Home | History | Annotate | Download | only in JIT
      1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a MachineCodeEmitter object that is used by the JIT to
     11 // write machine code to memory and remember where relocatable values are.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "JIT.h"
     17 #include "JITDebugRegisterer.h"
     18 #include "JITDwarfEmitter.h"
     19 #include "llvm/ADT/OwningPtr.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/DerivedTypes.h"
     23 #include "llvm/Analysis/DebugInfo.h"
     24 #include "llvm/CodeGen/JITCodeEmitter.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineCodeInfo.h"
     27 #include "llvm/CodeGen/MachineConstantPool.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/MachineRelocation.h"
     31 #include "llvm/ExecutionEngine/GenericValue.h"
     32 #include "llvm/ExecutionEngine/JITEventListener.h"
     33 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     34 #include "llvm/Target/TargetData.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetJITInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/ManagedStatic.h"
     42 #include "llvm/Support/MutexGuard.h"
     43 #include "llvm/Support/ValueHandle.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Support/Disassembler.h"
     46 #include "llvm/Support/Memory.h"
     47 #include "llvm/ADT/DenseMap.h"
     48 #include "llvm/ADT/SmallPtrSet.h"
     49 #include "llvm/ADT/SmallVector.h"
     50 #include "llvm/ADT/Statistic.h"
     51 #include "llvm/ADT/ValueMap.h"
     52 #include <algorithm>
     53 #ifndef NDEBUG
     54 #include <iomanip>
     55 #endif
     56 using namespace llvm;
     57 
     58 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
     59 STATISTIC(NumRelos, "Number of relocations applied");
     60 STATISTIC(NumRetries, "Number of retries with more memory");
     61 
     62 
     63 // A declaration may stop being a declaration once it's fully read from bitcode.
     64 // This function returns true if F is fully read and is still a declaration.
     65 static bool isNonGhostDeclaration(const Function *F) {
     66   return F->isDeclaration() && !F->isMaterializable();
     67 }
     68 
     69 //===----------------------------------------------------------------------===//
     70 // JIT lazy compilation code.
     71 //
     72 namespace {
     73   class JITEmitter;
     74   class JITResolverState;
     75 
     76   template<typename ValueTy>
     77   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
     78     typedef JITResolverState *ExtraData;
     79     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
     80       assert(false && "The JIT doesn't know how to handle a"
     81              " RAUW on a value it has emitted.");
     82     }
     83   };
     84 
     85   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
     86     typedef JITResolverState *ExtraData;
     87     static void onDelete(JITResolverState *JRS, Function *F);
     88   };
     89 
     90   class JITResolverState {
     91   public:
     92     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
     93       FunctionToLazyStubMapTy;
     94     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
     95     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
     96                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
     97     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
     98   private:
     99     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
    100     /// particular function so that we can reuse them if necessary.
    101     FunctionToLazyStubMapTy FunctionToLazyStubMap;
    102 
    103     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    104     /// site corresponds to, and vice versa.
    105     CallSiteToFunctionMapTy CallSiteToFunctionMap;
    106     FunctionToCallSitesMapTy FunctionToCallSitesMap;
    107 
    108     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    109     /// particular GlobalVariable so that we can reuse them if necessary.
    110     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
    111 
    112     /// Instance of the JIT this ResolverState serves.
    113     JIT *TheJIT;
    114 
    115   public:
    116     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
    117                                  FunctionToCallSitesMap(this),
    118                                  TheJIT(jit) {}
    119 
    120     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
    121       const MutexGuard& locked) {
    122       assert(locked.holds(TheJIT->lock));
    123       return FunctionToLazyStubMap;
    124     }
    125 
    126     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
    127       assert(lck.holds(TheJIT->lock));
    128       return GlobalToIndirectSymMap;
    129     }
    130 
    131     std::pair<void *, Function *> LookupFunctionFromCallSite(
    132         const MutexGuard &locked, void *CallSite) const {
    133       assert(locked.holds(TheJIT->lock));
    134 
    135       // The address given to us for the stub may not be exactly right, it
    136       // might be a little bit after the stub.  As such, use upper_bound to
    137       // find it.
    138       CallSiteToFunctionMapTy::const_iterator I =
    139         CallSiteToFunctionMap.upper_bound(CallSite);
    140       assert(I != CallSiteToFunctionMap.begin() &&
    141              "This is not a known call site!");
    142       --I;
    143       return *I;
    144     }
    145 
    146     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
    147       assert(locked.holds(TheJIT->lock));
    148 
    149       bool Inserted = CallSiteToFunctionMap.insert(
    150           std::make_pair(CallSite, F)).second;
    151       (void)Inserted;
    152       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
    153       FunctionToCallSitesMap[F].insert(CallSite);
    154     }
    155 
    156     void EraseAllCallSitesForPrelocked(Function *F);
    157 
    158     // Erases _all_ call sites regardless of their function.  This is used to
    159     // unregister the stub addresses from the StubToResolverMap in
    160     // ~JITResolver().
    161     void EraseAllCallSitesPrelocked();
    162   };
    163 
    164   /// JITResolver - Keep track of, and resolve, call sites for functions that
    165   /// have not yet been compiled.
    166   class JITResolver {
    167     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    168     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    169     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
    170 
    171     /// LazyResolverFn - The target lazy resolver function that we actually
    172     /// rewrite instructions to use.
