
    749 }
    750 
    751 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
    752   // Bool has a different representation in memory than in registers.
    753   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
    754     // This should really always be an i1, but sometimes it's already
    755     // an i8, and it's awkward to track those cases down.
    756     if (Value->getType()->isIntegerTy(1))
    757       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
    758     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
    759   }
    760 
    761   return Value;
    762 }
    763 
    764 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
    765   // Bool has a different representation in memory than in registers.
    766   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
    767     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
    768     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
    769   }
    770 
    771   return Value;
    772 }
    773 
    774 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
    775                                         bool Volatile, unsigned Alignment,
    776                                         QualType Ty,
    777                                         llvm::MDNode *TBAAInfo) {
    778   Value = EmitToMemory(Value, Ty);
    779 
    780   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
    781   if (Alignment)
    782     Store->setAlignment(Alignment);
    783   if (TBAAInfo)
    784     CGM.DecorateInstruction(Store, TBAAInfo);
    785 }
    786 
    787 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
    788   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
    789                     lvalue.getAlignment(), lvalue.getType(),
    790                     lvalue.getTBAAInfo());
    791 }
    792 
    793 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
    794 /// method emits the address of the lvalue, then loads the result as an rvalue,
    795 /// returning the rvalue.
    796 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
    797   if (LV.isObjCWeak()) {
    798     // load of a __weak object.
    799     llvm::Value *AddrWeakObj = LV.getAddress();
    800     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
    801                                                              AddrWeakObj));
    802   }
    803   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
    804     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
    805 
    806   if (LV.isSimple()) {
    807     assert(!LV.getType()->isFunctionType());
    808 
    809     // Everything needs a load.
    810     return RValue::get(EmitLoadOfScalar(LV));
    811   }
    812 
    813   if (LV.isVectorElt()) {
    814     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
    815                                           LV.isVolatileQualified(), "tmp");
    816     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
    817                                                     "vecext"));
    818   }
    819 
    820   // If this is a reference to a subset of the elements of a vector, either
    821   // shuffle the input or extract/insert them as appropriate.
    822   if (LV.isExtVectorElt())
    823     return EmitLoadOfExtVectorElementLValue(LV);
    824 
    825   if (LV.isBitField())
    826     return EmitLoadOfBitfieldLValue(LV);
    827 
    828   assert(LV.isPropertyRef() && "Unknown LValue type!");
    829   return EmitLoadOfPropertyRefLValue(LV);
    830 }
    831 
    832 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
    833   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
    834 
    835   // Get the output type.
    836   llvm::Type *ResLTy = ConvertType(LV.getType());
    837   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
    838 
    839   // Compute the result as an OR of all of the individual component accesses.
    840   llvm::Value *Res = 0;
    841   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
    842     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
    843 
    844     // Get the field pointer.
    845     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
    846 
    847     // Only offset by the field index if used, so that incoming values are not
    848     // required to be structures.
    849     if (AI.FieldIndex)
    850       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
    851 
    852     // Offset by the byte offset, if used.
    853     if (!AI.FieldByteOffset.isZero()) {
    854       Ptr = EmitCastToVoidPtr(Ptr);
    855       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
    856                                        "bf.field.offs");
    857     }
    858 
    859     // Cast to the access type.
    860     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
    861                                                      AI.AccessWidth,
    862                        CGM.getContext().getTargetAddressSpace(LV.getType()));
    863     Ptr = Builder.CreateBitCast(Ptr, PTy);
    864 
    865     // Perform the load.
    866     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
    867     if (!AI.AccessAlignment.isZero())
    868       Load->setAlignment(AI.AccessAlignment.getQuantity());
    869 
    870     // Shift out unused low bits and mask out unused high bits.
    871     llvm::Value *Val = Load;
    872     if (AI.FieldBitStart)
    873       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
    874     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
    875                                                             AI.TargetBitWidth),
    876                             "bf.clear");
    877 
    878     // Extend or truncate to the target size.
    879     if (AI.AccessWidth < ResSizeInBits)
    880       Val = Builder.CreateZExt(Val, ResLTy);
    881     else if (AI.AccessWidth > ResSizeInBits)
    882       Val = Builder.CreateTrunc(Val, ResLTy);
    883 
    884     // Shift into place, and OR into the result.
    885     if (AI.TargetBitOffset)
    886       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
    887     Res = Res ? Builder.CreateOr(Res, Val) : Val;
    888   }
    889 
    890   // If the bit-field is signed, perform the sign-extension.
    891   //
    892   // FIXME: This can easily be folded into the load of the high bits, which
    893   // could also eliminate the mask of high bits in some situations.
    894   if (Info.isSigned()) {
    895     unsigned ExtraBits = ResSizeInBits - Info.getSize();
    896     if (ExtraBits)
    897       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
    898                                ExtraBits, "bf.val.sext");
    899   }
    900 
    901   return RValue::get(Res);
    902 }
    903 
    904 // If this is a reference to a subset of the elements of a vector, create an
    905 // appropriate shufflevector.
    906 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
    907   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
    908                                         LV.isVolatileQualified(), "tmp");
    909 
    910   const llvm::Constant *Elts = LV.getExtVectorElts();
    911 
    912   // If the result of the expression is a non-vector type, we must be extracting
    913   // a single element.  Just codegen as an extractelement.
    914   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
    915   if (!ExprVT) {
    916     unsigned InIdx = getAccessedFieldNo(0, Elts);
    917     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
    918     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
    919   }
    920 
    921   // Always use shuffle vector to try to retain the original program structure
    922   unsigned NumResultElts = ExprVT->getNumElements();
    923 
    924   llvm::SmallVector<llvm::Constant*, 4> Mask;
    925   for (unsigned i = 0; i != NumResultElts; ++i) {
    926     unsigned InIdx = getAccessedFieldNo(i, Elts);
    927     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
    928   }
    929 
    930   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
    931   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
    932                                     MaskV, "tmp");
    933   return RValue::get(Vec);
    934 }
    935 
    936 
    937 
    938 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
    939 /// lvalue, where both are guaranteed to the have the same type, and that type
    940 /// is 'Ty'.
    941 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
    942   if (!Dst.isSimple()) {
    943     if (Dst.isVectorElt()) {
    944       // Read/modify/write the vector, inserting the new element.
    945       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
    946                                             Dst.isVolatileQualified(), "tmp");
    947       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
    948                                         Dst.getVectorIdx(), "vecins");
    949       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
    950       return;
    951     }
    952 
    953     // If this is an update of extended vector elements, insert them as
    954     // appropriate.
    955     if (Dst.isExtVectorElt())
    956       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
    957 
    958     if (Dst.isBitField())
    959       return EmitStoreThroughBitfieldLValue(Src, Dst);
    960 
    961     assert(Dst.isPropertyRef() && "Unknown LValue type");
    962     return EmitStoreThroughPropertyRefLValue(Src, Dst);
    963   }
    964 
    965   // There's special magic for assigning into an ARC-qualified l-value.
