1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a MachineCodeEmitter object that is used by the JIT to 11 // write machine code to memory and remember where relocatable values are. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "JIT.h" 17 #include "JITDebugRegisterer.h" 18 #include "JITDwarfEmitter.h" 19 #include "llvm/ADT/OwningPtr.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Module.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Analysis/DebugInfo.h" 24 #include "llvm/CodeGen/JITCodeEmitter.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineCodeInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/MachineRelocation.h" 31 #include "llvm/ExecutionEngine/GenericValue.h" 32 #include "llvm/ExecutionEngine/JITEventListener.h" 33 #include "llvm/ExecutionEngine/JITMemoryManager.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetJITInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MutexGuard.h" 43 #include "llvm/Support/ValueHandle.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Support/Disassembler.h" 46 #include "llvm/Support/Memory.h" 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/SmallPtrSet.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/ADT/ValueMap.h" 52 #include <algorithm> 53 #ifndef NDEBUG 54 #include <iomanip> 55 #endif 56 using namespace llvm; 57 58 STATISTIC(NumBytes, "Number of bytes of machine code compiled"); 59 STATISTIC(NumRelos, "Number of relocations applied"); 60 STATISTIC(NumRetries, "Number of retries with more memory"); 61 62 63 // A declaration may stop being a declaration once it's fully read from bitcode. 64 // This function returns true if F is fully read and is still a declaration. 65 static bool isNonGhostDeclaration(const Function *F) { 66 return F->isDeclaration() && !F->isMaterializable(); 67 } 68 69 //===----------------------------------------------------------------------===// 70 // JIT lazy compilation code. 71 // 72 namespace { 73 class JITEmitter; 74 class JITResolverState; 75 76 template<typename ValueTy> 77 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { 78 typedef JITResolverState *ExtraData; 79 static void onRAUW(JITResolverState *, Value *Old, Value *New) { 80 assert(false && "The JIT doesn't know how to handle a" 81 " RAUW on a value it has emitted."); 82 } 83 }; 84 85 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { 86 typedef JITResolverState *ExtraData; 87 static void onDelete(JITResolverState *JRS, Function *F); 88 }; 89 90 class JITResolverState { 91 public: 92 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > 93 FunctionToLazyStubMapTy; 94 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; 95 typedef ValueMap<Function *, SmallPtrSet<void*, 1>, 96 CallSiteValueMapConfig> FunctionToCallSitesMapTy; 97 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; 98 private: 99 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a 100 /// particular function so that we can reuse them if necessary. 101 FunctionToLazyStubMapTy FunctionToLazyStubMap; 102 103 /// CallSiteToFunctionMap - Keep track of the function that each lazy call 104 /// site corresponds to, and vice versa. 105 CallSiteToFunctionMapTy CallSiteToFunctionMap; 106 FunctionToCallSitesMapTy FunctionToCallSitesMap; 107 108 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a 109 /// particular GlobalVariable so that we can reuse them if necessary. 110 GlobalToIndirectSymMapTy GlobalToIndirectSymMap; 111 112 /// Instance of the JIT this ResolverState serves. 113 JIT *TheJIT; 114 115 public: 116 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), 117 FunctionToCallSitesMap(this), 118 TheJIT(jit) {} 119 120 FunctionToLazyStubMapTy& getFunctionToLazyStubMap( 121 const MutexGuard& locked) { 122 assert(locked.holds(TheJIT->lock)); 123 return FunctionToLazyStubMap; 124 } 125 126 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { 127 assert(lck.holds(TheJIT->lock)); 128 return GlobalToIndirectSymMap; 129 } 130 131 std::pair<void *, Function *> LookupFunctionFromCallSite( 132 const MutexGuard &locked, void *CallSite) const { 133 assert(locked.holds(TheJIT->lock)); 134 135 // The address given to us for the stub may not be exactly right, it 136 // might be a little bit after the stub. As such, use upper_bound to 137 // find it. 138 CallSiteToFunctionMapTy::const_iterator I = 139 CallSiteToFunctionMap.upper_bound(CallSite); 140 assert(I != CallSiteToFunctionMap.begin() && 141 "This is not a known call site!"); 142 --I; 143 return *I; 144 } 145 146 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { 147 assert(locked.holds(TheJIT->lock)); 148 149 bool Inserted = CallSiteToFunctionMap.insert( 150 std::make_pair(CallSite, F)).second; 151 (void)Inserted; 152 assert(Inserted && "Pair was already in CallSiteToFunctionMap"); 153 FunctionToCallSitesMap[F].insert(CallSite); 154 } 155 156 void EraseAllCallSitesForPrelocked(Function *F); 157 158 // Erases _all_ call sites regardless of their function. This is used to 159 // unregister the stub addresses from the StubToResolverMap in 160 // ~JITResolver(). 161 void EraseAllCallSitesPrelocked(); 162 }; 163 164 /// JITResolver - Keep track of, and resolve, call sites for functions that 165 /// have not yet been compiled. 166 class JITResolver { 167 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; 168 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; 169 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; 170 171 /// LazyResolverFn - The target lazy resolver function that we actually 172 /// rewrite instructions to use. 173 TargetJITInfo::LazyResolverFn LazyResolverFn; 174 175 JITResolverState state; 176 177 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap 178 /// for external functions. TODO: Of course, external functions don't need 179 /// a lazy stub. It's actually here to make it more likely that far calls 180 /// succeed, but no single stub can guarantee that. I'll remove this in a 181 /// subsequent checkin when I actually fix far calls. 