Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Type interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_TYPE_H
     15 #define LLVM_CLANG_AST_TYPE_H
     16 
     17 #include "clang/Basic/Diagnostic.h"
     18 #include "clang/Basic/ExceptionSpecificationType.h"
     19 #include "clang/Basic/IdentifierTable.h"
     20 #include "clang/Basic/Linkage.h"
     21 #include "clang/Basic/PartialDiagnostic.h"
     22 #include "clang/Basic/Visibility.h"
     23 #include "clang/AST/NestedNameSpecifier.h"
     24 #include "clang/AST/TemplateName.h"
     25 #include "llvm/Support/type_traits.h"
     26 #include "llvm/ADT/APSInt.h"
     27 #include "llvm/ADT/FoldingSet.h"
     28 #include "llvm/ADT/Optional.h"
     29 #include "llvm/ADT/PointerIntPair.h"
     30 #include "llvm/ADT/PointerUnion.h"
     31 #include "clang/Basic/LLVM.h"
     32 
     33 namespace clang {
     34   enum {
     35     TypeAlignmentInBits = 4,
     36     TypeAlignment = 1 << TypeAlignmentInBits
     37   };
     38   class Type;
     39   class ExtQuals;
     40   class QualType;
     41 }
     42 
     43 namespace llvm {
     44   template <typename T>
     45   class PointerLikeTypeTraits;
     46   template<>
     47   class PointerLikeTypeTraits< ::clang::Type*> {
     48   public:
     49     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     50     static inline ::clang::Type *getFromVoidPointer(void *P) {
     51       return static_cast< ::clang::Type*>(P);
     52     }
     53     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     54   };
     55   template<>
     56   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     57   public:
     58     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     59     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     60       return static_cast< ::clang::ExtQuals*>(P);
     61     }
     62     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     63   };
     64 
     65   template <>
     66   struct isPodLike<clang::QualType> { static const bool value = true; };
     67 }
     68 
     69 namespace clang {
     70   class ASTContext;
     71   class TypedefNameDecl;
     72   class TemplateDecl;
     73   class TemplateTypeParmDecl;
     74   class NonTypeTemplateParmDecl;
     75   class TemplateTemplateParmDecl;
     76   class TagDecl;
     77   class RecordDecl;
     78   class CXXRecordDecl;
     79   class EnumDecl;
     80   class FieldDecl;
     81   class ObjCInterfaceDecl;
     82   class ObjCProtocolDecl;
     83   class ObjCMethodDecl;
     84   class UnresolvedUsingTypenameDecl;
     85   class Expr;
     86   class Stmt;
     87   class SourceLocation;
     88   class StmtIteratorBase;
     89   class TemplateArgument;
     90   class TemplateArgumentLoc;
     91   class TemplateArgumentListInfo;
     92   class ElaboratedType;
     93   class ExtQuals;
     94   class ExtQualsTypeCommonBase;
     95   struct PrintingPolicy;
     96 
     97   template <typename> class CanQual;
     98   typedef CanQual<Type> CanQualType;
     99 
    100   // Provide forward declarations for all of the *Type classes
    101 #define TYPE(Class, Base) class Class##Type;
    102 #include "clang/AST/TypeNodes.def"
    103 
    104 /// Qualifiers - The collection of all-type qualifiers we support.
    105 /// Clang supports five independent qualifiers:
    106 /// * C99: const, volatile, and restrict
    107 /// * Embedded C (TR18037): address spaces
    108 /// * Objective C: the GC attributes (none, weak, or strong)
    109 class Qualifiers {
    110 public:
    111   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    112     Const    = 0x1,
    113     Restrict = 0x2,
    114     Volatile = 0x4,
    115     CVRMask = Const | Volatile | Restrict
    116   };
    117 
    118   enum GC {
    119     GCNone = 0,
    120     Weak,
    121     Strong
    122   };
    123 
    124   enum ObjCLifetime {
    125     /// There is no lifetime qualification on this type.
    126     OCL_None,
    127 
    128     /// This object can be modified without requiring retains or
    129     /// releases.
    130     OCL_ExplicitNone,
    131 
    132     /// Assigning into this object requires the old value to be
    133     /// released and the new value to be retained.  The timing of the
    134     /// release of the old value is inexact: it may be moved to
    135     /// immediately after the last known point where the value is
    136     /// live.
    137     OCL_Strong,
    138 
    139     /// Reading or writing from this object requires a barrier call.
    140     OCL_Weak,
    141 
    142     /// Assigning into this object requires a lifetime extension.
    143     OCL_Autoreleasing
    144   };
    145 
    146   enum {
    147     /// The maximum supported address space number.
    148     /// 24 bits should be enough for anyone.
    149     MaxAddressSpace = 0xffffffu,
    150 
    151     /// The width of the "fast" qualifier mask.
    152     FastWidth = 3,
    153 
    154     /// The fast qualifier mask.
    155     FastMask = (1 << FastWidth) - 1
    156   };
    157 
    158   Qualifiers() : Mask(0) {}
    159 
    160   static Qualifiers fromFastMask(unsigned Mask) {
    161     Qualifiers Qs;
    162     Qs.addFastQualifiers(Mask);
    163     return Qs;
    164   }
    165 
    166   static Qualifiers fromCVRMask(unsigned CVR) {
    167     Qualifiers Qs;
    168     Qs.addCVRQualifiers(CVR);
    169     return Qs;
    170   }
    171 
    172   // Deserialize qualifiers from an opaque representation.
    173   static Qualifiers fromOpaqueValue(unsigned opaque) {
    174     Qualifiers Qs;
    175     Qs.Mask = opaque;
    176     return Qs;
    177   }
    178 
    179   // Serialize these qualifiers into an opaque representation.
    180   unsigned getAsOpaqueValue() const {
    181     return Mask;
    182   }
    183 
    184   bool hasConst() const { return Mask & Const; }
    185   void setConst(bool flag) {
    186     Mask = (Mask & ~Const) | (flag ? Const : 0);
    187   }
    188   void removeConst() { Mask &= ~Const; }
    189   void addConst() { Mask |= Const; }
    190 
    191   bool hasVolatile() const { return Mask & Volatile; }
    192   void setVolatile(bool flag) {
    193     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    194   }
    195   void removeVolatile() { Mask &= ~Volatile; }
    196   void addVolatile() { Mask |= Volatile; }
    197 
    198   bool hasRestrict() const { return Mask & Restrict; }
    199   void setRestrict(bool flag) {
    200     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    201   }
    202   void removeRestrict() { Mask &= ~Restrict; }
    203   void addRestrict() { Mask |= Restrict; }
    204 
    205   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    206   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    207   void setCVRQualifiers(unsigned mask) {
    208     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    209     Mask = (Mask & ~CVRMask) | mask;
    210   }
    211   void removeCVRQualifiers(unsigned mask) {
    212     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    213     Mask &= ~mask;
    214   }
    215   void removeCVRQualifiers() {
    216     removeCVRQualifiers(CVRMask);
    217   }
    218   void addCVRQualifiers(unsigned mask) {
    219     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    220     Mask |= mask;
    221   }
    222 
    223   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    224   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    225   void setObjCGCAttr(GC type) {
    226     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    227   }
    228   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    229   void addObjCGCAttr(GC type) {
    230     assert(type);
    231     setObjCGCAttr(type);
    232   }
    233   Qualifiers withoutObjCGCAttr() const {
    234     Qualifiers qs = *this;
    235     qs.removeObjCGCAttr();
    236     return qs;
    237   }
    238   Qualifiers withoutObjCGLifetime() const {
    239     Qualifiers qs = *this;
    240     qs.removeObjCLifetime();
    241     return qs;
    242   }
    243 
    244   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    245   ObjCLifetime getObjCLifetime() const {
    246     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    247   }
    248   void setObjCLifetime(ObjCLifetime type) {
    249     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    250   }
    251   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    252   void addObjCLifetime(ObjCLifetime type) {
    253     assert(type);
    254     setObjCLifetime(type);
    255   }
    256 
    257   /// True if the lifetime is neither None or ExplicitNone.
    258   bool hasNonTrivialObjCLifetime() const {
    259     ObjCLifetime lifetime = getObjCLifetime();
    260     return (lifetime > OCL_ExplicitNone);
    261   }
    262 
    263   /// True if the lifetime is either strong or weak.
    264   bool hasStrongOrWeakObjCLifetime() const {
    265     ObjCLifetime lifetime = getObjCLifetime();
    266     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    267   }
    268 
    269   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    270   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    271   void setAddressSpace(unsigned space) {
    272     assert(space <= MaxAddressSpace);
    273     Mask = (Mask & ~AddressSpaceMask)
    274          | (((uint32_t) space) << AddressSpaceShift);
    275   }
    276   void removeAddressSpace() { setAddressSpace(0); }
    277   void addAddressSpace(unsigned space) {
    278     assert(space);
    279     setAddressSpace(space);
    280   }
    281 
    282   // Fast qualifiers are those that can be allocated directly
    283   // on a QualType object.
    284   bool hasFastQualifiers() const { return getFastQualifiers(); }
    285   unsigned getFastQualifiers() const { return Mask & FastMask; }
    286   void setFastQualifiers(unsigned mask) {
    287     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    288     Mask = (Mask & ~FastMask) | mask;
    289   }
    290   void removeFastQualifiers(unsigned mask) {
    291     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    292     Mask &= ~mask;
    293   }
    294   void removeFastQualifiers() {
    295     removeFastQualifiers(FastMask);
    296   }
    297   void addFastQualifiers(unsigned mask) {
    298     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    299     Mask |= mask;
    300   }
    301 
    302   /// hasNonFastQualifiers - Return true if the set contains any
    303   /// qualifiers which require an ExtQuals node to be allocated.
    304   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    305   Qualifiers getNonFastQualifiers() const {
    306     Qualifiers Quals = *this;
    307     Quals.setFastQualifiers(0);
    308     return Quals;
    309   }
    310 
    311   /// hasQualifiers - Return true if the set contains any qualifiers.
    312   bool hasQualifiers() const { return Mask; }
    313   bool empty() const { return !Mask; }
    314 
    315   /// \brief Add the qualifiers from the given set to this set.
    316   void addQualifiers(Qualifiers Q) {
    317     // If the other set doesn't have any non-boolean qualifiers, just
    318     // bit-or it in.
    319     if (!(Q.Mask & ~CVRMask))
    320       Mask |= Q.Mask;
    321     else {
    322       Mask |= (Q.Mask & CVRMask);
    323       if (Q.hasAddressSpace())
    324         addAddressSpace(Q.getAddressSpace());
    325       if (Q.hasObjCGCAttr())
    326         addObjCGCAttr(Q.getObjCGCAttr());
    327       if (Q.hasObjCLifetime())
    328         addObjCLifetime(Q.getObjCLifetime());
    329     }
    330   }
    331 
    332   /// \brief Add the qualifiers from the given set to this set, given that
    333   /// they don't conflict.
    334   void addConsistentQualifiers(Qualifiers qs) {
    335     assert(getAddressSpace() == qs.getAddressSpace() ||
    336            !hasAddressSpace() || !qs.hasAddressSpace());
    337     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    338            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    339     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    340            !hasObjCLifetime() || !qs.hasObjCLifetime());
    341     Mask |= qs.Mask;
    342   }
    343 
    344   /// \brief Determines if these qualifiers compatibly include another set.
    345   /// Generally this answers the question of whether an object with the other
    346   /// qualifiers can be safely used as an object with these qualifiers.
    347   bool compatiblyIncludes(Qualifiers other) const {
    348     return
    349       // Address spaces must match exactly.
    350       getAddressSpace() == other.getAddressSpace() &&
    351       // ObjC GC qualifiers can match, be added, or be removed, but can't be
    352       // changed.
    353       (getObjCGCAttr() == other.getObjCGCAttr() ||
    354        !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
    355       // ObjC lifetime qualifiers must match exactly.
    356       getObjCLifetime() == other.getObjCLifetime() &&
    357       // CVR qualifiers may subset.
    358       (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
    359   }
    360 
    361   /// \brief Determines if these qualifiers compatibly include another set of
    362   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    363   ///
    364   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    365   /// if the lifetime qualifiers match, or if both are non-__weak and the
    366   /// including set also contains the 'const' qualifier.
    367   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    368     if (getObjCLifetime() == other.getObjCLifetime())
    369       return true;
    370 
    371     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    372       return false;
    373 
    374     return hasConst();
    375   }
    376 
    377   bool isSupersetOf(Qualifiers Other) const;
    378 
    379   /// \brief Determine whether this set of qualifiers is a strict superset of
    380   /// another set of qualifiers, not considering qualifier compatibility.
    381   bool isStrictSupersetOf(Qualifiers Other) const;
    382 
    383   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    384   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    385 
    386   operator bool() const { return hasQualifiers(); }
    387 
    388   Qualifiers &operator+=(Qualifiers R) {
    389     addQualifiers(R);
    390     return *this;
    391   }
    392 
    393   // Union two qualifier sets.  If an enumerated qualifier appears
    394   // in both sets, use the one from the right.
    395   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    396     L += R;
    397     return L;
    398   }
    399 
    400   Qualifiers &operator-=(Qualifiers R) {
    401     Mask = Mask & ~(R.Mask);
    402     return *this;
    403   }
    404 
    405   /// \brief Compute the difference between two qualifier sets.
    406   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    407     L -= R;
    408     return L;
    409   }
    410 
    411   std::string getAsString() const;
    412   std::string getAsString(const PrintingPolicy &Policy) const {
    413     std::string Buffer;
    414     getAsStringInternal(Buffer, Policy);
    415     return Buffer;
    416   }
    417   void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
    418 
    419   void Profile(llvm::FoldingSetNodeID &ID) const {
    420     ID.AddInteger(Mask);
    421   }
    422 
    423 private:
    424 
    425   // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
    426   //           |C R V|GCAttr|Lifetime|AddressSpace|
    427   uint32_t Mask;
    428 
    429   static const uint32_t GCAttrMask = 0x18;
    430   static const uint32_t GCAttrShift = 3;
    431   static const uint32_t LifetimeMask = 0xE0;
    432   static const uint32_t LifetimeShift = 5;
    433   static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
    434   static const uint32_t AddressSpaceShift = 8;
    435 };
    436 
    437 /// CallingConv - Specifies the calling convention that a function uses.
    438 enum CallingConv {
    439   CC_Default,
    440   CC_C,           // __attribute__((cdecl))
    441   CC_X86StdCall,  // __attribute__((stdcall))
    442   CC_X86FastCall, // __attribute__((fastcall))
    443   CC_X86ThisCall, // __attribute__((thiscall))
    444   CC_X86Pascal,   // __attribute__((pascal))
    445   CC_AAPCS,       // __attribute__((pcs("aapcs")))
    446   CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
    447 };
    448 
    449 typedef std::pair<const Type*, Qualifiers> SplitQualType;
    450 
    451 /// QualType - For efficiency, we don't store CV-qualified types as nodes on
    452 /// their own: instead each reference to a type stores the qualifiers.  This
    453 /// greatly reduces the number of nodes we need to allocate for types (for
    454 /// example we only need one for 'int', 'const int', 'volatile int',
    455 /// 'const volatile int', etc).
    456 ///
    457 /// As an added efficiency bonus, instead of making this a pair, we
    458 /// just store the two bits we care about in the low bits of the
    459 /// pointer.  To handle the packing/unpacking, we make QualType be a
    460 /// simple wrapper class that acts like a smart pointer.  A third bit
    461 /// indicates whether there are extended qualifiers present, in which
    462 /// case the pointer points to a special structure.
    463 class QualType {
    464   // Thankfully, these are efficiently composable.
    465   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    466                        Qualifiers::FastWidth> Value;
    467 
    468   const ExtQuals *getExtQualsUnsafe() const {
    469     return Value.getPointer().get<const ExtQuals*>();
    470   }
    471 
    472   const Type *getTypePtrUnsafe() const {
    473     return Value.getPointer().get<const Type*>();
    474   }
    475 
    476   const ExtQualsTypeCommonBase *getCommonPtr() const {
    477     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    478     uintptr_t CommonPtrVal
    479       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    480     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    481     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    482   }
    483 
    484   friend class QualifierCollector;
    485 public:
    486   QualType() {}
    487 
    488   QualType(const Type *Ptr, unsigned Quals)
    489     : Value(Ptr, Quals) {}
    490   QualType(const ExtQuals *Ptr, unsigned Quals)
    491     : Value(Ptr, Quals) {}
    492 
    493   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    494   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    495 
    496   /// Retrieves a pointer to the underlying (unqualified) type.
    497   /// This should really return a const Type, but it's not worth
    498   /// changing all the users right now.
    499   ///
    500   /// This function requires that the type not be NULL. If the type might be
    501   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    502   const Type *getTypePtr() const;
    503 
    504   const Type *getTypePtrOrNull() const;
    505 
    506   /// Divides a QualType into its unqualified type and a set of local
    507   /// qualifiers.
    508   SplitQualType split() const;
    509 
    510   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    511   static QualType getFromOpaquePtr(const void *Ptr) {
    512     QualType T;
    513     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    514     return T;
    515   }
    516 
    517   const Type &operator*() const {
    518     return *getTypePtr();
    519   }
    520 
    521   const Type *operator->() const {
    522     return getTypePtr();
    523   }
    524 
    525   bool isCanonical() const;
    526   bool isCanonicalAsParam() const;
    527 
    528   /// isNull - Return true if this QualType doesn't point to a type yet.
    529   bool isNull() const {
    530     return Value.getPointer().isNull();
    531   }
    532 
    533   /// \brief Determine whether this particular QualType instance has the
    534   /// "const" qualifier set, without looking through typedefs that may have
    535   /// added "const" at a different level.
    536   bool isLocalConstQualified() const {
    537     return (getLocalFastQualifiers() & Qualifiers::Const);
    538   }
    539 
    540   /// \brief Determine whether this type is const-qualified.
    541   bool isConstQualified() const;
    542 
    543   /// \brief Determine whether this particular QualType instance has the
    544   /// "restrict" qualifier set, without looking through typedefs that may have
    545   /// added "restrict" at a different level.
    546   bool isLocalRestrictQualified() const {
    547     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    548   }
    549 
    550   /// \brief Determine whether this type is restrict-qualified.
    551   bool isRestrictQualified() const;
    552 
    553   /// \brief Determine whether this particular QualType instance has the
    554   /// "volatile" qualifier set, without looking through typedefs that may have
    555   /// added "volatile" at a different level.
    556   bool isLocalVolatileQualified() const {
    557     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    558   }
    559 
    560   /// \brief Determine whether this type is volatile-qualified.
    561   bool isVolatileQualified() const;
    562 
    563   /// \brief Determine whether this particular QualType instance has any
    564   /// qualifiers, without looking through any typedefs that might add
    565   /// qualifiers at a different level.
    566   bool hasLocalQualifiers() const {
    567     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    568   }
    569 
    570   /// \brief Determine whether this type has any qualifiers.
    571   bool hasQualifiers() const;
    572 
    573   /// \brief Determine whether this particular QualType instance has any
    574   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    575   /// instance.
    576   bool hasLocalNonFastQualifiers() const {
    577     return Value.getPointer().is<const ExtQuals*>();
    578   }
    579 
    580   /// \brief Retrieve the set of qualifiers local to this particular QualType
    581   /// instance, not including any qualifiers acquired through typedefs or
    582   /// other sugar.
    583   Qualifiers getLocalQualifiers() const;
    584 
    585   /// \brief Retrieve the set of qualifiers applied to this type.
    586   Qualifiers getQualifiers() const;
    587 
    588   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    589   /// local to this particular QualType instance, not including any qualifiers
    590   /// acquired through typedefs or other sugar.
    591   unsigned getLocalCVRQualifiers() const {
    592     return getLocalFastQualifiers();
    593   }
    594 
    595   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    596   /// applied to this type.
    597   unsigned getCVRQualifiers() const;
    598 
    599   bool isConstant(ASTContext& Ctx) const {
    600     return QualType::isConstant(*this, Ctx);
    601   }
    602 
    603   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    604   bool isPODType(ASTContext &Context) const;
    605 
    606   /// isCXX11PODType() - Return true if this is a POD type according to the
    607   /// more relaxed rules of the C++11 standard, regardless of the current
    608   /// compilation's language.
    609   /// (C++0x [basic.types]p9)
    610   bool isCXX11PODType(ASTContext &Context) const;
    611 
    612   /// isTrivialType - Return true if this is a trivial type
    613   /// (C++0x [basic.types]p9)
    614   bool isTrivialType(ASTContext &Context) const;
    615 
    616   /// isTriviallyCopyableType - Return true if this is a trivially
    617   /// copyable type (C++0x [basic.types]p9)
    618   bool isTriviallyCopyableType(ASTContext &Context) const;
    619 
    620   // Don't promise in the API that anything besides 'const' can be
    621   // easily added.
    622 
    623   /// addConst - add the specified type qualifier to this QualType.
    624   void addConst() {
    625     addFastQualifiers(Qualifiers::Const);
    626   }
    627   QualType withConst() const {
    628     return withFastQualifiers(Qualifiers::Const);
    629   }
    630 
    631   /// addVolatile - add the specified type qualifier to this QualType.
    632   void addVolatile() {
    633     addFastQualifiers(Qualifiers::Volatile);
    634   }
    635   QualType withVolatile() const {
    636     return withFastQualifiers(Qualifiers::Volatile);
    637   }
    638 
    639   QualType withCVRQualifiers(unsigned CVR) const {
    640     return withFastQualifiers(CVR);
    641   }
    642 
    643   void addFastQualifiers(unsigned TQs) {
    644     assert(!(TQs & ~Qualifiers::FastMask)
    645            && "non-fast qualifier bits set in mask!");
    646     Value.setInt(Value.getInt() | TQs);
    647   }
    648 
    649   void removeLocalConst();
    650   void removeLocalVolatile();
    651   void removeLocalRestrict();
    652   void removeLocalCVRQualifiers(unsigned Mask);
    653 
    654   void removeLocalFastQualifiers() { Value.setInt(0); }
    655   void removeLocalFastQualifiers(unsigned Mask) {
    656     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    657     Value.setInt(Value.getInt() & ~Mask);
    658   }
    659 
    660   // Creates a type with the given qualifiers in addition to any
    661   // qualifiers already on this type.