    173     TargetJITInfo::LazyResolverFn LazyResolverFn;
    174 
    175     JITResolverState state;
    176 
    177     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    178     /// for external functions.  TODO: Of course, external functions don't need
    179     /// a lazy stub.  It's actually here to make it more likely that far calls
    180     /// succeed, but no single stub can guarantee that.  I'll remove this in a
    181     /// subsequent checkin when I actually fix far calls.
    182     std::map<void*, void*> ExternalFnToStubMap;
    183 
    184     /// revGOTMap - map addresses to indexes in the GOT
    185     std::map<void*, unsigned> revGOTMap;
    186     unsigned nextGOTIndex;
    187 
    188     JITEmitter &JE;
    189 
    190     /// Instance of JIT corresponding to this Resolver.
    191     JIT *TheJIT;
    192 
    193   public:
    194     explicit JITResolver(JIT &jit, JITEmitter &je)
    195       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
    196       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    197     }
    198 
    199     ~JITResolver();
    200 
    201     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    202     /// lazy-compilation stub if it has already been created.
    203     void *getLazyFunctionStubIfAvailable(Function *F);
    204 
    205     /// getLazyFunctionStub - This returns a pointer to a function's
    206     /// lazy-compilation stub, creating one on demand as needed.
    207     void *getLazyFunctionStub(Function *F);
    208 
    209     /// getExternalFunctionStub - Return a stub for the function at the
    210     /// specified address, created lazily on demand.
    211     void *getExternalFunctionStub(void *FnAddr);
    212 
    213     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    214     /// specified GV address.
    215     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
    216 
    217     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    218     /// an address.  This function only manages slots, it does not manage the
    219     /// contents of the slots or the memory associated with the GOT.
    220     unsigned getGOTIndexForAddr(void *addr);
    221 
    222     /// JITCompilerFn - This function is called to resolve a stub to a compiled
    223     /// address.  If the LLVM Function corresponding to the stub has not yet
    224     /// been compiled, this function compiles it first.
    225     static void *JITCompilerFn(void *Stub);
    226   };
    227 
    228   class StubToResolverMapTy {
    229     /// Map a stub address to a specific instance of a JITResolver so that
    230     /// lazily-compiled functions can find the right resolver to use.
    231     ///
    232     /// Guarded by Lock.
    233     std::map<void*, JITResolver*> Map;
    234 
    235     /// Guards Map from concurrent accesses.
    236     mutable sys::Mutex Lock;
    237 
    238   public:
    239     /// Registers a Stub to be resolved by Resolver.
    240     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
    241       MutexGuard guard(Lock);
    242       Map.insert(std::make_pair(Stub, Resolver));
    243     }
    244     /// Unregisters the Stub when it's invalidated.
    245     void UnregisterStubResolver(void *Stub) {
    246       MutexGuard guard(Lock);
    247       Map.erase(Stub);
    248     }
    249     /// Returns the JITResolver instance that owns the Stub.
    250     JITResolver *getResolverFromStub(void *Stub) const {
    251       MutexGuard guard(Lock);
    252       // The address given to us for the stub may not be exactly right, it might
    253       // be a little bit after the stub.  As such, use upper_bound to find it.
    254       // This is the same trick as in LookupFunctionFromCallSite from
    255       // JITResolverState.
    256       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
    257       assert(I != Map.begin() && "This is not a known stub!");
    258       --I;
    259       return I->second;
    260     }
    261     /// True if any stubs refer to the given resolver. Only used in an assert().
    262     /// O(N)
    263     bool ResolverHasStubs(JITResolver* Resolver) const {
    264       MutexGuard guard(Lock);
    265       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
    266              E = Map.end(); I != E; ++I) {
    267         if (I->second == Resolver)
    268           return true;
    269       }
    270       return false;
    271     }
    272   };
    273   /// This needs to be static so that a lazy call stub can access it with no
    274   /// context except the address of the stub.
    275   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
    276 
    277   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
    278   /// used to output functions to memory for execution.
    279   class JITEmitter : public JITCodeEmitter {
    280     JITMemoryManager *MemMgr;
    281 
    282     // When outputting a function stub in the context of some other function, we
    283     // save BufferBegin/BufferEnd/CurBufferPtr here.
    284     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    285 
    286     // When reattempting to JIT a function after running out of space, we store
    287     // the estimated size of the function we're trying to JIT here, so we can
    288     // ask the memory manager for at least this much space.  When we
    289     // successfully emit the function, we reset this back to zero.
    290     uintptr_t SizeEstimate;
    291 
    292     /// Relocations - These are the relocations that the function needs, as
    293     /// emitted.
    294     std::vector<MachineRelocation> Relocations;
    295 
    296     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    297     /// It is filled in by the StartMachineBasicBlock callback and queried by
    298     /// the getMachineBasicBlockAddress callback.
    299     std::vector<uintptr_t> MBBLocations;
    300 
    301     /// ConstantPool - The constant pool for the current function.
    302     ///
    303     MachineConstantPool *ConstantPool;
    304 
    305     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    306     ///
    307     void *ConstantPoolBase;
    308 
    309     /// ConstPoolAddresses - Addresses of individual constant pool entries.
    310     ///
    311     SmallVector<uintptr_t, 8> ConstPoolAddresses;
    312 
    313     /// JumpTable - The jump tables for the current function.
    314     ///
    315     MachineJumpTableInfo *JumpTable;
    316 
    317     /// JumpTableBase - A pointer to the first entry in the jump table.
    318     ///
    319     void *JumpTableBase;
    320 
    321     /// Resolver - This contains info about the currently resolved functions.
    322     JITResolver Resolver;
    323 
    324     /// DE - The dwarf emitter for the jit.