182 std::map<void*, void*> ExternalFnToStubMap; 183 184 /// revGOTMap - map addresses to indexes in the GOT 185 std::map<void*, unsigned> revGOTMap; 186 unsigned nextGOTIndex; 187 188 JITEmitter &JE; 189 190 /// Instance of JIT corresponding to this Resolver. 191 JIT *TheJIT; 192 193 public: 194 explicit JITResolver(JIT &jit, JITEmitter &je) 195 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { 196 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); 197 } 198 199 ~JITResolver(); 200 201 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's 202 /// lazy-compilation stub if it has already been created. 203 void *getLazyFunctionStubIfAvailable(Function *F); 204 205 /// getLazyFunctionStub - This returns a pointer to a function's 206 /// lazy-compilation stub, creating one on demand as needed. 207 void *getLazyFunctionStub(Function *F); 208 209 /// getExternalFunctionStub - Return a stub for the function at the 210 /// specified address, created lazily on demand. 211 void *getExternalFunctionStub(void *FnAddr); 212 213 /// getGlobalValueIndirectSym - Return an indirect symbol containing the 214 /// specified GV address. 215 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); 216 217 /// getGOTIndexForAddress - Return a new or existing index in the GOT for 218 /// an address. This function only manages slots, it does not manage the 219 /// contents of the slots or the memory associated with the GOT. 220 unsigned getGOTIndexForAddr(void *addr); 221 222 /// JITCompilerFn - This function is called to resolve a stub to a compiled 223 /// address. If the LLVM Function corresponding to the stub has not yet 224 /// been compiled, this function compiles it first. 225 static void *JITCompilerFn(void *Stub); 226 }; 227 228 class StubToResolverMapTy { 229 /// Map a stub address to a specific instance of a JITResolver so that 230 /// lazily-compiled functions can find the right resolver to use. 231 /// 232 /// Guarded by Lock. 233 std::map<void*, JITResolver*> Map; 234 235 /// Guards Map from concurrent accesses. 236 mutable sys::Mutex Lock; 237 238 public: 239 /// Registers a Stub to be resolved by Resolver. 240 void RegisterStubResolver(void *Stub, JITResolver *Resolver) { 241 MutexGuard guard(Lock); 242 Map.insert(std::make_pair(Stub, Resolver)); 243 } 244 /// Unregisters the Stub when it's invalidated. 245 void UnregisterStubResolver(void *Stub) { 246 MutexGuard guard(Lock); 247 Map.erase(Stub); 248 } 249 /// Returns the JITResolver instance that owns the Stub. 250 JITResolver *getResolverFromStub(void *Stub) const { 251 MutexGuard guard(Lock); 252 // The address given to us for the stub may not be exactly right, it might 253 // be a little bit after the stub. As such, use upper_bound to find it. 254 // This is the same trick as in LookupFunctionFromCallSite from 255 // JITResolverState. 256 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); 257 assert(I != Map.begin() && "This is not a known stub!"); 258 --I; 259 return I->second; 260 } 261 /// True if any stubs refer to the given resolver. Only used in an assert(). 262 /// O(N) 263 bool ResolverHasStubs(JITResolver* Resolver) const { 264 MutexGuard guard(Lock); 265 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), 266 E = Map.end(); I != E; ++I) { 267 if (I->second == Resolver) 268 return true; 269 } 270 return false; 271 } 272 }; 273 /// This needs to be static so that a lazy call stub can access it with no 274 /// context except the address of the stub. 275 ManagedStatic<StubToResolverMapTy> StubToResolverMap; 276 277 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is 278 /// used to output functions to memory for execution. 279 class JITEmitter : public JITCodeEmitter { 280 JITMemoryManager *MemMgr; 281 282 // When outputting a function stub in the context of some other function, we 283 // save BufferBegin/BufferEnd/CurBufferPtr here. 284 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; 285 286 // When reattempting to JIT a function after running out of space, we store 287 // the estimated size of the function we're trying to JIT here, so we can 288 // ask the memory manager for at least this much space. When we 289 // successfully emit the function, we reset this back to zero. 290 uintptr_t SizeEstimate; 291 292 /// Relocations - These are the relocations that the function needs, as 293 /// emitted. 294 std::vector<MachineRelocation> Relocations; 295 296 /// MBBLocations - This vector is a mapping from MBB ID's to their address. 297 /// It is filled in by the StartMachineBasicBlock callback and queried by 298 /// the getMachineBasicBlockAddress callback. 299 std::vector<uintptr_t> MBBLocations; 300 301 /// ConstantPool - The constant pool for the current function. 302 /// 303 MachineConstantPool *ConstantPool; 304 305 /// ConstantPoolBase - A pointer to the first entry in the constant pool. 306 /// 307 void *ConstantPoolBase; 308 309 /// ConstPoolAddresses - Addresses of individual constant pool entries. 310 /// 311 SmallVector<uintptr_t, 8> ConstPoolAddresses; 312 313 /// JumpTable - The jump tables for the current function. 314 /// 315 MachineJumpTableInfo *JumpTable; 316 317 /// JumpTableBase - A pointer to the first entry in the jump table. 318 /// 319 void *JumpTableBase; 320 321 /// Resolver - This contains info about the currently resolved functions. 322 JITResolver Resolver; 323 324 /// DE - The dwarf emitter for the jit. 325 OwningPtr<JITDwarfEmitter> DE; 326 327 /// DR - The debug registerer for the jit. 328 OwningPtr<JITDebugRegisterer> DR; 329 330 /// LabelLocations - This vector is a mapping from Label ID's to their 331 /// address. 