1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Target/TargetLowering.h" 76 #include <algorithm> 77 using namespace llvm; 78 79 namespace { 80 81 /// RegSortData - This class holds data which is used to order reuse candidates. 82 class RegSortData { 83 public: 84 /// UsedByIndices - This represents the set of LSRUse indices which reference 85 /// a particular register. 86 SmallBitVector UsedByIndices; 87 88 RegSortData() {} 89 90 void print(raw_ostream &OS) const; 91 void dump() const; 92 }; 93 94 } 95 96 void RegSortData::print(raw_ostream &OS) const { 97 OS << "[NumUses=" << UsedByIndices.count() << ']'; 98 } 99 100 void RegSortData::dump() const { 101 print(errs()); errs() << '\n'; 102 } 103 104 namespace { 105 106 /// RegUseTracker - Map register candidates to information about how they are 107 /// used. 108 class RegUseTracker { 109 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 110 111 RegUsesTy RegUsesMap; 112 SmallVector<const SCEV *, 16> RegSequence; 113 114 public: 115 void CountRegister(const SCEV *Reg, size_t LUIdx); 116 void DropRegister(const SCEV *Reg, size_t LUIdx); 117 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 118 119 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 120 121 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 122 123 void clear(); 124 125 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 126 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 127 iterator begin() { return RegSequence.begin(); } 128 iterator end() { return RegSequence.end(); } 129 const_iterator begin() const { return RegSequence.begin(); } 130 const_iterator end() const { return RegSequence.end(); } 131 }; 132 133 } 134 135 void 136 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 137 std::pair<RegUsesTy::iterator, bool> Pair = 138 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 139 RegSortData &RSD = Pair.first->second; 140 if (Pair.second) 141 RegSequence.push_back(Reg); 142 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 143 RSD.UsedByIndices.set(LUIdx); 144 } 145 146 void 147 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 148 RegUsesTy::iterator It = RegUsesMap.find(Reg); 149 assert(It != RegUsesMap.end()); 150 RegSortData &RSD = It->second; 151 assert(RSD.UsedByIndices.size() > LUIdx); 152 RSD.UsedByIndices.reset(LUIdx); 153 } 154 155 void 156 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 157 assert(LUIdx <= LastLUIdx); 158 159 // Update RegUses. The data structure is not optimized for this purpose; 160 // we must iterate through it and update each of the bit vectors. 161 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 162 I != E; ++I) { 163 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 164 if (LUIdx < UsedByIndices.size()) 165 UsedByIndices[LUIdx] = 166 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 167 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 168 } 169 } 170 171 bool 172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 173 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 174 if (I == RegUsesMap.end()) 175 return false; 176 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 int i = UsedByIndices.find_first(); 178 if (i == -1) return false; 179 if ((size_t)i != LUIdx) return true; 180 return UsedByIndices.find_next(i) != -1; 181 } 182 183 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 184 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 185 assert(I != RegUsesMap.end() && "Unknown register!"); 186 return I->second.UsedByIndices; 187 } 188 189 void RegUseTracker::clear() { 190 RegUsesMap.clear(); 191 RegSequence.clear(); 192 } 193 194 namespace { 195 196 /// Formula - This class holds information that describes a formula for 197 /// computing satisfying a use. It may include broken-out immediates and scaled 198 /// registers. 199 struct Formula { 200 /// AM - This is used to represent complex addressing, as well as other kinds 201 /// of interesting uses. 202 TargetLowering::AddrMode AM; 203 204 /// BaseRegs - The list of "base" registers for this use. When this is 205 /// non-empty, AM.HasBaseReg should be set to true. 206 SmallVector<const SCEV *, 2> BaseRegs; 207 208 /// ScaledReg - The 'scaled' register for this use. This should be non-null 209 /// when AM.Scale is not zero. 210 const SCEV *ScaledReg; 211 212 /// UnfoldedOffset - An additional constant offset which added near the 213 /// use. This requires a temporary register, but the offset itself can 214 /// live in an add immediate field rather than a register. 