    325     OwningPtr<JITDwarfEmitter> DE;
    326 
    327     /// DR - The debug registerer for the jit.
    328     OwningPtr<JITDebugRegisterer> DR;
    329 
    330     /// LabelLocations - This vector is a mapping from Label ID's to their
    331     /// address.
    332     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
    333 
    334     /// MMI - Machine module info for exception informations
    335     MachineModuleInfo* MMI;
    336 
    337     // CurFn - The llvm function being emitted.  Only valid during
    338     // finishFunction().
    339     const Function *CurFn;
    340 
    341     /// Information about emitted code, which is passed to the
    342     /// JITEventListeners.  This is reset in startFunction and used in
    343     /// finishFunction.
    344     JITEvent_EmittedFunctionDetails EmissionDetails;
    345 
    346     struct EmittedCode {
    347       void *FunctionBody;  // Beginning of the function's allocation.
    348       void *Code;  // The address the function's code actually starts at.
    349       void *ExceptionTable;
    350       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
    351     };
    352     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
    353       typedef JITEmitter *ExtraData;
    354       static void onDelete(JITEmitter *, const Function*);
    355       static void onRAUW(JITEmitter *, const Function*, const Function*);
    356     };
    357     ValueMap<const Function *, EmittedCode,
    358              EmittedFunctionConfig> EmittedFunctions;
    359 
    360     DebugLoc PrevDL;
    361 
    362     /// Instance of the JIT
    363     JIT *TheJIT;
    364 
    365   public:
    366     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
    367       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
    368         EmittedFunctions(this), TheJIT(&jit) {
    369       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
    370       if (jit.getJITInfo().needsGOT()) {
    371         MemMgr->AllocateGOT();
    372         DEBUG(dbgs() << "JIT is managing a GOT\n");
    373       }
    374 
    375       if (JITExceptionHandling || JITEmitDebugInfo) {
    376         DE.reset(new JITDwarfEmitter(jit));
    377       }
    378       if (JITEmitDebugInfo) {
    379         DR.reset(new JITDebugRegisterer(TM));
    380       }
    381     }
    382     ~JITEmitter() {
    383       delete MemMgr;
    384     }
    385 
    386     /// classof - Methods for support type inquiry through isa, cast, and
    387     /// dyn_cast:
    388     ///
    389     static inline bool classof(const MachineCodeEmitter*) { return true; }
    390 
    391     JITResolver &getJITResolver() { return Resolver; }
    392 
    393     virtual void startFunction(MachineFunction &F);
    394     virtual bool finishFunction(MachineFunction &F);
    395 
    396     void emitConstantPool(MachineConstantPool *MCP);
    397     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    398     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    399 
    400     void startGVStub(const GlobalValue* GV,
    401                      unsigned StubSize, unsigned Alignment = 1);
    402     void startGVStub(void *Buffer, unsigned StubSize);
    403     void finishGVStub();
    404     virtual void *allocIndirectGV(const GlobalValue *GV,
    405                                   const uint8_t *Buffer, size_t Size,
    406                                   unsigned Alignment);
    407 
    408     /// allocateSpace - Reserves space in the current block if any, or
    409     /// allocate a new one of the given size.
    410     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
    411 
    412     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    413     /// this method does not allocate memory in the current output buffer,
    414     /// because a global may live longer than the current function.
    415     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
    416 
    417     virtual void addRelocation(const MachineRelocation &MR) {
    418       Relocations.push_back(MR);
    419     }
    420 
    421     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
    422       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
    423         MBBLocations.resize((MBB->getNumber()+1)*2);
    424       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    425       if (MBB->hasAddressTaken())
    426         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
    427                                        (void*)getCurrentPCValue());
    428       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
    429                    << (void*) getCurrentPCValue() << "]\n");
    430     }
    431 
    432     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    433     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
    434 
    435     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
    436       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
    437              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
    438       return MBBLocations[MBB->getNumber()];
    439     }
    440 
    441     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    442     /// given function.  Increase the minimum allocation size so that we get
    443     /// more memory next time.
    444     void retryWithMoreMemory(MachineFunction &F);
    445 
    446     /// deallocateMemForFunction - Deallocate all memory for the specified
    447     /// function body.
    448     void deallocateMemForFunction(const Function *F);
    449 
    450     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
    451 
    452     virtual void emitLabel(MCSymbol *Label) {
    453       LabelLocations[Label] = getCurrentPCValue();
    454     }
    455 
    456     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
    457       return &LabelLocations;
    458     }
    459 
    460     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
    461       assert(LabelLocations.count(Label) && "Label not emitted!");
    462       return LabelLocations.find(Label)->second;
    463     }
    464 
    465     virtual void setModuleInfo(MachineModuleInfo* Info) {
    466       MMI = Info;
    467       if (DE.get()) DE->setModuleInfo(Info);
    468     }
    469 
    470   private:
    471     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
    472                              bool MayNeedFarStub);
    473     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
    474   };
    475 }
    476 
    477 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
    478   JRS->EraseAllCallSitesForPrelocked(F);
    479 }
    480 
    481 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
    482   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
    483   if (F2C == FunctionToCallSitesMap.end())
    484     return;
    485   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    486   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
    487          E = F2C->second.end(); I != E; ++I) {
    488     S2RMap.UnregisterStubResolver(*I);
    489     bool Erased = CallSiteToFunctionMap.erase(*I);
    490     (void)Erased;
    491     assert(Erased && "Missing call site->function mapping");
    492   }
    493   FunctionToCallSitesMap.erase(F2C);
    494 }
    495 
    496 void JITResolverState::EraseAllCallSitesPrelocked() {
    497   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    498   for (CallSiteToFunctionMapTy::const_iterator
    499          I = CallSiteToFunctionMap.begin(),
    500          E = CallSiteToFunctionMap.end(); I != E; ++I) {
    501     S2RMap.UnregisterStubResolver(I->first);
    502   }
    503   CallSiteToFunctionMap.clear();
    504   FunctionToCallSitesMap.clear();
    505 }
    506 
    507 JITResolver::~JITResolver() {
    508   // No need to lock because we're in the destructor, and state isn't shared.
