1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Instructions.h" 27 #include "llvm/Function.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/LiveStackAnalysis.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/ADT/DenseSet.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 using namespace llvm; 47 48 namespace { 49 struct MachineVerifier { 50 51 MachineVerifier(Pass *pass, const char *b) : 52 PASS(pass), 53 Banner(b), 54 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 55 {} 56 57 bool runOnMachineFunction(MachineFunction &MF); 58 59 Pass *const PASS; 60 const char *Banner; 61 const char *const OutFileName; 62 raw_ostream *OS; 63 const MachineFunction *MF; 64 const TargetMachine *TM; 65 const TargetInstrInfo *TII; 66 const TargetRegisterInfo *TRI; 67 const MachineRegisterInfo *MRI; 68 69 unsigned foundErrors; 70 71 typedef SmallVector<unsigned, 16> RegVector; 72 typedef DenseSet<unsigned> RegSet; 73 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 74 75 BitVector regsReserved; 76 RegSet regsLive; 77 RegVector regsDefined, regsDead, regsKilled; 78 RegSet regsLiveInButUnused; 79 80 SlotIndex lastIndex; 81 82 // Add Reg and any sub-registers to RV 83 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 84 RV.push_back(Reg); 85 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 86 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) 87 RV.push_back(*R); 88 } 89 90 struct BBInfo { 91 // Is this MBB reachable from the MF entry point? 92 bool reachable; 93 94 // Vregs that must be live in because they are used without being 95 // defined. Map value is the user. 96 RegMap vregsLiveIn; 97 98 // Regs killed in MBB. They may be defined again, and will then be in both 99 // regsKilled and regsLiveOut. 100 RegSet regsKilled; 101 102 // Regs defined in MBB and live out. Note that vregs passing through may 103 // be live out without being mentioned here. 104 RegSet regsLiveOut; 105 106 // Vregs that pass through MBB untouched. This set is disjoint from 107 // regsKilled and regsLiveOut. 108 RegSet vregsPassed; 109 110 // Vregs that must pass through MBB because they are needed by a successor 111 // block. This set is disjoint from regsLiveOut. 112 RegSet vregsRequired; 113 114 BBInfo() : reachable(false) {} 115 116 // Add register to vregsPassed if it belongs there. Return true if 117 // anything changed. 118 bool addPassed(unsigned Reg) { 119 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 120 return false; 121 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 122 return false; 123 return vregsPassed.insert(Reg).second; 124 } 125 126 // Same for a full set. 127 bool addPassed(const RegSet &RS) { 128 bool changed = false; 129 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 130 if (addPassed(*I)) 131 changed = true; 132 return changed; 133 } 134 135 // Add register to vregsRequired if it belongs there. Return true if 136 // anything changed. 137 bool addRequired(unsigned Reg) { 138 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 139 return false; 140 if (regsLiveOut.count(Reg)) 141 return false; 142 return vregsRequired.insert(Reg).second; 143 } 144 145 // Same for a full set. 146 bool addRequired(const RegSet &RS) { 147 bool changed = false; 148 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 149 if (addRequired(*I)) 150 changed = true; 151 return changed; 152 } 153 154 // Same for a full map. 155 bool addRequired(const RegMap &RM) { 156 bool changed = false; 157 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 158 if (addRequired(I->first)) 159 changed = true; 160 return changed; 161 } 162 163 // Live-out registers are either in regsLiveOut or vregsPassed. 164 bool isLiveOut(unsigned Reg) const { 165 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 166 } 167 }; 168 169 // Extra register info per MBB. 170 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 171 172 bool isReserved(unsigned Reg) { 173 return Reg < regsReserved.size() && regsReserved.test(Reg); 174 } 175 176 // Analysis information if available 177 LiveVariables *LiveVars; 178 LiveIntervals *LiveInts; 179 LiveStacks *LiveStks; 180 SlotIndexes *Indexes; 181 182 void visitMachineFunctionBefore(); 183 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 184 void visitMachineInstrBefore(const MachineInstr *MI); 185 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 186 void visitMachineInstrAfter(const MachineInstr *MI); 187 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 188 void visitMachineFunctionAfter(); 189 190 void report(const char *msg, const MachineFunction *MF); 191 void report(const char *msg, const MachineBasicBlock *MBB); 192 void report(const char *msg, const MachineInstr *MI); 193 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 194 195 void markReachable(const MachineBasicBlock *MBB); 196 void calcRegsPassed(); 197 void checkPHIOps(const MachineBasicBlock *MBB); 198 199 void calcRegsRequired(); 200 