332 DenseMap<MCSymbol*, uintptr_t> LabelLocations; 333 334 /// MMI - Machine module info for exception informations 335 MachineModuleInfo* MMI; 336 337 // CurFn - The llvm function being emitted. Only valid during 338 // finishFunction(). 339 const Function *CurFn; 340 341 /// Information about emitted code, which is passed to the 342 /// JITEventListeners. This is reset in startFunction and used in 343 /// finishFunction. 344 JITEvent_EmittedFunctionDetails EmissionDetails; 345 346 struct EmittedCode { 347 void *FunctionBody; // Beginning of the function's allocation. 348 void *Code; // The address the function's code actually starts at. 349 void *ExceptionTable; 350 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} 351 }; 352 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { 353 typedef JITEmitter *ExtraData; 354 static void onDelete(JITEmitter *, const Function*); 355 static void onRAUW(JITEmitter *, const Function*, const Function*); 356 }; 357 ValueMap<const Function *, EmittedCode, 358 EmittedFunctionConfig> EmittedFunctions; 359 360 DebugLoc PrevDL; 361 362 /// Instance of the JIT 363 JIT *TheJIT; 364 365 public: 366 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) 367 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), 368 EmittedFunctions(this), TheJIT(&jit) { 369 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); 370 if (jit.getJITInfo().needsGOT()) { 371 MemMgr->AllocateGOT(); 372 DEBUG(dbgs() << "JIT is managing a GOT\n"); 373 } 374 375 if (JITExceptionHandling || JITEmitDebugInfo) { 376 DE.reset(new JITDwarfEmitter(jit)); 377 } 378 if (JITEmitDebugInfo) { 379 DR.reset(new JITDebugRegisterer(TM)); 380 } 381 } 382 ~JITEmitter() { 383 delete MemMgr; 384 } 385 386 /// classof - Methods for support type inquiry through isa, cast, and 387 /// dyn_cast: 388 /// 389 static inline bool classof(const MachineCodeEmitter*) { return true; } 390 391 JITResolver &getJITResolver() { return Resolver; } 392 393 virtual void startFunction(MachineFunction &F); 394 virtual bool finishFunction(MachineFunction &F); 395 396 void emitConstantPool(MachineConstantPool *MCP); 397 void initJumpTableInfo(MachineJumpTableInfo *MJTI); 398 void emitJumpTableInfo(MachineJumpTableInfo *MJTI); 399 400 void startGVStub(const GlobalValue* GV, 401 unsigned StubSize, unsigned Alignment = 1); 402 void startGVStub(void *Buffer, unsigned StubSize); 403 void finishGVStub(); 404 virtual void *allocIndirectGV(const GlobalValue *GV, 405 const uint8_t *Buffer, size_t Size, 406 unsigned Alignment); 407 408 /// allocateSpace - Reserves space in the current block if any, or 409 /// allocate a new one of the given size. 410 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); 411 412 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 413 /// this method does not allocate memory in the current output buffer, 414 /// because a global may live longer than the current function. 415 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); 416 417 virtual void addRelocation(const MachineRelocation &MR) { 418 Relocations.push_back(MR); 419 } 420 421 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { 422 if (MBBLocations.size() <= (unsigned)MBB->getNumber()) 423 MBBLocations.resize((MBB->getNumber()+1)*2); 424 MBBLocations[MBB->getNumber()] = getCurrentPCValue(); 425 if (MBB->hasAddressTaken()) 426 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), 427 (void*)getCurrentPCValue()); 428 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" 429 << (void*) getCurrentPCValue() << "]\n"); 430 } 431 432 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; 433 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; 434 435 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ 436 assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 437 MBBLocations[MBB->getNumber()] && "MBB not emitted!"); 438 return MBBLocations[MBB->getNumber()]; 439 } 440 441 /// retryWithMoreMemory - Log a retry and deallocate all memory for the 442 /// given function. Increase the minimum allocation size so that we get 443 /// more memory next time. 444 void retryWithMoreMemory(MachineFunction &F); 445 446 /// deallocateMemForFunction - Deallocate all memory for the specified 447 /// function body. 448 void deallocateMemForFunction(const Function *F); 449 450 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); 451 452 virtual void emitLabel(MCSymbol *Label) { 453 LabelLocations[Label] = getCurrentPCValue(); 454 } 455 456 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { 457 return &LabelLocations; 458 } 459 460 virtual uintptr_t getLabelAddress(MCSymbol *Label) const { 461 assert(LabelLocations.count(Label) && "Label not emitted!"); 462 return LabelLocations.find(Label)->second; 463 } 464 465 virtual void setModuleInfo(MachineModuleInfo* Info) { 466 MMI = Info; 467 if (DE.get()) DE->setModuleInfo(Info); 468 } 469 470 private: 471 void *getPointerToGlobal(GlobalValue *GV, void *Reference, 472 bool MayNeedFarStub); 473 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); 474 }; 475 } 476 477 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { 478 JRS->EraseAllCallSitesForPrelocked(F); 479 } 480 481 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { 482 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); 483 if (F2C == FunctionToCallSitesMap.end()) 484 return; 485 StubToResolverMapTy &S2RMap = *StubToResolverMap; 486 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), 487 E = F2C->second.end(); I != E; ++I) { 488 S2RMap.UnregisterStubResolver(*I); 489 bool Erased = CallSiteToFunctionMap.erase(*I); 490 (void)Erased; 491 assert(Erased && "Missing call site->function mapping"); 492 } 493 FunctionToCallSitesMap.erase(F2C); 494 } 495 496 void JITResolverState::EraseAllCallSitesPrelocked() { 497 StubToResolverMapTy &S2RMap = *StubToResolverMap; 498 for (CallSiteToFunctionMapTy::const_iterator 499 I = CallSiteToFunctionMap.begin(), 500 E = CallSiteToFunctionMap.end(); I != E; ++I) { 501 S2RMap.UnregisterStubResolver(I->first); 502 } 503 CallSiteToFunctionMap.clear(); 504 FunctionToCallSitesMap.clear(); 505 } 506 507 JITResolver::~JITResolver() { 508 // No need to lock because we're in the destructor, and state isn't shared. 