    662   QualType withFastQualifiers(unsigned TQs) const {
    663     QualType T = *this;
    664     T.addFastQualifiers(TQs);
    665     return T;
    666   }
    667 
    668   // Creates a type with exactly the given fast qualifiers, removing
    669   // any existing fast qualifiers.
    670   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    671     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    672   }
    673 
    674   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    675   QualType withoutLocalFastQualifiers() const {
    676     QualType T = *this;
    677     T.removeLocalFastQualifiers();
    678     return T;
    679   }
    680 
    681   QualType getCanonicalType() const;
    682 
    683   /// \brief Return this type with all of the instance-specific qualifiers
    684   /// removed, but without removing any qualifiers that may have been applied
    685   /// through typedefs.
    686   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    687 
    688   /// \brief Retrieve the unqualified variant of the given type,
    689   /// removing as little sugar as possible.
    690   ///
    691   /// This routine looks through various kinds of sugar to find the
    692   /// least-desugared type that is unqualified. For example, given:
    693   ///
    694   /// \code
    695   /// typedef int Integer;
    696   /// typedef const Integer CInteger;
    697   /// typedef CInteger DifferenceType;
    698   /// \endcode
    699   ///
    700   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    701   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    702   ///
    703   /// The resulting type might still be qualified if it's an array
    704   /// type.  To strip qualifiers even from within an array type, use
    705   /// ASTContext::getUnqualifiedArrayType.
    706   inline QualType getUnqualifiedType() const;
    707 
    708   /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
    709   /// given type, removing as little sugar as possible.
    710   ///
    711   /// Like getUnqualifiedType(), but also returns the set of
    712   /// qualifiers that were built up.
    713   ///
    714   /// The resulting type might still be qualified if it's an array
    715   /// type.  To strip qualifiers even from within an array type, use
    716   /// ASTContext::getUnqualifiedArrayType.
    717   inline SplitQualType getSplitUnqualifiedType() const;
    718 
    719   /// \brief Determine whether this type is more qualified than the other
    720   /// given type, requiring exact equality for non-CVR qualifiers.
    721   bool isMoreQualifiedThan(QualType Other) const;
    722 
    723   /// \brief Determine whether this type is at least as qualified as the other
    724   /// given type, requiring exact equality for non-CVR qualifiers.
    725   bool isAtLeastAsQualifiedAs(QualType Other) const;
    726 
    727   QualType getNonReferenceType() const;
    728 
    729   /// \brief Determine the type of a (typically non-lvalue) expression with the
    730   /// specified result type.
    731   ///
    732   /// This routine should be used for expressions for which the return type is
    733   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    734   /// an lvalue. It removes a top-level reference (since there are no
    735   /// expressions of reference type) and deletes top-level cvr-qualifiers
    736   /// from non-class types (in C++) or all types (in C).
    737   QualType getNonLValueExprType(ASTContext &Context) const;
    738 
    739   /// getDesugaredType - Return the specified type with any "sugar" removed from
    740   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    741   /// the type is already concrete, it returns it unmodified.  This is similar
    742   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    743   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    744   /// concrete.
    745   ///
    746   /// Qualifiers are left in place.
    747   QualType getDesugaredType(const ASTContext &Context) const {
    748     return getDesugaredType(*this, Context);
    749   }
    750 
    751   SplitQualType getSplitDesugaredType() const {
    752     return getSplitDesugaredType(*this);
    753   }
    754 
    755   /// \brief Return the specified type with one level of "sugar" removed from
    756   /// the type.
    757   ///
    758   /// This routine takes off the first typedef, typeof, etc. If the outer level
    759   /// of the type is already concrete, it returns it unmodified.
    760   QualType getSingleStepDesugaredType(const ASTContext &Context) const;
    761 
    762   /// IgnoreParens - Returns the specified type after dropping any
    763   /// outer-level parentheses.
    764   QualType IgnoreParens() const {
    765     if (isa<ParenType>(*this))
    766       return QualType::IgnoreParens(*this);
    767     return *this;
    768   }
    769 
    770   /// operator==/!= - Indicate whether the specified types and qualifiers are
    771   /// identical.
    772   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    773     return LHS.Value == RHS.Value;
    774   }
    775   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    776     return LHS.Value != RHS.Value;
    777   }
    778   std::string getAsString() const {
    779     return getAsString(split());
    780   }
    781   static std::string getAsString(SplitQualType split) {
    782     return getAsString(split.first, split.second);
    783   }
    784   static std::string getAsString(const Type *ty, Qualifiers qs);
    785 
    786   std::string getAsString(const PrintingPolicy &Policy) const {
    787     std::string S;
    788     getAsStringInternal(S, Policy);
    789     return S;
    790   }
    791   void getAsStringInternal(std::string &Str,
    792                            const PrintingPolicy &Policy) const {
    793     return getAsStringInternal(split(), Str, Policy);
    794   }
    795   static void getAsStringInternal(SplitQualType split, std::string &out,
    796                                   const PrintingPolicy &policy) {
    797     return getAsStringInternal(split.first, split.second, out, policy);
    798   }
    799   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    800                                   std::string &out,
    801                                   const PrintingPolicy &policy);
    802 
    803   void dump(const char *s) const;
    804   void dump() const;
    805 
    806   void Profile(llvm::FoldingSetNodeID &ID) const {
    807     ID.AddPointer(getAsOpaquePtr());
    808   }
    809 
    810   /// getAddressSpace - Return the address space of this type.
    811   inline unsigned getAddressSpace() const;
    812 
    813   /// getObjCGCAttr - Returns gc attribute of this type.
    814   inline Qualifiers::GC getObjCGCAttr() const;
    815 
    816   /// isObjCGCWeak true when Type is objc's weak.
    817   bool isObjCGCWeak() const {
    818     return getObjCGCAttr() == Qualifiers::Weak;
    819   }
    820 
    821   /// isObjCGCStrong true when Type is objc's strong.
    822   bool isObjCGCStrong() const {
    823     return getObjCGCAttr() == Qualifiers::Strong;
    824   }
    825 
    826   /// getObjCLifetime - Returns lifetime attribute of this type.
    827   Qualifiers::ObjCLifetime getObjCLifetime() const {
    828     return getQualifiers().getObjCLifetime();
    829   }
    830 
    831   bool hasNonTrivialObjCLifetime() const {
    832     return getQualifiers().hasNonTrivialObjCLifetime();
    833   }
    834 
    835   bool hasStrongOrWeakObjCLifetime() const {
    836     return getQualifiers().hasStrongOrWeakObjCLifetime();
    837   }
    838 
    839   enum DestructionKind {
    840     DK_none,
    841     DK_cxx_destructor,
    842     DK_objc_strong_lifetime,
    843     DK_objc_weak_lifetime
    844   };
    845 
    846   /// isDestructedType - nonzero if objects of this type require
    847   /// non-trivial work to clean up after.  Non-zero because it's
    848   /// conceivable that qualifiers (objc_gc(weak)?) could make
    849   /// something require destruction.
    850   DestructionKind isDestructedType() const {
    851     return isDestructedTypeImpl(*this);
    852   }
    853 
    854   /// \brief Determine whether expressions of the given type are forbidden
    855   /// from being lvalues in C.
    856   ///
    857   /// The expression types that are forbidden to be lvalues are:
    858   ///   - 'void', but not qualified void
    859   ///   - function types
    860   ///
    861   /// The exact rule here is C99 6.3.2.1:
    862   ///   An lvalue is an expression with an object type or an incomplete
    863   ///   type other than void.
    864   bool isCForbiddenLValueType() const;
    865 
    866   /// \brief Determine whether this type has trivial copy-assignment semantics.
    867   bool hasTrivialCopyAssignment(ASTContext &Context) const;
    868 
    869 private:
    870   // These methods are implemented in a separate translation unit;
    871   // "static"-ize them to avoid creating temporary QualTypes in the
    872   // caller.
    873   static bool isConstant(QualType T, ASTContext& Ctx);
    874   static QualType getDesugaredType(QualType T, const ASTContext &Context);
    875   static SplitQualType getSplitDesugaredType(QualType T);
    876   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
    877   static QualType IgnoreParens(QualType T);
    878   static DestructionKind isDestructedTypeImpl(QualType type);
    879 };
    880 
    881 } // end clang.
    882 
    883 namespace llvm {
    884 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
    885 /// to a specific Type class.
    886 template<> struct simplify_type<const ::clang::QualType> {
    887   typedef const ::clang::Type *SimpleType;
    888   static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
    889     return Val.getTypePtr();
    890   }
    891 };
    892 template<> struct simplify_type< ::clang::QualType>
    893   : public simplify_type<const ::clang::QualType> {};
    894 
    895 // Teach SmallPtrSet that QualType is "basically a pointer".
    896 template<>
    897 class PointerLikeTypeTraits<clang::QualType> {
    898 public:
    899   static inline void *getAsVoidPointer(clang::QualType P) {
    900     return P.getAsOpaquePtr();
    901   }
    902   static inline clang::QualType getFromVoidPointer(void *P) {
    903     return clang::QualType::getFromOpaquePtr(P);
    904   }
    905   // Various qualifiers go in low bits.
    906   enum { NumLowBitsAvailable = 0 };
    907 };
    908 
    909 } // end namespace llvm
    910 
    911 namespace clang {
    912 
    913 /// \brief Base class that is common to both the \c ExtQuals and \c Type
    914 /// classes, which allows \c QualType to access the common fields between the
    915 /// two.
    916 ///
    917 class ExtQualsTypeCommonBase {
    918   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
    919     : BaseType(baseType), CanonicalType(canon) {}
    920 
    921   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
    922   /// a self-referential pointer (for \c Type).
    923   ///
    924   /// This pointer allows an efficient mapping from a QualType to its
    925   /// underlying type pointer.
    926   const Type *const BaseType;
    927 
    928   /// \brief The canonical type of this type.  A QualType.
    929   QualType CanonicalType;
    930 
    931   friend class QualType;
    932   friend class Type;
    933   friend class ExtQuals;
    934 };
    935 
    936 /// ExtQuals - We can encode up to four bits in the low bits of a
    937 /// type pointer, but there are many more type qualifiers that we want
    938 /// to be able to apply to an arbitrary type.  Therefore we have this
    939 /// struct, intended to be heap-allocated and used by QualType to
    940 /// store qualifiers.
    941 ///
    942 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
    943 /// in three low bits on the QualType pointer; a fourth bit records whether
    944 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
    945 /// Objective-C GC attributes) are much more rare.
    946 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
    947   // NOTE: changing the fast qualifiers should be straightforward as
    948   // long as you don't make 'const' non-fast.
    949   // 1. Qualifiers:
    950   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
    951   //       Fast qualifiers must occupy the low-order bits.
    952   //    b) Update Qualifiers::FastWidth and FastMask.
    953   // 2. QualType:
    954   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
    955   //    b) Update remove{Volatile,Restrict}, defined near the end of
    956   //       this header.
    957   // 3. ASTContext:
    958   //    a) Update get{Volatile,Restrict}Type.
    959 
    960   /// Quals - the immutable set of qualifiers applied by this
    961   /// node;  always contains extended qualifiers.
    962   Qualifiers Quals;
    963 
    964   ExtQuals *this_() { return this; }
    965 
    966 public:
    967   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
    968     : ExtQualsTypeCommonBase(baseType,
    969                              canon.isNull() ? QualType(this_(), 0) : canon),
    970       Quals(quals)
    971   {
    972     assert(Quals.hasNonFastQualifiers()
    973            && "ExtQuals created with no fast qualifiers");
    974     assert(!Quals.hasFastQualifiers()
    975            && "ExtQuals created with fast qualifiers");
    976   }
    977 
    978   Qualifiers getQualifiers() const { return Quals; }
    979 
    980   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
    981   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
    982 
    983   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
    984   Qualifiers::ObjCLifetime getObjCLifetime() const {
    985     return Quals.getObjCLifetime();
    986   }
    987 
    988   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
    989   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
    990 
    991   const Type *getBaseType() const { return BaseType; }
    992 
    993 public:
    994   void Profile(llvm::FoldingSetNodeID &ID) const {
    995     Profile(ID, getBaseType(), Quals);
    996   }
    997   static void Profile(llvm::FoldingSetNodeID &ID,
    998                       const Type *BaseType,
    999                       Qualifiers Quals) {
   1000     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1001     ID.AddPointer(BaseType);
   1002     Quals.Profile(ID);
   1003   }
   1004 };
   1005 
   1006 /// \brief The kind of C++0x ref-qualifier associated with a function type,
   1007 /// which determines whether a member function's "this" object can be an
   1008 /// lvalue, rvalue, or neither.
   1009 enum RefQualifierKind {
   1010   /// \brief No ref-qualifier was provided.
   1011   RQ_None = 0,
   1012   /// \brief An lvalue ref-qualifier was provided (\c &).
   1013   RQ_LValue,
   1014   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1015   RQ_RValue
   1016 };
   1017 
   1018 /// Type - This is the base class of the type hierarchy.  A central concept
   1019 /// with types is that each type always has a canonical type.  A canonical type
   1020 /// is the type with any typedef names stripped out of it or the types it
   1021 /// references.  For example, consider:
   1022 ///
   1023 ///  typedef int  foo;
   1024 ///  typedef foo* bar;
   1025 ///    'int *'    'foo *'    'bar'
   1026 ///
   1027 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1028 /// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
   1029 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1030 /// there is a PointerType that represents 'int*', which, like 'int', is
   1031 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1032 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1033 /// is also 'int*'.
   1034 ///
   1035 /// Non-canonical types are useful for emitting diagnostics, without losing
   1036 /// information about typedefs being used.  Canonical types are useful for type
   1037 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1038 /// about whether something has a particular form (e.g. is a function type),
   1039 /// because they implicitly, recursively, strip all typedefs out of a type.
   1040 ///
   1041 /// Types, once created, are immutable.
   1042 ///
   1043 class Type : public ExtQualsTypeCommonBase {
   1044 public:
   1045   enum TypeClass {
   1046 #define TYPE(Class, Base) Class,
   1047 #define LAST_TYPE(Class) TypeLast = Class,
   1048 #define ABSTRACT_TYPE(Class, Base)
   1049 #include "clang/AST/TypeNodes.def"
   1050     TagFirst = Record, TagLast = Enum
   1051   };
   1052 
   1053 private:
   1054   Type(const Type&);           // DO NOT IMPLEMENT.
   1055   void operator=(const Type&); // DO NOT IMPLEMENT.
   1056 
   1057   /// Bitfields required by the Type class.
   1058   class TypeBitfields {
   1059     friend class Type;
   1060     template <class T> friend class TypePropertyCache;
   1061 
   1062     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1063     unsigned TC : 8;
   1064 
   1065     /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
   1066     /// Note that this should stay at the end of the ivars for Type so that
   1067     /// subclasses can pack their bitfields into the same word.
   1068     unsigned Dependent : 1;
   1069 
   1070     /// \brief Whether this type somehow involves a template parameter, even
   1071     /// if the resolution of the type does not depend on a template parameter.
   1072     unsigned InstantiationDependent : 1;
   1073 
   1074     /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1075     unsigned VariablyModified : 1;
   1076 
   1077     /// \brief Whether this type contains an unexpanded parameter pack
   1078     /// (for C++0x variadic templates).
   1079     unsigned ContainsUnexpandedParameterPack : 1;
   1080 
   1081     /// \brief Nonzero if the cache (i.e. the bitfields here starting
   1082     /// with 'Cache') is valid.  If so, then this is a
   1083     /// LangOptions::VisibilityMode+1.
   1084     mutable unsigned CacheValidAndVisibility : 2;
   1085 
   1086     /// \brief Linkage of this type.
   1087     mutable unsigned CachedLinkage : 2;
   1088 
   1089     /// \brief Whether this type involves and local or unnamed types.
   1090     mutable unsigned CachedLocalOrUnnamed : 1;
   1091 
   1092     /// \brief FromAST - Whether this type comes from an AST file.
   1093     mutable unsigned FromAST : 1;
   1094 
   1095     bool isCacheValid() const {
   1096       return (CacheValidAndVisibility != 0);
   1097     }
   1098     Visibility getVisibility() const {
   1099       assert(isCacheValid() && "getting linkage from invalid cache");
   1100       return static_cast<Visibility>(CacheValidAndVisibility-1);
   1101     }
   1102     Linkage getLinkage() const {
   1103       assert(isCacheValid() && "getting linkage from invalid cache");
   1104       return static_cast<Linkage>(CachedLinkage);
   1105     }
   1106     bool hasLocalOrUnnamedType() const {
   1107       assert(isCacheValid() && "getting linkage from invalid cache");
   1108       return CachedLocalOrUnnamed;
   1109     }
   1110   };
   1111   enum { NumTypeBits = 18 };
   1112 
   1113 protected:
   1114   // These classes allow subclasses to somewhat cleanly pack bitfields
   1115   // into Type.
   1116 
   1117   class ArrayTypeBitfields {
   1118     friend class ArrayType;
   1119 
   1120     unsigned : NumTypeBits;
   1121 
   1122     /// IndexTypeQuals - CVR qualifiers from declarations like
   1123     /// 'int X[static restrict 4]'. For function parameters only.
   1124     unsigned IndexTypeQuals : 3;
   1125 
   1126     /// SizeModifier - storage class qualifiers from declarations like
   1127     /// 'int X[static restrict 4]'. For function parameters only.
   1128     /// Actually an ArrayType::ArraySizeModifier.
   1129     unsigned SizeModifier : 3;
   1130   };
   1131 
   1132   class BuiltinTypeBitfields {
   1133     friend class BuiltinType;
   1134 
   1135     unsigned : NumTypeBits;
   1136 
   1137     /// The kind (BuiltinType::Kind) of builtin type this is.
   1138     unsigned Kind : 8;
   1139   };
   1140 
   1141   class FunctionTypeBitfields {
   1142     friend class FunctionType;
   1143 
   1144     unsigned : NumTypeBits;
   1145 
   1146     /// Extra information which affects how the function is called, like
   1147     /// regparm and the calling convention.
   1148     unsigned ExtInfo : 8;
   1149 
   1150     /// Whether the function is variadic.  Only used by FunctionProtoType.
   1151     unsigned Variadic : 1;
   1152 
   1153     /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
   1154     /// other bitfields.
   1155     /// The qualifiers are part of FunctionProtoType because...
   1156     ///
   1157     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1158     /// cv-qualifier-seq, [...], are part of the function type.
   1159     unsigned TypeQuals : 3;
   1160 
   1161     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1162     ///
   1163     /// This is a value of type \c RefQualifierKind.
   1164     unsigned RefQualifier : 2;
   1165   };
   1166 
   1167   class ObjCObjectTypeBitfields {
   1168     friend class ObjCObjectType;
   1169 
   1170     unsigned : NumTypeBits;
   1171 
   1172     /// NumProtocols - The number of protocols stored directly on this
   1173     /// object type.
   1174     unsigned NumProtocols : 32 - NumTypeBits;
   1175   };
   1176 
   1177   class ReferenceTypeBitfields {
   1178     friend class ReferenceType;
   1179 
   1180     unsigned : NumTypeBits;
   1181 
   1182     /// True if the type was originally spelled with an lvalue sigil.
   1183     /// This is never true of rvalue references but can also be false
   1184     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1185     /// as follows:
   1186     ///
   1187     ///   typedef int &ref;    // lvalue, spelled lvalue
   1188     ///   typedef int &&rvref; // rvalue
   1189     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1190     ///   ref &&a;             // lvalue, inner ref
   1191     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1192     ///   rvref &&a;           // rvalue, inner ref
   1193     unsigned SpelledAsLValue : 1;
   1194 
   1195     /// True if the inner type is a reference type.  This only happens
   1196     /// in non-canonical forms.
   1197     unsigned InnerRef : 1;
   1198   };
   1199 
   1200   class TypeWithKeywordBitfields {
   1201     friend class TypeWithKeyword;
   1202 
   1203     unsigned : NumTypeBits;
   1204 
   1205     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1206     unsigned Keyword : 8;
   1207   };
   1208 
   1209   class VectorTypeBitfields {
   1210     friend class VectorType;
   1211 
   1212     unsigned : NumTypeBits;
   1213 
   1214     /// VecKind - The kind of vector, either a generic vector type or some
   1215     /// target-specific vector type such as for AltiVec or Neon.
   1216     unsigned VecKind : 3;
   1217 
   1218     /// NumElements - The number of elements in the vector.
   1219     unsigned NumElements : 29 - NumTypeBits;
   1220   };
   1221 
   1222   class AttributedTypeBitfields {
   1223     friend class AttributedType;
   1224 
   1225     unsigned : NumTypeBits;
   1226 
   1227     /// AttrKind - an AttributedType::Kind
   1228     unsigned AttrKind : 32 - NumTypeBits;
   1229   };
   1230 
   1231   union {
   1232     TypeBitfields TypeBits;
   1233     ArrayTypeBitfields ArrayTypeBits;
   1234     AttributedTypeBitfields AttributedTypeBits;
   1235     BuiltinTypeBitfields BuiltinTypeBits;
   1236     FunctionTypeBitfields FunctionTypeBits;
   1237     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1238     ReferenceTypeBitfields ReferenceTypeBits;
   1239     TypeWithKeywordBitfields TypeWithKeywordBits;
   1240     VectorTypeBitfields VectorTypeBits;
   1241   };
   1242 
   1243 private:
   1244   /// \brief Set whether this type comes from an AST file.