void verifyLiveVariables(); 201 void verifyLiveIntervals(); 202 }; 203 204 struct MachineVerifierPass : public MachineFunctionPass { 205 static char ID; // Pass ID, replacement for typeid 206 const char *const Banner; 207 208 MachineVerifierPass(const char *b = 0) 209 : MachineFunctionPass(ID), Banner(b) { 210 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesAll(); 215 MachineFunctionPass::getAnalysisUsage(AU); 216 } 217 218 bool runOnMachineFunction(MachineFunction &MF) { 219 MF.verify(this, Banner); 220 return false; 221 } 222 }; 223 224 } 225 226 char MachineVerifierPass::ID = 0; 227 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 228 "Verify generated machine code", false, false) 229 230 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 231 return new MachineVerifierPass(Banner); 232 } 233 234 void MachineFunction::verify(Pass *p, const char *Banner) const { 235 MachineVerifier(p, Banner) 236 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 237 } 238 239 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 240 raw_ostream *OutFile = 0; 241 if (OutFileName) { 242 std::string ErrorInfo; 243 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 244 raw_fd_ostream::F_Append); 245 if (!ErrorInfo.empty()) { 246 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 247 exit(1); 248 } 249 250 OS = OutFile; 251 } else { 252 OS = &errs(); 253 } 254 255 foundErrors = 0; 256 257 this->MF = &MF; 258 TM = &MF.getTarget(); 259 TII = TM->getInstrInfo(); 260 TRI = TM->getRegisterInfo(); 261 MRI = &MF.getRegInfo(); 262 263 LiveVars = NULL; 264 LiveInts = NULL; 265 LiveStks = NULL; 266 Indexes = NULL; 267 if (PASS) { 268 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 269 // We don't want to verify LiveVariables if LiveIntervals is available. 270 if (!LiveInts) 271 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 272 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 273 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 274 } 275 276 visitMachineFunctionBefore(); 277 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 278 MFI!=MFE; ++MFI) { 279 visitMachineBasicBlockBefore(MFI); 280 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), 281 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { 282 if (MBBI->getParent() != MFI) { 283 report("Bad instruction parent pointer", MFI); 284 *OS << "Instruction: " << *MBBI; 285 continue; 286 } 287 visitMachineInstrBefore(MBBI); 288 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 289 visitMachineOperand(&MBBI->getOperand(I), I); 290 visitMachineInstrAfter(MBBI); 291 } 292 visitMachineBasicBlockAfter(MFI); 293 } 294 visitMachineFunctionAfter(); 295 296 if (OutFile) 297 delete OutFile; 298 else if (foundErrors) 299 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 300 301 // Clean up. 302 regsLive.clear(); 303 regsDefined.clear(); 304 regsDead.clear(); 305 regsKilled.clear(); 306 regsLiveInButUnused.clear(); 307 MBBInfoMap.clear(); 308 309 return false; // no changes 310 } 311 312 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 313 assert(MF); 314 *OS << '\n'; 315 if (!foundErrors++) { 316 if (Banner) 317 *OS << "# " << Banner << '\n'; 318 MF->print(*OS, Indexes); 319 } 320 *OS << "*** Bad machine code: " << msg << " ***\n" 321 << "- function: " << MF->getFunction()->getNameStr() << "\n"; 322 } 323 324 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 325 assert(MBB); 326 report(msg, MBB->getParent()); 327 *OS << "- basic block: " << MBB->getName() 328 << " " << (void*)MBB 329 << " (BB#" << MBB->getNumber() << ")"; 330 if (Indexes) 331 *OS << " [" << Indexes->getMBBStartIdx(MBB) 332 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 333 *OS << '\n'; 334 } 335 336 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 337 assert(MI); 338 report(msg, MI->getParent()); 339 *OS << "- instruction: "; 340 if (Indexes && Indexes->hasIndex(MI)) 341 *OS << Indexes->getInstructionIndex(MI) << '\t'; 342 MI->print(*OS, TM); 343 } 344 345 void MachineVerifier::report(const char *msg, 346 const MachineOperand *MO, unsigned MONum) { 347 assert(MO); 348 report(msg, MO->getParent()); 349 *OS << "- operand " << MONum << ": "; 350 MO->print(*OS, TM); 351 *OS << "\n"; 352 } 353 354 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 355 BBInfo &MInfo = MBBInfoMap[MBB]; 356 if (!MInfo.reachable) { 357 MInfo.reachable = true; 358 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 359 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 360 markReachable(*SuI); 361 } 362 } 363 364 void MachineVerifier::visitMachineFunctionBefore() { 365 lastIndex = SlotIndex(); 366 regsReserved = TRI->getReservedRegs(*MF); 367 368 // A sub-register of a reserved register is also reserved 369 for (int Reg = regsReserved.find_first(); Reg>=0; 370 Reg = regsReserved.find_next(Reg)) { 371 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 372 // FIXME: This should probably be: 373 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 374 regsReserved.set(*Sub); 375 } 376 } 377 markReachable(&MF->front()); 378 } 379 380 // Does iterator point to a and b as the first two elements? 