509 state.EraseAllCallSitesPrelocked(); 510 assert(!StubToResolverMap->ResolverHasStubs(this) && 511 "Resolver destroyed with stubs still alive."); 512 } 513 514 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub 515 /// if it has already been created. 516 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { 517 MutexGuard locked(TheJIT->lock); 518 519 // If we already have a stub for this function, recycle it. 520 return state.getFunctionToLazyStubMap(locked).lookup(F); 521 } 522 523 /// getFunctionStub - This returns a pointer to a function stub, creating 524 /// one on demand as needed. 525 void *JITResolver::getLazyFunctionStub(Function *F) { 526 MutexGuard locked(TheJIT->lock); 527 528 // If we already have a lazy stub for this function, recycle it. 529 void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; 530 if (Stub) return Stub; 531 532 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we 533 // must resolve the symbol now. 534 void *Actual = TheJIT->isCompilingLazily() 535 ? (void *)(intptr_t)LazyResolverFn : (void *)0; 536 537 // If this is an external declaration, attempt to resolve the address now 538 // to place in the stub. 539 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { 540 Actual = TheJIT->getPointerToFunction(F); 541 542 // If we resolved the symbol to a null address (eg. a weak external) 543 // don't emit a stub. Return a null pointer to the application. 544 if (!Actual) return 0; 545 } 546 547 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 548 JE.startGVStub(F, SL.Size, SL.Alignment); 549 // Codegen a new stub, calling the lazy resolver or the actual address of the 550 // external function, if it was resolved. 551 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); 552 JE.finishGVStub(); 553 554 if (Actual != (void*)(intptr_t)LazyResolverFn) { 555 // If we are getting the stub for an external function, we really want the 556 // address of the stub in the GlobalAddressMap for the JIT, not the address 557 // of the external function. 558 TheJIT->updateGlobalMapping(F, Stub); 559 } 560 561 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" 562 << F->getName() << "'\n"); 563 564 if (TheJIT->isCompilingLazily()) { 565 // Register this JITResolver as the one corresponding to this call site so 566 // JITCompilerFn will be able to find it. 567 StubToResolverMap->RegisterStubResolver(Stub, this); 568 569 // Finally, keep track of the stub-to-Function mapping so that the 570 // JITCompilerFn knows which function to compile! 571 state.AddCallSite(locked, Stub, F); 572 } else if (!Actual) { 573 // If we are JIT'ing non-lazily but need to call a function that does not 574 // exist yet, add it to the JIT's work list so that we can fill in the 575 // stub address later. 576 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && 577 "'Actual' should have been set above."); 578 TheJIT->addPendingFunction(F); 579 } 580 581 return Stub; 582 } 583 584 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified 585 /// GV address. 586 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { 587 MutexGuard locked(TheJIT->lock); 588 589 // If we already have a stub for this global variable, recycle it. 590 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; 591 if (IndirectSym) return IndirectSym; 592 593 // Otherwise, codegen a new indirect symbol. 594 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, 595 JE); 596 597 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym 598 << "] for GV '" << GV->getName() << "'\n"); 599 600 return IndirectSym; 601 } 602 603 /// getExternalFunctionStub - Return a stub for the function at the 604 /// specified address, created lazily on demand. 605 void *JITResolver::getExternalFunctionStub(void *FnAddr) { 606 // If we already have a stub for this function, recycle it. 607 void *&Stub = ExternalFnToStubMap[FnAddr]; 608 if (Stub) return Stub; 609 610 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 611 JE.startGVStub(0, SL.Size, SL.Alignment); 612 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); 613 JE.finishGVStub(); 614 615 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub 616 << "] for external function at '" << FnAddr << "'\n"); 617 return Stub; 618 } 619 620 unsigned JITResolver::getGOTIndexForAddr(void* addr) { 621 unsigned idx = revGOTMap[addr]; 622 if (!idx) { 623 idx = ++nextGOTIndex; 624 revGOTMap[addr] = idx; 625 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" 626 << addr << "]\n"); 627 } 628 return idx; 629 } 630 631 /// JITCompilerFn - This function is called when a lazy compilation stub has 632 /// been entered. It looks up which function this stub corresponds to, compiles 633 /// it if necessary, then returns the resultant function pointer. 634 void *JITResolver::JITCompilerFn(void *Stub) { 635 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); 636 assert(JR && "Unable to find the corresponding JITResolver to the call site"); 637 638 Function* F = 0; 639 void* ActualPtr = 0; 640 641 { 642 // Only lock for getting the Function. The call getPointerToFunction made 643 // in this function might trigger function materializing, which requires 644 // JIT lock to be unlocked. 645 MutexGuard locked(JR->TheJIT->lock); 646 647 // The address given to us for the stub may not be exactly right, it might 648 // be a little bit after the stub. As such, use upper_bound to find it. 649 std::pair<void*, Function*> I = 650 JR->state.LookupFunctionFromCallSite(locked, Stub); 651 F = I.second; 652 ActualPtr = I.first; 653 } 654 655 // If we have already code generated the function, just return the address. 