    509   state.EraseAllCallSitesPrelocked();
    510   assert(!StubToResolverMap->ResolverHasStubs(this) &&
    511          "Resolver destroyed with stubs still alive.");
    512 }
    513 
    514 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
    515 /// if it has already been created.
    516 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
    517   MutexGuard locked(TheJIT->lock);
    518 
    519   // If we already have a stub for this function, recycle it.
    520   return state.getFunctionToLazyStubMap(locked).lookup(F);
    521 }
    522 
    523 /// getFunctionStub - This returns a pointer to a function stub, creating
    524 /// one on demand as needed.
    525 void *JITResolver::getLazyFunctionStub(Function *F) {
    526   MutexGuard locked(TheJIT->lock);
    527 
    528   // If we already have a lazy stub for this function, recycle it.
    529   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
    530   if (Stub) return Stub;
    531 
    532   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
    533   // must resolve the symbol now.
    534   void *Actual = TheJIT->isCompilingLazily()
    535     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
    536 
    537   // If this is an external declaration, attempt to resolve the address now
    538   // to place in the stub.
    539   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    540     Actual = TheJIT->getPointerToFunction(F);
    541 
    542     // If we resolved the symbol to a null address (eg. a weak external)
    543     // don't emit a stub. Return a null pointer to the application.
    544     if (!Actual) return 0;
    545   }
    546 
    547   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    548   JE.startGVStub(F, SL.Size, SL.Alignment);
    549   // Codegen a new stub, calling the lazy resolver or the actual address of the
    550   // external function, if it was resolved.
    551   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
    552   JE.finishGVStub();
    553 
    554   if (Actual != (void*)(intptr_t)LazyResolverFn) {
    555     // If we are getting the stub for an external function, we really want the
    556     // address of the stub in the GlobalAddressMap for the JIT, not the address
    557     // of the external function.
    558     TheJIT->updateGlobalMapping(F, Stub);
    559   }
    560 
    561   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
    562         << F->getName() << "'\n");
    563 
    564   if (TheJIT->isCompilingLazily()) {
    565     // Register this JITResolver as the one corresponding to this call site so
    566     // JITCompilerFn will be able to find it.
    567     StubToResolverMap->RegisterStubResolver(Stub, this);
    568 
    569     // Finally, keep track of the stub-to-Function mapping so that the
    570     // JITCompilerFn knows which function to compile!
    571     state.AddCallSite(locked, Stub, F);
    572   } else if (!Actual) {
    573     // If we are JIT'ing non-lazily but need to call a function that does not
    574     // exist yet, add it to the JIT's work list so that we can fill in the
    575     // stub address later.
    576     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
    577            "'Actual' should have been set above.");
    578     TheJIT->addPendingFunction(F);
    579   }
    580 
    581   return Stub;
    582 }
    583 
    584 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
    585 /// GV address.
    586 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
    587   MutexGuard locked(TheJIT->lock);
    588 
    589   // If we already have a stub for this global variable, recycle it.
    590   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
    591   if (IndirectSym) return IndirectSym;
    592 
    593   // Otherwise, codegen a new indirect symbol.
    594   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
    595                                                                 JE);
    596 
    597   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
    598         << "] for GV '" << GV->getName() << "'\n");
    599 
    600   return IndirectSym;
    601 }
    602 
    603 /// getExternalFunctionStub - Return a stub for the function at the
    604 /// specified address, created lazily on demand.
    605 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
    606   // If we already have a stub for this function, recycle it.
    607   void *&Stub = ExternalFnToStubMap[FnAddr];
    608   if (Stub) return Stub;
    609 
    610   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    611   JE.startGVStub(0, SL.Size, SL.Alignment);
    612   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
    613   JE.finishGVStub();
    614 
    615   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
    616                << "] for external function at '" << FnAddr << "'\n");
    617   return Stub;
    618 }
    619 
    620 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
    621   unsigned idx = revGOTMap[addr];
    622   if (!idx) {
    623     idx = ++nextGOTIndex;
    624     revGOTMap[addr] = idx;
    625     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
    626                  << addr << "]\n");
    627   }
    628   return idx;
    629 }
    630 
    631 /// JITCompilerFn - This function is called when a lazy compilation stub has
    632 /// been entered.  It looks up which function this stub corresponds to, compiles
    633 /// it if necessary, then returns the resultant function pointer.
    634 void *JITResolver::JITCompilerFn(void *Stub) {
    635   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
    636   assert(JR && "Unable to find the corresponding JITResolver to the call site");
    637 
    638   Function* F = 0;
    639   void* ActualPtr = 0;
    640 
    641   {
    642     // Only lock for getting the Function. The call getPointerToFunction made
    643     // in this function might trigger function materializing, which requires
    644     // JIT lock to be unlocked.
    645     MutexGuard locked(JR->TheJIT->lock);
    646 
    647     // The address given to us for the stub may not be exactly right, it might
    648     // be a little bit after the stub.  As such, use upper_bound to find it.