381 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 382 const MachineBasicBlock *a, const MachineBasicBlock *b) { 383 if (*i == a) 384 return *++i == b; 385 if (*i == b) 386 return *++i == a; 387 return false; 388 } 389 390 void 391 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 392 // Count the number of landing pad successors. 393 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 394 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 395 E = MBB->succ_end(); I != E; ++I) { 396 if ((*I)->isLandingPad()) 397 LandingPadSuccs.insert(*I); 398 } 399 400 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 401 const BasicBlock *BB = MBB->getBasicBlock(); 402 if (LandingPadSuccs.size() > 1 && 403 !(AsmInfo && 404 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 405 BB && isa<SwitchInst>(BB->getTerminator()))) 406 report("MBB has more than one landing pad successor", MBB); 407 408 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 409 MachineBasicBlock *TBB = 0, *FBB = 0; 410 SmallVector<MachineOperand, 4> Cond; 411 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 412 TBB, FBB, Cond)) { 413 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 414 // check whether its answers match up with reality. 415 if (!TBB && !FBB) { 416 // Block falls through to its successor. 417 MachineFunction::const_iterator MBBI = MBB; 418 ++MBBI; 419 if (MBBI == MF->end()) { 420 // It's possible that the block legitimately ends with a noreturn 421 // call or an unreachable, in which case it won't actually fall 422 // out the bottom of the function. 423 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 424 // It's possible that the block legitimately ends with a noreturn 425 // call or an unreachable, in which case it won't actuall fall 426 // out of the block. 427 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 428 report("MBB exits via unconditional fall-through but doesn't have " 429 "exactly one CFG successor!", MBB); 430 } else if (!MBB->isSuccessor(MBBI)) { 431 report("MBB exits via unconditional fall-through but its successor " 432 "differs from its CFG successor!", MBB); 433 } 434 if (!MBB->empty() && MBB->back().getDesc().isBarrier() && 435 !TII->isPredicated(&MBB->back())) { 436 report("MBB exits via unconditional fall-through but ends with a " 437 "barrier instruction!", MBB); 438 } 439 if (!Cond.empty()) { 440 report("MBB exits via unconditional fall-through but has a condition!", 441 MBB); 442 } 443 } else if (TBB && !FBB && Cond.empty()) { 444 // Block unconditionally branches somewhere. 445 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 446 report("MBB exits via unconditional branch but doesn't have " 447 "exactly one CFG successor!", MBB); 448 } else if (!MBB->isSuccessor(TBB)) { 449 report("MBB exits via unconditional branch but the CFG " 450 "successor doesn't match the actual successor!", MBB); 451 } 452 if (MBB->empty()) { 453 report("MBB exits via unconditional branch but doesn't contain " 454 "any instructions!", MBB); 455 } else if (!MBB->back().getDesc().isBarrier()) { 456 report("MBB exits via unconditional branch but doesn't end with a " 457 "barrier instruction!", MBB); 458 } else if (!MBB->back().getDesc().isTerminator()) { 459 report("MBB exits via unconditional branch but the branch isn't a " 460 "terminator instruction!", MBB); 461 } 462 } else if (TBB && !FBB && !Cond.empty()) { 463 // Block conditionally branches somewhere, otherwise falls through. 464 MachineFunction::const_iterator MBBI = MBB; 465 ++MBBI; 466 if (MBBI == MF->end()) { 467 report("MBB conditionally falls through out of function!", MBB); 468 } if (MBB->succ_size() != 2) { 469 report("MBB exits via conditional branch/fall-through but doesn't have " 470 "exactly two CFG successors!", MBB); 471 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 472 report("MBB exits via conditional branch/fall-through but the CFG " 473 "successors don't match the actual successors!", MBB); 474 } 475 if (MBB->empty()) { 476 report("MBB exits via conditional branch/fall-through but doesn't " 477 "contain any instructions!", MBB); 478 } else if (MBB->back().getDesc().isBarrier()) { 479 report("MBB exits via conditional branch/fall-through but ends with a " 480 "barrier instruction!", MBB); 481 } else if (!MBB->back().getDesc().isTerminator()) { 482 report("MBB exits via conditional branch/fall-through but the branch " 483 "isn't a terminator instruction!", MBB); 484 } 485 } else if (TBB && FBB) { 486 // Block conditionally branches somewhere, otherwise branches 487 // somewhere else. 488 if (MBB->succ_size() != 2) { 489 report("MBB exits via conditional branch/branch but doesn't have " 490 "exactly two CFG successors!", MBB); 491 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 