656 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); 657 658 if (!Result) { 659 // Otherwise we don't have it, do lazy compilation now. 660 661 // If lazy compilation is disabled, emit a useful error message and abort. 662 if (!JR->TheJIT->isCompilingLazily()) { 663 report_fatal_error("LLVM JIT requested to do lazy compilation of" 664 " function '" 665 + F->getName() + "' when lazy compiles are disabled!"); 666 } 667 668 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() 669 << "' In stub ptr = " << Stub << " actual ptr = " 670 << ActualPtr << "\n"); 671 672 Result = JR->TheJIT->getPointerToFunction(F); 673 } 674 675 // Reacquire the lock to update the GOT map. 676 MutexGuard locked(JR->TheJIT->lock); 677 678 // We might like to remove the call site from the CallSiteToFunction map, but 679 // we can't do that! Multiple threads could be stuck, waiting to acquire the 680 // lock above. As soon as the 1st function finishes compiling the function, 681 // the next one will be released, and needs to be able to find the function it 682 // needs to call. 683 684 // FIXME: We could rewrite all references to this stub if we knew them. 685 686 // What we will do is set the compiled function address to map to the 687 // same GOT entry as the stub so that later clients may update the GOT 688 // if they see it still using the stub address. 689 // Note: this is done so the Resolver doesn't have to manage GOT memory 690 // Do this without allocating map space if the target isn't using a GOT 691 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) 692 JR->revGOTMap[Result] = JR->revGOTMap[Stub]; 693 694 return Result; 695 } 696 697 //===----------------------------------------------------------------------===// 698 // JITEmitter code. 699 // 700 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, 701 bool MayNeedFarStub) { 702 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 703 return TheJIT->getOrEmitGlobalVariable(GV); 704 705 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 706 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); 707 708 // If we have already compiled the function, return a pointer to its body. 709 Function *F = cast<Function>(V); 710 711 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); 712 if (FnStub) { 713 // Return the function stub if it's already created. We do this first so 714 // that we're returning the same address for the function as any previous 715 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be 716 // close enough to call. 717 return FnStub; 718 } 719 720 // If we know the target can handle arbitrary-distance calls, try to 721 // return a direct pointer. 722 if (!MayNeedFarStub) { 723 // If we have code, go ahead and return that. 724 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); 725 if (ResultPtr) return ResultPtr; 726 727 // If this is an external function pointer, we can force the JIT to 728 // 'compile' it, which really just adds it to the map. 729 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) 730 return TheJIT->getPointerToFunction(F); 731 } 732 733 // Otherwise, we may need a to emit a stub, and, conservatively, we always do 734 // so. Note that it's possible to return null from getLazyFunctionStub in the 735 // case of a weak extern that fails to resolve. 736 return Resolver.getLazyFunctionStub(F); 737 } 738 739 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { 740 // Make sure GV is emitted first, and create a stub containing the fully 741 // resolved address. 742 void *GVAddress = getPointerToGlobal(V, Reference, false); 743 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); 744 return StubAddr; 745 } 746 747 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { 748 if (DL.isUnknown()) return; 749 if (!BeforePrintingInsn) return; 750 751 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); 752 753 if (DL.getScope(Context) != 0 && PrevDL != DL) { 754 JITEvent_EmittedFunctionDetails::LineStart NextLine; 755 NextLine.Address = getCurrentPCValue(); 756 NextLine.Loc = DL; 757 EmissionDetails.LineStarts.push_back(NextLine); 758 } 759 760 PrevDL = DL; 761 } 762 763 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, 764 const TargetData *TD) { 765 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 766 if (Constants.empty()) return 0; 767 768 unsigned Size = 0; 769 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 770 MachineConstantPoolEntry CPE = Constants[i]; 771 unsigned AlignMask = CPE.getAlignment() - 1; 772 Size = (Size + AlignMask) & ~AlignMask; 773 Type *Ty = CPE.getType(); 774 Size += TD->getTypeAllocSize(Ty); 775 } 776 return Size; 777 } 778 779 void JITEmitter::startFunction(MachineFunction &F) { 780 DEBUG(dbgs() << "JIT: Starting CodeGen of Function " 781 << F.getFunction()->getName() << "\n"); 782 783 uintptr_t ActualSize = 0; 784 // Set the memory writable, if it's not already 785 MemMgr->setMemoryWritable(); 786 787 if (SizeEstimate > 0) { 788 // SizeEstimate will be non-zero on reallocation attempts. 789 ActualSize = SizeEstimate; 790 } 791 792 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), 793 ActualSize); 794 BufferEnd = BufferBegin+ActualSize; 795 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; 796 797 // Ensure the constant pool/jump table info is at least 4-byte aligned. 798 emitAlignment(16); 799 800 emitConstantPool(F.getConstantPool()); 801 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 802 initJumpTableInfo(MJTI); 803 804 // About to start emitting the machine code for the function. 