215 int64_t UnfoldedOffset; 216 217 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 218 219 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 220 221 unsigned getNumRegs() const; 222 Type *getType() const; 223 224 void DeleteBaseReg(const SCEV *&S); 225 226 bool referencesReg(const SCEV *S) const; 227 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 228 const RegUseTracker &RegUses) const; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } 235 236 /// DoInitialMatch - Recursion helper for InitialMatch. 237 static void DoInitialMatch(const SCEV *S, Loop *L, 238 SmallVectorImpl<const SCEV *> &Good, 239 SmallVectorImpl<const SCEV *> &Bad, 240 ScalarEvolution &SE) { 241 // Collect expressions which properly dominate the loop header. 242 if (SE.properlyDominates(S, L->getHeader())) { 243 Good.push_back(S); 244 return; 245 } 246 247 // Look at add operands. 248 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 249 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 250 I != E; ++I) 251 DoInitialMatch(*I, L, Good, Bad, SE); 252 return; 253 } 254 255 // Look at addrec operands. 256 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 257 if (!AR->getStart()->isZero()) { 258 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 259 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 260 AR->getStepRecurrence(SE), 261 // FIXME: AR->getNoWrapFlags() 262 AR->getLoop(), SCEV::FlagAnyWrap), 263 L, Good, Bad, SE); 264 return; 265 } 266 267 // Handle a multiplication by -1 (negation) if it didn't fold. 268 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 269 if (Mul->getOperand(0)->isAllOnesValue()) { 270 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 271 const SCEV *NewMul = SE.getMulExpr(Ops); 272 273 SmallVector<const SCEV *, 4> MyGood; 274 SmallVector<const SCEV *, 4> MyBad; 275 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 276 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 277 SE.getEffectiveSCEVType(NewMul->getType()))); 278 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 279 E = MyGood.end(); I != E; ++I) 280 Good.push_back(SE.getMulExpr(NegOne, *I)); 281 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 282 E = MyBad.end(); I != E; ++I) 283 Bad.push_back(SE.getMulExpr(NegOne, *I)); 284 return; 285 } 286 287 // Ok, we can't do anything interesting. Just stuff the whole thing into a 288 // register and hope for the best. 289 Bad.push_back(S); 290 } 291 292 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 293 /// attempting to keep all loop-invariant and loop-computable values in a 294 /// single base register. 295 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 296 SmallVector<const SCEV *, 4> Good; 297 SmallVector<const SCEV *, 4> Bad; 298 DoInitialMatch(S, L, Good, Bad, SE); 299 if (!Good.empty()) { 300 const SCEV *Sum = SE.getAddExpr(Good); 301 if (!Sum->isZero()) 302 BaseRegs.push_back(Sum); 303 AM.HasBaseReg = true; 304 } 305 if (!Bad.empty()) { 306 const SCEV *Sum = SE.getAddExpr(Bad); 307 if (!Sum->isZero()) 308 BaseRegs.push_back(Sum); 309 AM.HasBaseReg = true; 310 } 311 } 312 313 /// getNumRegs - Return the total number of register operands used by this 314 /// formula. This does not include register uses implied by non-constant 315 /// addrec strides. 316 unsigned Formula::getNumRegs() const { 317 return !!ScaledReg + BaseRegs.size(); 318 } 319 320 /// getType - Return the type of this formula, if it has one, or null 321 /// otherwise. This type is meaningless except for the bit size. 322 Type *Formula::getType() const { 323 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 324 ScaledReg ? ScaledReg->getType() : 325 AM.BaseGV ? AM.BaseGV->getType() : 326 0; 327 } 328 329 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 330 void Formula::DeleteBaseReg(const SCEV *&S) { 331 if (&S != &BaseRegs.back()) 332 std::swap(S, BaseRegs.back()); 333 BaseRegs.pop_back(); 334 } 335 336 /// referencesReg - Test if this formula references the given register. 337 bool Formula::referencesReg(const SCEV *S) const { 338 return S == ScaledReg || 339 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 340 } 341 342 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 343 /// which are used by uses other than the use with the given index. 