    966   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
    967     switch (Lifetime) {
    968     case Qualifiers::OCL_None:
    969       llvm_unreachable("present but none");
    970 
    971     case Qualifiers::OCL_ExplicitNone:
    972       // nothing special
    973       break;
    974 
    975     case Qualifiers::OCL_Strong:
    976       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
    977       return;
    978 
    979     case Qualifiers::OCL_Weak:
    980       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
    981       return;
    982 
    983     case Qualifiers::OCL_Autoreleasing:
    984       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
    985                                                      Src.getScalarVal()));
    986       // fall into the normal path
    987       break;
    988     }
    989   }
    990 
    991   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
    992     // load of a __weak object.
    993     llvm::Value *LvalueDst = Dst.getAddress();
    994     llvm::Value *src = Src.getScalarVal();
    995      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
    996     return;
    997   }
    998 
    999   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1000     // load of a __strong object.
   1001     llvm::Value *LvalueDst = Dst.getAddress();
   1002     llvm::Value *src = Src.getScalarVal();
   1003     if (Dst.isObjCIvar()) {
   1004       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1005       llvm::Type *ResultType = ConvertType(getContext().LongTy);
   1006       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
   1007       llvm::Value *dst = RHS;
   1008       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1009       llvm::Value *LHS =
   1010         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
   1011       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1012       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1013                                               BytesBetween);
   1014     } else if (Dst.isGlobalObjCRef()) {
   1015       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1016                                                 Dst.isThreadLocalRef());
   1017     }
   1018     else
   1019       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1020     return;
   1021   }
   1022 
   1023   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1024   EmitStoreOfScalar(Src.getScalarVal(), Dst);
   1025 }
   1026 
   1027 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1028                                                      llvm::Value **Result) {
   1029   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1030 
   1031   // Get the output type.
   1032   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1033   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
   1034 
   1035   // Get the source value, truncated to the width of the bit-field.
   1036   llvm::Value *SrcVal = Src.getScalarVal();
   1037 
   1038   if (Dst.getType()->isBooleanType())
   1039     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
   1040 
   1041   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
   1042                                                                 Info.getSize()),
   1043                              "bf.value");
   1044 
   1045   // Return the new value of the bit-field, if requested.
   1046   if (Result) {
   1047     // Cast back to the proper type for result.
   1048     llvm::Type *SrcTy = Src.getScalarVal()->getType();
   1049     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
   1050                                                    "bf.reload.val");
   1051 
   1052     // Sign extend if necessary.
   1053     if (Info.isSigned()) {
   1054       unsigned ExtraBits = ResSizeInBits - Info.getSize();
   1055       if (ExtraBits)
   1056         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
   1057                                        ExtraBits, "bf.reload.sext");
   1058     }
   1059 
   1060     *Result = ReloadVal;
   1061   }
   1062 
   1063   // Iterate over the components, writing each piece to memory.
   1064   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
   1065     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
   1066 
   1067     // Get the field pointer.
   1068     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
   1069     unsigned addressSpace =
   1070       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
   1071 
   1072     // Only offset by the field index if used, so that incoming values are not
   1073     // required to be structures.
   1074     if (AI.FieldIndex)
   1075       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
   1076 
   1077     // Offset by the byte offset, if used.
   1078     if (!AI.FieldByteOffset.isZero()) {
   1079       Ptr = EmitCastToVoidPtr(Ptr);
   1080       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
   1081                                        "bf.field.offs");
   1082     }
   1083 
   1084     // Cast to the access type.
   1085     llvm::Type *AccessLTy =
   1086       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
   1087 
   1088     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
   1089     Ptr = Builder.CreateBitCast(Ptr, PTy);
   1090 
   1091     // Extract the piece of the bit-field value to write in this access, limited
   1092     // to the values that are part of this access.
   1093     llvm::Value *Val = SrcVal;
   1094     if (AI.TargetBitOffset)
   1095       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
   1096     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
   1097                                                             AI.TargetBitWidth));
   1098 
   1099     // Extend or truncate to the access size.
   1100     if (ResSizeInBits < AI.AccessWidth)
   1101       Val = Builder.CreateZExt(Val, AccessLTy);
   1102     else if (ResSizeInBits > AI.AccessWidth)
   1103       Val = Builder.CreateTrunc(Val, AccessLTy);
   1104 
   1105     // Shift into the position in memory.
   1106     if (AI.FieldBitStart)
   1107       Val = Builder.CreateShl(Val, AI.FieldBitStart);
   1108 
   1109     // If necessary, load and OR in bits that are outside of the bit-field.
   1110     if (AI.TargetBitWidth != AI.AccessWidth) {
   1111       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
   1112       if (!AI.AccessAlignment.isZero())
   1113         Load->setAlignment(AI.AccessAlignment.getQuantity());
   1114 
   1115       // Compute the mask for zeroing the bits that are part of the bit-field.
   1116       llvm::APInt InvMask =
   1117         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
   1118                                  AI.FieldBitStart + AI.TargetBitWidth);
   1119 
   1120       // Apply the mask and OR in to the value to write.
   1121       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
   1122     }
   1123 
   1124     // Write the value.
   1125     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
   1126                                                  Dst.isVolatileQualified());
   1127     if (!AI.AccessAlignment.isZero())
   1128       Store->setAlignment(AI.AccessAlignment.getQuantity());
   1129   }
   1130 }
   1131 
   1132 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1133                                                                LValue Dst) {
   1134   // This access turns into a read/modify/write of the vector.  Load the input
   1135   // value now.
   1136   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
   1137                                         Dst.isVolatileQualified(), "tmp");
   1138   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1139 
   1140   llvm::Value *SrcVal = Src.getScalarVal();
   1141 
   1142   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1143     unsigned NumSrcElts = VTy->getNumElements();
   1144     unsigned NumDstElts =
   1145        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1146     if (NumDstElts == NumSrcElts) {
   1147       // Use shuffle vector is the src and destination are the same number of
   1148       // elements and restore the vector mask since it is on the side it will be
   1149       // stored.
   1150       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1151       for (unsigned i = 0; i != NumSrcElts; ++i) {
   1152         unsigned InIdx = getAccessedFieldNo(i, Elts);
   1153         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
   1154       }
   1155 
   1156       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1157       Vec = Builder.CreateShuffleVector(SrcVal,
   1158                                         llvm::UndefValue::get(Vec->getType()),
   1159                                         MaskV, "tmp");
   1160     } else if (NumDstElts > NumSrcElts) {
   1161       // Extended the source vector to the same length and then shuffle it
   1162       // into the destination.
   1163       // FIXME: since we're shuffling with undef, can we just use the indices
   1164       //        into that?  This could be simpler.
   1165       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
   1166       unsigned i;
   1167       for (i = 0; i != NumSrcElts; ++i)
   1168         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
   1169       for (; i != NumDstElts; ++i)
   1170         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
   1171       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1172       llvm::Value *ExtSrcVal =
   1173         Builder.CreateShuffleVector(SrcVal,
   1174                                     llvm::UndefValue::get(SrcVal->getType()),
   1175                                     ExtMaskV, "tmp");
   1176       // build identity
   1177       llvm::SmallVector<llvm::Constant*, 4> Mask;
   1178       for (unsigned i = 0; i != NumDstElts; ++i)
   1179         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
   1180 
   1181       // modify when what gets shuffled in
   1182       for (unsigned i = 0; i != NumSrcElts; ++i) {
   1183         unsigned Idx = getAccessedFieldNo(i, Elts);
   1184         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
   1185       }
   1186       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1187       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
   1188     } else {
   1189       // We should never shorten the vector
   1190       assert(0 && "unexpected shorten vector length");
   1191     }
   1192   } else {
   1193     // If the Src is a scalar (not a vector) it must be updating one element.