    649     std::pair<void*, Function*> I =
    650       JR->state.LookupFunctionFromCallSite(locked, Stub);
    651     F = I.second;
    652     ActualPtr = I.first;
    653   }
    654 
    655   // If we have already code generated the function, just return the address.
    656   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
    657 
    658   if (!Result) {
    659     // Otherwise we don't have it, do lazy compilation now.
    660 
    661     // If lazy compilation is disabled, emit a useful error message and abort.
    662     if (!JR->TheJIT->isCompilingLazily()) {
    663       report_fatal_error("LLVM JIT requested to do lazy compilation of"
    664                          " function '"
    665                         + F->getName() + "' when lazy compiles are disabled!");
    666     }
    667 
    668     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
    669           << "' In stub ptr = " << Stub << " actual ptr = "
    670           << ActualPtr << "\n");
    671 
    672     Result = JR->TheJIT->getPointerToFunction(F);
    673   }
    674 
    675   // Reacquire the lock to update the GOT map.
    676   MutexGuard locked(JR->TheJIT->lock);
    677 
    678   // We might like to remove the call site from the CallSiteToFunction map, but
    679   // we can't do that! Multiple threads could be stuck, waiting to acquire the
    680   // lock above. As soon as the 1st function finishes compiling the function,
    681   // the next one will be released, and needs to be able to find the function it
    682   // needs to call.
    683 
    684   // FIXME: We could rewrite all references to this stub if we knew them.
    685 
    686   // What we will do is set the compiled function address to map to the
    687   // same GOT entry as the stub so that later clients may update the GOT
    688   // if they see it still using the stub address.
    689   // Note: this is done so the Resolver doesn't have to manage GOT memory
    690   // Do this without allocating map space if the target isn't using a GOT
    691   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    692     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
    693 
    694   return Result;
    695 }
    696 
    697 //===----------------------------------------------------------------------===//
    698 // JITEmitter code.
    699 //
    700 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
    701                                      bool MayNeedFarStub) {
    702   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    703     return TheJIT->getOrEmitGlobalVariable(GV);
    704 
    705   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    706     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
    707 
    708   // If we have already compiled the function, return a pointer to its body.
    709   Function *F = cast<Function>(V);
    710 
    711   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
    712   if (FnStub) {
    713     // Return the function stub if it's already created.  We do this first so
    714     // that we're returning the same address for the function as any previous
    715     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    716     // close enough to call.
    717     return FnStub;
    718   }
    719 
    720   // If we know the target can handle arbitrary-distance calls, try to
    721   // return a direct pointer.
    722   if (!MayNeedFarStub) {
    723     // If we have code, go ahead and return that.
    724     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    725     if (ResultPtr) return ResultPtr;
    726 
    727     // If this is an external function pointer, we can force the JIT to
    728     // 'compile' it, which really just adds it to the map.
    729     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
    730       return TheJIT->getPointerToFunction(F);
    731   }
    732 
    733   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
    734   // so.  Note that it's possible to return null from getLazyFunctionStub in the
    735   // case of a weak extern that fails to resolve.
    736   return Resolver.getLazyFunctionStub(F);
    737 }
    738 
    739 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
    740   // Make sure GV is emitted first, and create a stub containing the fully
    741   // resolved address.
    742   void *GVAddress = getPointerToGlobal(V, Reference, false);
    743   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
    744   return StubAddr;
    745 }
    746 
    747 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
    748   if (DL.isUnknown()) return;
    749   if (!BeforePrintingInsn) return;
    750 
    751   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
    752 
    753   if (DL.getScope(Context) != 0 && PrevDL != DL) {
    754     JITEvent_EmittedFunctionDetails::LineStart NextLine;
    755     NextLine.Address = getCurrentPCValue();
    756     NextLine.Loc = DL;
    757     EmissionDetails.LineStarts.push_back(NextLine);
    758   }
    759 
    760   PrevDL = DL;
    761 }
    762 
    763 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
    764                                            const TargetData *TD) {
    765   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
    766   if (Constants.empty()) return 0;
    767 
    768   unsigned Size = 0;
    769   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    770     MachineConstantPoolEntry CPE = Constants[i];
    771     unsigned AlignMask = CPE.getAlignment() - 1;
    772     Size = (Size + AlignMask) & ~AlignMask;
    773     Type *Ty = CPE.getType();
    774     Size += TD->getTypeAllocSize(Ty);
    775   }
    776   return Size;
    777 }
    778 
    779 void JITEmitter::startFunction(MachineFunction &F) {
    780   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
    781         << F.getFunction()->getName() << "\n");
    782 
    783   uintptr_t ActualSize = 0;
    784   // Set the memory writable, if it's not already
    785   MemMgr->setMemoryWritable();
    786 
    787   if (SizeEstimate > 0) {
    788     // SizeEstimate will be non-zero on reallocation attempts.
    789     ActualSize = SizeEstimate;
    790   }
    791 
    792   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
    793                                                          ActualSize);
    794   BufferEnd = BufferBegin+ActualSize;
    795   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
    796 
    797   // Ensure the constant pool/jump table info is at least 4-byte aligned.
    798   emitAlignment(16);
    799 
    800   emitConstantPool(F.getConstantPool());
    801   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    802     initJumpTableInfo(MJTI);
    803 
    804   // About to start emitting the machine code for the function.