344 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 345 const RegUseTracker &RegUses) const { 346 if (ScaledReg) 347 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 348 return true; 349 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 350 E = BaseRegs.end(); I != E; ++I) 351 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 352 return true; 353 return false; 354 } 355 356 void Formula::print(raw_ostream &OS) const { 357 bool First = true; 358 if (AM.BaseGV) { 359 if (!First) OS << " + "; else First = false; 360 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 361 } 362 if (AM.BaseOffs != 0) { 363 if (!First) OS << " + "; else First = false; 364 OS << AM.BaseOffs; 365 } 366 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 367 E = BaseRegs.end(); I != E; ++I) { 368 if (!First) OS << " + "; else First = false; 369 OS << "reg(" << **I << ')'; 370 } 371 if (AM.HasBaseReg && BaseRegs.empty()) { 372 if (!First) OS << " + "; else First = false; 373 OS << "**error: HasBaseReg**"; 374 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 375 if (!First) OS << " + "; else First = false; 376 OS << "**error: !HasBaseReg**"; 377 } 378 if (AM.Scale != 0) { 379 if (!First) OS << " + "; else First = false; 380 OS << AM.Scale << "*reg("; 381 if (ScaledReg) 382 OS << *ScaledReg; 383 else 384 OS << "<unknown>"; 385 OS << ')'; 386 } 387 if (UnfoldedOffset != 0) { 388 if (!First) OS << " + "; else First = false; 389 OS << "imm(" << UnfoldedOffset << ')'; 390 } 391 } 392 393 void Formula::dump() const { 394 print(errs()); errs() << '\n'; 395 } 396 397 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 398 /// without changing its value. 399 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 400 Type *WideTy = 401 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 402 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 403 } 404 405 /// isAddSExtable - Return true if the given add can be sign-extended 406 /// without changing its value. 407 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 408 Type *WideTy = 409 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 410 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 411 } 412 413 /// isMulSExtable - Return true if the given mul can be sign-extended 414 /// without changing its value. 415 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 416 Type *WideTy = 417 IntegerType::get(SE.getContext(), 418 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 419 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 420 } 421 422 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 423 /// and if the remainder is known to be zero, or null otherwise. If 424 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 425 /// to Y, ignoring that the multiplication may overflow, which is useful when 426 /// the result will be used in a context where the most significant bits are 427 /// ignored. 428 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 429 ScalarEvolution &SE, 430 bool IgnoreSignificantBits = false) { 431 // Handle the trivial case, which works for any SCEV type. 432 if (LHS == RHS) 433 return SE.getConstant(LHS->getType(), 1); 434 435 // Handle a few RHS special cases. 436 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 437 if (RC) { 438 const APInt &RA = RC->getValue()->getValue(); 439 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 440 // some folding. 441 if (RA.isAllOnesValue()) 442 return SE.getMulExpr(LHS, RC); 443 // Handle x /s 1 as x. 444 if (RA == 1) 445 return LHS; 446 } 447 448 // Check for a division of a constant by a constant. 449 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 450 if (!RC) 451 return 0; 452 const APInt &LA = C->getValue()->getValue(); 453 const APInt &RA = RC->getValue()->getValue(); 454 if (LA.srem(RA) != 0) 455 return 0; 456 return SE.getConstant(LA.sdiv(RA)); 457 } 458 459 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 460 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 461 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 462 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 463 IgnoreSignificantBits); 464 if (!Step) return 0; 465 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 466 IgnoreSignificantBits); 467 if (!Start) return 0; 468 // FlagNW is independent of the start value, step direction, and is 469 // preserved with smaller magnitude steps. 470 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 471 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 472 } 473 return 0; 474 } 475 476 // Distribute the sdiv over add operands, if the add doesn't overflow. 