492 report("MBB exits via conditional branch/branch but the CFG " 493 "successors don't match the actual successors!", MBB); 494 } 495 if (MBB->empty()) { 496 report("MBB exits via conditional branch/branch but doesn't " 497 "contain any instructions!", MBB); 498 } else if (!MBB->back().getDesc().isBarrier()) { 499 report("MBB exits via conditional branch/branch but doesn't end with a " 500 "barrier instruction!", MBB); 501 } else if (!MBB->back().getDesc().isTerminator()) { 502 report("MBB exits via conditional branch/branch but the branch " 503 "isn't a terminator instruction!", MBB); 504 } 505 if (Cond.empty()) { 506 report("MBB exits via conditinal branch/branch but there's no " 507 "condition!", MBB); 508 } 509 } else { 510 report("AnalyzeBranch returned invalid data!", MBB); 511 } 512 } 513 514 regsLive.clear(); 515 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 516 E = MBB->livein_end(); I != E; ++I) { 517 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 518 report("MBB live-in list contains non-physical register", MBB); 519 continue; 520 } 521 regsLive.insert(*I); 522 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) 523 regsLive.insert(*R); 524 } 525 regsLiveInButUnused = regsLive; 526 527 const MachineFrameInfo *MFI = MF->getFrameInfo(); 528 assert(MFI && "Function has no frame info"); 529 BitVector PR = MFI->getPristineRegs(MBB); 530 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 531 regsLive.insert(I); 532 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) 533 regsLive.insert(*R); 534 } 535 536 regsKilled.clear(); 537 regsDefined.clear(); 538 539 if (Indexes) 540 lastIndex = Indexes->getMBBStartIdx(MBB); 541 } 542 543 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 544 const MCInstrDesc &MCID = MI->getDesc(); 545 if (MI->getNumOperands() < MCID.getNumOperands()) { 546 report("Too few operands", MI); 547 *OS << MCID.getNumOperands() << " operands expected, but " 548 << MI->getNumExplicitOperands() << " given.\n"; 549 } 550 551 // Check the MachineMemOperands for basic consistency. 552 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 553 E = MI->memoperands_end(); I != E; ++I) { 554 if ((*I)->isLoad() && !MCID.mayLoad()) 555 report("Missing mayLoad flag", MI); 556 if ((*I)->isStore() && !MCID.mayStore()) 557 report("Missing mayStore flag", MI); 558 } 559 560 // Debug values must not have a slot index. 561 // Other instructions must have one. 562 if (LiveInts) { 563 bool mapped = !LiveInts->isNotInMIMap(MI); 564 if (MI->isDebugValue()) { 565 if (mapped) 566 report("Debug instruction has a slot index", MI); 567 } else { 568 if (!mapped) 569 report("Missing slot index", MI); 570 } 571 } 572 573 } 574 575 void 576 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 577 const MachineInstr *MI = MO->getParent(); 578 const MCInstrDesc &MCID = MI->getDesc(); 579 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 580 581 // The first MCID.NumDefs operands must be explicit register defines 582 if (MONum < MCID.getNumDefs()) { 583 if (!MO->isReg()) 584 report("Explicit definition must be a register", MO, MONum); 585 else if (!MO->isDef()) 586 report("Explicit definition marked as use", MO, MONum); 587 else if (MO->isImplicit()) 588 report("Explicit definition marked as implicit", MO, MONum); 589 } else if (MONum < MCID.getNumOperands()) { 590 // Don't check if it's the last operand in a variadic instruction. See, 591 // e.g., LDM_RET in the arm back end. 592 if (MO->isReg() && 593 !(MCID.isVariadic() && MONum == MCID.getNumOperands()-1)) { 594 if (MO->isDef() && !MCOI.isOptionalDef()) 595 report("Explicit operand marked as def", MO, MONum); 596 if (MO->isImplicit()) 597 report("Explicit operand marked as implicit", MO, MONum); 598 } 599 } else { 600 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 601 if (MO->isReg() && !MO->isImplicit() && !MCID.isVariadic() && MO->getReg()) 602 report("Extra explicit operand on non-variadic instruction", MO, MONum); 603 } 604 605 switch (MO->getType()) { 606 case MachineOperand::MO_Register: { 607 const unsigned Reg = MO->getReg(); 608 if (!Reg) 609 return; 610 611 // Check Live Variables. 612 if (MI->isDebugValue()) { 613 // Liveness checks are not valid for debug values. 