   1245   void setFromAST(bool V = true) const {
   1246     TypeBits.FromAST = V;
   1247   }
   1248 
   1249   template <class T> friend class TypePropertyCache;
   1250 
   1251 protected:
   1252   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1253   Type *this_() { return this; }
   1254   Type(TypeClass tc, QualType canon, bool Dependent,
   1255        bool InstantiationDependent, bool VariablyModified,
   1256        bool ContainsUnexpandedParameterPack)
   1257     : ExtQualsTypeCommonBase(this,
   1258                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1259     TypeBits.TC = tc;
   1260     TypeBits.Dependent = Dependent;
   1261     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1262     TypeBits.VariablyModified = VariablyModified;
   1263     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1264     TypeBits.CacheValidAndVisibility = 0;
   1265     TypeBits.CachedLocalOrUnnamed = false;
   1266     TypeBits.CachedLinkage = NoLinkage;
   1267     TypeBits.FromAST = false;
   1268   }
   1269   friend class ASTContext;
   1270 
   1271   void setDependent(bool D = true) {
   1272     TypeBits.Dependent = D;
   1273     if (D)
   1274       TypeBits.InstantiationDependent = true;
   1275   }
   1276   void setInstantiationDependent(bool D = true) {
   1277     TypeBits.InstantiationDependent = D; }
   1278   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1279   }
   1280   void setContainsUnexpandedParameterPack(bool PP = true) {
   1281     TypeBits.ContainsUnexpandedParameterPack = PP;
   1282   }
   1283 
   1284 public:
   1285   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1286 
   1287   /// \brief Whether this type comes from an AST file.
   1288   bool isFromAST() const { return TypeBits.FromAST; }
   1289 
   1290   /// \brief Whether this type is or contains an unexpanded parameter
   1291   /// pack, used to support C++0x variadic templates.
   1292   ///
   1293   /// A type that contains a parameter pack shall be expanded by the
   1294   /// ellipsis operator at some point. For example, the typedef in the
   1295   /// following example contains an unexpanded parameter pack 'T':
   1296   ///
   1297   /// \code
   1298   /// template<typename ...T>
   1299   /// struct X {
   1300   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1301   /// };
   1302   /// \endcode
   1303   ///
   1304   /// Note that this routine does not specify which
   1305   bool containsUnexpandedParameterPack() const {
   1306     return TypeBits.ContainsUnexpandedParameterPack;
   1307   }
   1308 
   1309   /// Determines if this type would be canonical if it had no further
   1310   /// qualification.
   1311   bool isCanonicalUnqualified() const {
   1312     return CanonicalType == QualType(this, 0);
   1313   }
   1314 
   1315   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1316   /// object types, function types, and incomplete types.
   1317 
   1318   /// isIncompleteType - Return true if this is an incomplete type.
   1319   /// A type that can describe objects, but which lacks information needed to
   1320   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1321   /// routine will need to determine if the size is actually required.
   1322   bool isIncompleteType() const;
   1323 
   1324   /// isIncompleteOrObjectType - Return true if this is an incomplete or object
   1325   /// type, in other words, not a function type.
   1326   bool isIncompleteOrObjectType() const {
   1327     return !isFunctionType();
   1328   }
   1329 
   1330   /// \brief Determine whether this type is an object type.
   1331   bool isObjectType() const {
   1332     // C++ [basic.types]p8:
   1333     //   An object type is a (possibly cv-qualified) type that is not a
   1334     //   function type, not a reference type, and not a void type.
   1335     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1336   }
   1337 
   1338   /// isLiteralType - Return true if this is a literal type
   1339   /// (C++0x [basic.types]p10)
   1340   bool isLiteralType() const;
   1341 
   1342   /// \brief Test if this type is a standard-layout type.
   1343   /// (C++0x [basic.type]p9)
   1344   bool isStandardLayoutType() const;
   1345 
   1346   /// Helper methods to distinguish type categories. All type predicates
   1347   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1348 
   1349   /// isBuiltinType - returns true if the type is a builtin type.
   1350   bool isBuiltinType() const;
   1351 
   1352   /// isSpecificBuiltinType - Test for a particular builtin type.
   1353   bool isSpecificBuiltinType(unsigned K) const;
   1354 
   1355   /// isPlaceholderType - Test for a type which does not represent an
   1356   /// actual type-system type but is instead used as a placeholder for
   1357   /// various convenient purposes within Clang.  All such types are
   1358   /// BuiltinTypes.
   1359   bool isPlaceholderType() const;
   1360 
   1361   /// isSpecificPlaceholderType - Test for a specific placeholder type.
   1362   bool isSpecificPlaceholderType(unsigned K) const;
   1363 
   1364   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1365   /// isComplexIntegerType() can be used to test for complex integers.
   1366   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1367   bool isEnumeralType() const;
   1368   bool isBooleanType() const;
   1369   bool isCharType() const;
   1370   bool isWideCharType() const;
   1371   bool isAnyCharacterType() const;
   1372   bool isIntegralType(ASTContext &Ctx) const;
   1373 
   1374   /// \brief Determine whether this type is an integral or enumeration type.
   1375   bool isIntegralOrEnumerationType() const;
   1376   /// \brief Determine whether this type is an integral or unscoped enumeration
   1377   /// type.
   1378   bool isIntegralOrUnscopedEnumerationType() const;
   1379 
   1380   /// Floating point categories.
   1381   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1382   /// isComplexType() does *not* include complex integers (a GCC extension).
   1383   /// isComplexIntegerType() can be used to test for complex integers.
   1384   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1385   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1386   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1387   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1388   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1389   bool isVoidType() const;         // C99 6.2.5p19
   1390   bool isDerivedType() const;      // C99 6.2.5p20
   1391   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1392   bool isAggregateType() const;
   1393   bool isFundamentalType() const;
   1394   bool isCompoundType() const;
   1395 
   1396   // Type Predicates: Check to see if this type is structurally the specified
   1397   // type, ignoring typedefs and qualifiers.
   1398   bool isFunctionType() const;
   1399   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1400   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1401   bool isPointerType() const;
   1402   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1403   bool isBlockPointerType() const;
   1404   bool isVoidPointerType() const;
   1405   bool isReferenceType() const;
   1406   bool isLValueReferenceType() const;
   1407   bool isRValueReferenceType() const;
   1408   bool isFunctionPointerType() const;
   1409   bool isMemberPointerType() const;
   1410   bool isMemberFunctionPointerType() const;
   1411   bool isMemberDataPointerType() const;
   1412   bool isArrayType() const;
   1413   bool isConstantArrayType() const;
   1414   bool isIncompleteArrayType() const;
   1415   bool isVariableArrayType() const;
   1416   bool isDependentSizedArrayType() const;
   1417   bool isRecordType() const;
   1418   bool isClassType() const;
   1419   bool isStructureType() const;
   1420   bool isStructureOrClassType() const;
   1421   bool isUnionType() const;
   1422   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1423   bool isVectorType() const;                    // GCC vector type.
   1424   bool isExtVectorType() const;                 // Extended vector type.
   1425   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1426   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1427   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1428   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1429   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1430   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1431   // for the common case.
   1432   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1433   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1434   bool isObjCQualifiedIdType() const;           // id<foo>
   1435   bool isObjCQualifiedClassType() const;        // Class<foo>
   1436   bool isObjCObjectOrInterfaceType() const;
   1437   bool isObjCIdType() const;                    // id
   1438   bool isObjCClassType() const;                 // Class
   1439   bool isObjCSelType() const;                 // Class
   1440   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1441   bool isObjCARCBridgableType() const;
   1442   bool isCARCBridgableType() const;
   1443   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1444   bool isNullPtrType() const;                   // C++0x nullptr_t
   1445 
   1446   /// Determines if this type, which must satisfy
   1447   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1448   /// than implicitly __strong.
   1449   bool isObjCARCImplicitlyUnretainedType() const;
   1450 
   1451   /// Return the implicit lifetime for this type, which must not be dependent.
   1452   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1453 
   1454   enum ScalarTypeKind {
   1455     STK_Pointer,
   1456     STK_MemberPointer,
   1457     STK_Bool,
   1458     STK_Integral,
   1459     STK_Floating,
   1460     STK_IntegralComplex,
   1461     STK_FloatingComplex
   1462   };
   1463   /// getScalarTypeKind - Given that this is a scalar type, classify it.
   1464   ScalarTypeKind getScalarTypeKind() const;
   1465 
   1466   /// isDependentType - Whether this type is a dependent type, meaning
   1467   /// that its definition somehow depends on a template parameter
   1468   /// (C++ [temp.dep.type]).
   1469   bool isDependentType() const { return TypeBits.Dependent; }
   1470 
   1471   /// \brief Determine whether this type is an instantiation-dependent type,
   1472   /// meaning that the type involves a template parameter (even if the
   1473   /// definition does not actually depend on the type substituted for that
   1474   /// template parameter).
   1475   bool isInstantiationDependentType() const {
   1476     return TypeBits.InstantiationDependent;
   1477   }
   1478 
   1479   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1480   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1481 
   1482   /// \brief Whether this type involves a variable-length array type
   1483   /// with a definite size.
   1484   bool hasSizedVLAType() const;
   1485 
   1486   /// \brief Whether this type is or contains a local or unnamed type.
   1487   bool hasUnnamedOrLocalType() const;
   1488 
   1489   bool isOverloadableType() const;
   1490 
   1491   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1492   bool isElaboratedTypeSpecifier() const;
   1493 
   1494   bool canDecayToPointerType() const;
   1495 
   1496   /// hasPointerRepresentation - Whether this type is represented
   1497   /// natively as a pointer; this includes pointers, references, block
   1498   /// pointers, and Objective-C interface, qualified id, and qualified
   1499   /// interface types, as well as nullptr_t.
   1500   bool hasPointerRepresentation() const;
   1501 
   1502   /// hasObjCPointerRepresentation - Whether this type can represent
   1503   /// an objective pointer type for the purpose of GC'ability
   1504   bool hasObjCPointerRepresentation() const;
   1505 
   1506   /// \brief Determine whether this type has an integer representation
   1507   /// of some sort, e.g., it is an integer type or a vector.
   1508   bool hasIntegerRepresentation() const;
   1509 
   1510   /// \brief Determine whether this type has an signed integer representation
   1511   /// of some sort, e.g., it is an signed integer type or a vector.
   1512   bool hasSignedIntegerRepresentation() const;
   1513 
   1514   /// \brief Determine whether this type has an unsigned integer representation
   1515   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1516   bool hasUnsignedIntegerRepresentation() const;
   1517 
   1518   /// \brief Determine whether this type has a floating-point representation
   1519   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1520   bool hasFloatingRepresentation() const;
   1521 
   1522   // Type Checking Functions: Check to see if this type is structurally the
   1523   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1524   // the best type we can.
   1525   const RecordType *getAsStructureType() const;
   1526   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1527   const RecordType *getAsUnionType() const;
   1528   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1529   // The following is a convenience method that returns an ObjCObjectPointerType
   1530   // for object declared using an interface.
   1531   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1532   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1533   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1534   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1535   const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
   1536 
   1537   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1538   /// because the type is a RecordType or because it is the injected-class-name
   1539   /// type of a class template or class template partial specialization.
   1540   CXXRecordDecl *getAsCXXRecordDecl() const;
   1541 
   1542   /// \brief Get the AutoType whose type will be deduced for a variable with
   1543   /// an initializer of this type. This looks through declarators like pointer
   1544   /// types, but not through decltype or typedefs.
   1545   AutoType *getContainedAutoType() const;
   1546 
   1547   /// Member-template getAs<specific type>'.  Look through sugar for
   1548   /// an instance of <specific type>.   This scheme will eventually
   1549   /// replace the specific getAsXXXX methods above.
   1550   ///
   1551   /// There are some specializations of this member template listed
   1552   /// immediately following this class.
   1553   template <typename T> const T *getAs() const;
   1554 
   1555   /// A variant of getAs<> for array types which silently discards
   1556   /// qualifiers from the outermost type.
   1557   const ArrayType *getAsArrayTypeUnsafe() const;
   1558 
   1559   /// Member-template castAs<specific type>.  Look through sugar for
   1560   /// the underlying instance of <specific type>.
   1561   ///
   1562   /// This method has the same relationship to getAs<T> as cast<T> has
   1563   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1564   /// have the intended type, and this method will never return null.
   1565   template <typename T> const T *castAs() const;
   1566 
   1567   /// A variant of castAs<> for array type which silently discards
   1568   /// qualifiers from the outermost type.
   1569   const ArrayType *castAsArrayTypeUnsafe() const;
   1570 
   1571   /// getBaseElementTypeUnsafe - Get the base element type of this
   1572   /// type, potentially discarding type qualifiers.  This method
   1573   /// should never be used when type qualifiers are meaningful.
   1574   const Type *getBaseElementTypeUnsafe() const;
   1575 
   1576   /// getArrayElementTypeNoTypeQual - If this is an array type, return the
   1577   /// element type of the array, potentially with type qualifiers missing.
   1578   /// This method should never be used when type qualifiers are meaningful.
   1579   const Type *getArrayElementTypeNoTypeQual() const;
   1580 
   1581   /// getPointeeType - If this is a pointer, ObjC object pointer, or block
   1582   /// pointer, this returns the respective pointee.
   1583   QualType getPointeeType() const;
   1584 
   1585   /// getUnqualifiedDesugaredType() - Return the specified type with
   1586   /// any "sugar" removed from the type, removing any typedefs,
   1587   /// typeofs, etc., as well as any qualifiers.
   1588   const Type *getUnqualifiedDesugaredType() const;
   1589 
   1590   /// More type predicates useful for type checking/promotion
   1591   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1592 
   1593   /// isSignedIntegerType - Return true if this is an integer type that is
   1594   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1595   /// or an enum decl which has a signed representation.
   1596   bool isSignedIntegerType() const;
   1597 
   1598   /// isUnsignedIntegerType - Return true if this is an integer type that is
   1599   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1600   /// or an enum decl which has an unsigned representation.
   1601   bool isUnsignedIntegerType() const;
   1602 
   1603   /// Determines whether this is an integer type that is signed or an
   1604   /// enumeration types whose underlying type is a signed integer type.
   1605   bool isSignedIntegerOrEnumerationType() const;
   1606 
   1607   /// Determines whether this is an integer type that is unsigned or an
   1608   /// enumeration types whose underlying type is a unsigned integer type.
   1609   bool isUnsignedIntegerOrEnumerationType() const;
   1610 
   1611   /// isConstantSizeType - Return true if this is not a variable sized type,
   1612   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1613   /// incomplete types.
   1614   bool isConstantSizeType() const;
   1615 
   1616   /// isSpecifierType - Returns true if this type can be represented by some
   1617   /// set of type specifiers.
   1618   bool isSpecifierType() const;
   1619 
   1620   /// \brief Determine the linkage of this type.
   1621   Linkage getLinkage() const;
   1622 
   1623   /// \brief Determine the visibility of this type.
   1624   Visibility getVisibility() const;
   1625 
   1626   /// \brief Determine the linkage and visibility of this type.
   1627   std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
   1628 
   1629   /// \brief Note that the linkage is no longer known.
   1630   void ClearLinkageCache();
   1631 
   1632   const char *getTypeClassName() const;
   1633 
   1634   QualType getCanonicalTypeInternal() const {
   1635     return CanonicalType;
   1636   }
   1637   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   1638   void dump() const;
   1639 
   1640   static bool classof(const Type *) { return true; }
   1641 
   1642   friend class ASTReader;
   1643   friend class ASTWriter;
   1644 };
   1645 
   1646 template <> inline const TypedefType *Type::getAs() const {
   1647   return dyn_cast<TypedefType>(this);
   1648 }
   1649 
   1650 // We can do canonical leaf types faster, because we don't have to
   1651 // worry about preserving child type decoration.
   1652 #define TYPE(Class, Base)
   1653 #define LEAF_TYPE(Class) \
   1654 template <> inline const Class##Type *Type::getAs() const { \
   1655   return dyn_cast<Class##Type>(CanonicalType); \
   1656 } \
   1657 template <> inline const Class##Type *Type::castAs() const { \
   1658   return cast<Class##Type>(CanonicalType); \
   1659 }
   1660 #include "clang/AST/TypeNodes.def"
   1661 
   1662 
   1663 /// BuiltinType - This class is used for builtin types like 'int'.  Builtin
   1664 /// types are always canonical and have a literal name field.
   1665 class BuiltinType : public Type {
   1666 public:
   1667   enum Kind {
   1668     Void,
   1669 
   1670     Bool,     // This is bool and/or _Bool.
   1671     Char_U,   // This is 'char' for targets where char is unsigned.
   1672     UChar,    // This is explicitly qualified unsigned char.
   1673     WChar_U,  // This is 'wchar_t' for C++, when unsigned.
   1674     Char16,   // This is 'char16_t' for C++.
   1675     Char32,   // This is 'char32_t' for C++.
   1676     UShort,
   1677     UInt,
   1678     ULong,
   1679     ULongLong,
   1680     UInt128,  // __uint128_t
   1681 
   1682     Char_S,   // This is 'char' for targets where char is signed.
   1683     SChar,    // This is explicitly qualified signed char.
   1684     WChar_S,  // This is 'wchar_t' for C++, when signed.
   1685     Short,
   1686     Int,
   1687     Long,
   1688     LongLong,
   1689     Int128,   // __int128_t
   1690 
   1691     Float, Double, LongDouble,
   1692 
   1693     NullPtr,  // This is the type of C++0x 'nullptr'.
   1694 
   1695     /// The primitive Objective C 'id' type.  The user-visible 'id'
   1696     /// type is a typedef of an ObjCObjectPointerType to an
   1697     /// ObjCObjectType with this as its base.  In fact, this only ever
   1698     /// shows up in an AST as the base type of an ObjCObjectType.
   1699     ObjCId,
   1700 
   1701     /// The primitive Objective C 'Class' type.  The user-visible
   1702     /// 'Class' type is a typedef of an ObjCObjectPointerType to an
   1703     /// ObjCObjectType with this as its base.  In fact, this only ever
   1704     /// shows up in an AST as the base type of an ObjCObjectType.
   1705     ObjCClass,
   1706 
   1707     /// The primitive Objective C 'SEL' type.  The user-visible 'SEL'
   1708     /// type is a typedef of a PointerType to this.
   1709     ObjCSel,
   1710 
   1711     /// This represents the type of an expression whose type is
   1712     /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
   1713     /// appear in situations where the structure of the type is
   1714     /// theoretically deducible.
   1715     Dependent,
   1716 
   1717     /// The type of an unresolved overload set.  A placeholder type.
   1718     /// Expressions with this type have one of the following basic
   1719     /// forms, with parentheses generally permitted:
   1720     ///   foo          # possibly qualified, not if an implicit access
   1721     ///   foo          # possibly qualified, not if an implicit access
   1722     ///   &foo         # possibly qualified, not if an implicit access
   1723     ///   x->foo       # only if might be a static member function
   1724     ///   &x->foo      # only if might be a static member function
   1725     ///   &Class::foo  # when a pointer-to-member; sub-expr also has this type
   1726     /// OverloadExpr::find can be used to analyze the expression.
   1727     Overload,
   1728 
   1729     /// The type of a bound C++ non-static member function.
   1730     /// A placeholder type.  Expressions with this type have one of the
   1731     /// following basic forms:
   1732     ///   foo          # if an implicit access
   1733     ///   x->foo       # if only contains non-static members
   1734     BoundMember,
   1735 
   1736     /// __builtin_any_type.  A placeholder type.  Useful for clients
   1737     /// like debuggers that don't know what type to give something.
   1738     /// Only a small number of operations are valid on expressions of
   1739     /// unknown type, most notably explicit casts.
   1740     UnknownAny
   1741   };
   1742 
   1743 public:
   1744   BuiltinType(Kind K)
   1745     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   1746            /*InstantiationDependent=*/(K == Dependent),
   1747            /*VariablyModified=*/false,
   1748            /*Unexpanded paramter pack=*/false) {
   1749     BuiltinTypeBits.Kind = K;
   1750   }
   1751 
   1752   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   1753   const char *getName(const LangOptions &LO) const;
   1754 
   1755   bool isSugared() const { return false; }
   1756   QualType desugar() const { return QualType(this, 0); }
   1757 
   1758   bool isInteger() const {
   1759     return getKind() >= Bool && getKind() <= Int128;
   1760   }
   1761 
   1762   bool isSignedInteger() const {
   1763     return getKind() >= Char_S && getKind() <= Int128;
   1764   }
   1765 
   1766   bool isUnsignedInteger() const {
   1767     return getKind() >= Bool && getKind() <= UInt128;
   1768   }
   1769 
   1770   bool isFloatingPoint() const {
   1771     return getKind() >= Float && getKind() <= LongDouble;
   1772   }
   1773 
   1774   /// Determines whether this type is a placeholder type, i.e. a type
   1775   /// which cannot appear in arbitrary positions in a fully-formed
   1776   /// expression.
   1777   bool isPlaceholderType() const {
   1778     return getKind() >= Overload;
   1779   }
   1780 
   1781   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   1782   static bool classof(const BuiltinType *) { return true; }
   1783 };
   1784 
   1785 /// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
   1786 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   1787 ///
   1788 class ComplexType : public Type, public llvm::FoldingSetNode {
   1789   QualType ElementType;
   1790   ComplexType(QualType Element, QualType CanonicalPtr) :
   1791     Type(Complex, CanonicalPtr, Element->isDependentType(),
   1792          Element->isInstantiationDependentType(),
   1793          Element->isVariablyModifiedType(),
   1794          Element->containsUnexpandedParameterPack()),
   1795     ElementType(Element) {
   1796   }
   1797   friend class ASTContext;  // ASTContext creates these.
   1798 
   1799 public:
   1800   QualType getElementType() const { return ElementType; }
   1801 
   1802   bool isSugared() const { return false; }
   1803   QualType desugar() const { return QualType(this, 0); }
   1804 
   1805   void Profile(llvm::FoldingSetNodeID &ID) {
   1806     Profile(ID, getElementType());
   1807   }
   1808   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   1809     ID.AddPointer(Element.getAsOpaquePtr());
   1810   }
   1811 
   1812   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   1813   static bool classof(const ComplexType *) { return true; }
   1814 };
   1815 
   1816 /// ParenType - Sugar for parentheses used when specifying types.