477 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 478 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 479 SmallVector<const SCEV *, 8> Ops; 480 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 481 I != E; ++I) { 482 const SCEV *Op = getExactSDiv(*I, RHS, SE, 483 IgnoreSignificantBits); 484 if (!Op) return 0; 485 Ops.push_back(Op); 486 } 487 return SE.getAddExpr(Ops); 488 } 489 return 0; 490 } 491 492 // Check for a multiply operand that we can pull RHS out of. 493 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 494 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 495 SmallVector<const SCEV *, 4> Ops; 496 bool Found = false; 497 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 498 I != E; ++I) { 499 const SCEV *S = *I; 500 if (!Found) 501 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 502 IgnoreSignificantBits)) { 503 S = Q; 504 Found = true; 505 } 506 Ops.push_back(S); 507 } 508 return Found ? SE.getMulExpr(Ops) : 0; 509 } 510 return 0; 511 } 512 513 // Otherwise we don't know. 514 return 0; 515 } 516 517 /// ExtractImmediate - If S involves the addition of a constant integer value, 518 /// return that integer value, and mutate S to point to a new SCEV with that 519 /// value excluded. 520 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 521 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 522 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 523 S = SE.getConstant(C->getType(), 0); 524 return C->getValue()->getSExtValue(); 525 } 526 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 527 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 528 int64_t Result = ExtractImmediate(NewOps.front(), SE); 529 if (Result != 0) 530 S = SE.getAddExpr(NewOps); 531 return Result; 532 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 533 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 534 int64_t Result = ExtractImmediate(NewOps.front(), SE); 535 if (Result != 0) 536 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 537 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 538 SCEV::FlagAnyWrap); 539 return Result; 540 } 541 return 0; 542 } 543 544 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 545 /// return that symbol, and mutate S to point to a new SCEV with that 546 /// value excluded. 547 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 548 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 549 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 550 S = SE.getConstant(GV->getType(), 0); 551 return GV; 552 } 553 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 554 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 555 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 556 if (Result) 557 S = SE.getAddExpr(NewOps); 558 return Result; 559 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 560 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 561 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 562 if (Result) 563 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 564 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 565 SCEV::FlagAnyWrap); 566 return Result; 567 } 568 return 0; 569 } 570 571 /// isAddressUse - Returns true if the specified instruction is using the 572 /// specified value as an address. 573 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 574 bool isAddress = isa<LoadInst>(Inst); 575 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 576 if (SI->getOperand(1) == OperandVal) 577 isAddress = true; 578 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 579 // Addressing modes can also be folded into prefetches and a variety 580 // of intrinsics. 581 switch (II->getIntrinsicID()) { 582 default: break; 583 case Intrinsic::prefetch: 584 case Intrinsic::x86_sse_storeu_ps: 585 case Intrinsic::x86_sse2_storeu_pd: 586 case Intrinsic::x86_sse2_storeu_dq: 587 case Intrinsic::x86_sse2_storel_dq: 588 if (II->getArgOperand(0) == OperandVal) 589 isAddress = true; 590 break; 591 } 592 } 593 return isAddress; 594 } 595 596 /// getAccessType - Return the type of the memory being accessed. 597 static Type *getAccessType(const Instruction *Inst) { 598 Type *AccessTy = Inst->getType(); 599 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 600 AccessTy = SI->getOperand(0)->getType(); 601 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 602 // Addressing modes can also be folded into prefetches and a variety 603 // of intrinsics. 