614 } else if (MO->isUse() && !MO->isUndef()) { 615 regsLiveInButUnused.erase(Reg); 616 617 bool isKill = false; 618 unsigned defIdx; 619 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 620 // A two-addr use counts as a kill if use and def are the same. 621 unsigned DefReg = MI->getOperand(defIdx).getReg(); 622 if (Reg == DefReg) 623 isKill = true; 624 else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 625 report("Two-address instruction operands must be identical", 626 MO, MONum); 627 } 628 } else 629 isKill = MO->isKill(); 630 631 if (isKill) 632 addRegWithSubRegs(regsKilled, Reg); 633 634 // Check that LiveVars knows this kill. 635 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 636 MO->isKill()) { 637 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 638 if (std::find(VI.Kills.begin(), 639 VI.Kills.end(), MI) == VI.Kills.end()) 640 report("Kill missing from LiveVariables", MO, MONum); 641 } 642 643 // Check LiveInts liveness and kill. 644 if (TargetRegisterInfo::isVirtualRegister(Reg) && 645 LiveInts && !LiveInts->isNotInMIMap(MI)) { 646 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex(); 647 if (LiveInts->hasInterval(Reg)) { 648 const LiveInterval &LI = LiveInts->getInterval(Reg); 649 if (!LI.liveAt(UseIdx)) { 650 report("No live range at use", MO, MONum); 651 *OS << UseIdx << " is not live in " << LI << '\n'; 652 } 653 // Check for extra kill flags. 654 // Note that we allow missing kill flags for now. 655 if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) { 656 report("Live range continues after kill flag", MO, MONum); 657 *OS << "Live range: " << LI << '\n'; 658 } 659 } else { 660 report("Virtual register has no Live interval", MO, MONum); 661 } 662 } 663 664 // Use of a dead register. 665 if (!regsLive.count(Reg)) { 666 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 667 // Reserved registers may be used even when 'dead'. 668 if (!isReserved(Reg)) 669 report("Using an undefined physical register", MO, MONum); 670 } else { 671 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 672 // We don't know which virtual registers are live in, so only complain 673 // if vreg was killed in this MBB. Otherwise keep track of vregs that 674 // must be live in. PHI instructions are handled separately. 675 if (MInfo.regsKilled.count(Reg)) 676 report("Using a killed virtual register", MO, MONum); 677 else if (!MI->isPHI()) 678 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 679 } 680 } 681 } else if (MO->isDef()) { 682 // Register defined. 683 // TODO: verify that earlyclobber ops are not used. 684 if (MO->isDead()) 685 addRegWithSubRegs(regsDead, Reg); 686 else 687 addRegWithSubRegs(regsDefined, Reg); 688 689 // Check LiveInts for a live range, but only for virtual registers. 690 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 691 !LiveInts->isNotInMIMap(MI)) { 692 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex(); 693 if (LiveInts->hasInterval(Reg)) { 694 const LiveInterval &LI = LiveInts->getInterval(Reg); 695 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 696 assert(VNI && "NULL valno is not allowed"); 697 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 698 report("Inconsistent valno->def", MO, MONum); 699 *OS << "Valno " << VNI->id << " is not defined at " 700 << DefIdx << " in " << LI << '\n'; 701 } 702 } else { 703 report("No live range at def", MO, MONum); 704 *OS << DefIdx << " is not live in " << LI << '\n'; 705 } 706 } else { 707 report("Virtual register has no Live interval", MO, MONum); 708 } 709 } 710 } 711 712 // Check register classes. 713 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 714 unsigned SubIdx = MO->getSubReg(); 715 716 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 717 unsigned sr = Reg; 718 if (SubIdx) { 719 unsigned s = TRI->getSubReg(Reg, SubIdx); 720 if (!s) { 721 report("Invalid subregister index for physical register", 722 MO, MONum); 723 return; 724 } 725 sr = s; 726 } 727 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { 728 if (!DRC->contains(sr)) { 729 report("Illegal physical register for instruction", MO, MONum); 730 *OS << TRI->getName(sr) << " is not a " 731 << DRC->getName() << " register.\n"; 732 } 733 } 734 } else { 735 // Virtual register. 736 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 737 if (SubIdx) { 738 const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx); 739 if (!SRC) { 740 report("Invalid subregister index for virtual register", MO, MONum); 741 *OS << "Register class " << RC->getName() 742 << " does not support subreg index " << SubIdx << "\n"; 743 return; 744 } 745 RC = SRC; 746 } 747 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { 748 if (!RC->hasSuperClassEq(DRC)) { 749 report("Illegal virtual register for instruction", MO, MONum); 750 *OS << "Expected a " << DRC->getName() << " register, but got a " 751 << RC->getName() << " register\n"; 752 } 753 } 754 } 755 } 756 break; 757 } 758 759 case MachineOperand::MO_MachineBasicBlock: 760 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 761 report("PHI operand is not in the CFG", MO, MONum); 762 break; 763 764 case MachineOperand::MO_FrameIndex: 765 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 766 LiveInts && !LiveInts->isNotInMIMap(MI)) { 767 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 768 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 769 if (MCID.mayLoad() && !LI.liveAt(Idx.getUseIndex())) { 770 report("Instruction loads from dead spill slot", MO, MONum); 771 *OS << "Live stack: " << LI << '\n'; 772 } 773 if (MCID.mayStore() && !LI.liveAt(Idx.getDefIndex())) { 774 report("Instruction stores to dead spill slot", MO, MONum); 775 *OS << "Live stack: " << LI << '\n'; 776 } 777 } 778 break; 779 780 default: 781 break; 782 } 783 } 784 785 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 786 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 787 set_union(MInfo.regsKilled, regsKilled); 788 set_subtract(regsLive, regsKilled); regsKilled.clear(); 789 set_subtract(regsLive, regsDead); regsDead.clear(); 790 set_union(regsLive, regsDefined); regsDefined.clear(); 791 792 if (Indexes && Indexes->hasIndex(MI)) { 793 SlotIndex idx = Indexes->getInstructionIndex(MI); 794 if (!