   1194     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1195     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
   1196     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
   1197   }
   1198 
   1199   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
   1200 }
   1201 
   1202 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
   1203 // generating write-barries API. It is currently a global, ivar,
   1204 // or neither.
   1205 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1206                                  LValue &LV) {
   1207   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
   1208     return;
   1209 
   1210   if (isa<ObjCIvarRefExpr>(E)) {
   1211     LV.setObjCIvar(true);
   1212     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
   1213     LV.setBaseIvarExp(Exp->getBase());
   1214     LV.setObjCArray(E->getType()->isArrayType());
   1215     return;
   1216   }
   1217 
   1218   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
   1219     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1220       if (VD->hasGlobalStorage()) {
   1221         LV.setGlobalObjCRef(true);
   1222         LV.setThreadLocalRef(VD->isThreadSpecified());
   1223       }
   1224     }
   1225     LV.setObjCArray(E->getType()->isArrayType());
   1226     return;
   1227   }
   1228 
   1229   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
   1230     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
   1231     return;
   1232   }
   1233 
   1234   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
   1235     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
   1236     if (LV.isObjCIvar()) {
   1237       // If cast is to a structure pointer, follow gcc's behavior and make it
   1238       // a non-ivar write-barrier.
   1239       QualType ExpTy = E->getType();
   1240       if (ExpTy->isPointerType())
   1241         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1242       if (ExpTy->isRecordType())
   1243         LV.setObjCIvar(false);
   1244     }
   1245     return;
   1246   }
   1247 
   1248   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1249     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1250     return;
   1251   }
   1252 
   1253   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1254     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
   1255     return;
   1256   }
   1257 
   1258   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1259     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
   1260     return;
   1261   }
   1262 
   1263   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1264     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
   1265     return;
   1266   }
   1267 
   1268   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1269     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1270     if (LV.isObjCIvar() && !LV.isObjCArray())
   1271       // Using array syntax to assigning to what an ivar points to is not
   1272       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1273       LV.setObjCIvar(false);
   1274     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1275       // Using array syntax to assigning to what global points to is not
   1276       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1277       LV.setGlobalObjCRef(false);
   1278     return;
   1279   }
   1280 
   1281   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
   1282     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1283     // We don't know if member is an 'ivar', but this flag is looked at
   1284     // only in the context of LV.isObjCIvar().
   1285     LV.setObjCArray(E->getType()->isArrayType());
   1286     return;
   1287   }
   1288 }
   1289 
   1290 static llvm::Value *
   1291 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1292                                 llvm::Value *V, llvm::Type *IRType,
   1293                                 llvm::StringRef Name = llvm::StringRef()) {
   1294   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1295   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1296 }
   1297 
   1298 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1299                                       const Expr *E, const VarDecl *VD) {
   1300   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
   1301          "Var decl must have external storage or be a file var decl!");
   1302 
   1303   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1304   if (VD->getType()->isReferenceType())
   1305     V = CGF.Builder.CreateLoad(V, "tmp");
   1306 
   1307   V = EmitBitCastOfLValueToProperType(CGF, V,
   1308                                 CGF.getTypes().ConvertTypeForMem(E->getType()));
   1309 
   1310   unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
   1311   LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1312   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1313   return LV;
   1314 }
   1315 
   1316 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1317                                      const Expr *E, const FunctionDecl *FD) {
   1318   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1319   if (!FD->hasPrototype()) {
   1320     if (const FunctionProtoType *Proto =
   1321             FD->getType()->getAs<FunctionProtoType>()) {
   1322       // Ugly case: for a K&R-style definition, the type of the definition
   1323       // isn't the same as the type of a use.  Correct for this with a
   1324       // bitcast.
   1325       QualType NoProtoType =
   1326           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
   1327       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1328       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
   1329     }
   1330   }
   1331   unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
   1332   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1333 }
   1334 
   1335 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   1336   const NamedDecl *ND = E->getDecl();
   1337   unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
   1338 
   1339   if (ND->hasAttr<WeakRefAttr>()) {
   1340     const ValueDecl *VD = cast<ValueDecl>(ND);
   1341     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
   1342     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
   1343   }
   1344 
   1345   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1346 
   1347     // Check if this is a global variable.
   1348     if (VD->hasExternalStorage() || VD->isFileVarDecl())
   1349       return EmitGlobalVarDeclLValue(*this, E, VD);
   1350 
   1351     bool NonGCable = VD->hasLocalStorage() &&
   1352                      !VD->getType()->isReferenceType() &&
   1353                      !VD->hasAttr<BlocksAttr>();
   1354 
   1355     llvm::Value *V = LocalDeclMap[VD];
   1356     if (!V && VD->isStaticLocal())
   1357       V = CGM.getStaticLocalDeclAddress(VD);
   1358     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
   1359 
   1360     if (VD->hasAttr<BlocksAttr>())
   1361       V = BuildBlockByrefAddress(V, VD);
   1362 
   1363     if (VD->getType()->isReferenceType())
   1364       V = Builder.CreateLoad(V, "tmp");
   1365 
   1366     V = EmitBitCastOfLValueToProperType(*this, V,
   1367                                     getTypes().ConvertTypeForMem(E->getType()));
   1368 
   1369     LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
   1370     if (NonGCable) {
   1371       LV.getQuals().removeObjCGCAttr();
   1372       LV.setNonGC(true);
   1373     }
   1374     setObjCGCLValueClass(getContext(), E, LV);
   1375     return LV;
   1376   }
   1377 
   1378   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
   1379     return EmitFunctionDeclLValue(*this, E, fn);
   1380 
   1381   assert(false && "Unhandled DeclRefExpr");
   1382 
   1383   // an invalid LValue, but the assert will
   1384   // ensure that this point is never reached.
   1385   return LValue();
   1386 }
   1387 
   1388 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
   1389   unsigned Alignment =
   1390     getContext().getDeclAlign(E->getDecl()).getQuantity();
   1391   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
   1392 }
   1393 
   1394 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   1395   // __extension__ doesn't affect lvalue-ness.
   1396   if (E->getOpcode() == UO_Extension)
   1397     return EmitLValue(E->getSubExpr());
   1398 
   1399   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   1400   switch (E->getOpcode()) {
   1401   default: assert(0 && "Unknown unary operator lvalue!");
   1402   case UO_Deref: {
   1403     QualType T = E->getSubExpr()->getType()->getPointeeType();
   1404     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   1405 
   1406     LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
   1407     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   1408 
   1409     // We should not generate __weak write barrier on indirect reference
   1410     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   1411     // But, we continue to generate __strong write barrier on indirect write
   1412     // into a pointer to object.
   1413     if (getContext().getLangOptions().ObjC1 &&
   1414         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
   1415         LV.isObjCWeak())
   1416       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   1417     return LV;
   1418   }
   1419   case UO_Real:
   1420   case UO_Imag: {
   1421     LValue LV = EmitLValue(E->getSubExpr());
   1422     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   1423     llvm::Value *Addr = LV.getAddress();
   1424 
   1425     // real and imag are valid on scalars.  This is a faster way of
   1426     // testing that.