   1817 ///
   1818 class ParenType : public Type, public llvm::FoldingSetNode {
   1819   QualType Inner;
   1820 
   1821   ParenType(QualType InnerType, QualType CanonType) :
   1822     Type(Paren, CanonType, InnerType->isDependentType(),
   1823          InnerType->isInstantiationDependentType(),
   1824          InnerType->isVariablyModifiedType(),
   1825          InnerType->containsUnexpandedParameterPack()),
   1826     Inner(InnerType) {
   1827   }
   1828   friend class ASTContext;  // ASTContext creates these.
   1829 
   1830 public:
   1831 
   1832   QualType getInnerType() const { return Inner; }
   1833 
   1834   bool isSugared() const { return true; }
   1835   QualType desugar() const { return getInnerType(); }
   1836 
   1837   void Profile(llvm::FoldingSetNodeID &ID) {
   1838     Profile(ID, getInnerType());
   1839   }
   1840   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   1841     Inner.Profile(ID);
   1842   }
   1843 
   1844   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   1845   static bool classof(const ParenType *) { return true; }
   1846 };
   1847 
   1848 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   1849 ///
   1850 class PointerType : public Type, public llvm::FoldingSetNode {
   1851   QualType PointeeType;
   1852 
   1853   PointerType(QualType Pointee, QualType CanonicalPtr) :
   1854     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   1855          Pointee->isInstantiationDependentType(),
   1856          Pointee->isVariablyModifiedType(),
   1857          Pointee->containsUnexpandedParameterPack()),
   1858     PointeeType(Pointee) {
   1859   }
   1860   friend class ASTContext;  // ASTContext creates these.
   1861 
   1862 public:
   1863 
   1864   QualType getPointeeType() const { return PointeeType; }
   1865 
   1866   bool isSugared() const { return false; }
   1867   QualType desugar() const { return QualType(this, 0); }
   1868 
   1869   void Profile(llvm::FoldingSetNodeID &ID) {
   1870     Profile(ID, getPointeeType());
   1871   }
   1872   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1873     ID.AddPointer(Pointee.getAsOpaquePtr());
   1874   }
   1875 
   1876   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   1877   static bool classof(const PointerType *) { return true; }
   1878 };
   1879 
   1880 /// BlockPointerType - pointer to a block type.
   1881 /// This type is to represent types syntactically represented as
   1882 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   1883 ///
   1884 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   1885   QualType PointeeType;  // Block is some kind of pointer type
   1886   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   1887     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   1888          Pointee->isInstantiationDependentType(),
   1889          Pointee->isVariablyModifiedType(),
   1890          Pointee->containsUnexpandedParameterPack()),
   1891     PointeeType(Pointee) {
   1892   }
   1893   friend class ASTContext;  // ASTContext creates these.
   1894 
   1895 public:
   1896 
   1897   // Get the pointee type. Pointee is required to always be a function type.
   1898   QualType getPointeeType() const { return PointeeType; }
   1899 
   1900   bool isSugared() const { return false; }
   1901   QualType desugar() const { return QualType(this, 0); }
   1902 
   1903   void Profile(llvm::FoldingSetNodeID &ID) {
   1904       Profile(ID, getPointeeType());
   1905   }
   1906   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1907       ID.AddPointer(Pointee.getAsOpaquePtr());
   1908   }
   1909 
   1910   static bool classof(const Type *T) {
   1911     return T->getTypeClass() == BlockPointer;
   1912   }
   1913   static bool classof(const BlockPointerType *) { return true; }
   1914 };
   1915 
   1916 /// ReferenceType - Base for LValueReferenceType and RValueReferenceType
   1917 ///
   1918 class ReferenceType : public Type, public llvm::FoldingSetNode {
   1919   QualType PointeeType;
   1920 
   1921 protected:
   1922   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   1923                 bool SpelledAsLValue) :
   1924     Type(tc, CanonicalRef, Referencee->isDependentType(),
   1925          Referencee->isInstantiationDependentType(),
   1926          Referencee->isVariablyModifiedType(),
   1927          Referencee->containsUnexpandedParameterPack()),
   1928     PointeeType(Referencee)
   1929   {
   1930     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   1931     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   1932   }
   1933 
   1934 public:
   1935   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   1936   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   1937 
   1938   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   1939   QualType getPointeeType() const {
   1940     // FIXME: this might strip inner qualifiers; okay?
   1941     const ReferenceType *T = this;
   1942     while (T->isInnerRef())
   1943       T = T->PointeeType->castAs<ReferenceType>();
   1944     return T->PointeeType;
   1945   }
   1946 
   1947   void Profile(llvm::FoldingSetNodeID &ID) {
   1948     Profile(ID, PointeeType, isSpelledAsLValue());
   1949   }
   1950   static void Profile(llvm::FoldingSetNodeID &ID,
   1951                       QualType Referencee,
   1952                       bool SpelledAsLValue) {
   1953     ID.AddPointer(Referencee.getAsOpaquePtr());
   1954     ID.AddBoolean(SpelledAsLValue);
   1955   }
   1956 
   1957   static bool classof(const Type *T) {
   1958     return T->getTypeClass() == LValueReference ||
   1959            T->getTypeClass() == RValueReference;
   1960   }
   1961   static bool classof(const ReferenceType *) { return true; }
   1962 };
   1963 
   1964 /// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
   1965 ///
   1966 class LValueReferenceType : public ReferenceType {
   1967   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   1968                       bool SpelledAsLValue) :
   1969     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   1970   {}
   1971   friend class ASTContext; // ASTContext creates these
   1972 public:
   1973   bool isSugared() const { return false; }
   1974   QualType desugar() const { return QualType(this, 0); }
   1975 
   1976   static bool classof(const Type *T) {
   1977     return T->getTypeClass() == LValueReference;
   1978   }
   1979   static bool classof(const LValueReferenceType *) { return true; }
   1980 };
   1981 
   1982 /// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
   1983 ///
   1984 class RValueReferenceType : public ReferenceType {
   1985   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   1986     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   1987   }
   1988   friend class ASTContext; // ASTContext creates these
   1989 public:
   1990   bool isSugared() const { return false; }
   1991   QualType desugar() const { return QualType(this, 0); }
   1992 
   1993   static bool classof(const Type *T) {
   1994     return T->getTypeClass() == RValueReference;
   1995   }
   1996   static bool classof(const RValueReferenceType *) { return true; }
   1997 };
   1998 
   1999 /// MemberPointerType - C++ 8.3.3 - Pointers to members
   2000 ///
   2001 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2002   QualType PointeeType;
   2003   /// The class of which the pointee is a member. Must ultimately be a
   2004   /// RecordType, but could be a typedef or a template parameter too.
   2005   const Type *Class;
   2006 
   2007   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2008     Type(MemberPointer, CanonicalPtr,
   2009          Cls->isDependentType() || Pointee->isDependentType(),
   2010          (Cls->isInstantiationDependentType() ||
   2011           Pointee->isInstantiationDependentType()),
   2012          Pointee->isVariablyModifiedType(),
   2013          (Cls->containsUnexpandedParameterPack() ||
   2014           Pointee->containsUnexpandedParameterPack())),
   2015     PointeeType(Pointee), Class(Cls) {
   2016   }
   2017   friend class ASTContext; // ASTContext creates these.
   2018 
   2019 public:
   2020   QualType getPointeeType() const { return PointeeType; }
   2021 
   2022   /// Returns true if the member type (i.e. the pointee type) is a
   2023   /// function type rather than a data-member type.
   2024   bool isMemberFunctionPointer() const {
   2025     return PointeeType->isFunctionProtoType();
   2026   }
   2027 
   2028   /// Returns true if the member type (i.e. the pointee type) is a
   2029   /// data type rather than a function type.
   2030   bool isMemberDataPointer() const {
   2031     return !PointeeType->isFunctionProtoType();
   2032   }
   2033 
   2034   const Type *getClass() const { return Class; }
   2035 
   2036   bool isSugared() const { return false; }
   2037   QualType desugar() const { return QualType(this, 0); }
   2038 
   2039   void Profile(llvm::FoldingSetNodeID &ID) {
   2040     Profile(ID, getPointeeType(), getClass());
   2041   }
   2042   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2043                       const Type *Class) {
   2044     ID.AddPointer(Pointee.getAsOpaquePtr());
   2045     ID.AddPointer(Class);
   2046   }
   2047 
   2048   static bool classof(const Type *T) {
   2049     return T->getTypeClass() == MemberPointer;
   2050   }
   2051   static bool classof(const MemberPointerType *) { return true; }
   2052 };
   2053 
   2054 /// ArrayType - C99 6.7.5.2 - Array Declarators.
   2055 ///
   2056 class ArrayType : public Type, public llvm::FoldingSetNode {
   2057 public:
   2058   /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
   2059   /// an array with a static size (e.g. int X[static 4]), or an array
   2060   /// with a star size (e.g. int X[*]).
   2061   /// 'static' is only allowed on function parameters.
   2062   enum ArraySizeModifier {
   2063     Normal, Static, Star
   2064   };
   2065 private:
   2066   /// ElementType - The element type of the array.
   2067   QualType ElementType;
   2068 
   2069 protected:
   2070   // C++ [temp.dep.type]p1:
   2071   //   A type is dependent if it is...
   2072   //     - an array type constructed from any dependent type or whose
   2073   //       size is specified by a constant expression that is
   2074   //       value-dependent,
   2075   ArrayType(TypeClass tc, QualType et, QualType can,
   2076             ArraySizeModifier sm, unsigned tq,
   2077             bool ContainsUnexpandedParameterPack)
   2078     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2079            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2080            (tc == VariableArray || et->isVariablyModifiedType()),
   2081            ContainsUnexpandedParameterPack),
   2082       ElementType(et) {
   2083     ArrayTypeBits.IndexTypeQuals = tq;
   2084     ArrayTypeBits.SizeModifier = sm;
   2085   }
   2086 
   2087   friend class ASTContext;  // ASTContext creates these.
   2088 
   2089 public:
   2090   QualType getElementType() const { return ElementType; }
   2091   ArraySizeModifier getSizeModifier() const {
   2092     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2093   }
   2094   Qualifiers getIndexTypeQualifiers() const {
   2095     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2096   }
   2097   unsigned getIndexTypeCVRQualifiers() const {
   2098     return ArrayTypeBits.IndexTypeQuals;
   2099   }
   2100 
   2101   static bool classof(const Type *T) {
   2102     return T->getTypeClass() == ConstantArray ||
   2103            T->getTypeClass() == VariableArray ||
   2104            T->getTypeClass() == IncompleteArray ||
   2105            T->getTypeClass() == DependentSizedArray;
   2106   }
   2107   static bool classof(const ArrayType *) { return true; }
   2108 };
   2109 
   2110 /// ConstantArrayType - This class represents the canonical version of
   2111 /// C arrays with a specified constant size.  For example, the canonical
   2112 /// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
   2113 /// type is 'int' and the size is 404.
   2114 class ConstantArrayType : public ArrayType {
   2115   llvm::APInt Size; // Allows us to unique the type.
   2116 
   2117   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2118                     ArraySizeModifier sm, unsigned tq)
   2119     : ArrayType(ConstantArray, et, can, sm, tq,
   2120                 et->containsUnexpandedParameterPack()),
   2121       Size(size) {}
   2122 protected:
   2123   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2124                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2125     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2126       Size(size) {}
   2127   friend class ASTContext;  // ASTContext creates these.
   2128 public:
   2129   const llvm::APInt &getSize() const { return Size; }
   2130   bool isSugared() const { return false; }
   2131   QualType desugar() const { return QualType(this, 0); }
   2132 
   2133 
   2134   /// \brief Determine the number of bits required to address a member of
   2135   // an array with the given element type and number of elements.
   2136   static unsigned getNumAddressingBits(ASTContext &Context,
   2137                                        QualType ElementType,
   2138                                        const llvm::APInt &NumElements);
   2139 
   2140   /// \brief Determine the maximum number of active bits that an array's size
   2141   /// can require, which limits the maximum size of the array.
   2142   static unsigned getMaxSizeBits(ASTContext &Context);
   2143 
   2144   void Profile(llvm::FoldingSetNodeID &ID) {
   2145     Profile(ID, getElementType(), getSize(),
   2146             getSizeModifier(), getIndexTypeCVRQualifiers());
   2147   }
   2148   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2149                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2150                       unsigned TypeQuals) {
   2151     ID.AddPointer(ET.getAsOpaquePtr());
   2152     ID.AddInteger(ArraySize.getZExtValue());
   2153     ID.AddInteger(SizeMod);
   2154     ID.AddInteger(TypeQuals);
   2155   }
   2156   static bool classof(const Type *T) {
   2157     return T->getTypeClass() == ConstantArray;
   2158   }
   2159   static bool classof(const ConstantArrayType *) { return true; }
   2160 };
   2161 
   2162 /// IncompleteArrayType - This class represents C arrays with an unspecified
   2163 /// size.  For example 'int A[]' has an IncompleteArrayType where the element
   2164 /// type is 'int' and the size is unspecified.
   2165 class IncompleteArrayType : public ArrayType {
   2166 
   2167   IncompleteArrayType(QualType et, QualType can,
   2168                       ArraySizeModifier sm, unsigned tq)
   2169     : ArrayType(IncompleteArray, et, can, sm, tq,
   2170                 et->containsUnexpandedParameterPack()) {}
   2171   friend class ASTContext;  // ASTContext creates these.
   2172 public:
   2173   bool isSugared() const { return false; }
   2174   QualType desugar() const { return QualType(this, 0); }
   2175 
   2176   static bool classof(const Type *T) {
   2177     return T->getTypeClass() == IncompleteArray;
   2178   }
   2179   static bool classof(const IncompleteArrayType *) { return true; }
   2180 
   2181   friend class StmtIteratorBase;
   2182 
   2183   void Profile(llvm::FoldingSetNodeID &ID) {
   2184     Profile(ID, getElementType(), getSizeModifier(),
   2185             getIndexTypeCVRQualifiers());
   2186   }
   2187 
   2188   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2189                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2190     ID.AddPointer(ET.getAsOpaquePtr());
   2191     ID.AddInteger(SizeMod);
   2192     ID.AddInteger(TypeQuals);
   2193   }
   2194 };
   2195 
   2196 /// VariableArrayType - This class represents C arrays with a specified size
   2197 /// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
   2198 /// Since the size expression is an arbitrary expression, we store it as such.
   2199 ///
   2200 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2201 /// should not be: two lexically equivalent variable array types could mean
   2202 /// different things, for example, these variables do not have the same type
   2203 /// dynamically:
   2204 ///
   2205 /// void foo(int x) {
   2206 ///   int Y[x];
   2207 ///   ++x;
   2208 ///   int Z[x];
   2209 /// }
   2210 ///
   2211 class VariableArrayType : public ArrayType {
   2212   /// SizeExpr - An assignment expression. VLA's are only permitted within
   2213   /// a function block.
   2214   Stmt *SizeExpr;
   2215   /// Brackets - The left and right array brackets.
   2216   SourceRange Brackets;
   2217 
   2218   VariableArrayType(QualType et, QualType can, Expr *e,
   2219                     ArraySizeModifier sm, unsigned tq,
   2220                     SourceRange brackets)
   2221     : ArrayType(VariableArray, et, can, sm, tq,
   2222                 et->containsUnexpandedParameterPack()),
   2223       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2224   friend class ASTContext;  // ASTContext creates these.
   2225 
   2226 public:
   2227   Expr *getSizeExpr() const {
   2228     // We use C-style casts instead of cast<> here because we do not wish
   2229     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2230     return (Expr*) SizeExpr;
   2231   }
   2232   SourceRange getBracketsRange() const { return Brackets; }
   2233   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2234   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2235 
   2236   bool isSugared() const { return false; }
   2237   QualType desugar() const { return QualType(this, 0); }
   2238 
   2239   static bool classof(const Type *T) {
   2240     return T->getTypeClass() == VariableArray;
   2241   }
   2242   static bool classof(const VariableArrayType *) { return true; }
   2243 
   2244   friend class StmtIteratorBase;
   2245 
   2246   void Profile(llvm::FoldingSetNodeID &ID) {
   2247     assert(0 && "Cannot unique VariableArrayTypes.");
   2248   }
   2249 };
   2250 
   2251 /// DependentSizedArrayType - This type represents an array type in
   2252 /// C++ whose size is a value-dependent expression. For example:
   2253 ///
   2254 /// \code
   2255 /// template<typename T, int Size>
   2256 /// class array {
   2257 ///   T data[Size];
   2258 /// };
   2259 /// \endcode
   2260 ///
   2261 /// For these types, we won't actually know what the array bound is
   2262 /// until template instantiation occurs, at which point this will
   2263 /// become either a ConstantArrayType or a VariableArrayType.
   2264 class DependentSizedArrayType : public ArrayType {
   2265   const ASTContext &Context;
   2266 
   2267   /// \brief An assignment expression that will instantiate to the
   2268   /// size of the array.
   2269   ///
   2270   /// The expression itself might be NULL, in which case the array
   2271   /// type will have its size deduced from an initializer.
   2272   Stmt *SizeExpr;
   2273 
   2274   /// Brackets - The left and right array brackets.
   2275   SourceRange Brackets;
   2276 
   2277   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2278                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2279                           SourceRange brackets);
   2280 
   2281   friend class ASTContext;  // ASTContext creates these.
   2282 
   2283 public:
   2284   Expr *getSizeExpr() const {
   2285     // We use C-style casts instead of cast<> here because we do not wish
   2286     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2287     return (Expr*) SizeExpr;
   2288   }
   2289   SourceRange getBracketsRange() const { return Brackets; }
   2290   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2291   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2292 
   2293   bool isSugared() const { return false; }
   2294   QualType desugar() const { return QualType(this, 0); }
   2295 
   2296   static bool classof(const Type *T) {
   2297     return T->getTypeClass() == DependentSizedArray;
   2298   }
   2299   static bool classof(const DependentSizedArrayType *) { return true; }
   2300 
   2301   friend class StmtIteratorBase;
   2302 
   2303 
   2304   void Profile(llvm::FoldingSetNodeID &ID) {
   2305     Profile(ID, Context, getElementType(),
   2306             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2307   }
   2308 
   2309   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2310                       QualType ET, ArraySizeModifier SizeMod,
   2311                       unsigned TypeQuals, Expr *E);
   2312 };
   2313 
   2314 /// DependentSizedExtVectorType - This type represent an extended vector type
   2315 /// where either the type or size is dependent. For example:
   2316 /// @code
   2317 /// template<typename T, int Size>
   2318 /// class vector {
   2319 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2320 /// }
   2321 /// @endcode
   2322 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2323   const ASTContext &Context;
   2324   Expr *SizeExpr;
   2325   /// ElementType - The element type of the array.
   2326   QualType ElementType;
   2327   SourceLocation loc;
   2328 
   2329   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2330                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2331 
   2332   friend class ASTContext;
   2333 
   2334 public:
   2335   Expr *getSizeExpr() const { return SizeExpr; }
   2336   QualType getElementType() const { return ElementType; }
   2337   SourceLocation getAttributeLoc() const { return loc; }
   2338 
   2339   bool isSugared() const { return false; }
   2340   QualType desugar() const { return QualType(this, 0); }
   2341 
   2342   static bool classof(const Type *T) {
   2343     return T->getTypeClass() == DependentSizedExtVector;
   2344   }
   2345   static bool classof(const DependentSizedExtVectorType *) { return true; }
   2346 
   2347   void Profile(llvm::FoldingSetNodeID &ID) {
   2348     Profile(ID, Context, getElementType(), getSizeExpr());
   2349   }
   2350 
   2351   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2352                       QualType ElementType, Expr *SizeExpr);
   2353 };
   2354 
   2355 
   2356 /// VectorType - GCC generic vector type. This type is created using
   2357 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2358 /// bytes; or from an Altivec __vector or vector declaration.
   2359 /// Since the constructor takes the number of vector elements, the
   2360 /// client is responsible for converting the size into the number of elements.
   2361 class VectorType : public Type, public llvm::FoldingSetNode {
   2362 public:
   2363   enum VectorKind {
   2364     GenericVector,  // not a target-specific vector type
   2365     AltiVecVector,  // is AltiVec vector
   2366     AltiVecPixel,   // is AltiVec 'vector Pixel'
   2367     AltiVecBool,    // is AltiVec 'vector bool ...'
   2368     NeonVector,     // is ARM Neon vector
   2369     NeonPolyVector  // is ARM Neon polynomial vector
   2370   };
   2371 protected:
   2372   /// ElementType - The element type of the vector.
   2373   QualType ElementType;
   2374 
   2375   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2376              VectorKind vecKind);
   2377 
   2378   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2379              QualType canonType, VectorKind vecKind);
   2380 
   2381   friend class ASTContext;  // ASTContext creates these.
   2382 
   2383 public:
   2384 
   2385   QualType getElementType() const { return ElementType; }
   2386   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2387 
   2388   bool isSugared() const { return false; }
   2389   QualType desugar() const { return QualType(this, 0); }
   2390 
   2391   VectorKind getVectorKind() const {
   2392     return VectorKind(VectorTypeBits.VecKind);
   2393   }
   2394 
   2395   void Profile(llvm::FoldingSetNodeID &ID) {
   2396     Profile(ID, getElementType(), getNumElements(),
   2397             getTypeClass(), getVectorKind());
   2398   }
   2399   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2400                       unsigned NumElements, TypeClass TypeClass,
   2401                       VectorKind VecKind) {
   2402     ID.AddPointer(ElementType.getAsOpaquePtr());
   2403     ID.AddInteger(NumElements);
   2404     ID.AddInteger(TypeClass);
   2405     ID.AddInteger(VecKind);
   2406   }
   2407 
   2408   static bool classof(const Type *T) {
   2409     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2410   }
   2411   static bool classof(const VectorType *) { return true; }
   2412 };
   2413 
   2414 /// ExtVectorType - Extended vector type. This type is created using
   2415 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2416 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2417 /// class enables syntactic extensions, like Vector Components for accessing
   2418 /// points, colors, and textures (modeled after OpenGL Shading Language).