    805   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
    806   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
    807   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
    808 
    809   MBBLocations.clear();
    810 
    811   EmissionDetails.MF = &F;
    812   EmissionDetails.LineStarts.clear();
    813 }
    814 
    815 bool JITEmitter::finishFunction(MachineFunction &F) {
    816   if (CurBufferPtr == BufferEnd) {
    817     // We must call endFunctionBody before retrying, because
    818     // deallocateMemForFunction requires it.
    819     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    820     retryWithMoreMemory(F);
    821     return true;
    822   }
    823 
    824   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    825     emitJumpTableInfo(MJTI);
    826 
    827   // FnStart is the start of the text, not the start of the constant pool and
    828   // other per-function data.
    829   uint8_t *FnStart =
    830     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
    831 
    832   // FnEnd is the end of the function's machine code.
    833   uint8_t *FnEnd = CurBufferPtr;
    834 
    835   if (!Relocations.empty()) {
    836     CurFn = F.getFunction();
    837     NumRelos += Relocations.size();
    838 
    839     // Resolve the relocations to concrete pointers.
    840     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    841       MachineRelocation &MR = Relocations[i];
    842       void *ResultPtr = 0;
    843       if (!MR.letTargetResolve()) {
    844         if (MR.isExternalSymbol()) {
    845           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
    846                                                         false);
    847           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
    848                        << ResultPtr << "]\n");
    849 
    850           // If the target REALLY wants a stub for this function, emit it now.
    851           if (MR.mayNeedFarStub()) {
    852             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
    853           }
    854         } else if (MR.isGlobalValue()) {
    855           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
    856                                          BufferBegin+MR.getMachineCodeOffset(),
    857                                          MR.mayNeedFarStub());
    858         } else if (MR.isIndirectSymbol()) {
    859           ResultPtr = getPointerToGVIndirectSym(
    860               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
    861         } else if (MR.isBasicBlock()) {
    862           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
    863         } else if (MR.isConstantPoolIndex()) {
    864           ResultPtr =
    865             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
    866         } else {
    867           assert(MR.isJumpTableIndex());
    868           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
    869         }
    870 
    871         MR.setResultPointer(ResultPtr);
    872       }
    873 
    874       // if we are managing the GOT and the relocation wants an index,
    875       // give it one
    876       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
    877         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
    878         MR.setGOTIndex(idx);
    879         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
    880           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
    881                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    882                        << "\n");
    883           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
    884         }
    885       }
    886     }
    887 
    888     CurFn = 0;
    889     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
    890                                   Relocations.size(), MemMgr->getGOTBase());
    891   }
    892 
    893   // Update the GOT entry for F to point to the new code.
    894   if (MemMgr->isManagingGOT()) {
    895     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    896     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
    897       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
    898                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    899                    << "\n");
    900       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    901     }
    902   }
    903 
    904   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
    905   // global variables that were referenced in the relocations.
    906   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    907 
    908   if (CurBufferPtr == BufferEnd) {
    909     retryWithMoreMemory(F);
    910     return true;
    911   } else {
    912     // Now that we've succeeded in emitting the function, reset the
    913     // SizeEstimate back down to zero.
    914     SizeEstimate = 0;
    915   }
    916 
    917   BufferBegin = CurBufferPtr = 0;
    918   NumBytes += FnEnd-FnStart;
    919 
    920   // Invalidate the icache if necessary.
    921   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
    922 
    923   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
    924                                 EmissionDetails);
    925 
    926   // Reset the previous debug location.
    927   PrevDL = DebugLoc();
    928 
    929   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
    930         << "] Function: " << F.getFunction()->getName()
    931         << ": " << (FnEnd-FnStart) << " bytes of text, "
    932         << Relocations.size() << " relocations\n");
    933 
    934   Relocations.clear();
    935   ConstPoolAddresses.clear();
    936 
    937   // Mark code region readable and executable if it's not so already.
    938   MemMgr->setMemoryExecutable();
    939 
    940   DEBUG({
    941       if (sys::hasDisassembler()) {
    942         dbgs() << "JIT: Disassembled code:\n";
    943         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
    944                                          (uintptr_t)FnStart);
    945       } else {
    946         dbgs() << "JIT: Binary code:\n";
    947         uint8_t* q = FnStart;
    948         for (int i = 0; q < FnEnd; q += 4, ++i) {
    949           if (i == 4)
    950             i = 0;
    951           if (i == 0)
    952             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
    953           bool Done = false;
    954           for (int j = 3; j >= 0; --j) {
    955             if (q + j >= FnEnd)
    956               Done = true;
    957             else
    958               dbgs() << (unsigned short)q[j];
    959           }
    960           if (Done)
    961             break;
    962           dbgs() << ' ';
    963           if (i == 3)
    964             dbgs() << '\n';
    965         }
    966         dbgs()<< '\n';
    967       }
    968     });
    969 
    970   if (JITExceptionHandling || JITEmitDebugInfo) {
    971     uintptr_t ActualSize = 0;
    972     SavedBufferBegin = BufferBegin;
    973     SavedBufferEnd = BufferEnd;
    974     SavedCurBufferPtr = CurBufferPtr;
    975 
    976     BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
    977                                                              ActualSize);
    978     BufferEnd = BufferBegin+ActualSize;
    979     EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
    980     uint8_t *EhStart;
    981     uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
    982                                                 EhStart);
    983     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
    984                               FrameRegister);
    985     uint8_t *EhEnd = CurBufferPtr;
    986     BufferBegin = SavedBufferBegin;
    987     BufferEnd = SavedBufferEnd;
    988     CurBufferPtr = SavedCurBufferPtr;
    989 
    990     if (JITExceptionHandling) {
    991       TheJIT->RegisterTable(F.getFunction(), FrameRegister);
    992     }
    993 
    994     if (JITEmitDebugInfo) {
    995       DebugInfo I;
    996       I.FnStart = FnStart;
    997       I.FnEnd = FnEnd;
    998       I.EhStart = EhStart;
    999       I.EhEnd = EhEnd;
   1000       DR->RegisterFunction(F.getFunction(), I);
   1001     }
   1002   }
   1003 
   1004   if (MMI)
   1005     MMI->EndFunction();
   1006 
   1007   return false;