   1427     if (!cast<llvm::PointerType>(Addr->getType())
   1428            ->getElementType()->isStructTy()) {
   1429       assert(E->getSubExpr()->getType()->isArithmeticType());
   1430       return LV;
   1431     }
   1432 
   1433     assert(E->getSubExpr()->getType()->isAnyComplexType());
   1434 
   1435     unsigned Idx = E->getOpcode() == UO_Imag;
   1436     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
   1437                                                   Idx, "idx"),
   1438                           ExprTy);
   1439   }
   1440   case UO_PreInc:
   1441   case UO_PreDec: {
   1442     LValue LV = EmitLValue(E->getSubExpr());
   1443     bool isInc = E->getOpcode() == UO_PreInc;
   1444 
   1445     if (E->getType()->isAnyComplexType())
   1446       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1447     else
   1448       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1449     return LV;
   1450   }
   1451   }
   1452 }
   1453 
   1454 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   1455   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   1456                         E->getType());
   1457 }
   1458 
   1459 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   1460   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   1461                         E->getType());
   1462 }
   1463 
   1464 
   1465 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   1466   switch (E->getIdentType()) {
   1467   default:
   1468     return EmitUnsupportedLValue(E, "predefined expression");
   1469 
   1470   case PredefinedExpr::Func:
   1471   case PredefinedExpr::Function:
   1472   case PredefinedExpr::PrettyFunction: {
   1473     unsigned Type = E->getIdentType();
   1474     std::string GlobalVarName;
   1475 
   1476     switch (Type) {
   1477     default: assert(0 && "Invalid type");
   1478     case PredefinedExpr::Func:
   1479       GlobalVarName = "__func__.";
   1480       break;
   1481     case PredefinedExpr::Function:
   1482       GlobalVarName = "__FUNCTION__.";
   1483       break;
   1484     case PredefinedExpr::PrettyFunction:
   1485       GlobalVarName = "__PRETTY_FUNCTION__.";
   1486       break;
   1487     }
   1488 
   1489     llvm::StringRef FnName = CurFn->getName();
   1490     if (FnName.startswith("\01"))
   1491       FnName = FnName.substr(1);
   1492     GlobalVarName += FnName;
   1493 
   1494     const Decl *CurDecl = CurCodeDecl;
   1495     if (CurDecl == 0)
   1496       CurDecl = getContext().getTranslationUnitDecl();
   1497 
   1498     std::string FunctionName =
   1499         (isa<BlockDecl>(CurDecl)
   1500          ? FnName.str()
   1501          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
   1502 
   1503     llvm::Constant *C =
   1504       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
   1505     return MakeAddrLValue(C, E->getType());
   1506   }
   1507   }
   1508 }
   1509 
   1510 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
   1511   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
   1512 
   1513   // If we are not optimzing, don't collapse all calls to trap in the function
   1514   // to the same call, that way, in the debugger they can see which operation
   1515   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
   1516   // to just one per function to save on codesize.
   1517   if (GCO.OptimizationLevel && TrapBB)
   1518     return TrapBB;
   1519 
   1520   llvm::BasicBlock *Cont = 0;
   1521   if (HaveInsertPoint()) {
   1522     Cont = createBasicBlock("cont");
   1523     EmitBranch(Cont);
   1524   }
   1525   TrapBB = createBasicBlock("trap");
   1526   EmitBlock(TrapBB);
   1527 
   1528   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
   1529   llvm::CallInst *TrapCall = Builder.CreateCall(F);
   1530   TrapCall->setDoesNotReturn();
   1531   TrapCall->setDoesNotThrow();
   1532   Builder.CreateUnreachable();
   1533 
   1534   if (Cont)
   1535     EmitBlock(Cont);
   1536   return TrapBB;
   1537 }
   1538 
   1539 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   1540 /// array to pointer, return the array subexpression.
   1541 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   1542   // If this isn't just an array->pointer decay, bail out.
   1543   const CastExpr *CE = dyn_cast<CastExpr>(E);
   1544   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
   1545     return 0;
   1546 
   1547   // If this is a decay from variable width array, bail out.
   1548   const Expr *SubExpr = CE->getSubExpr();
   1549   if (SubExpr->getType()->isVariableArrayType())
   1550     return 0;
   1551 
   1552   return SubExpr;
   1553 }
   1554 
   1555 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
   1556   // The index must always be an integer, which is not an aggregate.  Emit it.
   1557   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   1558   QualType IdxTy  = E->getIdx()->getType();
   1559   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   1560 
   1561   // If the base is a vector type, then we are forming a vector element lvalue
   1562   // with this subscript.
   1563   if (E->getBase()->getType()->isVectorType()) {
   1564     // Emit the vector as an lvalue to get its address.
   1565     LValue LHS = EmitLValue(E->getBase());
   1566     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   1567     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
   1568     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   1569                                  E->getBase()->getType());
   1570   }
   1571 
   1572   // Extend or truncate the index type to 32 or 64-bits.
   1573   if (Idx->getType() != IntPtrTy)
   1574     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   1575 
   1576   // FIXME: As llvm implements the object size checking, this can come out.
   1577   if (CatchUndefined) {
   1578     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
   1579       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
   1580         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
   1581           if (const ConstantArrayType *CAT
   1582               = getContext().getAsConstantArrayType(DRE->getType())) {
   1583             llvm::APInt Size = CAT->getSize();
   1584             llvm::BasicBlock *Cont = createBasicBlock("cont");
   1585             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
   1586                                   llvm::ConstantInt::get(Idx->getType(), Size)),
   1587                                  Cont, getTrapBB());
   1588             EmitBlock(Cont);
   1589           }
   1590         }
   1591       }
   1592     }
   1593   }
   1594 
   1595   // We know that the pointer points to a type of the correct size, unless the
   1596   // size is a VLA or Objective-C interface.
   1597   llvm::Value *Address = 0;
   1598   unsigned ArrayAlignment = 0;
   1599   if (const VariableArrayType *vla =
   1600         getContext().getAsVariableArrayType(E->getType())) {
   1601     // The base must be a pointer, which is not an aggregate.  Emit
   1602     // it.  It needs to be emitted first in case it's what captures
   1603     // the VLA bounds.
   1604     Address = EmitScalarExpr(E->getBase());
   1605 
   1606     // The element count here is the total number of non-VLA elements.
   1607     llvm::Value *numElements = getVLASize(vla).first;
   1608 
   1609     // Effectively, the multiply by the VLA size is part of the GEP.
   1610     // GEP indexes are signed, and scaling an index isn't permitted to
   1611     // signed-overflow, so we use the same semantics for our explicit
   1612     // multiply.  We suppress this if overflow is not undefined behavior.
   1613     if (getLangOptions().isSignedOverflowDefined()) {
   1614       Idx = Builder.CreateMul(Idx, numElements);
   1615       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   1616     } else {
   1617       Idx = Builder.CreateNSWMul(Idx, numElements);
   1618       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   1619     }
   1620   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   1621     // Indexing over an interface, as in "NSString *P; P[4];"
   1622     llvm::Value *InterfaceSize =
   1623       llvm::ConstantInt::get(Idx->getType(),
   1624           getContext().getTypeSizeInChars(OIT).getQuantity());
   1625 
   1626     Idx = Builder.CreateMul(Idx, InterfaceSize);
   1627 
   1628     // The base must be a pointer, which is not an aggregate.  Emit it.