(idx > lastIndex)) { 795 report("Instruction index out of order", MI); 796 *OS << "Last instruction was at " << lastIndex << '\n'; 797 } 798 lastIndex = idx; 799 } 800 } 801 802 void 803 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 804 MBBInfoMap[MBB].regsLiveOut = regsLive; 805 regsLive.clear(); 806 807 if (Indexes) { 808 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 809 if (!(stop > lastIndex)) { 810 report("Block ends before last instruction index", MBB); 811 *OS << "Block ends at " << stop 812 << " last instruction was at " << lastIndex << '\n'; 813 } 814 lastIndex = stop; 815 } 816 } 817 818 // Calculate the largest possible vregsPassed sets. These are the registers that 819 // can pass through an MBB live, but may not be live every time. It is assumed 820 // that all vregsPassed sets are empty before the call. 821 void MachineVerifier::calcRegsPassed() { 822 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 823 // have any vregsPassed. 824 DenseSet<const MachineBasicBlock*> todo; 825 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 826 MFI != MFE; ++MFI) { 827 const MachineBasicBlock &MBB(*MFI); 828 BBInfo &MInfo = MBBInfoMap[&MBB]; 829 if (!MInfo.reachable) 830 continue; 831 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 832 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 833 BBInfo &SInfo = MBBInfoMap[*SuI]; 834 if (SInfo.addPassed(MInfo.regsLiveOut)) 835 todo.insert(*SuI); 836 } 837 } 838 839 // Iteratively push vregsPassed to successors. This will converge to the same 840 // final state regardless of DenseSet iteration order. 841 while (!todo.empty()) { 842 const MachineBasicBlock *MBB = *todo.begin(); 843 todo.erase(MBB); 844 BBInfo &MInfo = MBBInfoMap[MBB]; 845 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 846 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 847 if (*SuI == MBB) 848 continue; 849 BBInfo &SInfo = MBBInfoMap[*SuI]; 850 if (SInfo.addPassed(MInfo.vregsPassed)) 851 todo.insert(*SuI); 852 } 853 } 854 } 855 856 // Calculate the set of virtual registers that must be passed through each basic 857 // block in order to satisfy the requirements of successor blocks. This is very 858 // similar to calcRegsPassed, only backwards. 859 void MachineVerifier::calcRegsRequired() { 860 // First push live-in regs to predecessors' vregsRequired. 861 DenseSet<const MachineBasicBlock*> todo; 862 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 863 MFI != MFE; ++MFI) { 864 const MachineBasicBlock &MBB(*MFI); 865 BBInfo &MInfo = MBBInfoMap[&MBB]; 866 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 867 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 868 BBInfo &PInfo = MBBInfoMap[*PrI]; 869 if (PInfo.addRequired(MInfo.vregsLiveIn)) 870 todo.insert(*PrI); 871 } 872 } 873 874 // Iteratively push vregsRequired to predecessors. This will converge to the 875 // same final state regardless of DenseSet iteration order. 876 while (!todo.empty()) { 877 const MachineBasicBlock *MBB = *todo.begin(); 878 todo.erase(MBB); 879 BBInfo &MInfo = MBBInfoMap[MBB]; 880 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 881 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 882 if (*PrI == MBB) 883 continue; 884 BBInfo &SInfo = MBBInfoMap[*PrI]; 885 if (SInfo.addRequired(MInfo.vregsRequired)) 886 todo.insert(*PrI); 887 } 888 } 889 } 890 891 // Check PHI instructions at the beginning of MBB. It is assumed that 892 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 893 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 894 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 895 BBI != BBE && BBI->isPHI(); ++BBI) { 896 DenseSet<const MachineBasicBlock*> seen; 897 898 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 899 unsigned Reg = BBI->getOperand(i).getReg(); 900 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 901 if (!Pre->isSuccessor(MBB)) 902 continue; 903 seen.insert(Pre); 904 BBInfo &PrInfo = MBBInfoMap[Pre]; 905 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 906 report("PHI operand is not live-out from predecessor", 907 &BBI->getOperand(i), i); 908 } 909 910 // Did we see all predecessors? 911 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 912 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 913 if (!seen.count(*PrI)) { 914 report("Missing PHI operand", BBI); 915 *OS << "BB#" << (*PrI)->getNumber() 916 << " is a predecessor according to the CFG.