604 switch (II->getIntrinsicID()) { 605 default: break; 606 case Intrinsic::x86_sse_storeu_ps: 607 case Intrinsic::x86_sse2_storeu_pd: 608 case Intrinsic::x86_sse2_storeu_dq: 609 case Intrinsic::x86_sse2_storel_dq: 610 AccessTy = II->getArgOperand(0)->getType(); 611 break; 612 } 613 } 614 615 // All pointers have the same requirements, so canonicalize them to an 616 // arbitrary pointer type to minimize variation. 617 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 618 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 619 PTy->getAddressSpace()); 620 621 return AccessTy; 622 } 623 624 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 625 /// specified set are trivially dead, delete them and see if this makes any of 626 /// their operands subsequently dead. 627 static bool 628 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 629 bool Changed = false; 630 631 while (!DeadInsts.empty()) { 632 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 633 634 if (I == 0 || !isInstructionTriviallyDead(I)) 635 continue; 636 637 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 638 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 639 *OI = 0; 640 if (U->use_empty()) 641 DeadInsts.push_back(U); 642 } 643 644 I->eraseFromParent(); 645 Changed = true; 646 } 647 648 return Changed; 649 } 650 651 namespace { 652 653 /// Cost - This class is used to measure and compare candidate formulae. 654 class Cost { 655 /// TODO: Some of these could be merged. Also, a lexical ordering 656 /// isn't always optimal. 657 unsigned NumRegs; 658 unsigned AddRecCost; 659 unsigned NumIVMuls; 660 unsigned NumBaseAdds; 661 unsigned ImmCost; 662 unsigned SetupCost; 663 664 public: 665 Cost() 666 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 667 SetupCost(0) {} 668 669 bool operator<(const Cost &Other) const; 670 671 void Loose(); 672 673 void RateFormula(const Formula &F, 674 SmallPtrSet<const SCEV *, 16> &Regs, 675 const DenseSet<const SCEV *> &VisitedRegs, 676 const Loop *L, 677 const SmallVectorImpl<int64_t> &Offsets, 678 ScalarEvolution &SE, DominatorTree &DT); 679 680 void print(raw_ostream &OS) const; 681 void dump() const; 682 683 private: 684 void RateRegister(const SCEV *Reg, 685 SmallPtrSet<const SCEV *, 16> &Regs, 686 const Loop *L, 687 ScalarEvolution &SE, DominatorTree &DT); 688 void RatePrimaryRegister(const SCEV *Reg, 689 SmallPtrSet<const SCEV *, 16> &Regs, 690 const Loop *L, 691 ScalarEvolution &SE, DominatorTree &DT); 692 }; 693 694 } 695 696 /// RateRegister - Tally up interesting quantities from the given register. 697 void Cost::RateRegister(const SCEV *Reg, 698 SmallPtrSet<const SCEV *, 16> &Regs, 699 const Loop *L, 700 ScalarEvolution &SE, DominatorTree &DT) { 701 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 702 if (AR->getLoop() == L) 703 AddRecCost += 1; /// TODO: This should be a function of the stride. 704 705 // If this is an addrec for a loop that's already been visited by LSR, 706 // don't second-guess its addrec phi nodes. LSR isn't currently smart 707 // enough to reason about more than one loop at a time. Consider these 708 // registers free and leave them alone. 709 else if (L->contains(AR->getLoop()) || 710 (!AR->getLoop()->contains(L) && 711 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 712 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 713 PHINode *PN = dyn_cast<PHINode>(I); ++I) 714 if (SE.isSCEVable(PN->getType()) && 715 (SE.getEffectiveSCEVType(PN->getType()) == 716 SE.getEffectiveSCEVType(AR->getType())) && 717 SE.getSCEV(PN) == AR) 718 return; 719 720 // If this isn't one of the addrecs that the loop already has, it 721 // would require a costly new phi and add. TODO: This isn't 722 // precisely modeled right now. 723 ++NumBaseAdds; 724 if (!Regs.count(AR->getStart())) 725 RateRegister(AR->getStart(), Regs, L, SE, DT); 726 } 727 728 // Add the step value register, if it needs one. 729 // TODO: The non-affine case isn't precisely modeled here. 730 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) 731 if (!Regs.count(AR->getStart())) 732 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 733 } 734 ++NumRegs; 735 736 // Rough heuristic; favor registers which don't require extra setup 737 // instructions in the preheader. 738 if (!isa<SCEVUnknown>(Reg) && 739 !isa<SCEVConstant>(Reg) && 740 !