   2419 class ExtVectorType : public VectorType {
   2420   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2421     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2422   friend class ASTContext;  // ASTContext creates these.
   2423 public:
   2424   static int getPointAccessorIdx(char c) {
   2425     switch (c) {
   2426     default: return -1;
   2427     case 'x': case 'r': return 0;
   2428     case 'y': case 'g': return 1;
   2429     case 'z': case 'b': return 2;
   2430     case 'w': case 'a': return 3;
   2431     }
   2432   }
   2433   static int getNumericAccessorIdx(char c) {
   2434     switch (c) {
   2435       default: return -1;
   2436       case '0': return 0;
   2437       case '1': return 1;
   2438       case '2': return 2;
   2439       case '3': return 3;
   2440       case '4': return 4;
   2441       case '5': return 5;
   2442       case '6': return 6;
   2443       case '7': return 7;
   2444       case '8': return 8;
   2445       case '9': return 9;
   2446       case 'A':
   2447       case 'a': return 10;
   2448       case 'B':
   2449       case 'b': return 11;
   2450       case 'C':
   2451       case 'c': return 12;
   2452       case 'D':
   2453       case 'd': return 13;
   2454       case 'E':
   2455       case 'e': return 14;
   2456       case 'F':
   2457       case 'f': return 15;
   2458     }
   2459   }
   2460 
   2461   static int getAccessorIdx(char c) {
   2462     if (int idx = getPointAccessorIdx(c)+1) return idx-1;
   2463     return getNumericAccessorIdx(c);
   2464   }
   2465 
   2466   bool isAccessorWithinNumElements(char c) const {
   2467     if (int idx = getAccessorIdx(c)+1)
   2468       return unsigned(idx-1) < getNumElements();
   2469     return false;
   2470   }
   2471   bool isSugared() const { return false; }
   2472   QualType desugar() const { return QualType(this, 0); }
   2473 
   2474   static bool classof(const Type *T) {
   2475     return T->getTypeClass() == ExtVector;
   2476   }
   2477   static bool classof(const ExtVectorType *) { return true; }
   2478 };
   2479 
   2480 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2481 /// class of FunctionNoProtoType and FunctionProtoType.
   2482 ///
   2483 class FunctionType : public Type {
   2484   // The type returned by the function.
   2485   QualType ResultType;
   2486 
   2487  public:
   2488   /// ExtInfo - A class which abstracts out some details necessary for
   2489   /// making a call.
   2490   ///
   2491   /// It is not actually used directly for storing this information in
   2492   /// a FunctionType, although FunctionType does currently use the
   2493   /// same bit-pattern.
   2494   ///
   2495   // If you add a field (say Foo), other than the obvious places (both,
   2496   // constructors, compile failures), what you need to update is
   2497   // * Operator==
   2498   // * getFoo
   2499   // * withFoo
   2500   // * functionType. Add Foo, getFoo.
   2501   // * ASTContext::getFooType
   2502   // * ASTContext::mergeFunctionTypes
   2503   // * FunctionNoProtoType::Profile
   2504   // * FunctionProtoType::Profile
   2505   // * TypePrinter::PrintFunctionProto
   2506   // * AST read and write
   2507   // * Codegen
   2508   class ExtInfo {
   2509     // Feel free to rearrange or add bits, but if you go over 8,
   2510     // you'll need to adjust both the Bits field below and
   2511     // Type::FunctionTypeBitfields.
   2512 
   2513     //   |  CC  |noreturn|produces|regparm|
   2514     //   |0 .. 2|   3    |    4   | 5 .. 7|
   2515     //
   2516     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2517     enum { CallConvMask = 0x7 };
   2518     enum { NoReturnMask = 0x8 };
   2519     enum { ProducesResultMask = 0x10 };
   2520     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2521            RegParmOffset = 5 }; // Assumed to be the last field
   2522 
   2523     uint16_t Bits;
   2524 
   2525     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2526 
   2527     friend class FunctionType;
   2528 
   2529    public:
   2530     // Constructor with no defaults. Use this when you know that you
   2531     // have all the elements (when reading an AST file for example).
   2532     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2533             bool producesResult) {
   2534       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2535       Bits = ((unsigned) cc) |
   2536              (noReturn ? NoReturnMask : 0) |
   2537              (producesResult ? ProducesResultMask : 0) |
   2538              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2539     }
   2540 
   2541     // Constructor with all defaults. Use when for example creating a
   2542     // function know to use defaults.
   2543     ExtInfo() : Bits(0) {}
   2544 
   2545     bool getNoReturn() const { return Bits & NoReturnMask; }
   2546     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2547     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2548     unsigned getRegParm() const {
   2549       unsigned RegParm = Bits >> RegParmOffset;
   2550       if (RegParm > 0)
   2551         --RegParm;
   2552       return RegParm;
   2553     }
   2554     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2555 
   2556     bool operator==(ExtInfo Other) const {
   2557       return Bits == Other.Bits;
   2558     }
   2559     bool operator!=(ExtInfo Other) const {
   2560       return Bits != Other.Bits;
   2561     }
   2562 
   2563     // Note that we don't have setters. That is by design, use
   2564     // the following with methods instead of mutating these objects.
   2565 
   2566     ExtInfo withNoReturn(bool noReturn) const {
   2567       if (noReturn)
   2568         return ExtInfo(Bits | NoReturnMask);
   2569       else
   2570         return ExtInfo(Bits & ~NoReturnMask);
   2571     }
   2572 
   2573     ExtInfo withProducesResult(bool producesResult) const {
   2574       if (producesResult)
   2575         return ExtInfo(Bits | ProducesResultMask);
   2576       else
   2577         return ExtInfo(Bits & ~ProducesResultMask);
   2578     }
   2579 
   2580     ExtInfo withRegParm(unsigned RegParm) const {
   2581       assert(RegParm < 7 && "Invalid regparm value");
   2582       return ExtInfo((Bits & ~RegParmMask) |
   2583                      ((RegParm + 1) << RegParmOffset));
   2584     }
   2585 
   2586     ExtInfo withCallingConv(CallingConv cc) const {
   2587       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   2588     }
   2589 
   2590     void Profile(llvm::FoldingSetNodeID &ID) const {
   2591       ID.AddInteger(Bits);
   2592     }
   2593   };
   2594 
   2595 protected:
   2596   FunctionType(TypeClass tc, QualType res, bool variadic,
   2597                unsigned typeQuals, RefQualifierKind RefQualifier,
   2598                QualType Canonical, bool Dependent,
   2599                bool InstantiationDependent,
   2600                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   2601                ExtInfo Info)
   2602     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   2603            ContainsUnexpandedParameterPack),
   2604       ResultType(res) {
   2605     FunctionTypeBits.ExtInfo = Info.Bits;
   2606     FunctionTypeBits.Variadic = variadic;
   2607     FunctionTypeBits.TypeQuals = typeQuals;
   2608     FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
   2609   }
   2610   bool isVariadic() const { return FunctionTypeBits.Variadic; }
   2611   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   2612 
   2613   RefQualifierKind getRefQualifier() const {
   2614     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   2615   }
   2616 
   2617 public:
   2618 
   2619   QualType getResultType() const { return ResultType; }
   2620 
   2621   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   2622   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   2623   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   2624   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   2625   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   2626 
   2627   /// \brief Determine the type of an expression that calls a function of
   2628   /// this type.
   2629   QualType getCallResultType(ASTContext &Context) const {
   2630     return getResultType().getNonLValueExprType(Context);
   2631   }
   2632 
   2633   static llvm::StringRef getNameForCallConv(CallingConv CC);
   2634 
   2635   static bool classof(const Type *T) {
   2636     return T->getTypeClass() == FunctionNoProto ||
   2637            T->getTypeClass() == FunctionProto;
   2638   }
   2639   static bool classof(const FunctionType *) { return true; }
   2640 };
   2641 
   2642 /// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
   2643 /// no information available about its arguments.
   2644 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   2645   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   2646     : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
   2647                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   2648                    Result->isVariablyModifiedType(),
   2649                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   2650 
   2651   friend class ASTContext;  // ASTContext creates these.
   2652 
   2653 public:
   2654   // No additional state past what FunctionType provides.
   2655 
   2656   bool isSugared() const { return false; }
   2657   QualType desugar() const { return QualType(this, 0); }
   2658 
   2659   void Profile(llvm::FoldingSetNodeID &ID) {
   2660     Profile(ID, getResultType(), getExtInfo());
   2661   }
   2662   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   2663                       ExtInfo Info) {
   2664     Info.Profile(ID);
   2665     ID.AddPointer(ResultType.getAsOpaquePtr());
   2666   }
   2667 
   2668   static bool classof(const Type *T) {
   2669     return T->getTypeClass() == FunctionNoProto;
   2670   }
   2671   static bool classof(const FunctionNoProtoType *) { return true; }
   2672 };
   2673 
   2674 /// FunctionProtoType - Represents a prototype with argument type info, e.g.
   2675 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   2676 /// arguments, not as having a single void argument. Such a type can have an
   2677 /// exception specification, but this specification is not part of the canonical
   2678 /// type.
   2679 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   2680 public:
   2681   /// ExtProtoInfo - Extra information about a function prototype.
   2682   struct ExtProtoInfo {
   2683     ExtProtoInfo() :
   2684       Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
   2685       RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
   2686       ConsumedArguments(0) {}
   2687 
   2688     FunctionType::ExtInfo ExtInfo;
   2689     bool Variadic;
   2690     ExceptionSpecificationType ExceptionSpecType;
   2691     unsigned char TypeQuals;
   2692     RefQualifierKind RefQualifier;
   2693     unsigned NumExceptions;
   2694     const QualType *Exceptions;
   2695     Expr *NoexceptExpr;
   2696     const bool *ConsumedArguments;
   2697   };
   2698 
   2699 private:
   2700   /// \brief Determine whether there are any argument types that
   2701   /// contain an unexpanded parameter pack.
   2702   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   2703                                                  unsigned numArgs) {
   2704     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   2705       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   2706         return true;
   2707 
   2708     return false;
   2709   }
   2710 
   2711   FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
   2712                     QualType canonical, const ExtProtoInfo &epi);
   2713 
   2714   /// NumArgs - The number of arguments this function has, not counting '...'.
   2715   unsigned NumArgs : 19;
   2716 
   2717   /// NumExceptions - The number of types in the exception spec, if any.
   2718   unsigned NumExceptions : 9;
   2719 
   2720   /// ExceptionSpecType - The type of exception specification this function has.
   2721   unsigned ExceptionSpecType : 3;
   2722 
   2723   /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
   2724   unsigned HasAnyConsumedArgs : 1;
   2725 
   2726   /// ArgInfo - There is an variable size array after the class in memory that
   2727   /// holds the argument types.
   2728 
   2729   /// Exceptions - There is another variable size array after ArgInfo that
   2730   /// holds the exception types.
   2731 
   2732   /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   2733   /// to the expression in the noexcept() specifier.
   2734 
   2735   /// ConsumedArgs - A variable size array, following Exceptions
   2736   /// and of length NumArgs, holding flags indicating which arguments
   2737   /// are consumed.  This only appears if HasAnyConsumedArgs is true.
   2738 
   2739   friend class ASTContext;  // ASTContext creates these.
   2740 
   2741   const bool *getConsumedArgsBuffer() const {
   2742     assert(hasAnyConsumedArgs());
   2743 
   2744     // Find the end of the exceptions.
   2745     Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
   2746     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2747       eh_end += NumExceptions;
   2748     else
   2749       eh_end += 1; // NoexceptExpr
   2750 
   2751     return reinterpret_cast<const bool*>(eh_end);
   2752   }
   2753 
   2754 public:
   2755   unsigned getNumArgs() const { return NumArgs; }
   2756   QualType getArgType(unsigned i) const {
   2757     assert(i < NumArgs && "Invalid argument number!");
   2758     return arg_type_begin()[i];
   2759   }
   2760 
   2761   ExtProtoInfo getExtProtoInfo() const {
   2762     ExtProtoInfo EPI;
   2763     EPI.ExtInfo = getExtInfo();
   2764     EPI.Variadic = isVariadic();
   2765     EPI.ExceptionSpecType = getExceptionSpecType();
   2766     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   2767     EPI.RefQualifier = getRefQualifier();
   2768     if (EPI.ExceptionSpecType == EST_Dynamic) {
   2769       EPI.NumExceptions = NumExceptions;
   2770       EPI.Exceptions = exception_begin();
   2771     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2772       EPI.NoexceptExpr = getNoexceptExpr();
   2773     }
   2774     if (hasAnyConsumedArgs())
   2775       EPI.ConsumedArguments = getConsumedArgsBuffer();
   2776     return EPI;
   2777   }
   2778 
   2779   /// \brief Get the kind of exception specification on this function.
   2780   ExceptionSpecificationType getExceptionSpecType() const {
   2781     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   2782   }
   2783   /// \brief Return whether this function has any kind of exception spec.
   2784   bool hasExceptionSpec() const {
   2785     return getExceptionSpecType() != EST_None;
   2786   }
   2787   /// \brief Return whether this function has a dynamic (throw) exception spec.
   2788   bool hasDynamicExceptionSpec() const {
   2789     return isDynamicExceptionSpec(getExceptionSpecType());
   2790   }
   2791   /// \brief Return whether this function has a noexcept exception spec.
   2792   bool hasNoexceptExceptionSpec() const {
   2793     return isNoexceptExceptionSpec(getExceptionSpecType());
   2794   }
   2795   /// \brief Result type of getNoexceptSpec().
   2796   enum NoexceptResult {
   2797     NR_NoNoexcept,  ///< There is no noexcept specifier.
   2798     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   2799     NR_Dependent,   ///< The noexcept specifier is dependent.
   2800     NR_Throw,       ///< The noexcept specifier evaluates to false.
   2801     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   2802   };
   2803   /// \brief Get the meaning of the noexcept spec on this function, if any.
   2804   NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
   2805   unsigned getNumExceptions() const { return NumExceptions; }
   2806   QualType getExceptionType(unsigned i) const {
   2807     assert(i < NumExceptions && "Invalid exception number!");
   2808     return exception_begin()[i];
   2809   }
   2810   Expr *getNoexceptExpr() const {
   2811     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2812       return 0;
   2813     // NoexceptExpr sits where the arguments end.
   2814     return *reinterpret_cast<Expr *const *>(arg_type_end());
   2815   }
   2816   bool isNothrow(ASTContext &Ctx) const {
   2817     ExceptionSpecificationType EST = getExceptionSpecType();
   2818     assert(EST != EST_Delayed);
   2819     if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
   2820       return true;
   2821     if (EST != EST_ComputedNoexcept)
   2822       return false;
   2823     return getNoexceptSpec(Ctx) == NR_Nothrow;
   2824   }
   2825 
   2826   using FunctionType::isVariadic;
   2827 
   2828   /// \brief Determines whether this function prototype contains a
   2829   /// parameter pack at the end.
   2830   ///
   2831   /// A function template whose last parameter is a parameter pack can be
   2832   /// called with an arbitrary number of arguments, much like a variadic
   2833   /// function. However,
   2834   bool isTemplateVariadic() const;
   2835 
   2836   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   2837 
   2838 
   2839   /// \brief Retrieve the ref-qualifier associated with this function type.
   2840   RefQualifierKind getRefQualifier() const {
   2841     return FunctionType::getRefQualifier();
   2842   }
   2843 
   2844   typedef const QualType *arg_type_iterator;
   2845   arg_type_iterator arg_type_begin() const {
   2846     return reinterpret_cast<const QualType *>(this+1);
   2847   }
   2848   arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
   2849 
   2850   typedef const QualType *exception_iterator;
   2851   exception_iterator exception_begin() const {
   2852     // exceptions begin where arguments end
   2853     return arg_type_end();
   2854   }
   2855   exception_iterator exception_end() const {
   2856     if (getExceptionSpecType() != EST_Dynamic)
   2857       return exception_begin();
   2858     return exception_begin() + NumExceptions;
   2859   }
   2860 
   2861   bool hasAnyConsumedArgs() const {
   2862     return HasAnyConsumedArgs;
   2863   }
   2864   bool isArgConsumed(unsigned I) const {
   2865     assert(I < getNumArgs() && "argument index out of range!");
   2866     if (hasAnyConsumedArgs())
   2867       return getConsumedArgsBuffer()[I];
   2868     return false;
   2869   }
   2870 
   2871   bool isSugared() const { return false; }
   2872   QualType desugar() const { return QualType(this, 0); }
   2873 
   2874   static bool classof(const Type *T) {
   2875     return T->getTypeClass() == FunctionProto;
   2876   }
   2877   static bool classof(const FunctionProtoType *) { return true; }
   2878 
   2879   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   2880   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   2881                       arg_type_iterator ArgTys, unsigned NumArgs,
   2882                       const ExtProtoInfo &EPI, const ASTContext &Context);
   2883 };
   2884 
   2885 
   2886 /// \brief Represents the dependent type named by a dependently-scoped
   2887 /// typename using declaration, e.g.
   2888 ///   using typename Base<T>::foo;
   2889 /// Template instantiation turns these into the underlying type.
   2890 class UnresolvedUsingType : public Type {
   2891   UnresolvedUsingTypenameDecl *Decl;
   2892 
   2893   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   2894     : Type(UnresolvedUsing, QualType(), true, true, false,
   2895            /*ContainsUnexpandedParameterPack=*/false),
   2896       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   2897   friend class ASTContext; // ASTContext creates these.
   2898 public:
   2899 
   2900   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   2901 
   2902   bool isSugared() const { return false; }
   2903   QualType desugar() const { return QualType(this, 0); }
   2904 
   2905   static bool classof(const Type *T) {
   2906     return T->getTypeClass() == UnresolvedUsing;
   2907   }
   2908   static bool classof(const UnresolvedUsingType *) { return true; }
   2909 
   2910   void Profile(llvm::FoldingSetNodeID &ID) {
   2911     return Profile(ID, Decl);
   2912   }
   2913   static void Profile(llvm::FoldingSetNodeID &ID,
   2914                       UnresolvedUsingTypenameDecl *D) {
   2915     ID.AddPointer(D);
   2916   }
   2917 };
   2918 
   2919 
   2920 class TypedefType : public Type {
   2921   TypedefNameDecl *Decl;
   2922 protected:
   2923   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   2924     : Type(tc, can, can->isDependentType(),
   2925            can->isInstantiationDependentType(),
   2926            can->isVariablyModifiedType(),
   2927            /*ContainsUnexpandedParameterPack=*/false),
   2928       Decl(const_cast<TypedefNameDecl*>(D)) {
   2929     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   2930   }
   2931   friend class ASTContext;  // ASTContext creates these.
   2932 public:
   2933 
   2934   TypedefNameDecl *getDecl() const { return Decl; }
   2935 
   2936   bool isSugared() const { return true; }
   2937   QualType desugar() const;
   2938 
   2939   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   2940   static bool classof(const TypedefType *) { return true; }
   2941 };
   2942 
   2943 /// TypeOfExprType (GCC extension).
   2944 class TypeOfExprType : public Type {
   2945   Expr *TOExpr;
   2946 
   2947 protected:
   2948   TypeOfExprType(Expr *E, QualType can = QualType());
   2949   friend class ASTContext;  // ASTContext creates these.
   2950 public:
   2951   Expr *getUnderlyingExpr() const { return TOExpr; }
   2952 
   2953   /// \brief Remove a single level of sugar.
   2954   QualType desugar() const;
   2955 
   2956   /// \brief Returns whether this type directly provides sugar.
   2957   bool isSugared() const;
   2958 
   2959   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   2960   static bool classof(const TypeOfExprType *) { return true; }
   2961 };
   2962 
   2963 /// \brief Internal representation of canonical, dependent
   2964 /// typeof(expr) types.
   2965 ///
   2966 /// This class is used internally by the ASTContext to manage
   2967 /// canonical, dependent types, only. Clients will only see instances
   2968 /// of this class via TypeOfExprType nodes.
   2969 class DependentTypeOfExprType
   2970   : public TypeOfExprType, public llvm::FoldingSetNode {
   2971   const ASTContext &Context;
   2972 
   2973 public:
   2974   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   2975     : TypeOfExprType(E), Context(Context) { }
   2976 
   2977   void Profile(llvm::FoldingSetNodeID &ID) {
   2978     Profile(ID, Context, getUnderlyingExpr());
   2979   }
   2980 
   2981   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2982                       Expr *E);
   2983 };
   2984 
   2985 /// TypeOfType (GCC extension).
   2986 class TypeOfType : public Type {
   2987   QualType TOType;
   2988   TypeOfType(QualType T, QualType can)
   2989     : Type(TypeOf, can, T->isDependentType(),
   2990            T->isInstantiationDependentType(),
   2991            T->isVariablyModifiedType(),
   2992            T->containsUnexpandedParameterPack()),
   2993       TOType(T) {
   2994     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   2995   }
   2996   friend class ASTContext;  // ASTContext creates these.
   2997 public:
   2998   QualType getUnderlyingType() const { return TOType; }
   2999 
   3000   /// \brief Remove a single level of sugar.
   3001   QualType desugar() const { return getUnderlyingType(); }
   3002 
   3003   /// \brief Returns whether this type directly provides sugar.
   3004   bool isSugared() const { return true; }
   3005 
   3006   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3007   static bool classof(const TypeOfType *) { return true; }
   3008 };
   3009 
   3010 /// DecltypeType (C++0x)
   3011 class DecltypeType : public Type {
   3012   Expr *E;
   3013 
   3014   // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
   3015   // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
   3016   // from it.
   3017   QualType UnderlyingType;
   3018 
   3019 protected:
   3020   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3021   friend class ASTContext;  // ASTContext creates these.
   3022 public:
   3023   Expr *getUnderlyingExpr() const { return E; }
   3024   QualType getUnderlyingType() const { return UnderlyingType; }
   3025 
   3026   /// \brief Remove a single level of sugar.