\n"; 917 } 918 } 919 } 920 } 921 922 void MachineVerifier::visitMachineFunctionAfter() { 923 calcRegsPassed(); 924 925 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 926 MFI != MFE; ++MFI) { 927 BBInfo &MInfo = MBBInfoMap[MFI]; 928 929 // Skip unreachable MBBs. 930 if (!MInfo.reachable) 931 continue; 932 933 checkPHIOps(MFI); 934 } 935 936 // Now check liveness info if available 937 if (LiveVars || LiveInts) 938 calcRegsRequired(); 939 if (LiveVars) 940 verifyLiveVariables(); 941 if (LiveInts) 942 verifyLiveIntervals(); 943 } 944 945 void MachineVerifier::verifyLiveVariables() { 946 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 947 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 948 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 949 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 950 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 951 MFI != MFE; ++MFI) { 952 BBInfo &MInfo = MBBInfoMap[MFI]; 953 954 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 955 if (MInfo.vregsRequired.count(Reg)) { 956 if (!VI.AliveBlocks.test(MFI->getNumber())) { 957 report("LiveVariables: Block missing from AliveBlocks", MFI); 958 *OS << "Virtual register " << PrintReg(Reg) 959 << " must be live through the block.\n"; 960 } 961 } else { 962 if (VI.AliveBlocks.test(MFI->getNumber())) { 963 report("LiveVariables: Block should not be in AliveBlocks", MFI); 964 *OS << "Virtual register " << PrintReg(Reg) 965 << " is not needed live through the block.\n"; 966 } 967 } 968 } 969 } 970 } 971 972 void MachineVerifier::verifyLiveIntervals() { 973 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 974 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 975 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 976 const LiveInterval &LI = *LVI->second; 977 978 // Spilling and splitting may leave unused registers around. Skip them. 979 if (MRI->use_empty(LI.reg)) 980 continue; 981 982 // Physical registers have much weirdness going on, mostly from coalescing. 983 // We should probably fix it, but for now just ignore them. 984 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 985 continue; 986 987 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 988 989 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 990 I!=E; ++I) { 991 VNInfo *VNI = *I; 992 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 993 994 if (!DefVNI) { 995 if (!VNI->isUnused()) { 996 report("Valno not live at def and not marked unused", MF); 997 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 998 } 999 continue; 1000 } 1001 1002 if (VNI->isUnused()) 1003 continue; 1004 1005 if (DefVNI != VNI) { 1006 report("Live range at def has different valno", MF); 1007 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1008 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1009 continue; 1010 } 1011 1012 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1013 if (!MBB) { 1014 report("Invalid definition index", MF); 1015 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1016 << " in " << LI << '\n'; 1017 continue; 1018 } 1019 1020 if (VNI->isPHIDef()) { 1021 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1022 report("PHIDef value is not defined at MBB start", MF); 1023 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1024 << ", not at the beginning of BB#" << MBB->getNumber() 1025 << " in " << LI << '\n'; 1026 } 1027 } else { 1028 // Non-PHI def. 1029 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1030 if (!MI) { 1031 report("No instruction at def index", MF); 1032 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1033 << " in " << LI << '\n'; 1034 } else if (!MI->modifiesRegister(LI.reg, TRI)) { 1035 report("Defining instruction does not modify register", MI); 1036 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1037 } 1038 1039 bool isEarlyClobber = false; 1040 if (MI) { 1041 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1042 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1043 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && 1044 MOI->isEarlyClobber()) { 1045 isEarlyClobber = true; 1046 break; 1047 } 1048 } 1049 } 1050 1051 // Early clobber defs begin at USE slots, but other defs must begin at 1052 // DEF slots. 