(isa<SCEVAddRecExpr>(Reg) && 741 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 742 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 743 ++SetupCost; 744 745 NumIVMuls += isa<SCEVMulExpr>(Reg) && 746 SE.hasComputableLoopEvolution(Reg, L); 747 } 748 749 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 750 /// before, rate it. 751 void Cost::RatePrimaryRegister(const SCEV *Reg, 752 SmallPtrSet<const SCEV *, 16> &Regs, 753 const Loop *L, 754 ScalarEvolution &SE, DominatorTree &DT) { 755 if (Regs.insert(Reg)) 756 RateRegister(Reg, Regs, L, SE, DT); 757 } 758 759 void Cost::RateFormula(const Formula &F, 760 SmallPtrSet<const SCEV *, 16> &Regs, 761 const DenseSet<const SCEV *> &VisitedRegs, 762 const Loop *L, 763 const SmallVectorImpl<int64_t> &Offsets, 764 ScalarEvolution &SE, DominatorTree &DT) { 765 // Tally up the registers. 766 if (const SCEV *ScaledReg = F.ScaledReg) { 767 if (VisitedRegs.count(ScaledReg)) { 768 Loose(); 769 return; 770 } 771 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); 772 } 773 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 774 E = F.BaseRegs.end(); I != E; ++I) { 775 const SCEV *BaseReg = *I; 776 if (VisitedRegs.count(BaseReg)) { 777 Loose(); 778 return; 779 } 780 RatePrimaryRegister(BaseReg, Regs, L, SE, DT); 781 } 782 783 // Determine how many (unfolded) adds we'll need inside the loop. 784 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 785 if (NumBaseParts > 1) 786 NumBaseAdds += NumBaseParts - 1; 787 788 // Tally up the non-zero immediates. 789 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 790 E = Offsets.end(); I != E; ++I) { 791 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 792 if (F.AM.BaseGV) 793 ImmCost += 64; // Handle symbolic values conservatively. 794 // TODO: This should probably be the pointer size. 795 else if (Offset != 0) 796 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 797 } 798 } 799 800 /// Loose - Set this cost to a losing value. 801 void Cost::Loose() { 802 NumRegs = ~0u; 803 AddRecCost = ~0u; 804 NumIVMuls = ~0u; 805 NumBaseAdds = ~0u; 806 ImmCost = ~0u; 807 SetupCost = ~0u; 808 } 809 810 /// operator< - Choose the lower cost. 811 bool Cost::operator<(const Cost &Other) const { 812 if (NumRegs != Other.NumRegs) 813 return NumRegs < Other.NumRegs; 814 if (AddRecCost != Other.AddRecCost) 815 return AddRecCost < Other.AddRecCost; 816 if (NumIVMuls != Other.NumIVMuls) 817 return NumIVMuls < Other.NumIVMuls; 818 if (NumBaseAdds != Other.NumBaseAdds) 819 return NumBaseAdds < Other.NumBaseAdds; 820 if (ImmCost != Other.ImmCost) 821 return ImmCost < Other.ImmCost; 822 if (SetupCost != Other.SetupCost) 823 return SetupCost < Other.SetupCost; 824 return false; 825 } 826 827 void Cost::print(raw_ostream &OS) const { 828 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 829 if (AddRecCost != 0) 830 OS << ", with addrec cost " << AddRecCost; 831 if (NumIVMuls != 0) 832 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 833 if (NumBaseAdds != 0) 834 OS << ", plus " << NumBaseAdds << " base add" 835 << (NumBaseAdds == 1 ? "" : "s"); 836 if (ImmCost != 0) 837 OS << ", plus " << ImmCost << " imm cost"; 838 if (SetupCost != 0) 839 OS << ", plus " << SetupCost << " setup cost"; 840 } 841 842 void Cost::dump() const { 843 print(errs()); errs() << '\n'; 844 } 845 846 namespace { 847 848 /// LSRFixup - An operand value in an instruction which is to be replaced 849 /// with some equivalent, possibly strength-reduced, replacement. 850 struct LSRFixup { 851 /// UserInst - The instruction which will be updated. 852 Instruction *UserInst; 853 854 /// OperandValToReplace - The operand of the instruction which will 855 /// be replaced. The operand may be used more than once; every instance 856 /// will be replaced. 857 Value *OperandValToReplace; 858 859 /// PostIncLoops - If this user is to use the post-incremented value of an 860 /// induction variable, this variable is non-null and holds the loop 861 /// associated with the induction variable. 862 PostIncLoopSet PostIncLoops; 863 864 /// LUIdx - The index of the LSRUse describing the expression which 865 /// this fixup needs, minus an offset (below). 866 size_t LUIdx; 867 868 /// Offset - A constant offset to be added to the LSRUse expression. 869 /// This allows multiple fixups to share the same LSRUse with different 870 /// offsets, for example in an unrolled loop. 871 int64_t Offset; 872 873 bool isUseFullyOutsideLoop(const Loop *L) const; 874 875 LSRFixup(); 876 877 void print(raw_ostream &OS) const; 878 void dump() const; 879 }; 880 881 } 882 883 LSRFixup::LSRFixup() 884 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 885 886 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 887 /// value outside of the given loop. 888 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 889 // PHI nodes use their value in their incoming blocks. 