   1629     llvm::Value *Base = EmitScalarExpr(E->getBase());
   1630     Address = EmitCastToVoidPtr(Base);
   1631     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   1632     Address = Builder.CreateBitCast(Address, Base->getType());
   1633   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   1634     // If this is A[i] where A is an array, the frontend will have decayed the
   1635     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   1636     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   1637     // "gep x, i" here.  Emit one "gep A, 0, i".
   1638     assert(Array->getType()->isArrayType() &&
   1639            "Array to pointer decay must have array source type!");
   1640     LValue ArrayLV = EmitLValue(Array);
   1641     llvm::Value *ArrayPtr = ArrayLV.getAddress();
   1642     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
   1643     llvm::Value *Args[] = { Zero, Idx };
   1644 
   1645     // Propagate the alignment from the array itself to the result.
   1646     ArrayAlignment = ArrayLV.getAlignment();
   1647 
   1648     if (getContext().getLangOptions().isSignedOverflowDefined())
   1649       Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx");
   1650     else
   1651       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx");
   1652   } else {
   1653     // The base must be a pointer, which is not an aggregate.  Emit it.
   1654     llvm::Value *Base = EmitScalarExpr(E->getBase());
   1655     if (getContext().getLangOptions().isSignedOverflowDefined())
   1656       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
   1657     else
   1658       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   1659   }
   1660 
   1661   QualType T = E->getBase()->getType()->getPointeeType();
   1662   assert(!T.isNull() &&
   1663          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
   1664 
   1665   // Limit the alignment to that of the result type.
   1666   if (ArrayAlignment) {
   1667     unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
   1668     ArrayAlignment = std::min(Align, ArrayAlignment);
   1669   }
   1670 
   1671   LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
   1672   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
   1673 
   1674   if (getContext().getLangOptions().ObjC1 &&
   1675       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
   1676     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   1677     setObjCGCLValueClass(getContext(), E, LV);
   1678   }
   1679   return LV;
   1680 }
   1681 
   1682 static
   1683 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
   1684                                        llvm::SmallVector<unsigned, 4> &Elts) {
   1685   llvm::SmallVector<llvm::Constant*, 4> CElts;
   1686 
   1687   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
   1688   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
   1689     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
   1690 
   1691   return llvm::ConstantVector::get(CElts);
   1692 }
   1693 
   1694 LValue CodeGenFunction::
   1695 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   1696   // Emit the base vector as an l-value.
   1697   LValue Base;
   1698 
   1699   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   1700   if (E->isArrow()) {
   1701     // If it is a pointer to a vector, emit the address and form an lvalue with
   1702     // it.
   1703     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
   1704     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   1705     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
   1706     Base.getQuals().removeObjCGCAttr();
   1707   } else if (E->getBase()->isGLValue()) {
   1708     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   1709     // emit the base as an lvalue.
   1710     assert(E->getBase()->getType()->isVectorType());
   1711     Base = EmitLValue(E->getBase());
   1712   } else {
   1713     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   1714     assert(E->getBase()->getType()->isVectorType() &&
   1715            "Result must be a vector");
   1716     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   1717 
   1718     // Store the vector to memory (because LValue wants an address).
   1719     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
   1720     Builder.CreateStore(Vec, VecMem);
   1721     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
   1722   }
   1723 
   1724   QualType type =
   1725     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   1726 
   1727   // Encode the element access list into a vector of unsigned indices.
   1728   llvm::SmallVector<unsigned, 4> Indices;
   1729   E->getEncodedElementAccess(Indices);
   1730 
   1731   if (Base.isSimple()) {
   1732     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
   1733     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
   1734   }
   1735   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   1736 
   1737   llvm::Constant *BaseElts = Base.getExtVectorElts();
   1738   llvm::SmallVector<llvm::Constant *, 4> CElts;
   1739 
   1740   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1741     if (isa<llvm::ConstantAggregateZero>(BaseElts))
   1742       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
   1743     else
   1744       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
   1745   }
   1746   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   1747   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
   1748 }
   1749 
   1750 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   1751   bool isNonGC = false;
   1752   Expr *BaseExpr = E->getBase();
   1753   llvm::Value *BaseValue = NULL;
   1754   Qualifiers BaseQuals;
   1755 
   1756   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   1757   if (E->isArrow()) {
   1758     BaseValue = EmitScalarExpr(BaseExpr);
   1759     const PointerType *PTy =
   1760       BaseExpr->getType()->getAs<PointerType>();
   1761     BaseQuals = PTy->getPointeeType().getQualifiers();
   1762   } else {
   1763     LValue BaseLV = EmitLValue(BaseExpr);
   1764     if (BaseLV.isNonGC())
   1765       isNonGC = true;
   1766     // FIXME: this isn't right for bitfields.
   1767     BaseValue = BaseLV.getAddress();
   1768     QualType BaseTy = BaseExpr->getType();
   1769     BaseQuals = BaseTy.getQualifiers();
   1770   }
   1771 
   1772   NamedDecl *ND = E->getMemberDecl();
   1773   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
   1774     LValue LV = EmitLValueForField(BaseValue, Field,
   1775                                    BaseQuals.getCVRQualifiers());
   1776     LV.setNonGC(isNonGC);
   1777     setObjCGCLValueClass(getContext(), E, LV);
   1778     return LV;
   1779   }
   1780 
   1781   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
   1782     return EmitGlobalVarDeclLValue(*this, E, VD);
   1783 
   1784   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
   1785     return EmitFunctionDeclLValue(*this, E, FD);
   1786 
   1787   assert(false && "Unhandled member declaration!");
   1788   return LValue();
   1789 }
   1790 
   1791 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
   1792                                               const FieldDecl *Field,
   1793                                               unsigned CVRQualifiers) {
   1794   const CGRecordLayout &RL =
   1795     CGM.getTypes().getCGRecordLayout(Field->getParent());
   1796   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
   1797   return LValue::MakeBitfield(BaseValue, Info,
   1798                           Field->getType().withCVRQualifiers(CVRQualifiers));
   1799 }
   1800 
   1801 /// EmitLValueForAnonRecordField - Given that the field is a member of
   1802 /// an anonymous struct or union buried inside a record, and given
   1803 /// that the base value is a pointer to the enclosing record, derive
   1804 /// an lvalue for the ultimate field.
   1805 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
   1806                                              const IndirectFieldDecl *Field,
   1807                                                      unsigned CVRQualifiers) {
   1808   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
   1809     IEnd = Field->chain_end();
   1810   while (true) {
   1811     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
   1812                                    CVRQualifiers);
   1813     if (++I == IEnd) return LV;
   1814 
   1815     assert(LV.isSimple());
   1816     BaseValue = LV.getAddress();
   1817     CVRQualifiers |= LV.getVRQualifiers();
   1818   }
   1819 }
   1820 
   1821 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
   1822                                            const FieldDecl *field,
   1823                                            unsigned cvr) {
   1824   if (field->isBitField())
   1825     return EmitLValueForBitfield(baseAddr, field, cvr);
   1826 
   1827   const RecordDecl *rec = field->getParent();
   1828   QualType type = field->getType();
   1829 
   1830   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   1831 
   1832   llvm::Value *addr = baseAddr;
   1833   if (rec->isUnion()) {
   1834     // For unions, there is no pointer adjustment.