   1008 }
   1009 
   1010 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
   1011   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
   1012   Relocations.clear();  // Clear the old relocations or we'll reapply them.
   1013   ConstPoolAddresses.clear();
   1014   ++NumRetries;
   1015   deallocateMemForFunction(F.getFunction());
   1016   // Try again with at least twice as much free space.
   1017   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
   1018 
   1019   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
   1020     if (MBB->hasAddressTaken())
   1021       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
   1022   }
   1023 }
   1024 
   1025 /// deallocateMemForFunction - Deallocate all memory for the specified
   1026 /// function body.  Also drop any references the function has to stubs.
   1027 /// May be called while the Function is being destroyed inside ~Value().
   1028 void JITEmitter::deallocateMemForFunction(const Function *F) {
   1029   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
   1030     Emitted = EmittedFunctions.find(F);
   1031   if (Emitted != EmittedFunctions.end()) {
   1032     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
   1033     MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
   1034     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
   1035 
   1036     EmittedFunctions.erase(Emitted);
   1037   }
   1038 
   1039   if(JITExceptionHandling) {
   1040     TheJIT->DeregisterTable(F);
   1041   }
   1042 
   1043   if (JITEmitDebugInfo) {
   1044     DR->UnregisterFunction(F);
   1045   }
   1046 }
   1047 
   1048 
   1049 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
   1050   if (BufferBegin)
   1051     return JITCodeEmitter::allocateSpace(Size, Alignment);
   1052 
   1053   // create a new memory block if there is no active one.
   1054   // care must be taken so that BufferBegin is invalidated when a
   1055   // block is trimmed
   1056   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
   1057   BufferEnd = BufferBegin+Size;
   1058   return CurBufferPtr;
   1059 }
   1060 
   1061 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
   1062   // Delegate this call through the memory manager.
   1063   return MemMgr->allocateGlobal(Size, Alignment);
   1064 }
   1065 
   1066 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
   1067   if (TheJIT->getJITInfo().hasCustomConstantPool())
   1068     return;
   1069 
   1070   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
   1071   if (Constants.empty()) return;
   1072 
   1073   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
   1074   unsigned Align = MCP->getConstantPoolAlignment();
   1075   ConstantPoolBase = allocateSpace(Size, Align);
   1076   ConstantPool = MCP;
   1077 
   1078   if (ConstantPoolBase == 0) return;  // Buffer overflow.
   1079 
   1080   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
   1081                << "] (size: " << Size << ", alignment: " << Align << ")\n");
   1082 
   1083   // Initialize the memory for all of the constant pool entries.
   1084   unsigned Offset = 0;
   1085   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
   1086     MachineConstantPoolEntry CPE = Constants[i];
   1087     unsigned AlignMask = CPE.getAlignment() - 1;
   1088     Offset = (Offset + AlignMask) & ~AlignMask;
   1089 
   1090     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
   1091     ConstPoolAddresses.push_back(CAddr);
   1092     if (CPE.isMachineConstantPoolEntry()) {
   1093       // FIXME: add support to lower machine constant pool values into bytes!
   1094       report_fatal_error("Initialize memory with machine specific constant pool"
   1095                         "entry has not been implemented!");
   1096     }
   1097     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
   1098     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
   1099           dbgs().write_hex(CAddr) << "]\n");
   1100 
   1101     Type *Ty = CPE.Val.ConstVal->getType();
   1102     Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
   1103   }
   1104 }
   1105 
   1106 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1107   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1108     return;
   1109   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
   1110     return;
   1111 
   1112   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1113   if (JT.empty()) return;
   1114 
   1115   unsigned NumEntries = 0;
   1116   for (unsigned i = 0, e = JT.size(); i != e; ++i)
   1117     NumEntries += JT[i].MBBs.size();
   1118 
   1119   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
   1120 
   1121   // Just allocate space for all the jump tables now.  We will fix up the actual
   1122   // MBB entries in the tables after we emit the code for each block, since then
   1123   // we will know the final locations of the MBBs in memory.
   1124   JumpTable = MJTI;
   1125   JumpTableBase = allocateSpace(NumEntries * EntrySize,
   1126                              MJTI->getEntryAlignment(*TheJIT->getTargetData()));
   1127 }
   1128 
   1129 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1130   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1131     return;
   1132 
   1133   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1134   if (JT.empty() || JumpTableBase == 0) return;
   1135 
   1136 
   1137   switch (MJTI->getEntryKind()) {
   1138   case MachineJumpTableInfo::EK_Inline:
   1139     return;
   1140   case MachineJumpTableInfo::EK_BlockAddress: {
   1141     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1142     //     .word LBB123
   1143     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
   1144            "Cross JIT'ing?");
   1145 
   1146     // For each jump table, map each target in the jump table to the address of
   1147     // an emitted MachineBasicBlock.