805 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); 806 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); 807 EmittedFunctions[F.getFunction()].Code = CurBufferPtr; 808 809 MBBLocations.clear(); 810 811 EmissionDetails.MF = &F; 812 EmissionDetails.LineStarts.clear(); 813 } 814 815 bool JITEmitter::finishFunction(MachineFunction &F) { 816 if (CurBufferPtr == BufferEnd) { 817 // We must call endFunctionBody before retrying, because 818 // deallocateMemForFunction requires it. 819 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 820 retryWithMoreMemory(F); 821 return true; 822 } 823 824 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 825 emitJumpTableInfo(MJTI); 826 827 // FnStart is the start of the text, not the start of the constant pool and 828 // other per-function data. 829 uint8_t *FnStart = 830 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); 831 832 // FnEnd is the end of the function's machine code. 833 uint8_t *FnEnd = CurBufferPtr; 834 835 if (!Relocations.empty()) { 836 CurFn = F.getFunction(); 837 NumRelos += Relocations.size(); 838 839 // Resolve the relocations to concrete pointers. 840 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { 841 MachineRelocation &MR = Relocations[i]; 842 void *ResultPtr = 0; 843 if (!MR.letTargetResolve()) { 844 if (MR.isExternalSymbol()) { 845 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), 846 false); 847 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" 848 << ResultPtr << "]\n"); 849 850 // If the target REALLY wants a stub for this function, emit it now. 851 if (MR.mayNeedFarStub()) { 852 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); 853 } 854 } else if (MR.isGlobalValue()) { 855 ResultPtr = getPointerToGlobal(MR.getGlobalValue(), 856 BufferBegin+MR.getMachineCodeOffset(), 857 MR.mayNeedFarStub()); 858 } else if (MR.isIndirectSymbol()) { 859 ResultPtr = getPointerToGVIndirectSym( 860 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); 861 } else if (MR.isBasicBlock()) { 862 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); 863 } else if (MR.isConstantPoolIndex()) { 864 ResultPtr = 865 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); 866 } else { 867 assert(MR.isJumpTableIndex()); 868 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); 869 } 870 871 MR.setResultPointer(ResultPtr); 872 } 873 874 // if we are managing the GOT and the relocation wants an index, 875 // give it one 876 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { 877 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); 878 MR.setGOTIndex(idx); 879 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { 880 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr 881 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 882 << "\n"); 883 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; 884 } 885 } 886 } 887 888 CurFn = 0; 889 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], 890 Relocations.size(), MemMgr->getGOTBase()); 891 } 892 893 // Update the GOT entry for F to point to the new code. 894 if (MemMgr->isManagingGOT()) { 895 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); 896 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { 897 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin 898 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 899 << "\n"); 900 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; 901 } 902 } 903 904 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for 905 // global variables that were referenced in the relocations. 906 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 907 908 if (CurBufferPtr == BufferEnd) { 909 retryWithMoreMemory(F); 910 return true; 911 } else { 912 // Now that we've succeeded in emitting the function, reset the 913 // SizeEstimate back down to zero. 914 SizeEstimate = 0; 915 } 916 917 BufferBegin = CurBufferPtr = 0; 918 NumBytes += FnEnd-FnStart; 919 920 // Invalidate the icache if necessary. 921 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); 922 923 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, 924 EmissionDetails); 925 926 // Reset the previous debug location. 927 PrevDL = DebugLoc(); 928 929 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart 930 << "] Function: " << F.getFunction()->getName() 931 << ": " << (FnEnd-FnStart) << " bytes of text, " 932 << Relocations.size() << " relocations\n"); 933 934 Relocations.clear(); 935 ConstPoolAddresses.clear(); 936 937 // Mark code region readable and executable if it's not so already. 938 MemMgr->setMemoryExecutable(); 939 940 DEBUG({ 941 if (sys::hasDisassembler()) { 942 dbgs() << "JIT: Disassembled code:\n"; 943 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, 944 (uintptr_t)FnStart); 945 } else { 946 dbgs() << "JIT: Binary code:\n"; 947 uint8_t* q = FnStart; 948 for (int i = 0; q < FnEnd; q += 4, ++i) { 949 if (i == 4) 950 i = 0; 951 if (i == 0) 952 dbgs() << "JIT: " << (long)(q - FnStart) << ": "; 953 bool Done = false; 954 for (int j = 3; j >= 0; --j) { 955 if (q + j >= FnEnd) 956 Done = true; 957 else 958 dbgs() << (unsigned short)q[j]; 959 } 960 if (Done) 961 break; 962 dbgs() << ' '; 963 if (i == 3) 964 dbgs() << '\n'; 965 } 966 dbgs()<< '\n'; 967 } 968 }); 969 970 if (JITExceptionHandling || JITEmitDebugInfo) { 971 uintptr_t ActualSize = 0; 972 SavedBufferBegin = BufferBegin; 973 SavedBufferEnd = BufferEnd; 974 SavedCurBufferPtr = CurBufferPtr; 975 976 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), 977 ActualSize); 978 BufferEnd = BufferBegin+ActualSize; 979 EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; 980 uint8_t *EhStart; 981 uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, 982 EhStart); 983 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, 984 FrameRegister); 985 uint8_t *EhEnd = CurBufferPtr; 986 BufferBegin = SavedBufferBegin; 987 BufferEnd = SavedBufferEnd; 988 CurBufferPtr = SavedCurBufferPtr; 989 990 if (JITExceptionHandling) { 991 TheJIT->RegisterTable(F.getFunction(), FrameRegister); 992 } 993 994 if (JITEmitDebugInfo) { 995 DebugInfo I; 996 I.FnStart = FnStart; 997 I.FnEnd = FnEnd; 998 I.EhStart = EhStart; 999 I.EhEnd = EhEnd; 1000 DR->RegisterFunction(F.getFunction(), I); 1001 } 1002 } 1003 1004 if (MMI) 1005 MMI->EndFunction(); 1006 1007 return false; 1008 } 1009 1010 void JITEmitter::retryWithMoreMemory(MachineFunction &F) { 1011 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); 1012 Relocations.clear(); // Clear the old relocations or we'll reapply them. 1013 ConstPoolAddresses.clear(); 1014 ++NumRetries; 1015 deallocateMemForFunction(F.getFunction()); 1016 // Try again with at least twice as much free space. 