1053 if (isEarlyClobber) { 1054 if (!VNI->def.isUse()) { 1055 report("Early clobber def must be at a USE slot", MF); 1056 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1057 << " in " << LI << '\n'; 1058 } 1059 } else if (!VNI->def.isDef()) { 1060 report("Non-PHI, non-early clobber def must be at a DEF slot", MF); 1061 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1062 << " in " << LI << '\n'; 1063 } 1064 } 1065 } 1066 1067 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1068 const VNInfo *VNI = I->valno; 1069 assert(VNI && "Live range has no valno"); 1070 1071 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1072 report("Foreign valno in live range", MF); 1073 I->print(*OS); 1074 *OS << " has a valno not in " << LI << '\n'; 1075 } 1076 1077 if (VNI->isUnused()) { 1078 report("Live range valno is marked unused", MF); 1079 I->print(*OS); 1080 *OS << " in " << LI << '\n'; 1081 } 1082 1083 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1084 if (!MBB) { 1085 report("Bad start of live segment, no basic block", MF); 1086 I->print(*OS); 1087 *OS << " in " << LI << '\n'; 1088 continue; 1089 } 1090 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1091 if (I->start != MBBStartIdx && I->start != VNI->def) { 1092 report("Live segment must begin at MBB entry or valno def", MBB); 1093 I->print(*OS); 1094 *OS << " in " << LI << '\n' << "Basic block starts at " 1095 << MBBStartIdx << '\n'; 1096 } 1097 1098 const MachineBasicBlock *EndMBB = 1099 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1100 if (!EndMBB) { 1101 report("Bad end of live segment, no basic block", MF); 1102 I->print(*OS); 1103 *OS << " in " << LI << '\n'; 1104 continue; 1105 } 1106 if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { 1107 // The live segment is ending inside EndMBB 1108 const MachineInstr *MI = 1109 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1110 if (!MI) { 1111 report("Live segment doesn't end at a valid instruction", EndMBB); 1112 I->print(*OS); 1113 *OS << " in " << LI << '\n' << "Basic block starts at " 1114 << MBBStartIdx << '\n'; 1115 } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && 1116 !MI->readsVirtualRegister(LI.reg)) { 1117 // A live range can end with either a redefinition, a kill flag on a 1118 // use, or a dead flag on a def. 1119 // FIXME: Should we check for each of these? 1120 bool hasDeadDef = false; 1121 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1122 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1123 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { 1124 hasDeadDef = true; 1125 break; 1126 } 1127 } 1128 1129 if (!hasDeadDef) { 1130 report("Instruction killing live segment neither defines nor reads " 1131 "register", MI); 1132 I->print(*OS); 1133 *OS << " in " << LI << '\n'; 1134 } 1135 } 1136 } 1137 1138 // Now check all the basic blocks in this live segment. 1139 MachineFunction::const_iterator MFI = MBB; 1140 // Is this live range the beginning of a non-PHIDef VN? 1141 if (I->start == VNI->def && !VNI->isPHIDef()) { 1142 // Not live-in to any blocks. 1143 if (MBB == EndMBB) 1144 continue; 1145 // Skip this block. 1146 ++MFI; 1147 } 1148 for (;;) { 1149 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1150 // We don't know how to track physregs into a landing pad. 1151 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1152 MFI->isLandingPad()) { 1153 if (&*MFI == EndMBB) 1154 break; 1155 ++MFI; 1156 continue; 1157 } 1158 // Check that VNI is live-out of all predecessors. 1159 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1160 PE = MFI->pred_end(); PI != PE; ++PI) { 1161 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); 1162 const VNInfo *PVNI = LI.getVNInfoAt(PEnd); 1163 1164 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) { 1165 if (PVNI && !PVNI->hasPHIKill()) { 1166 report("Value live out of predecessor doesn't have PHIKill", MF); 1167 *OS << "Valno #" << PVNI->id << " live out of BB#" 1168 << (*PI)->getNumber() << '@' << PEnd 1169 << " doesn't have PHIKill, but Valno #" << VNI->id 1170 << " is PHIDef and defined at the beginning of BB#" 1171 << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) 1172 << " in " << LI << '\n'; 1173 } 1174 continue; 1175 } 1176 1177 if (!PVNI) { 1178 report("Register not marked live out of predecessor", *PI); 1179 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1180 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " 1181 << PEnd << " in " << LI << '\n'; 1182 continue; 1183 } 1184 1185 if (PVNI != VNI) { 1186 report("Different value live out of predecessor", *PI); 1187 *OS << "Valno #" << PVNI->id << " live out of BB#" 1188 << (*PI)->getNumber() << '@' << PEnd 1189 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1190 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1191 } 1192 } 1193 if (&*MFI == EndMBB) 1194 break; 1195 ++MFI; 1196 } 1197 } 1198 1199 // Check the LI only has one connected component. 1200 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1201 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1202 unsigned NumComp = ConEQ.Classify(&LI); 1203 if (NumComp > 1) { 1204 report("Multiple connected components in live interval", MF); 1205 *OS << NumComp << " components in " << LI << '\n'; 1206 for (unsigned comp = 0; comp != NumComp; ++comp) { 1207 *OS << comp << ": valnos"; 1208 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1209 E = LI.vni_end(); I!=E; ++I) 1210 if (comp == ConEQ.getEqClass(*I)) 1211 *OS << ' ' << (*I)->id; 1212 *OS << '\n'; 1213 } 1214 } 1215 } 1216 } 1217 } 1218 1219