   3027   QualType desugar() const;
   3028 
   3029   /// \brief Returns whether this type directly provides sugar.
   3030   bool isSugared() const;
   3031 
   3032   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3033   static bool classof(const DecltypeType *) { return true; }
   3034 };
   3035 
   3036 /// \brief Internal representation of canonical, dependent
   3037 /// decltype(expr) types.
   3038 ///
   3039 /// This class is used internally by the ASTContext to manage
   3040 /// canonical, dependent types, only. Clients will only see instances
   3041 /// of this class via DecltypeType nodes.
   3042 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3043   const ASTContext &Context;
   3044 
   3045 public:
   3046   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3047 
   3048   void Profile(llvm::FoldingSetNodeID &ID) {
   3049     Profile(ID, Context, getUnderlyingExpr());
   3050   }
   3051 
   3052   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3053                       Expr *E);
   3054 };
   3055 
   3056 /// \brief A unary type transform, which is a type constructed from another
   3057 class UnaryTransformType : public Type {
   3058 public:
   3059   enum UTTKind {
   3060     EnumUnderlyingType
   3061   };
   3062 
   3063 private:
   3064   /// The untransformed type.
   3065   QualType BaseType;
   3066   /// The transformed type if not dependent, otherwise the same as BaseType.
   3067   QualType UnderlyingType;
   3068 
   3069   UTTKind UKind;
   3070 protected:
   3071   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3072                      QualType CanonicalTy);
   3073   friend class ASTContext;
   3074 public:
   3075   bool isSugared() const { return !isDependentType(); }
   3076   QualType desugar() const { return UnderlyingType; }
   3077 
   3078   QualType getUnderlyingType() const { return UnderlyingType; }
   3079   QualType getBaseType() const { return BaseType; }
   3080 
   3081   UTTKind getUTTKind() const { return UKind; }
   3082 
   3083   static bool classof(const Type *T) {
   3084     return T->getTypeClass() == UnaryTransform;
   3085   }
   3086   static bool classof(const UnaryTransformType *) { return true; }
   3087 };
   3088 
   3089 class TagType : public Type {
   3090   /// Stores the TagDecl associated with this type. The decl may point to any
   3091   /// TagDecl that declares the entity.
   3092   TagDecl * decl;
   3093 
   3094 protected:
   3095   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3096 
   3097 public:
   3098   TagDecl *getDecl() const;
   3099 
   3100   /// @brief Determines whether this type is in the process of being
   3101   /// defined.
   3102   bool isBeingDefined() const;
   3103 
   3104   static bool classof(const Type *T) {
   3105     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3106   }
   3107   static bool classof(const TagType *) { return true; }
   3108   static bool classof(const RecordType *) { return true; }
   3109   static bool classof(const EnumType *) { return true; }
   3110 };
   3111 
   3112 /// RecordType - This is a helper class that allows the use of isa/cast/dyncast
   3113 /// to detect TagType objects of structs/unions/classes.
   3114 class RecordType : public TagType {
   3115 protected:
   3116   explicit RecordType(const RecordDecl *D)
   3117     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3118   explicit RecordType(TypeClass TC, RecordDecl *D)
   3119     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3120   friend class ASTContext;   // ASTContext creates these.
   3121 public:
   3122 
   3123   RecordDecl *getDecl() const {
   3124     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3125   }
   3126 
   3127   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3128   // recursively check all fields for const-ness. If any field is declared
   3129   // const, it needs to return false.
   3130   bool hasConstFields() const { return false; }
   3131 
   3132   bool isSugared() const { return false; }
   3133   QualType desugar() const { return QualType(this, 0); }
   3134 
   3135   static bool classof(const TagType *T);
   3136   static bool classof(const Type *T) {
   3137     return isa<TagType>(T) && classof(cast<TagType>(T));
   3138   }
   3139   static bool classof(const RecordType *) { return true; }
   3140 };
   3141 
   3142 /// EnumType - This is a helper class that allows the use of isa/cast/dyncast
   3143 /// to detect TagType objects of enums.
   3144 class EnumType : public TagType {
   3145   explicit EnumType(const EnumDecl *D)
   3146     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3147   friend class ASTContext;   // ASTContext creates these.
   3148 public:
   3149 
   3150   EnumDecl *getDecl() const {
   3151     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3152   }
   3153 
   3154   bool isSugared() const { return false; }
   3155   QualType desugar() const { return QualType(this, 0); }
   3156 
   3157   static bool classof(const TagType *T);
   3158   static bool classof(const Type *T) {
   3159     return isa<TagType>(T) && classof(cast<TagType>(T));
   3160   }
   3161   static bool classof(const EnumType *) { return true; }
   3162 };
   3163 
   3164 /// AttributedType - An attributed type is a type to which a type
   3165 /// attribute has been applied.  The "modified type" is the
   3166 /// fully-sugared type to which the attributed type was applied;
   3167 /// generally it is not canonically equivalent to the attributed type.
   3168 /// The "equivalent type" is the minimally-desugared type which the
   3169 /// type is canonically equivalent to.
   3170 ///
   3171 /// For example, in the following attributed type:
   3172 ///     int32_t __attribute__((vector_size(16)))
   3173 ///   - the modified type is the TypedefType for int32_t
   3174 ///   - the equivalent type is VectorType(16, int32_t)
   3175 ///   - the canonical type is VectorType(16, int)
   3176 class AttributedType : public Type, public llvm::FoldingSetNode {
   3177 public:
   3178   // It is really silly to have yet another attribute-kind enum, but
   3179   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3180   enum Kind {
   3181     // Expression operand.
   3182     attr_address_space,
   3183     attr_regparm,
   3184     attr_vector_size,
   3185     attr_neon_vector_type,
   3186     attr_neon_polyvector_type,
   3187 
   3188     FirstExprOperandKind = attr_address_space,
   3189     LastExprOperandKind = attr_neon_polyvector_type,
   3190 
   3191     // Enumerated operand (string or keyword).
   3192     attr_objc_gc,
   3193     attr_objc_ownership,
   3194     attr_pcs,
   3195 
   3196     FirstEnumOperandKind = attr_objc_gc,
   3197     LastEnumOperandKind = attr_pcs,
   3198 
   3199     // No operand.
   3200     attr_noreturn,
   3201     attr_cdecl,
   3202     attr_fastcall,
   3203     attr_stdcall,
   3204     attr_thiscall,
   3205     attr_pascal
   3206   };
   3207 
   3208 private:
   3209   QualType ModifiedType;
   3210   QualType EquivalentType;
   3211 
   3212   friend class ASTContext; // creates these
   3213 
   3214   AttributedType(QualType canon, Kind attrKind,
   3215                  QualType modified, QualType equivalent)
   3216     : Type(Attributed, canon, canon->isDependentType(),
   3217            canon->isInstantiationDependentType(),
   3218            canon->isVariablyModifiedType(),
   3219            canon->containsUnexpandedParameterPack()),
   3220       ModifiedType(modified), EquivalentType(equivalent) {
   3221     AttributedTypeBits.AttrKind = attrKind;
   3222   }
   3223 
   3224 public:
   3225   Kind getAttrKind() const {
   3226     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3227   }
   3228 
   3229   QualType getModifiedType() const { return ModifiedType; }
   3230   QualType getEquivalentType() const { return EquivalentType; }
   3231 
   3232   bool isSugared() const { return true; }
   3233   QualType desugar() const { return getEquivalentType(); }
   3234 
   3235   void Profile(llvm::FoldingSetNodeID &ID) {
   3236     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3237   }
   3238 
   3239   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3240                       QualType modified, QualType equivalent) {
   3241     ID.AddInteger(attrKind);
   3242     ID.AddPointer(modified.getAsOpaquePtr());
   3243     ID.AddPointer(equivalent.getAsOpaquePtr());
   3244   }
   3245 
   3246   static bool classof(const Type *T) {
   3247     return T->getTypeClass() == Attributed;
   3248   }
   3249   static bool classof(const AttributedType *T) { return true; }
   3250 };
   3251 
   3252 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3253   // Helper data collector for canonical types.
   3254   struct CanonicalTTPTInfo {
   3255     unsigned Depth : 15;
   3256     unsigned ParameterPack : 1;
   3257     unsigned Index : 16;
   3258   };
   3259 
   3260   union {
   3261     // Info for the canonical type.
   3262     CanonicalTTPTInfo CanTTPTInfo;
   3263     // Info for the non-canonical type.
   3264     TemplateTypeParmDecl *TTPDecl;
   3265   };
   3266 
   3267   /// Build a non-canonical type.
   3268   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3269     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3270            /*InstantiationDependent=*/true,
   3271            /*VariablyModified=*/false,
   3272            Canon->containsUnexpandedParameterPack()),
   3273       TTPDecl(TTPDecl) { }
   3274 
   3275   /// Build the canonical type.
   3276   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3277     : Type(TemplateTypeParm, QualType(this, 0),
   3278            /*Dependent=*/true,
   3279            /*InstantiationDependent=*/true,
   3280            /*VariablyModified=*/false, PP) {
   3281     CanTTPTInfo.Depth = D;
   3282     CanTTPTInfo.Index = I;
   3283     CanTTPTInfo.ParameterPack = PP;
   3284   }
   3285 
   3286   friend class ASTContext;  // ASTContext creates these
   3287 
   3288   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   3289     QualType Can = getCanonicalTypeInternal();
   3290     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   3291   }
   3292 
   3293 public:
   3294   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   3295   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   3296   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   3297 
   3298   TemplateTypeParmDecl *getDecl() const {
   3299     return isCanonicalUnqualified() ? 0 : TTPDecl;
   3300   }
   3301 
   3302   IdentifierInfo *getIdentifier() const;
   3303 
   3304   bool isSugared() const { return false; }
   3305   QualType desugar() const { return QualType(this, 0); }
   3306 
   3307   void Profile(llvm::FoldingSetNodeID &ID) {
   3308     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   3309   }
   3310 
   3311   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   3312                       unsigned Index, bool ParameterPack,
   3313                       TemplateTypeParmDecl *TTPDecl) {
   3314     ID.AddInteger(Depth);
   3315     ID.AddInteger(Index);
   3316     ID.AddBoolean(ParameterPack);
   3317     ID.AddPointer(TTPDecl);
   3318   }
   3319 
   3320   static bool classof(const Type *T) {
   3321     return T->getTypeClass() == TemplateTypeParm;
   3322   }
   3323   static bool classof(const TemplateTypeParmType *T) { return true; }
   3324 };
   3325 
   3326 /// \brief Represents the result of substituting a type for a template
   3327 /// type parameter.
   3328 ///
   3329 /// Within an instantiated template, all template type parameters have
   3330 /// been replaced with these.  They are used solely to record that a
   3331 /// type was originally written as a template type parameter;
   3332 /// therefore they are never canonical.
   3333 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3334   // The original type parameter.
   3335   const TemplateTypeParmType *Replaced;
   3336 
   3337   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   3338     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   3339            Canon->isInstantiationDependentType(),
   3340            Canon->isVariablyModifiedType(),
   3341            Canon->containsUnexpandedParameterPack()),
   3342       Replaced(Param) { }
   3343 
   3344   friend class ASTContext;
   3345 
   3346 public:
   3347   /// Gets the template parameter that was substituted for.
   3348   const TemplateTypeParmType *getReplacedParameter() const {
   3349     return Replaced;
   3350   }
   3351 
   3352   /// Gets the type that was substituted for the template
   3353   /// parameter.
   3354   QualType getReplacementType() const {
   3355     return getCanonicalTypeInternal();
   3356   }
   3357 
   3358   bool isSugared() const { return true; }
   3359   QualType desugar() const { return getReplacementType(); }
   3360 
   3361   void Profile(llvm::FoldingSetNodeID &ID) {
   3362     Profile(ID, getReplacedParameter(), getReplacementType());
   3363   }
   3364   static void Profile(llvm::FoldingSetNodeID &ID,
   3365                       const TemplateTypeParmType *Replaced,
   3366                       QualType Replacement) {
   3367     ID.AddPointer(Replaced);
   3368     ID.AddPointer(Replacement.getAsOpaquePtr());
   3369   }
   3370 
   3371   static bool classof(const Type *T) {
   3372     return T->getTypeClass() == SubstTemplateTypeParm;
   3373   }
   3374   static bool classof(const SubstTemplateTypeParmType *T) { return true; }
   3375 };
   3376 
   3377 /// \brief Represents the result of substituting a set of types for a template
   3378 /// type parameter pack.
   3379 ///
   3380 /// When a pack expansion in the source code contains multiple parameter packs
   3381 /// and those parameter packs correspond to different levels of template
   3382 /// parameter lists, this type node is used to represent a template type
   3383 /// parameter pack from an outer level, which has already had its argument pack
   3384 /// substituted but that still lives within a pack expansion that itself
   3385 /// could not be instantiated. When actually performing a substitution into
   3386 /// that pack expansion (e.g., when all template parameters have corresponding
   3387 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   3388 /// at the current pack substitution index.
   3389 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   3390   /// \brief The original type parameter.
   3391   const TemplateTypeParmType *Replaced;
   3392 
   3393   /// \brief A pointer to the set of template arguments that this
   3394   /// parameter pack is instantiated with.
   3395   const TemplateArgument *Arguments;
   3396 
   3397   /// \brief The number of template arguments in \c Arguments.
   3398   unsigned NumArguments;
   3399 
   3400   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3401                                 QualType Canon,
   3402                                 const TemplateArgument &ArgPack);
   3403 
   3404   friend class ASTContext;
   3405 
   3406 public:
   3407   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   3408 
   3409   /// Gets the template parameter that was substituted for.
   3410   const TemplateTypeParmType *getReplacedParameter() const {
   3411     return Replaced;
   3412   }
   3413 
   3414   bool isSugared() const { return false; }
   3415   QualType desugar() const { return QualType(this, 0); }
   3416 
   3417   TemplateArgument getArgumentPack() const;
   3418 
   3419   void Profile(llvm::FoldingSetNodeID &ID);
   3420   static void Profile(llvm::FoldingSetNodeID &ID,
   3421                       const TemplateTypeParmType *Replaced,
   3422                       const TemplateArgument &ArgPack);
   3423 
   3424   static bool classof(const Type *T) {
   3425     return T->getTypeClass() == SubstTemplateTypeParmPack;
   3426   }
   3427   static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
   3428 };
   3429 
   3430 /// \brief Represents a C++0x auto type.
   3431 ///
   3432 /// These types are usually a placeholder for a deduced type. However, within
   3433 /// templates and before the initializer is attached, there is no deduced type
   3434 /// and an auto type is type-dependent and canonical.
   3435 class AutoType : public Type, public llvm::FoldingSetNode {
   3436   AutoType(QualType DeducedType)
   3437     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
   3438            /*Dependent=*/DeducedType.isNull(),
   3439            /*InstantiationDependent=*/DeducedType.isNull(),
   3440            /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
   3441     assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
   3442            "deduced a dependent type for auto");
   3443   }
   3444 
   3445   friend class ASTContext;  // ASTContext creates these
   3446 
   3447 public:
   3448   bool isSugared() const { return isDeduced(); }
   3449   QualType desugar() const { return getCanonicalTypeInternal(); }
   3450 
   3451   QualType getDeducedType() const {
   3452     return isDeduced() ? getCanonicalTypeInternal() : QualType();
   3453   }
   3454   bool isDeduced() const {
   3455     return !isDependentType();
   3456   }
   3457 
   3458   void Profile(llvm::FoldingSetNodeID &ID) {
   3459     Profile(ID, getDeducedType());
   3460   }
   3461 
   3462   static void Profile(llvm::FoldingSetNodeID &ID,
   3463                       QualType Deduced) {
   3464     ID.AddPointer(Deduced.getAsOpaquePtr());
   3465   }
   3466 
   3467   static bool classof(const Type *T) {
   3468     return T->getTypeClass() == Auto;
   3469   }
   3470   static bool classof(const AutoType *T) { return true; }
   3471 };
   3472 
   3473 /// \brief Represents a type template specialization; the template
   3474 /// must be a class template, a type alias template, or a template
   3475 /// template parameter.  A template which cannot be resolved to one of
   3476 /// these, e.g. because it is written with a dependent scope
   3477 /// specifier, is instead represented as a
   3478 /// @c DependentTemplateSpecializationType.
   3479 ///
   3480 /// A non-dependent template specialization type is always "sugar",
   3481 /// typically for a @c RecordType.  For example, a class template
   3482 /// specialization type of @c vector<int> will refer to a tag type for
   3483 /// the instantiation @c std::vector<int, std::allocator<int>>
   3484 ///
   3485 /// Template specializations are dependent if either the template or
   3486 /// any of the template arguments are dependent, in which case the
   3487 /// type may also be canonical.
   3488 ///
   3489 /// Instances of this type are allocated with a trailing array of
   3490 /// TemplateArguments, followed by a QualType representing the
   3491 /// non-canonical aliased type when the template is a type alias
   3492 /// template.
   3493 class TemplateSpecializationType
   3494   : public Type, public llvm::FoldingSetNode {
   3495   /// \brief The name of the template being specialized.  This is
   3496   /// either a TemplateName::Template (in which case it is a
   3497   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   3498   /// TypeAliasTemplateDecl*), a
   3499   /// TemplateName::SubstTemplateTemplateParmPack, or a
   3500   /// TemplateName::SubstTemplateTemplateParm (in which case the
   3501   /// replacement must, recursively, be one of these).
   3502   TemplateName Template;
   3503 
   3504   /// \brief - The number of template arguments named in this class
   3505   /// template specialization.
   3506   unsigned NumArgs;
   3507 
   3508   TemplateSpecializationType(TemplateName T,
   3509                              const TemplateArgument *Args,
   3510                              unsigned NumArgs, QualType Canon,
   3511                              QualType Aliased);
   3512 
   3513   friend class ASTContext;  // ASTContext creates these
   3514 
   3515 public:
   3516   /// \brief Determine whether any of the given template arguments are
   3517   /// dependent.
   3518   static bool anyDependentTemplateArguments(const TemplateArgument *Args,
   3519                                             unsigned NumArgs,
   3520                                             bool &InstantiationDependent);
   3521 
   3522   static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
   3523                                             unsigned NumArgs,
   3524                                             bool &InstantiationDependent);
   3525 
   3526   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   3527                                             bool &InstantiationDependent);
   3528 
   3529   /// \brief Print a template argument list, including the '<' and '>'
   3530   /// enclosing the template arguments.
   3531   static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
   3532                                                unsigned NumArgs,
   3533                                                const PrintingPolicy &Policy,
   3534                                                bool SkipBrackets = false);
   3535 
   3536   static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
   3537                                                unsigned NumArgs,
   3538                                                const PrintingPolicy &Policy);
   3539 
   3540   static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
   3541                                                const PrintingPolicy &Policy);
   3542 
   3543   /// True if this template specialization type matches a current
   3544   /// instantiation in the context in which it is found.
   3545   bool isCurrentInstantiation() const {
   3546     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   3547   }
   3548 
   3549   /// True if this template specialization type is for a type alias
   3550   /// template.
   3551   bool isTypeAlias() const;
   3552   /// Get the aliased type, if this is a specialization of a type alias
   3553   /// template.
   3554   QualType getAliasedType() const {
   3555     assert(isTypeAlias() && "not a type alias template specialization");
   3556     return *reinterpret_cast<const QualType*>(end());
   3557   }
   3558 
   3559   typedef const TemplateArgument * iterator;
   3560 
   3561   iterator begin() const { return getArgs(); }
   3562   iterator end() const; // defined inline in TemplateBase.h
   3563 
   3564   /// \brief Retrieve the name of the template that we are specializing.
   3565   TemplateName getTemplateName() const { return Template; }
   3566 
   3567   /// \brief Retrieve the template arguments.
   3568   const TemplateArgument *getArgs() const {
   3569     return reinterpret_cast<const TemplateArgument *>(this + 1);
   3570   }
   3571 
   3572   /// \brief Retrieve the number of template arguments.
   3573   unsigned getNumArgs() const { return NumArgs; }
   3574 
   3575   /// \brief Retrieve a specific template argument as a type.
   3576   /// \precondition @c isArgType(Arg)
   3577   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3578 
   3579   bool isSugared() const {
   3580     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   3581   }
   3582   QualType desugar() const { return getCanonicalTypeInternal(); }
   3583 
   3584   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   3585     Profile(ID, Template, getArgs(), NumArgs, Ctx);
   3586     if (isTypeAlias())
   3587       getAliasedType().Profile(ID);
   3588   }
   3589 
   3590   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   3591                       const TemplateArgument *Args,
   3592                       unsigned NumArgs,
   3593                       const ASTContext &Context);
   3594 
   3595   static bool classof(const Type *T) {
   3596     return T->getTypeClass() == TemplateSpecialization;
   3597   }
   3598   static bool classof(const TemplateSpecializationType *T) { return true; }
   3599 };
   3600 
   3601 /// \brief The injected class name of a C++ class template or class
   3602 /// template partial specialization.  Used to record that a type was
   3603 /// spelled with a bare identifier rather than as a template-id; the
   3604 /// equivalent for non-templated classes is just RecordType.
   3605 ///
   3606 /// Injected class name types are always dependent.  Template
   3607 /// instantiation turns these into RecordTypes.
   3608 ///
   3609 /// Injected class name types are always canonical.  This works
   3610 /// because it is impossible to compare an injected class name type
   3611 /// with the corresponding non-injected template type, for the same
   3612 /// reason that it is impossible to directly compare template
   3613 /// parameters from different dependent contexts: injected class name
   3614 /// types can only occur within the scope of a particular templated
   3615 /// declaration, and within that scope every template specialization
   3616 /// will canonicalize to the injected class name (when appropriate
   3617 /// according to the rules of the language).
   3618 class InjectedClassNameType : public Type {
   3619   CXXRecordDecl *Decl;
   3620 
   3621   /// The template specialization which this type represents.
   3622   /// For example, in
   3623   ///   template <class T> class A { ... };
   3624   /// this is A<T>, whereas in
   3625   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   3626   /// this is A<B<X,Y> >.