   1835     assert(!type->isReferenceType() && "union has reference member");
   1836   } else {
   1837     // For structs, we GEP to the field that the record layout suggests.
   1838     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   1839     addr = Builder.CreateStructGEP(addr, idx, field->getName());
   1840 
   1841     // If this is a reference field, load the reference right now.
   1842     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   1843       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   1844       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   1845 
   1846       if (CGM.shouldUseTBAA()) {
   1847         llvm::MDNode *tbaa;
   1848         if (mayAlias)
   1849           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   1850         else
   1851           tbaa = CGM.getTBAAInfo(type);
   1852         CGM.DecorateInstruction(load, tbaa);
   1853       }
   1854 
   1855       addr = load;
   1856       mayAlias = false;
   1857       type = refType->getPointeeType();
   1858       cvr = 0; // qualifiers don't recursively apply to referencee
   1859     }
   1860   }
   1861 
   1862   // Make sure that the address is pointing to the right type.  This is critical
   1863   // for both unions and structs.  A union needs a bitcast, a struct element
   1864   // will need a bitcast if the LLVM type laid out doesn't match the desired
   1865   // type.
   1866   addr = EmitBitCastOfLValueToProperType(*this, addr,
   1867                                          CGM.getTypes().ConvertTypeForMem(type),
   1868                                          field->getName());
   1869 
   1870   unsigned alignment = getContext().getDeclAlign(field).getQuantity();
   1871   LValue LV = MakeAddrLValue(addr, type, alignment);
   1872   LV.getQuals().addCVRQualifiers(cvr);
   1873 
   1874   // __weak attribute on a field is ignored.
   1875   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   1876     LV.getQuals().removeObjCGCAttr();
   1877 
   1878   // Fields of may_alias structs act like 'char' for TBAA purposes.
   1879   // FIXME: this should get propagated down through anonymous structs
   1880   // and unions.
   1881   if (mayAlias && LV.getTBAAInfo())
   1882     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   1883 
   1884   return LV;
   1885 }
   1886 
   1887 LValue
   1888 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
   1889                                                   const FieldDecl *Field,
   1890                                                   unsigned CVRQualifiers) {
   1891   QualType FieldType = Field->getType();
   1892 
   1893   if (!FieldType->isReferenceType())
   1894     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
   1895 
   1896   const CGRecordLayout &RL =
   1897     CGM.getTypes().getCGRecordLayout(Field->getParent());
   1898   unsigned idx = RL.getLLVMFieldNo(Field);
   1899   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
   1900   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
   1901 
   1902 
   1903   // Make sure that the address is pointing to the right type.  This is critical
   1904   // for both unions and structs.  A union needs a bitcast, a struct element
   1905   // will need a bitcast if the LLVM type laid out doesn't match the desired
   1906   // type.
   1907   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   1908   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1909   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
   1910 
   1911   unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
   1912   return MakeAddrLValue(V, FieldType, Alignment);
   1913 }
   1914 
   1915 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   1916   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   1917   const Expr *InitExpr = E->getInitializer();
   1918   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
   1919 
   1920   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   1921                    /*Init*/ true);
   1922 
   1923   return Result;
   1924 }
   1925 
   1926 LValue CodeGenFunction::
   1927 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   1928   if (!expr->isGLValue()) {
   1929     // ?: here should be an aggregate.
   1930     assert((hasAggregateLLVMType(expr->getType()) &&
   1931             !expr->getType()->isAnyComplexType()) &&
   1932            "Unexpected conditional operator!");
   1933     return EmitAggExprToLValue(expr);
   1934   }
   1935 
   1936   const Expr *condExpr = expr->getCond();
   1937   bool CondExprBool;
   1938   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   1939     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   1940     if (!CondExprBool) std::swap(live, dead);
   1941 
   1942     if (!ContainsLabel(dead))
   1943       return EmitLValue(live);
   1944   }
   1945 
   1946   OpaqueValueMapping binding(*this, expr);
   1947 
   1948   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   1949   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   1950   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   1951 
   1952   ConditionalEvaluation eval(*this);
   1953   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
   1954 
   1955   // Any temporaries created here are conditional.
   1956   EmitBlock(lhsBlock);
   1957   eval.begin(*this);
   1958   LValue lhs = EmitLValue(expr->getTrueExpr());
   1959   eval.end(*this);
   1960 
   1961   if (!lhs.isSimple())
   1962     return EmitUnsupportedLValue(expr, "conditional operator");
   1963 
   1964   lhsBlock = Builder.GetInsertBlock();
   1965   Builder.CreateBr(contBlock);
   1966 
   1967   // Any temporaries created here are conditional.
   1968   EmitBlock(rhsBlock);
   1969   eval.begin(*this);
   1970   LValue rhs = EmitLValue(expr->getFalseExpr());
   1971   eval.end(*this);
   1972   if (!rhs.isSimple())
   1973     return EmitUnsupportedLValue(expr, "conditional operator");
   1974   rhsBlock = Builder.GetInsertBlock();
   1975 
   1976   EmitBlock(contBlock);
   1977 
   1978   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
   1979                                          "cond-lvalue");
   1980   phi->addIncoming(lhs.getAddress(), lhsBlock);
   1981   phi->addIncoming(rhs.getAddress(), rhsBlock);
   1982   return MakeAddrLValue(phi, expr->getType());
   1983 }
   1984 
   1985 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
   1986 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
   1987 /// otherwise if a cast is needed by the code generator in an lvalue context,
   1988 /// then it must mean that we need the address of an aggregate in order to
   1989 /// access one of its fields.  This can happen for all the reasons that casts
   1990 /// are permitted with aggregate result, including noop aggregate casts, and
   1991 /// cast from scalar to union.
   1992 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   1993   switch (E->getCastKind()) {
   1994   case CK_ToVoid:
   1995     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   1996 
   1997   case CK_Dependent:
   1998     llvm_unreachable("dependent cast kind in IR gen!");
   1999 
   2000   case CK_GetObjCProperty: {
   2001     LValue LV = EmitLValue(E->getSubExpr());
   2002     assert(LV.isPropertyRef());
   2003     RValue RV = EmitLoadOfPropertyRefLValue(LV);
   2004 
   2005     // Property is an aggregate r-value.
   2006     if (RV.isAggregate()) {
   2007       return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2008     }
   2009 
   2010     // Implicit property returns an l-value.
   2011     assert(RV.isScalar());
   2012     return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
   2013   }
   2014 
   2015   case CK_NoOp:
   2016   case CK_LValueToRValue:
   2017     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
   2018         || E->getType()->isRecordType())
   2019       return EmitLValue(E->getSubExpr());
   2020     // Fall through to synthesize a temporary.