1017 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); 1018 1019 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ 1020 if (MBB->hasAddressTaken()) 1021 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); 1022 } 1023 } 1024 1025 /// deallocateMemForFunction - Deallocate all memory for the specified 1026 /// function body. Also drop any references the function has to stubs. 1027 /// May be called while the Function is being destroyed inside ~Value(). 1028 void JITEmitter::deallocateMemForFunction(const Function *F) { 1029 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator 1030 Emitted = EmittedFunctions.find(F); 1031 if (Emitted != EmittedFunctions.end()) { 1032 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); 1033 MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); 1034 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); 1035 1036 EmittedFunctions.erase(Emitted); 1037 } 1038 1039 if(JITExceptionHandling) { 1040 TheJIT->DeregisterTable(F); 1041 } 1042 1043 if (JITEmitDebugInfo) { 1044 DR->UnregisterFunction(F); 1045 } 1046 } 1047 1048 1049 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { 1050 if (BufferBegin) 1051 return JITCodeEmitter::allocateSpace(Size, Alignment); 1052 1053 // create a new memory block if there is no active one. 1054 // care must be taken so that BufferBegin is invalidated when a 1055 // block is trimmed 1056 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); 1057 BufferEnd = BufferBegin+Size; 1058 return CurBufferPtr; 1059 } 1060 1061 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { 1062 // Delegate this call through the memory manager. 1063 return MemMgr->allocateGlobal(Size, Alignment); 1064 } 1065 1066 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { 1067 if (TheJIT->getJITInfo().hasCustomConstantPool()) 1068 return; 1069 1070 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 1071 if (Constants.empty()) return; 1072 1073 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); 1074 unsigned Align = MCP->getConstantPoolAlignment(); 1075 ConstantPoolBase = allocateSpace(Size, Align); 1076 ConstantPool = MCP; 1077 1078 if (ConstantPoolBase == 0) return; // Buffer overflow. 1079 1080 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase 1081 << "] (size: " << Size << ", alignment: " << Align << ")\n"); 1082 1083 // Initialize the memory for all of the constant pool entries. 1084 unsigned Offset = 0; 1085 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1086 MachineConstantPoolEntry CPE = Constants[i]; 1087 unsigned AlignMask = CPE.getAlignment() - 1; 1088 Offset = (Offset + AlignMask) & ~AlignMask; 1089 1090 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; 1091 ConstPoolAddresses.push_back(CAddr); 1092 if (CPE.isMachineConstantPoolEntry()) { 1093 // FIXME: add support to lower machine constant pool values into bytes! 1094 report_fatal_error("Initialize memory with machine specific constant pool" 1095 "entry has not been implemented!"); 1096 } 1097 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); 1098 DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; 1099 dbgs().write_hex(CAddr) << "]\n"); 1100 1101 Type *Ty = CPE.Val.ConstVal->getType(); 1102 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); 1103 } 1104 } 1105 1106 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { 1107 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1108 return; 1109 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) 1110 return; 1111 1112 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1113 if (JT.empty()) return; 1114 1115 unsigned NumEntries = 0; 1116 for (unsigned i = 0, e = JT.size(); i != e; ++i) 1117 NumEntries += JT[i].MBBs.size(); 1118 1119 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData()); 1120 1121 // Just allocate space for all the jump tables now. We will fix up the actual 1122 // MBB entries in the tables after we emit the code for each block, since then 1123 // we will know the final locations of the MBBs in memory. 1124 JumpTable = MJTI; 1125 JumpTableBase = allocateSpace(NumEntries * EntrySize, 1126 MJTI->getEntryAlignment(*TheJIT->getTargetData())); 1127 } 1128 1129 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { 1130 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1131 return; 1132 1133 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1134 if (JT.empty() || JumpTableBase == 0) return; 1135 1136 1137 switch (MJTI->getEntryKind()) { 1138 case MachineJumpTableInfo::EK_Inline: 1139 return; 1140 case MachineJumpTableInfo::EK_BlockAddress: { 1141 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1142 // .word LBB123 1143 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) && 1144 "Cross JIT'ing?"); 1145 1146 // For each jump table, map each target in the jump table to the address of 1147 // an emitted MachineBasicBlock. 