   3627   ///
   3628   /// It is always unqualified, always a template specialization type,
   3629   /// and always dependent.
   3630   QualType InjectedType;
   3631 
   3632   friend class ASTContext; // ASTContext creates these.
   3633   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   3634                           // currently suitable for AST reading, too much
   3635                           // interdependencies.
   3636   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   3637     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   3638            /*InstantiationDependent=*/true,
   3639            /*VariablyModified=*/false,
   3640            /*ContainsUnexpandedParameterPack=*/false),
   3641       Decl(D), InjectedType(TST) {
   3642     assert(isa<TemplateSpecializationType>(TST));
   3643     assert(!TST.hasQualifiers());
   3644     assert(TST->isDependentType());
   3645   }
   3646 
   3647 public:
   3648   QualType getInjectedSpecializationType() const { return InjectedType; }
   3649   const TemplateSpecializationType *getInjectedTST() const {
   3650     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   3651   }
   3652 
   3653   CXXRecordDecl *getDecl() const;
   3654 
   3655   bool isSugared() const { return false; }
   3656   QualType desugar() const { return QualType(this, 0); }
   3657 
   3658   static bool classof(const Type *T) {
   3659     return T->getTypeClass() == InjectedClassName;
   3660   }
   3661   static bool classof(const InjectedClassNameType *T) { return true; }
   3662 };
   3663 
   3664 /// \brief The kind of a tag type.
   3665 enum TagTypeKind {
   3666   /// \brief The "struct" keyword.
   3667   TTK_Struct,
   3668   /// \brief The "union" keyword.
   3669   TTK_Union,
   3670   /// \brief The "class" keyword.
   3671   TTK_Class,
   3672   /// \brief The "enum" keyword.
   3673   TTK_Enum
   3674 };
   3675 
   3676 /// \brief The elaboration keyword that precedes a qualified type name or
   3677 /// introduces an elaborated-type-specifier.
   3678 enum ElaboratedTypeKeyword {
   3679   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   3680   ETK_Struct,
   3681   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   3682   ETK_Union,
   3683   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   3684   ETK_Class,
   3685   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   3686   ETK_Enum,
   3687   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   3688   /// \c typename T::type.
   3689   ETK_Typename,
   3690   /// \brief No keyword precedes the qualified type name.
   3691   ETK_None
   3692 };
   3693 
   3694 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   3695 /// The keyword in stored in the free bits of the base class.
   3696 /// Also provides a few static helpers for converting and printing
   3697 /// elaborated type keyword and tag type kind enumerations.
   3698 class TypeWithKeyword : public Type {
   3699 protected:
   3700   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   3701                   QualType Canonical, bool Dependent,
   3702                   bool InstantiationDependent, bool VariablyModified,
   3703                   bool ContainsUnexpandedParameterPack)
   3704   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3705          ContainsUnexpandedParameterPack) {
   3706     TypeWithKeywordBits.Keyword = Keyword;
   3707   }
   3708 
   3709 public:
   3710   ElaboratedTypeKeyword getKeyword() const {
   3711     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   3712   }
   3713 
   3714   /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3715   /// into an elaborated type keyword.
   3716   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   3717 
   3718   /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3719   /// into a tag type kind.  It is an error to provide a type specifier
   3720   /// which *isn't* a tag kind here.
   3721   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   3722 
   3723   /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
   3724   /// elaborated type keyword.
   3725   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   3726 
   3727   /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
   3728   // a TagTypeKind. It is an error to provide an elaborated type keyword
   3729   /// which *isn't* a tag kind here.
   3730   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   3731 
   3732   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   3733 
   3734   static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
   3735 
   3736   static const char *getTagTypeKindName(TagTypeKind Kind) {
   3737     return getKeywordName(getKeywordForTagTypeKind(Kind));
   3738   }
   3739 
   3740   class CannotCastToThisType {};
   3741   static CannotCastToThisType classof(const Type *);
   3742 };
   3743 
   3744 /// \brief Represents a type that was referred to using an elaborated type
   3745 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   3746 /// or both.
   3747 ///
   3748 /// This type is used to keep track of a type name as written in the
   3749 /// source code, including tag keywords and any nested-name-specifiers.
   3750 /// The type itself is always "sugar", used to express what was written
   3751 /// in the source code but containing no additional semantic information.
   3752 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3753 
   3754   /// \brief The nested name specifier containing the qualifier.
   3755   NestedNameSpecifier *NNS;
   3756 
   3757   /// \brief The type that this qualified name refers to.
   3758   QualType NamedType;
   3759 
   3760   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3761                  QualType NamedType, QualType CanonType)
   3762     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   3763                       NamedType->isDependentType(),
   3764                       NamedType->isInstantiationDependentType(),
   3765                       NamedType->isVariablyModifiedType(),
   3766                       NamedType->containsUnexpandedParameterPack()),
   3767       NNS(NNS), NamedType(NamedType) {
   3768     assert(!(Keyword == ETK_None && NNS == 0) &&
   3769            "ElaboratedType cannot have elaborated type keyword "
   3770            "and name qualifier both null.");
   3771   }
   3772 
   3773   friend class ASTContext;  // ASTContext creates these
   3774 
   3775 public:
   3776   ~ElaboratedType();
   3777 
   3778   /// \brief Retrieve the qualification on this type.
   3779   NestedNameSpecifier *getQualifier() const { return NNS; }
   3780 
   3781   /// \brief Retrieve the type named by the qualified-id.
   3782   QualType getNamedType() const { return NamedType; }
   3783 
   3784   /// \brief Remove a single level of sugar.
   3785   QualType desugar() const { return getNamedType(); }
   3786 
   3787   /// \brief Returns whether this type directly provides sugar.
   3788   bool isSugared() const { return true; }
   3789 
   3790   void Profile(llvm::FoldingSetNodeID &ID) {
   3791     Profile(ID, getKeyword(), NNS, NamedType);
   3792   }
   3793 
   3794   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3795                       NestedNameSpecifier *NNS, QualType NamedType) {
   3796     ID.AddInteger(Keyword);
   3797     ID.AddPointer(NNS);
   3798     NamedType.Profile(ID);
   3799   }
   3800 
   3801   static bool classof(const Type *T) {
   3802     return T->getTypeClass() == Elaborated;
   3803   }
   3804   static bool classof(const ElaboratedType *T) { return true; }
   3805 };
   3806 
   3807 /// \brief Represents a qualified type name for which the type name is
   3808 /// dependent.
   3809 ///
   3810 /// DependentNameType represents a class of dependent types that involve a
   3811 /// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
   3812 /// name of a type. The DependentNameType may start with a "typename" (for a
   3813 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   3814 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   3815 /// know that we must be referring to a type, e.g., in a base class specifier).
   3816 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3817 
   3818   /// \brief The nested name specifier containing the qualifier.
   3819   NestedNameSpecifier *NNS;
   3820 
   3821   /// \brief The type that this typename specifier refers to.
   3822   const IdentifierInfo *Name;
   3823 
   3824   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3825                     const IdentifierInfo *Name, QualType CanonType)
   3826     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   3827                       /*InstantiationDependent=*/true,
   3828                       /*VariablyModified=*/false,
   3829                       NNS->containsUnexpandedParameterPack()),
   3830       NNS(NNS), Name(Name) {
   3831     assert(NNS->isDependent() &&
   3832            "DependentNameType requires a dependent nested-name-specifier");
   3833   }
   3834 
   3835   friend class ASTContext;  // ASTContext creates these
   3836 
   3837 public:
   3838   /// \brief Retrieve the qualification on this type.
   3839   NestedNameSpecifier *getQualifier() const { return NNS; }
   3840 
   3841   /// \brief Retrieve the type named by the typename specifier as an
   3842   /// identifier.
   3843   ///
   3844   /// This routine will return a non-NULL identifier pointer when the
   3845   /// form of the original typename was terminated by an identifier,
   3846   /// e.g., "typename T::type".
   3847   const IdentifierInfo *getIdentifier() const {
   3848     return Name;
   3849   }
   3850 
   3851   bool isSugared() const { return false; }
   3852   QualType desugar() const { return QualType(this, 0); }
   3853 
   3854   void Profile(llvm::FoldingSetNodeID &ID) {
   3855     Profile(ID, getKeyword(), NNS, Name);
   3856   }
   3857 
   3858   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3859                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   3860     ID.AddInteger(Keyword);
   3861     ID.AddPointer(NNS);
   3862     ID.AddPointer(Name);
   3863   }
   3864 
   3865   static bool classof(const Type *T) {
   3866     return T->getTypeClass() == DependentName;
   3867   }
   3868   static bool classof(const DependentNameType *T) { return true; }
   3869 };
   3870 
   3871 /// DependentTemplateSpecializationType - Represents a template
   3872 /// specialization type whose template cannot be resolved, e.g.
   3873 ///   A<T>::template B<T>
   3874 class DependentTemplateSpecializationType :
   3875   public TypeWithKeyword, public llvm::FoldingSetNode {
   3876 
   3877   /// \brief The nested name specifier containing the qualifier.
   3878   NestedNameSpecifier *NNS;
   3879 
   3880   /// \brief The identifier of the template.
   3881   const IdentifierInfo *Name;
   3882 
   3883   /// \brief - The number of template arguments named in this class
   3884   /// template specialization.
   3885   unsigned NumArgs;
   3886 
   3887   const TemplateArgument *getArgBuffer() const {
   3888     return reinterpret_cast<const TemplateArgument*>(this+1);
   3889   }
   3890   TemplateArgument *getArgBuffer() {
   3891     return reinterpret_cast<TemplateArgument*>(this+1);
   3892   }
   3893 
   3894   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   3895                                       NestedNameSpecifier *NNS,
   3896                                       const IdentifierInfo *Name,
   3897                                       unsigned NumArgs,
   3898                                       const TemplateArgument *Args,
   3899                                       QualType Canon);
   3900 
   3901   friend class ASTContext;  // ASTContext creates these
   3902 
   3903 public:
   3904   NestedNameSpecifier *getQualifier() const { return NNS; }
   3905   const IdentifierInfo *getIdentifier() const { return Name; }
   3906 
   3907   /// \brief Retrieve the template arguments.
   3908   const TemplateArgument *getArgs() const {
   3909     return getArgBuffer();
   3910   }
   3911 
   3912   /// \brief Retrieve the number of template arguments.
   3913   unsigned getNumArgs() const { return NumArgs; }
   3914 
   3915   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3916 
   3917   typedef const TemplateArgument * iterator;
   3918   iterator begin() const { return getArgs(); }
   3919   iterator end() const; // inline in TemplateBase.h
   3920 
   3921   bool isSugared() const { return false; }
   3922   QualType desugar() const { return QualType(this, 0); }
   3923 
   3924   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   3925     Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
   3926   }
   3927 
   3928   static void Profile(llvm::FoldingSetNodeID &ID,
   3929                       const ASTContext &Context,
   3930                       ElaboratedTypeKeyword Keyword,
   3931                       NestedNameSpecifier *Qualifier,
   3932                       const IdentifierInfo *Name,
   3933                       unsigned NumArgs,
   3934                       const TemplateArgument *Args);
   3935 
   3936   static bool classof(const Type *T) {
   3937     return T->getTypeClass() == DependentTemplateSpecialization;
   3938   }
   3939   static bool classof(const DependentTemplateSpecializationType *T) {
   3940     return true;
   3941   }
   3942 };
   3943 
   3944 /// \brief Represents a pack expansion of types.
   3945 ///
   3946 /// Pack expansions are part of C++0x variadic templates. A pack
   3947 /// expansion contains a pattern, which itself contains one or more
   3948 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   3949 /// produces a series of types, each instantiated from the pattern of
   3950 /// the expansion, where the Ith instantiation of the pattern uses the
   3951 /// Ith arguments bound to each of the unexpanded parameter packs. The
   3952 /// pack expansion is considered to "expand" these unexpanded
   3953 /// parameter packs.
   3954 ///
   3955 /// \code
   3956 /// template<typename ...Types> struct tuple;
   3957 ///
   3958 /// template<typename ...Types>
   3959 /// struct tuple_of_references {
   3960 ///   typedef tuple<Types&...> type;
   3961 /// };
   3962 /// \endcode
   3963 ///
   3964 /// Here, the pack expansion \c Types&... is represented via a
   3965 /// PackExpansionType whose pattern is Types&.
   3966 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   3967   /// \brief The pattern of the pack expansion.
   3968   QualType Pattern;
   3969 
   3970   /// \brief The number of expansions that this pack expansion will
   3971   /// generate when substituted (+1), or indicates that
   3972   ///
   3973   /// This field will only have a non-zero value when some of the parameter
   3974   /// packs that occur within the pattern have been substituted but others have
   3975   /// not.
   3976   unsigned NumExpansions;
   3977 
   3978   PackExpansionType(QualType Pattern, QualType Canon,
   3979                     llvm::Optional<unsigned> NumExpansions)
   3980     : Type(PackExpansion, Canon, /*Dependent=*/true,
   3981            /*InstantiationDependent=*/true,
   3982            /*VariableModified=*/Pattern->isVariablyModifiedType(),
   3983            /*ContainsUnexpandedParameterPack=*/false),
   3984       Pattern(Pattern),
   3985       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   3986 
   3987   friend class ASTContext;  // ASTContext creates these
   3988 
   3989 public:
   3990   /// \brief Retrieve the pattern of this pack expansion, which is the
   3991   /// type that will be repeatedly instantiated when instantiating the
   3992   /// pack expansion itself.
   3993   QualType getPattern() const { return Pattern; }
   3994 
   3995   /// \brief Retrieve the number of expansions that this pack expansion will
   3996   /// generate, if known.
   3997   llvm::Optional<unsigned> getNumExpansions() const {
   3998     if (NumExpansions)
   3999       return NumExpansions - 1;
   4000 
   4001     return llvm::Optional<unsigned>();
   4002   }
   4003 
   4004   bool isSugared() const { return false; }
   4005   QualType desugar() const { return QualType(this, 0); }
   4006 
   4007   void Profile(llvm::FoldingSetNodeID &ID) {
   4008     Profile(ID, getPattern(), getNumExpansions());
   4009   }
   4010 
   4011   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4012                       llvm::Optional<unsigned> NumExpansions) {
   4013     ID.AddPointer(Pattern.getAsOpaquePtr());
   4014     ID.AddBoolean(NumExpansions);
   4015     if (NumExpansions)
   4016       ID.AddInteger(*NumExpansions);
   4017   }
   4018 
   4019   static bool classof(const Type *T) {
   4020     return T->getTypeClass() == PackExpansion;
   4021   }
   4022   static bool classof(const PackExpansionType *T) {
   4023     return true;
   4024   }
   4025 };
   4026 
   4027 /// ObjCObjectType - Represents a class type in Objective C.
   4028 /// Every Objective C type is a combination of a base type and a
   4029 /// list of protocols.
   4030 ///
   4031 /// Given the following declarations:
   4032 ///   @class C;
   4033 ///   @protocol P;
   4034 ///
   4035 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4036 /// with base C and no protocols.
   4037 ///
   4038 /// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
   4039 ///
   4040 /// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
   4041 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4042 /// and no protocols.
   4043 ///
   4044 /// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
   4045 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4046 /// this should get its own sugar class to better represent the source.
   4047 class ObjCObjectType : public Type {
   4048   // ObjCObjectType.NumProtocols - the number of protocols stored
   4049   // after the ObjCObjectPointerType node.
   4050   //
   4051   // These protocols are those written directly on the type.  If
   4052   // protocol qualifiers ever become additive, the iterators will need
   4053   // to get kindof complicated.
   4054   //
   4055   // In the canonical object type, these are sorted alphabetically
   4056   // and uniqued.
   4057 
   4058   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4059   QualType BaseType;
   4060 
   4061   ObjCProtocolDecl * const *getProtocolStorage() const {
   4062     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
   4063   }
   4064 
   4065   ObjCProtocolDecl **getProtocolStorage();
   4066 
   4067 protected:
   4068   ObjCObjectType(QualType Canonical, QualType Base,
   4069                  ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
   4070 
   4071   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4072   ObjCObjectType(enum Nonce_ObjCInterface)
   4073         : Type(ObjCInterface, QualType(), false, false, false, false),
   4074       BaseType(QualType(this_(), 0)) {
   4075     ObjCObjectTypeBits.NumProtocols = 0;
   4076   }
   4077 
   4078 public:
   4079   /// getBaseType - Gets the base type of this object type.  This is
   4080   /// always (possibly sugar for) one of:
   4081   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   4082   ///    user, which is a typedef for an ObjCPointerType)
   4083   ///  - the 'Class' builtin type (same caveat)
   4084   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   4085   QualType getBaseType() const { return BaseType; }
   4086 
   4087   bool isObjCId() const {
   4088     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   4089   }
   4090   bool isObjCClass() const {
   4091     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   4092   }
   4093   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   4094   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   4095   bool isObjCUnqualifiedIdOrClass() const {
   4096     if (!qual_empty()) return false;
   4097     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   4098       return T->getKind() == BuiltinType::ObjCId ||
   4099              T->getKind() == BuiltinType::ObjCClass;
   4100     return false;
   4101   }
   4102   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   4103   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   4104 
   4105   /// Gets the interface declaration for this object type, if the base type
   4106   /// really is an interface.
   4107   ObjCInterfaceDecl *getInterface() const;
   4108 
   4109   typedef ObjCProtocolDecl * const *qual_iterator;
   4110 
   4111   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4112   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4113 
   4114   bool qual_empty() const { return getNumProtocols() == 0; }
   4115 
   4116   /// getNumProtocols - Return the number of qualifying protocols in this
   4117   /// interface type, or 0 if there are none.
   4118   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
   4119 
   4120   /// \brief Fetch a protocol by index.
   4121   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4122     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4123     return qual_begin()[I];
   4124   }
   4125 
   4126   bool isSugared() const { return false; }
   4127   QualType desugar() const { return QualType(this, 0); }
   4128 
   4129   static bool classof(const Type *T) {
   4130     return T->getTypeClass() == ObjCObject ||
   4131            T->getTypeClass() == ObjCInterface;
   4132   }
   4133   static bool classof(const ObjCObjectType *) { return true; }
   4134 };
   4135 
   4136 /// ObjCObjectTypeImpl - A class providing a concrete implementation
   4137 /// of ObjCObjectType, so as to not increase the footprint of
   4138 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   4139 /// system should not reference this type.
   4140 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   4141   friend class ASTContext;
   4142 
   4143   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   4144   // will need to be modified.
   4145 
   4146   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   4147                      ObjCProtocolDecl * const *Protocols,
   4148                      unsigned NumProtocols)
   4149     : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
   4150 
   4151 public:
   4152   void Profile(llvm::FoldingSetNodeID &ID);
   4153   static void Profile(llvm::FoldingSetNodeID &ID,
   4154                       QualType Base,
   4155                       ObjCProtocolDecl *const *protocols,
   4156                       unsigned NumProtocols);
   4157 };
   4158 
   4159 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
   4160   return reinterpret_cast<ObjCProtocolDecl**>(
   4161             static_cast<ObjCObjectTypeImpl*>(this) + 1);
   4162 }
   4163 
   4164 /// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
   4165 /// object oriented design.  They basically correspond to C++ classes.  There
   4166 /// are two kinds of interface types, normal interfaces like "NSString" and
   4167 /// qualified interfaces, which are qualified with a protocol list like
   4168 /// "NSString<NSCopyable, NSAmazing>".
   4169 ///
   4170 /// ObjCInterfaceType guarantees the following properties when considered
   4171 /// as a subtype of its superclass, ObjCObjectType:
   4172 ///   - There are no protocol qualifiers.  To reinforce this, code which
   4173 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   4174 ///     fail to compile.
   4175 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   4176 ///     T->getBaseType() == QualType(T, 0).
   4177 class ObjCInterfaceType : public ObjCObjectType {
   4178   ObjCInterfaceDecl *Decl;
   4179 
   4180   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   4181     : ObjCObjectType(Nonce_ObjCInterface),
   4182       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   4183   friend class ASTContext;  // ASTContext creates these.
   4184 
   4185 public:
   4186   /// getDecl - Get the declaration of this interface.
   4187   ObjCInterfaceDecl *getDecl() const { return Decl; }
   4188 
   4189   bool isSugared() const { return false; }
   4190   QualType desugar() const { return QualType(this, 0); }
   4191 
   4192   static bool classof(const Type *T) {
   4193     return T->getTypeClass() == ObjCInterface;
   4194   }
   4195   static bool classof(const ObjCInterfaceType *) { return true; }
   4196 
   4197   // Nonsense to "hide" certain members of ObjCObjectType within this
   4198   // class.  People asking for protocols on an ObjCInterfaceType are
   4199   // not going to get what they want: ObjCInterfaceTypes are
   4200   // guaranteed to have no protocols.
   4201   enum {
   4202     qual_iterator,
   4203     qual_begin,
   4204     qual_end,
   4205     getNumProtocols,
   4206     getProtocol
   4207   };
   4208 };
   4209 
   4210 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   4211   if (const ObjCInterfaceType *T =
   4212         getBaseType()->getAs<ObjCInterfaceType>())
   4213     return T->getDecl();
   4214   return 0;
   4215 }
   4216 
   4217 /// ObjCObjectPointerType - Used to represent a pointer to an
   4218 /// Objective C object.  These are constructed from pointer
   4219 /// declarators when the pointee type is an ObjCObjectType (or sugar
   4220 /// for one).  In addition, the 'id' and 'Class' types are typedefs
   4221 /// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
   4222 /// are translated into these.
   4223 ///
   4224 /// Pointers to pointers to Objective C objects are still PointerTypes;
   4225 /// only the first level of pointer gets it own type implementation.
   4226 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   4227   QualType PointeeType;
   4228 
   4229   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   4230     : Type(ObjCObjectPointer, Canonical, false, false, false, false),
   4231       PointeeType(Pointee) {}
   4232   friend class ASTContext;  // ASTContext creates these.