   2021 
   2022   case CK_BitCast:
   2023   case CK_ArrayToPointerDecay:
   2024   case CK_FunctionToPointerDecay:
   2025   case CK_NullToMemberPointer:
   2026   case CK_NullToPointer:
   2027   case CK_IntegralToPointer:
   2028   case CK_PointerToIntegral:
   2029   case CK_PointerToBoolean:
   2030   case CK_VectorSplat:
   2031   case CK_IntegralCast:
   2032   case CK_IntegralToBoolean:
   2033   case CK_IntegralToFloating:
   2034   case CK_FloatingToIntegral:
   2035   case CK_FloatingToBoolean:
   2036   case CK_FloatingCast:
   2037   case CK_FloatingRealToComplex:
   2038   case CK_FloatingComplexToReal:
   2039   case CK_FloatingComplexToBoolean:
   2040   case CK_FloatingComplexCast:
   2041   case CK_FloatingComplexToIntegralComplex:
   2042   case CK_IntegralRealToComplex:
   2043   case CK_IntegralComplexToReal:
   2044   case CK_IntegralComplexToBoolean:
   2045   case CK_IntegralComplexCast:
   2046   case CK_IntegralComplexToFloatingComplex:
   2047   case CK_DerivedToBaseMemberPointer:
   2048   case CK_BaseToDerivedMemberPointer:
   2049   case CK_MemberPointerToBoolean:
   2050   case CK_AnyPointerToBlockPointerCast:
   2051   case CK_ObjCProduceObject:
   2052   case CK_ObjCConsumeObject:
   2053   case CK_ObjCReclaimReturnedObject: {
   2054     // These casts only produce lvalues when we're binding a reference to a
   2055     // temporary realized from a (converted) pure rvalue. Emit the expression
   2056     // as a value, copy it into a temporary, and return an lvalue referring to
   2057     // that temporary.
   2058     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
   2059     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
   2060     return MakeAddrLValue(V, E->getType());
   2061   }
   2062 
   2063   case CK_Dynamic: {
   2064     LValue LV = EmitLValue(E->getSubExpr());
   2065     llvm::Value *V = LV.getAddress();
   2066     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
   2067     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   2068   }
   2069 
   2070   case CK_ConstructorConversion:
   2071   case CK_UserDefinedConversion:
   2072   case CK_AnyPointerToObjCPointerCast:
   2073     return EmitLValue(E->getSubExpr());
   2074 
   2075   case CK_UncheckedDerivedToBase:
   2076   case CK_DerivedToBase: {
   2077     const RecordType *DerivedClassTy =
   2078       E->getSubExpr()->getType()->getAs<RecordType>();
   2079     CXXRecordDecl *DerivedClassDecl =
   2080       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2081 
   2082     LValue LV = EmitLValue(E->getSubExpr());
   2083     llvm::Value *This = LV.getAddress();
   2084 
   2085     // Perform the derived-to-base conversion
   2086     llvm::Value *Base =
   2087       GetAddressOfBaseClass(This, DerivedClassDecl,
   2088                             E->path_begin(), E->path_end(),
   2089                             /*NullCheckValue=*/false);
   2090 
   2091     return MakeAddrLValue(Base, E->getType());
   2092   }
   2093   case CK_ToUnion:
   2094     return EmitAggExprToLValue(E);
   2095   case CK_BaseToDerived: {
   2096     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   2097     CXXRecordDecl *DerivedClassDecl =
   2098       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2099 
   2100     LValue LV = EmitLValue(E->getSubExpr());
   2101 
   2102     // Perform the base-to-derived conversion
   2103     llvm::Value *Derived =
   2104       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   2105                                E->path_begin(), E->path_end(),
   2106                                /*NullCheckValue=*/false);
   2107 
   2108     return MakeAddrLValue(Derived, E->getType());
   2109   }
   2110   case CK_LValueBitCast: {
   2111     // This must be a reinterpret_cast (or c-style equivalent).
   2112     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
   2113 
   2114     LValue LV = EmitLValue(E->getSubExpr());
   2115     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2116                                            ConvertType(CE->getTypeAsWritten()));
   2117     return MakeAddrLValue(V, E->getType());
   2118   }
   2119   case CK_ObjCObjectLValueCast: {
   2120     LValue LV = EmitLValue(E->getSubExpr());
   2121     QualType ToType = getContext().getLValueReferenceType(E->getType());
   2122     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2123                                            ConvertType(ToType));
   2124     return MakeAddrLValue(V, E->getType());
   2125   }
   2126   }
   2127 
   2128   llvm_unreachable("Unhandled lvalue cast kind?");
   2129 }
   2130 
   2131 LValue CodeGenFunction::EmitNullInitializationLValue(
   2132                                               const CXXScalarValueInitExpr *E) {
   2133   QualType Ty = E->getType();
   2134   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
   2135   EmitNullInitialization(LV.getAddress(), Ty);
   2136   return LV;
   2137 }
   2138 
   2139 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   2140   assert(e->isGLValue() || e->getType()->isRecordType());
   2141   return getOpaqueLValueMapping(e);
   2142 }
   2143 
   2144 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
   2145                                            const MaterializeTemporaryExpr *E) {
   2146   RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(),
   2147                                          /*InitializedDecl=*/0);
   2148   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   2149 }
   2150 
   2151 
   2152 //===--------------------------------------------------------------------===//
   2153 //                             Expression Emission
   2154 //===--------------------------------------------------------------------===//
   2155 
   2156 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   2157                                      ReturnValueSlot ReturnValue) {
   2158   if (CGDebugInfo *DI = getDebugInfo()) {
   2159     DI->setLocation(E->getLocStart());
   2160     DI->UpdateLineDirectiveRegion(Builder);
   2161     DI->EmitStopPoint(Builder);
   2162   }
   2163 
   2164   // Builtins never have block type.
   2165   if (E->getCallee()->getType()->isBlockPointerType())
   2166     return EmitBlockCallExpr(E, ReturnValue);
   2167 
   2168   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
   2169     return EmitCXXMemberCallExpr(CE, ReturnValue);
   2170 
   2171   const Decl *TargetDecl = 0;
   2172   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
   2173     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
   2174       TargetDecl = DRE->getDecl();
   2175       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
   2176         if (unsigned builtinID = FD->getBuiltinID())
   2177           return EmitBuiltinExpr(FD, builtinID, E);
   2178     }
   2179   }
   2180 
   2181   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
   2182     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   2183       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   2184 
   2185   if (const CXXPseudoDestructorExpr *PseudoDtor
   2186           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   2187     QualType DestroyedType = PseudoDtor->getDestroyedType();
   2188     if (getContext().getLangOptions().ObjCAutoRefCount &&
   2189         DestroyedType->isObjCLifetimeType() &&
   2190         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2191          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
   2192       // Automatic Reference Counting:
   2193       //   If the pseudo-expression names a retainable object with weak or
   2194       //   strong lifetime, the object shall be released.
   2195       Expr *BaseExpr = PseudoDtor->getBase();
   2196       llvm::Value *BaseValue = NULL;
   2197       Qualifiers BaseQuals;
   2198 
   2199       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   2200       if (PseudoDtor->isArrow()) {
   2201         BaseValue = EmitScalarExpr(BaseExpr);
   2202         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   2203         BaseQuals = PTy->getPointeeType().getQualifiers();
   2204       } else {
   2205         LValue BaseLV = EmitLValue(BaseExpr);
   2206         BaseValue = BaseLV.getAddress();
   2207         QualType BaseTy = BaseExpr->getType();
   2208         BaseQuals = BaseTy.getQualifiers();
   2209       }
   2210 
   2211       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
   2212       case Qualifiers::OCL_None:
   2213       case Qualifiers::OCL_ExplicitNone:
   2214       case Qualifiers::OCL_Autoreleasing:
   2215         break;
   2216 
   2217       case Qualifiers::OCL_Strong:
   2218         EmitARCRelease(Builder.CreateLoad(BaseValue,
   2219                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   2220                        /*precise*/ true);
   2221         break;
   2222 
   2223       case Qualifiers::OCL_Weak:
   2224         EmitARCDestroyWeak(BaseValue);
   2225         break;
   2226       }
   2227     } else {
   2228       // C++ [expr.pseudo]p1:
   2229       //   The result shall only be used as the operand for the function call
   2230       //   operator (), and the result of such a call has type void. The only
   2231       //   effect is the evaluation of the postfix-expression before the dot or
   2232       //   arrow.