1148 intptr_t *SlotPtr = (intptr_t*)JumpTableBase; 1149 1150 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1151 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1152 // Store the address of the basic block for this jump table slot in the 1153 // memory we allocated for the jump table in 'initJumpTableInfo' 1154 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) 1155 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); 1156 } 1157 break; 1158 } 1159 1160 case MachineJumpTableInfo::EK_Custom32: 1161 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1162 case MachineJumpTableInfo::EK_LabelDifference32: { 1163 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?"); 1164 // For each jump table, place the offset from the beginning of the table 1165 // to the target address. 1166 int *SlotPtr = (int*)JumpTableBase; 1167 1168 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1169 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1170 // Store the offset of the basic block for this jump table slot in the 1171 // memory we allocated for the jump table in 'initJumpTableInfo' 1172 uintptr_t Base = (uintptr_t)SlotPtr; 1173 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { 1174 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); 1175 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. 1176 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); 1177 } 1178 } 1179 break; 1180 } 1181 } 1182 } 1183 1184 void JITEmitter::startGVStub(const GlobalValue* GV, 1185 unsigned StubSize, unsigned Alignment) { 1186 SavedBufferBegin = BufferBegin; 1187 SavedBufferEnd = BufferEnd; 1188 SavedCurBufferPtr = CurBufferPtr; 1189 1190 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); 1191 BufferEnd = BufferBegin+StubSize+1; 1192 } 1193 1194 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { 1195 SavedBufferBegin = BufferBegin; 1196 SavedBufferEnd = BufferEnd; 1197 SavedCurBufferPtr = CurBufferPtr; 1198 1199 BufferBegin = CurBufferPtr = (uint8_t *)Buffer; 1200 BufferEnd = BufferBegin+StubSize+1; 1201 } 1202 1203 void JITEmitter::finishGVStub() { 1204 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); 1205 NumBytes += getCurrentPCOffset(); 1206 BufferBegin = SavedBufferBegin; 1207 BufferEnd = SavedBufferEnd; 1208 CurBufferPtr = SavedCurBufferPtr; 1209 } 1210 1211 void *JITEmitter::allocIndirectGV(const GlobalValue *GV, 1212 const uint8_t *Buffer, size_t Size, 1213 unsigned Alignment) { 1214 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); 1215 memcpy(IndGV, Buffer, Size); 1216 return IndGV; 1217 } 1218 1219 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry 1220 // in the constant pool that was last emitted with the 'emitConstantPool' 1221 // method. 1222 // 1223 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { 1224 assert(ConstantNum < ConstantPool->getConstants().size() && 1225 "Invalid ConstantPoolIndex!"); 1226 return ConstPoolAddresses[ConstantNum]; 1227 } 1228 1229 // getJumpTableEntryAddress - Return the address of the JumpTable with index 1230 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' 1231 // 1232 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { 1233 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); 1234 assert(Index < JT.size() && "Invalid jump table index!"); 1235 1236 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData()); 1237 1238 unsigned Offset = 0; 1239 for (unsigned i = 0; i < Index; ++i) 1240 Offset += JT[i].MBBs.size(); 1241 1242 Offset *= EntrySize; 1243 1244 return (uintptr_t)((char *)JumpTableBase + Offset); 1245 } 1246 1247 void JITEmitter::EmittedFunctionConfig::onDelete( 1248 JITEmitter *Emitter, const Function *F) { 1249 Emitter->deallocateMemForFunction(F); 1250 } 1251 void JITEmitter::EmittedFunctionConfig::onRAUW( 1252 JITEmitter *, const Function*, const Function*) { 1253 llvm_unreachable("The JIT doesn't know how to handle a" 1254 " RAUW on a value it has emitted."); 1255 } 1256 1257 1258 //===----------------------------------------------------------------------===// 1259 // Public interface to this file 1260 //===----------------------------------------------------------------------===// 1261 1262 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, 1263 TargetMachine &tm) { 1264 return new JITEmitter(jit, JMM, tm); 1265 } 1266 1267 // getPointerToFunctionOrStub - If the specified function has been 1268 // code-gen'd, return a pointer to the function. If not, compile it, or use 1269 // a stub to implement lazy compilation if available. 1270 // 1271 void *JIT::getPointerToFunctionOrStub(Function *F) { 1272 // If we have already code generated the function, just return the address. 1273 if (void *Addr = getPointerToGlobalIfAvailable(F)) 1274 return Addr; 1275 1276 // Get a stub if the target supports it. 1277 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1278 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); 1279 return JE->getJITResolver().getLazyFunctionStub(F); 1280 } 1281 1282 void JIT::updateFunctionStub(Function *F) { 1283 // Get the empty stub we generated earlier. 1284 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1285 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); 1286 void *Stub = JE->getJITResolver().getLazyFunctionStub(F); 1287 void *Addr = getPointerToGlobalIfAvailable(F); 1288 assert(Addr != Stub && "Function must have non-stub address to be updated."); 1289 1290 // Tell the target jit info to rewrite the stub at the specified address, 1291 // rather than creating a new one. 1292 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); 1293 JE->startGVStub(Stub, layout.Size); 1294 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); 1295 JE->finishGVStub(); 1296 } 1297 1298 /// freeMachineCodeForFunction - release machine code memory for given Function. 1299 /// 1300 void JIT::freeMachineCodeForFunction(Function *F) { 1301 // Delete translation for this from the ExecutionEngine, so it will get 1302 // retranslated next time it is used. 1303 updateGlobalMapping(F, 0); 1304 1305 // Free the actual memory for the function body and related stuff. 1306 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1307 cast<JITEmitter>(JCE)->deallocateMemForFunction(F); 1308 } 1309