   1148     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
   1149 
   1150     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1151       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1152       // Store the address of the basic block for this jump table slot in the
   1153       // memory we allocated for the jump table in 'initJumpTableInfo'
   1154       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
   1155         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
   1156     }
   1157     break;
   1158   }
   1159 
   1160   case MachineJumpTableInfo::EK_Custom32:
   1161   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
   1162   case MachineJumpTableInfo::EK_LabelDifference32: {
   1163     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
   1164     // For each jump table, place the offset from the beginning of the table
   1165     // to the target address.
   1166     int *SlotPtr = (int*)JumpTableBase;
   1167 
   1168     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1169       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1170       // Store the offset of the basic block for this jump table slot in the
   1171       // memory we allocated for the jump table in 'initJumpTableInfo'
   1172       uintptr_t Base = (uintptr_t)SlotPtr;
   1173       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
   1174         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
   1175         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
   1176         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
   1177       }
   1178     }
   1179     break;
   1180   }
   1181   }
   1182 }
   1183 
   1184 void JITEmitter::startGVStub(const GlobalValue* GV,
   1185                              unsigned StubSize, unsigned Alignment) {
   1186   SavedBufferBegin = BufferBegin;
   1187   SavedBufferEnd = BufferEnd;
   1188   SavedCurBufferPtr = CurBufferPtr;
   1189 
   1190   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
   1191   BufferEnd = BufferBegin+StubSize+1;
   1192 }
   1193 
   1194 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
   1195   SavedBufferBegin = BufferBegin;
   1196   SavedBufferEnd = BufferEnd;
   1197   SavedCurBufferPtr = CurBufferPtr;
   1198 
   1199   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
   1200   BufferEnd = BufferBegin+StubSize+1;
   1201 }
   1202 
   1203 void JITEmitter::finishGVStub() {
   1204   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
   1205   NumBytes += getCurrentPCOffset();
   1206   BufferBegin = SavedBufferBegin;
   1207   BufferEnd = SavedBufferEnd;
   1208   CurBufferPtr = SavedCurBufferPtr;
   1209 }
   1210 
   1211 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
   1212                                   const uint8_t *Buffer, size_t Size,
   1213                                   unsigned Alignment) {
   1214   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
   1215   memcpy(IndGV, Buffer, Size);
   1216   return IndGV;
   1217 }
   1218 
   1219 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
   1220 // in the constant pool that was last emitted with the 'emitConstantPool'
   1221 // method.
   1222 //
   1223 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
   1224   assert(ConstantNum < ConstantPool->getConstants().size() &&
   1225          "Invalid ConstantPoolIndex!");
   1226   return ConstPoolAddresses[ConstantNum];
   1227 }
   1228 
   1229 // getJumpTableEntryAddress - Return the address of the JumpTable with index
   1230 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
   1231 //
   1232 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
   1233   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
   1234   assert(Index < JT.size() && "Invalid jump table index!");
   1235 
   1236   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
   1237 
   1238   unsigned Offset = 0;
   1239   for (unsigned i = 0; i < Index; ++i)
   1240     Offset += JT[i].MBBs.size();
   1241 
   1242    Offset *= EntrySize;
   1243 
   1244   return (uintptr_t)((char *)JumpTableBase + Offset);
   1245 }
   1246 
   1247 void JITEmitter::EmittedFunctionConfig::onDelete(
   1248   JITEmitter *Emitter, const Function *F) {
   1249   Emitter->deallocateMemForFunction(F);
   1250 }
   1251 void JITEmitter::EmittedFunctionConfig::onRAUW(
   1252   JITEmitter *, const Function*, const Function*) {
   1253   llvm_unreachable("The JIT doesn't know how to handle a"
   1254                    " RAUW on a value it has emitted.");
   1255 }
   1256 
   1257 
   1258 //===----------------------------------------------------------------------===//
   1259 //  Public interface to this file
   1260 //===----------------------------------------------------------------------===//
   1261 
   1262 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
   1263                                    TargetMachine &tm) {
   1264   return new JITEmitter(jit, JMM, tm);
   1265 }
   1266 
   1267 // getPointerToFunctionOrStub - If the specified function has been
   1268 // code-gen'd, return a pointer to the function.  If not, compile it, or use
   1269 // a stub to implement lazy compilation if available.
   1270 //
   1271 void *JIT::getPointerToFunctionOrStub(Function *F) {
   1272   // If we have already code generated the function, just return the address.
   1273   if (void *Addr = getPointerToGlobalIfAvailable(F))
   1274     return Addr;
   1275 
   1276   // Get a stub if the target supports it.
   1277   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1278   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
   1279   return JE->getJITResolver().getLazyFunctionStub(F);
   1280 }
   1281 
   1282 void JIT::updateFunctionStub(Function *F) {
   1283   // Get the empty stub we generated earlier.
   1284   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1285   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
   1286   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
   1287   void *Addr = getPointerToGlobalIfAvailable(F);
   1288   assert(Addr != Stub && "Function must have non-stub address to be updated.");
   1289 
   1290   // Tell the target jit info to rewrite the stub at the specified address,
   1291   // rather than creating a new one.
   1292   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
   1293   JE->startGVStub(Stub, layout.Size);
   1294   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
   1295   JE->finishGVStub();
   1296 }
   1297 
   1298 /// freeMachineCodeForFunction - release machine code memory for given Function.
   1299 ///
   1300 void JIT::freeMachineCodeForFunction(Function *F) {
   1301   // Delete translation for this from the ExecutionEngine, so it will get
   1302   // retranslated next time it is used.
   1303   updateGlobalMapping(F, 0);
   1304 
   1305   // Free the actual memory for the function body and related stuff.
   1306   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1307   cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
   1308 }
   1309