   2233       EmitScalarExpr(E->getCallee());
   2234     }
   2235 
   2236     return RValue::get(0);
   2237   }
   2238 
   2239   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   2240   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
   2241                   E->arg_begin(), E->arg_end(), TargetDecl);
   2242 }
   2243 
   2244 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   2245   // Comma expressions just emit their LHS then their RHS as an l-value.
   2246   if (E->getOpcode() == BO_Comma) {
   2247     EmitIgnoredExpr(E->getLHS());
   2248     EnsureInsertPoint();
   2249     return EmitLValue(E->getRHS());
   2250   }
   2251 
   2252   if (E->getOpcode() == BO_PtrMemD ||
   2253       E->getOpcode() == BO_PtrMemI)
   2254     return EmitPointerToDataMemberBinaryExpr(E);
   2255 
   2256   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   2257 
   2258   // Note that in all of these cases, __block variables need the RHS
   2259   // evaluated first just in case the variable gets moved by the RHS.
   2260 
   2261   if (!hasAggregateLLVMType(E->getType())) {
   2262     switch (E->getLHS()->getType().getObjCLifetime()) {
   2263     case Qualifiers::OCL_Strong:
   2264       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   2265 
   2266     case Qualifiers::OCL_Autoreleasing:
   2267       return EmitARCStoreAutoreleasing(E).first;
   2268 
   2269     // No reason to do any of these differently.
   2270     case Qualifiers::OCL_None:
   2271     case Qualifiers::OCL_ExplicitNone:
   2272     case Qualifiers::OCL_Weak:
   2273       break;
   2274     }
   2275 
   2276     RValue RV = EmitAnyExpr(E->getRHS());
   2277     LValue LV = EmitLValue(E->getLHS());
   2278     EmitStoreThroughLValue(RV, LV);
   2279     return LV;
   2280   }
   2281 
   2282   if (E->getType()->isAnyComplexType())
   2283     return EmitComplexAssignmentLValue(E);
   2284 
   2285   return EmitAggExprToLValue(E);
   2286 }
   2287 
   2288 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   2289   RValue RV = EmitCallExpr(E);
   2290 
   2291   if (!RV.isScalar())
   2292     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2293 
   2294   assert(E->getCallReturnType()->isReferenceType() &&
   2295          "Can't have a scalar return unless the return type is a "
   2296          "reference type!");
   2297 
   2298   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   2299 }
   2300 
   2301 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   2302   // FIXME: This shouldn't require another copy.
   2303   return EmitAggExprToLValue(E);
   2304 }
   2305 
   2306 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   2307   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   2308          && "binding l-value to type which needs a temporary");
   2309   AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
   2310   EmitCXXConstructExpr(E, Slot);
   2311   return MakeAddrLValue(Slot.getAddr(), E->getType());
   2312 }
   2313 
   2314 LValue
   2315 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   2316   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   2317 }
   2318 
   2319 LValue
   2320 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   2321   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   2322   Slot.setLifetimeExternallyManaged();
   2323   EmitAggExpr(E->getSubExpr(), Slot);
   2324   EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
   2325   return MakeAddrLValue(Slot.getAddr(), E->getType());
   2326 }
   2327 
   2328 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   2329   RValue RV = EmitObjCMessageExpr(E);
   2330 
   2331   if (!RV.isScalar())
   2332     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2333 
   2334   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
   2335          "Can't have a scalar return unless the return type is a "
   2336          "reference type!");
   2337 
   2338   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   2339 }
   2340 
   2341 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   2342   llvm::Value *V =
   2343     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
   2344   return MakeAddrLValue(V, E->getType());
   2345 }
   2346 
   2347 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2348                                              const ObjCIvarDecl *Ivar) {
   2349   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   2350 }
   2351 
   2352 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   2353                                           llvm::Value *BaseValue,
   2354                                           const ObjCIvarDecl *Ivar,
   2355                                           unsigned CVRQualifiers) {
   2356   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   2357                                                    Ivar, CVRQualifiers);
   2358 }
   2359 
   2360 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   2361   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   2362   llvm::Value *BaseValue = 0;
   2363   const Expr *BaseExpr = E->getBase();
   2364   Qualifiers BaseQuals;
   2365   QualType ObjectTy;
   2366   if (E->isArrow()) {
   2367     BaseValue = EmitScalarExpr(BaseExpr);
   2368     ObjectTy = BaseExpr->getType()->getPointeeType();
   2369     BaseQuals = ObjectTy.getQualifiers();
   2370   } else {
   2371     LValue BaseLV = EmitLValue(BaseExpr);
   2372     // FIXME: this isn't right for bitfields.
   2373     BaseValue = BaseLV.getAddress();
   2374     ObjectTy = BaseExpr->getType();
   2375     BaseQuals = ObjectTy.getQualifiers();
   2376   }
   2377 
   2378   LValue LV =
   2379     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   2380                       BaseQuals.getCVRQualifiers());
   2381   setObjCGCLValueClass(getContext(), E, LV);
   2382   return LV;
   2383 }
   2384 
   2385 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   2386   // Can only get l-value for message expression returning aggregate type
   2387   RValue RV = EmitAnyExprToTemp(E);
   2388   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2389 }
   2390 
   2391 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   2392                                  ReturnValueSlot ReturnValue,
   2393                                  CallExpr::const_arg_iterator ArgBeg,
   2394                                  CallExpr::const_arg_iterator ArgEnd,
   2395                                  const Decl *TargetDecl) {
   2396   // Get the actual function type. The callee type will always be a pointer to
   2397   // function type or a block pointer type.
   2398   assert(CalleeType->isFunctionPointerType() &&
   2399          "Call must have function pointer type!");
   2400 
   2401   CalleeType = getContext().getCanonicalType(CalleeType);
   2402 
   2403   const FunctionType *FnType
   2404     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   2405 
   2406   CallArgList Args;
   2407   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
   2408 
   2409   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
   2410                   Callee, ReturnValue, Args, TargetDecl);
   2411 }
   2412 
   2413 LValue CodeGenFunction::
   2414 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   2415   llvm::Value *BaseV;
   2416   if (E->getOpcode() == BO_PtrMemI)
   2417     BaseV = EmitScalarExpr(E->getLHS());
   2418   else
   2419     BaseV = EmitLValue(E->getLHS()).getAddress();
   2420 
   2421   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   2422 
   2423   const MemberPointerType *MPT
   2424     = E->getRHS()->getType()->getAs<MemberPointerType>();
   2425 
   2426   llvm::Value *AddV =
   2427     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
   2428 
   2429   return MakeAddrLValue(AddV, MPT->getPointeeType());
   2430 }
   2431