   4233 
   4234 public:
   4235   /// getPointeeType - Gets the type pointed to by this ObjC pointer.
   4236   /// The result will always be an ObjCObjectType or sugar thereof.
   4237   QualType getPointeeType() const { return PointeeType; }
   4238 
   4239   /// getObjCObjectType - Gets the type pointed to by this ObjC
   4240   /// pointer.  This method always returns non-null.
   4241   ///
   4242   /// This method is equivalent to getPointeeType() except that
   4243   /// it discards any typedefs (or other sugar) between this
   4244   /// type and the "outermost" object type.  So for:
   4245   ///   @class A; @protocol P; @protocol Q;
   4246   ///   typedef A<P> AP;
   4247   ///   typedef A A1;
   4248   ///   typedef A1<P> A1P;
   4249   ///   typedef A1P<Q> A1PQ;
   4250   /// For 'A*', getObjectType() will return 'A'.
   4251   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   4252   /// For 'AP*', getObjectType() will return 'A<P>'.
   4253   /// For 'A1*', getObjectType() will return 'A'.
   4254   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   4255   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   4256   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   4257   ///   adding protocols to a protocol-qualified base discards the
   4258   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   4259   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   4260   ///   qualifiers more complicated).
   4261   const ObjCObjectType *getObjectType() const {
   4262     return PointeeType->castAs<ObjCObjectType>();
   4263   }
   4264 
   4265   /// getInterfaceType - If this pointer points to an Objective C
   4266   /// @interface type, gets the type for that interface.  Any protocol
   4267   /// qualifiers on the interface are ignored.
   4268   ///
   4269   /// \return null if the base type for this pointer is 'id' or 'Class'
   4270   const ObjCInterfaceType *getInterfaceType() const {
   4271     return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
   4272   }
   4273 
   4274   /// getInterfaceDecl - If this pointer points to an Objective @interface
   4275   /// type, gets the declaration for that interface.
   4276   ///
   4277   /// \return null if the base type for this pointer is 'id' or 'Class'
   4278   ObjCInterfaceDecl *getInterfaceDecl() const {
   4279     return getObjectType()->getInterface();
   4280   }
   4281 
   4282   /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
   4283   /// its object type is the primitive 'id' type with no protocols.
   4284   bool isObjCIdType() const {
   4285     return getObjectType()->isObjCUnqualifiedId();
   4286   }
   4287 
   4288   /// isObjCClassType - True if this is equivalent to the 'Class' type,
   4289   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   4290   bool isObjCClassType() const {
   4291     return getObjectType()->isObjCUnqualifiedClass();
   4292   }
   4293 
   4294   /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
   4295   /// non-empty set of protocols.
   4296   bool isObjCQualifiedIdType() const {
   4297     return getObjectType()->isObjCQualifiedId();
   4298   }
   4299 
   4300   /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
   4301   /// some non-empty set of protocols.
   4302   bool isObjCQualifiedClassType() const {
   4303     return getObjectType()->isObjCQualifiedClass();
   4304   }
   4305 
   4306   /// An iterator over the qualifiers on the object type.  Provided
   4307   /// for convenience.  This will always iterate over the full set of
   4308   /// protocols on a type, not just those provided directly.
   4309   typedef ObjCObjectType::qual_iterator qual_iterator;
   4310 
   4311   qual_iterator qual_begin() const {
   4312     return getObjectType()->qual_begin();
   4313   }
   4314   qual_iterator qual_end() const {
   4315     return getObjectType()->qual_end();
   4316   }
   4317   bool qual_empty() const { return getObjectType()->qual_empty(); }
   4318 
   4319   /// getNumProtocols - Return the number of qualifying protocols on
   4320   /// the object type.
   4321   unsigned getNumProtocols() const {
   4322     return getObjectType()->getNumProtocols();
   4323   }
   4324 
   4325   /// \brief Retrieve a qualifying protocol by index on the object
   4326   /// type.
   4327   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4328     return getObjectType()->getProtocol(I);
   4329   }
   4330 
   4331   bool isSugared() const { return false; }
   4332   QualType desugar() const { return QualType(this, 0); }
   4333 
   4334   void Profile(llvm::FoldingSetNodeID &ID) {
   4335     Profile(ID, getPointeeType());
   4336   }
   4337   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4338     ID.AddPointer(T.getAsOpaquePtr());
   4339   }
   4340   static bool classof(const Type *T) {
   4341     return T->getTypeClass() == ObjCObjectPointer;
   4342   }
   4343   static bool classof(const ObjCObjectPointerType *) { return true; }
   4344 };
   4345 
   4346 /// A qualifier set is used to build a set of qualifiers.
   4347 class QualifierCollector : public Qualifiers {
   4348 public:
   4349   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   4350 
   4351   /// Collect any qualifiers on the given type and return an
   4352   /// unqualified type.  The qualifiers are assumed to be consistent
   4353   /// with those already in the type.
   4354   const Type *strip(QualType type) {
   4355     addFastQualifiers(type.getLocalFastQualifiers());
   4356     if (!type.hasLocalNonFastQualifiers())
   4357       return type.getTypePtrUnsafe();
   4358 
   4359     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   4360     addConsistentQualifiers(extQuals->getQualifiers());
   4361     return extQuals->getBaseType();
   4362   }
   4363 
   4364   /// Apply the collected qualifiers to the given type.
   4365   QualType apply(const ASTContext &Context, QualType QT) const;
   4366 
   4367   /// Apply the collected qualifiers to the given type.
   4368   QualType apply(const ASTContext &Context, const Type* T) const;
   4369 };
   4370 
   4371 
   4372 // Inline function definitions.
   4373 
   4374 inline const Type *QualType::getTypePtr() const {
   4375   return getCommonPtr()->BaseType;
   4376 }
   4377 
   4378 inline const Type *QualType::getTypePtrOrNull() const {
   4379   return (isNull() ? 0 : getCommonPtr()->BaseType);
   4380 }
   4381 
   4382 inline SplitQualType QualType::split() const {
   4383   if (!hasLocalNonFastQualifiers())
   4384     return SplitQualType(getTypePtrUnsafe(),
   4385                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   4386 
   4387   const ExtQuals *eq = getExtQualsUnsafe();
   4388   Qualifiers qs = eq->getQualifiers();
   4389   qs.addFastQualifiers(getLocalFastQualifiers());
   4390   return SplitQualType(eq->getBaseType(), qs);
   4391 }
   4392 
   4393 inline Qualifiers QualType::getLocalQualifiers() const {
   4394   Qualifiers Quals;
   4395   if (hasLocalNonFastQualifiers())
   4396     Quals = getExtQualsUnsafe()->getQualifiers();
   4397   Quals.addFastQualifiers(getLocalFastQualifiers());
   4398   return Quals;
   4399 }
   4400 
   4401 inline Qualifiers QualType::getQualifiers() const {
   4402   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   4403   quals.addFastQualifiers(getLocalFastQualifiers());
   4404   return quals;
   4405 }
   4406 
   4407 inline unsigned QualType::getCVRQualifiers() const {
   4408   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   4409   cvr |= getLocalCVRQualifiers();
   4410   return cvr;
   4411 }
   4412 
   4413 inline QualType QualType::getCanonicalType() const {
   4414   QualType canon = getCommonPtr()->CanonicalType;
   4415   return canon.withFastQualifiers(getLocalFastQualifiers());
   4416 }
   4417 
   4418 inline bool QualType::isCanonical() const {
   4419   return getTypePtr()->isCanonicalUnqualified();
   4420 }
   4421 
   4422 inline bool QualType::isCanonicalAsParam() const {
   4423   if (!isCanonical()) return false;
   4424   if (hasLocalQualifiers()) return false;
   4425 
   4426   const Type *T = getTypePtr();
   4427   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   4428     return false;
   4429 
   4430   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   4431 }
   4432 
   4433 inline bool QualType::isConstQualified() const {
   4434   return isLocalConstQualified() ||
   4435          getCommonPtr()->CanonicalType.isLocalConstQualified();
   4436 }
   4437 
   4438 inline bool QualType::isRestrictQualified() const {
   4439   return isLocalRestrictQualified() ||
   4440          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   4441 }
   4442 
   4443 
   4444 inline bool QualType::isVolatileQualified() const {
   4445   return isLocalVolatileQualified() ||
   4446          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   4447 }
   4448 
   4449 inline bool QualType::hasQualifiers() const {
   4450   return hasLocalQualifiers() ||
   4451          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   4452 }
   4453 
   4454 inline QualType QualType::getUnqualifiedType() const {
   4455   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4456     return QualType(getTypePtr(), 0);
   4457 
   4458   return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
   4459 }
   4460 
   4461 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   4462   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4463     return split();
   4464 
   4465   return getSplitUnqualifiedTypeImpl(*this);
   4466 }
   4467 
   4468 inline void QualType::removeLocalConst() {
   4469   removeLocalFastQualifiers(Qualifiers::Const);
   4470 }
   4471 
   4472 inline void QualType::removeLocalRestrict() {
   4473   removeLocalFastQualifiers(Qualifiers::Restrict);
   4474 }
   4475 
   4476 inline void QualType::removeLocalVolatile() {
   4477   removeLocalFastQualifiers(Qualifiers::Volatile);
   4478 }
   4479 
   4480 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   4481   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   4482   assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
   4483 
   4484   // Fast path: we don't need to touch the slow qualifiers.
   4485   removeLocalFastQualifiers(Mask);
   4486 }
   4487 
   4488 /// getAddressSpace - Return the address space of this type.
   4489 inline unsigned QualType::getAddressSpace() const {
   4490   return getQualifiers().getAddressSpace();
   4491 }
   4492 
   4493 /// getObjCGCAttr - Return the gc attribute of this type.
   4494 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   4495   return getQualifiers().getObjCGCAttr();
   4496 }
   4497 
   4498 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   4499   if (const PointerType *PT = t.getAs<PointerType>()) {
   4500     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   4501       return FT->getExtInfo();
   4502   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   4503     return FT->getExtInfo();
   4504 
   4505   return FunctionType::ExtInfo();
   4506 }
   4507 
   4508 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   4509   return getFunctionExtInfo(*t);
   4510 }
   4511 
   4512 /// isMoreQualifiedThan - Determine whether this type is more
   4513 /// qualified than the Other type. For example, "const volatile int"
   4514 /// is more qualified than "const int", "volatile int", and
   4515 /// "int". However, it is not more qualified than "const volatile
   4516 /// int".
   4517 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   4518   Qualifiers myQuals = getQualifiers();
   4519   Qualifiers otherQuals = other.getQualifiers();
   4520   return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
   4521 }
   4522 
   4523 /// isAtLeastAsQualifiedAs - Determine whether this type is at last
   4524 /// as qualified as the Other type. For example, "const volatile
   4525 /// int" is at least as qualified as "const int", "volatile int",
   4526 /// "int", and "const volatile int".
   4527 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   4528   return getQualifiers().compatiblyIncludes(other.getQualifiers());
   4529 }
   4530 
   4531 /// getNonReferenceType - If Type is a reference type (e.g., const
   4532 /// int&), returns the type that the reference refers to ("const
   4533 /// int"). Otherwise, returns the type itself. This routine is used
   4534 /// throughout Sema to implement C++ 5p6:
   4535 ///
   4536 ///   If an expression initially has the type "reference to T" (8.3.2,
   4537 ///   8.5.3), the type is adjusted to "T" prior to any further
   4538 ///   analysis, the expression designates the object or function
   4539 ///   denoted by the reference, and the expression is an lvalue.
   4540 inline QualType QualType::getNonReferenceType() const {
   4541   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   4542     return RefType->getPointeeType();
   4543   else
   4544     return *this;
   4545 }
   4546 
   4547 inline bool QualType::isCForbiddenLValueType() const {
   4548   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   4549           getTypePtr()->isFunctionType());
   4550 }
   4551 
   4552 /// \brief Tests whether the type is categorized as a fundamental type.
   4553 ///
   4554 /// \returns True for types specified in C++0x [basic.fundamental].
   4555 inline bool Type::isFundamentalType() const {
   4556   return isVoidType() ||
   4557          // FIXME: It's really annoying that we don't have an
   4558          // 'isArithmeticType()' which agrees with the standard definition.
   4559          (isArithmeticType() && !isEnumeralType());
   4560 }
   4561 
   4562 /// \brief Tests whether the type is categorized as a compound type.
   4563 ///
   4564 /// \returns True for types specified in C++0x [basic.compound].
   4565 inline bool Type::isCompoundType() const {
   4566   // C++0x [basic.compound]p1:
   4567   //   Compound types can be constructed in the following ways:
   4568   //    -- arrays of objects of a given type [...];
   4569   return isArrayType() ||
   4570   //    -- functions, which have parameters of given types [...];
   4571          isFunctionType() ||
   4572   //    -- pointers to void or objects or functions [...];
   4573          isPointerType() ||
   4574   //    -- references to objects or functions of a given type. [...]
   4575          isReferenceType() ||
   4576   //    -- classes containing a sequence of objects of various types, [...];
   4577          isRecordType() ||
   4578   //    -- unions, which ar classes capable of containing objects of different types at different times;
   4579          isUnionType() ||
   4580   //    -- enumerations, which comprise a set of named constant values. [...];
   4581          isEnumeralType() ||
   4582   //    -- pointers to non-static class members, [...].
   4583          isMemberPointerType();
   4584 }
   4585 
   4586 inline bool Type::isFunctionType() const {
   4587   return isa<FunctionType>(CanonicalType);
   4588 }
   4589 inline bool Type::isPointerType() const {
   4590   return isa<PointerType>(CanonicalType);
   4591 }
   4592 inline bool Type::isAnyPointerType() const {
   4593   return isPointerType() || isObjCObjectPointerType();
   4594 }
   4595 inline bool Type::isBlockPointerType() const {
   4596   return isa<BlockPointerType>(CanonicalType);
   4597 }
   4598 inline bool Type::isReferenceType() const {
   4599   return isa<ReferenceType>(CanonicalType);
   4600 }
   4601 inline bool Type::isLValueReferenceType() const {
   4602   return isa<LValueReferenceType>(CanonicalType);
   4603 }
   4604 inline bool Type::isRValueReferenceType() const {
   4605   return isa<RValueReferenceType>(CanonicalType);
   4606 }
   4607 inline bool Type::isFunctionPointerType() const {
   4608   if (const PointerType *T = getAs<PointerType>())
   4609     return T->getPointeeType()->isFunctionType();
   4610   else
   4611     return false;
   4612 }
   4613 inline bool Type::isMemberPointerType() const {
   4614   return isa<MemberPointerType>(CanonicalType);
   4615 }
   4616 inline bool Type::isMemberFunctionPointerType() const {
   4617   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4618     return T->isMemberFunctionPointer();
   4619   else
   4620     return false;
   4621 }
   4622 inline bool Type::isMemberDataPointerType() const {
   4623   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4624     return T->isMemberDataPointer();
   4625   else
   4626     return false;
   4627 }
   4628 inline bool Type::isArrayType() const {
   4629   return isa<ArrayType>(CanonicalType);
   4630 }
   4631 inline bool Type::isConstantArrayType() const {
   4632   return isa<ConstantArrayType>(CanonicalType);
   4633 }
   4634 inline bool Type::isIncompleteArrayType() const {
   4635   return isa<IncompleteArrayType>(CanonicalType);
   4636 }
   4637 inline bool Type::isVariableArrayType() const {
   4638   return isa<VariableArrayType>(CanonicalType);
   4639 }
   4640 inline bool Type::isDependentSizedArrayType() const {
   4641   return isa<DependentSizedArrayType>(CanonicalType);
   4642 }
   4643 inline bool Type::isBuiltinType() const {
   4644   return isa<BuiltinType>(CanonicalType);
   4645 }
   4646 inline bool Type::isRecordType() const {
   4647   return isa<RecordType>(CanonicalType);
   4648 }
   4649 inline bool Type::isEnumeralType() const {
   4650   return isa<EnumType>(CanonicalType);
   4651 }
   4652 inline bool Type::isAnyComplexType() const {
   4653   return isa<ComplexType>(CanonicalType);
   4654 }
   4655 inline bool Type::isVectorType() const {
   4656   return isa<VectorType>(CanonicalType);
   4657 }
   4658 inline bool Type::isExtVectorType() const {
   4659   return isa<ExtVectorType>(CanonicalType);
   4660 }
   4661 inline bool Type::isObjCObjectPointerType() const {
   4662   return isa<ObjCObjectPointerType>(CanonicalType);
   4663 }
   4664 inline bool Type::isObjCObjectType() const {
   4665   return isa<ObjCObjectType>(CanonicalType);
   4666 }
   4667 inline bool Type::isObjCObjectOrInterfaceType() const {
   4668   return isa<ObjCInterfaceType>(CanonicalType) ||
   4669     isa<ObjCObjectType>(CanonicalType);
   4670 }
   4671 
   4672 inline bool Type::isObjCQualifiedIdType() const {
   4673   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4674     return OPT->isObjCQualifiedIdType();
   4675   return false;
   4676 }
   4677 inline bool Type::isObjCQualifiedClassType() const {
   4678   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4679     return OPT->isObjCQualifiedClassType();
   4680   return false;
   4681 }
   4682 inline bool Type::isObjCIdType() const {
   4683   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4684     return OPT->isObjCIdType();
   4685   return false;
   4686 }
   4687 inline bool Type::isObjCClassType() const {
   4688   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4689     return OPT->isObjCClassType();
   4690   return false;
   4691 }
   4692 inline bool Type::isObjCSelType() const {
   4693   if (const PointerType *OPT = getAs<PointerType>())
   4694     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   4695   return false;
   4696 }
   4697 inline bool Type::isObjCBuiltinType() const {
   4698   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   4699 }
   4700 inline bool Type::isTemplateTypeParmType() const {
   4701   return isa<TemplateTypeParmType>(CanonicalType);
   4702 }
   4703 
   4704 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   4705   if (const BuiltinType *BT = getAs<BuiltinType>())
   4706     if (BT->getKind() == (BuiltinType::Kind) K)
   4707       return true;
   4708   return false;
   4709 }
   4710 
   4711 inline bool Type::isPlaceholderType() const {
   4712   if (const BuiltinType *BT = getAs<BuiltinType>())
   4713     return BT->isPlaceholderType();
   4714   return false;
   4715 }
   4716 
   4717 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   4718   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4719     return (BT->getKind() == (BuiltinType::Kind) K);
   4720   return false;
   4721 }
   4722 
   4723 /// \brief Determines whether this is a type for which one can define
   4724 /// an overloaded operator.
   4725 inline bool Type::isOverloadableType() const {
   4726   return isDependentType() || isRecordType() || isEnumeralType();
   4727 }
   4728 
   4729 /// \brief Determines whether this type can decay to a pointer type.
   4730 inline bool Type::canDecayToPointerType() const {
   4731   return isFunctionType() || isArrayType();
   4732 }
   4733 
   4734 inline bool Type::hasPointerRepresentation() const {
   4735   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   4736           isObjCObjectPointerType() || isNullPtrType());
   4737 }
   4738 
   4739 inline bool Type::hasObjCPointerRepresentation() const {
   4740   return isObjCObjectPointerType();
   4741 }
   4742 
   4743 inline const Type *Type::getBaseElementTypeUnsafe() const {
   4744   const Type *type = this;
   4745   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   4746     type = arrayType->getElementType().getTypePtr();
   4747   return type;
   4748 }
   4749 
   4750 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   4751 /// diagnostic with <<.
   4752 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   4753                                            QualType T) {
   4754   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4755                   Diagnostic::ak_qualtype);
   4756   return DB;
   4757 }
   4758 
   4759 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   4760 /// into a diagnostic with <<.
   4761 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   4762                                            QualType T) {
   4763   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4764                   Diagnostic::ak_qualtype);
   4765   return PD;
   4766 }
   4767 
   4768 // Helper class template that is used by Type::getAs to ensure that one does
   4769 // not try to look through a qualified type to get to an array type.
   4770 template<typename T,
   4771          bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
   4772                              llvm::is_base_of<ArrayType, T>::value)>
   4773 struct ArrayType_cannot_be_used_with_getAs { };
   4774 
   4775 template<typename T>
   4776 struct ArrayType_cannot_be_used_with_getAs<T, true>;
   4777 
   4778 /// Member-template getAs<specific type>'.
   4779 template <typename T> const T *Type::getAs() const {
   4780   ArrayType_cannot_be_used_with_getAs<T> at;
   4781   (void)at;
   4782 
   4783   // If this is directly a T type, return it.
   4784   if (const T *Ty = dyn_cast<T>(this))
   4785     return Ty;
   4786 
   4787   // If the canonical form of this type isn't the right kind, reject it.
   4788   if (!isa<T>(CanonicalType))
   4789     return 0;
   4790 
   4791   // If this is a typedef for the type, strip the typedef off without
   4792   // losing all typedef information.
   4793   return cast<T>(getUnqualifiedDesugaredType());
   4794 }
   4795 
   4796 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   4797   // If this is directly an array type, return it.
   4798   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   4799     return arr;
   4800 
   4801   // If the canonical form of this type isn't the right kind, reject it.
   4802   if (!isa<ArrayType>(CanonicalType))
   4803     return 0;
   4804 
   4805   // If this is a typedef for the type, strip the typedef off without
   4806   // losing all typedef information.
   4807   return cast<ArrayType>(getUnqualifiedDesugaredType());
   4808 }
   4809 
   4810 template <typename T> const T *Type::castAs() const {
   4811   ArrayType_cannot_be_used_with_getAs<T> at;
   4812   (void) at;
   4813 
   4814   assert(isa<T>(CanonicalType));
   4815   if (const T *ty = dyn_cast<T>(this)) return ty;
   4816   return cast<T>(getUnqualifiedDesugaredType());
   4817 }
   4818 
   4819 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   4820   assert(isa<ArrayType>(CanonicalType));
   4821   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   4822   return cast<ArrayType>(getUnqualifiedDesugaredType());
   4823 }
   4824 
   4825 }  // end namespace clang
   4826 
   4827 #endif
   4828