890 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 891 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 892 if (PN->getIncomingValue(i) == OperandValToReplace && 893 L->contains(PN->getIncomingBlock(i))) 894 return false; 895 return true; 896 } 897 898 return !L->contains(UserInst); 899 } 900 901 void LSRFixup::print(raw_ostream &OS) const { 902 OS << "UserInst="; 903 // Store is common and interesting enough to be worth special-casing. 904 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 905 OS << "store "; 906 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 907 } else if (UserInst->getType()->isVoidTy()) 908 OS << UserInst->getOpcodeName(); 909 else 910 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 911 912 OS << ", OperandValToReplace="; 913 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 914 915 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 916 E = PostIncLoops.end(); I != E; ++I) { 917 OS << ", PostIncLoop="; 918 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 919 } 920 921 if (LUIdx != ~size_t(0)) 922 OS << ", LUIdx=" << LUIdx; 923 924 if (Offset != 0) 925 OS << ", Offset=" << Offset; 926 } 927 928 void LSRFixup::dump() const { 929 print(errs()); errs() << '\n'; 930 } 931 932 namespace { 933 934 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 935 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 936 struct UniquifierDenseMapInfo { 937 static SmallVector<const SCEV *, 2> getEmptyKey() { 938 SmallVector<const SCEV *, 2> V; 939 V.push_back(reinterpret_cast<const SCEV *>(-1)); 940 return V; 941 } 942 943 static SmallVector<const SCEV *, 2> getTombstoneKey() { 944 SmallVector<const SCEV *, 2> V; 945 V.push_back(reinterpret_cast<const SCEV *>(-2)); 946 return V; 947 } 948 949 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 950 unsigned Result = 0; 951 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 952 E = V.end(); I != E; ++I) 953 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 954 return Result; 955 } 956 957 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 958 const SmallVector<const SCEV *, 2> &RHS) { 959 return LHS == RHS; 960 } 961 }; 962 963 /// LSRUse - This class holds the state that LSR keeps for each use in 964 /// IVUsers, as well as uses invented by LSR itself. It includes information 965 /// about what kinds of things can be folded into the user, information about 966 /// the user itself, and information about how the use may be satisfied. 967 /// TODO: Represent multiple users of the same expression in common? 968 class LSRUse { 969 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 970 971 public: 972 /// KindType - An enum for a kind of use, indicating what types of 973 /// scaled and immediate operands it might support. 974 enum KindType { 975 Basic, ///< A normal use, with no folding. 976 Special, ///< A special case of basic, allowing -1 scales. 977 Address, ///< An address use; folding according to TargetLowering 978 ICmpZero ///< An equality icmp with both operands folded into one. 979 // TODO: Add a generic icmp too? 980 }; 981 982 KindType Kind; 983 Type *AccessTy; 984 985 SmallVector<int64_t, 8> Offsets; 986 int64_t MinOffset; 987 int64_t MaxOffset; 988 989 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 990 /// LSRUse are outside of the loop, in which case some special-case heuristics 991 /// may be used. 992 bool AllFixupsOutsideLoop; 993 994 /// WidestFixupType - This records the widest use type for any fixup using 995 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 996 /// max fixup widths to be equivalent, because the narrower one may be relying 997 /// on the implicit truncation to truncate away bogus bits. 998 Type *WidestFixupType; 999 1000 /// Formulae - A list of ways to build a value that can satisfy this user. 1001 /// After the list is populated, one of these is selected heuristically and 1002 /// used to formulate a replacement for OperandValToReplace in UserInst. 1003 SmallVector<Formula, 12> Formulae; 1004 1005 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1006 SmallPtrSet<const SCEV *, 4> Regs; 1007 1008 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1009 MinOffset(INT64_MAX), 1010 MaxOffset(INT64_MIN), 1011 AllFixupsOutsideLoop(true), 1012 WidestFixupType(0) {} 1013 1014 bool HasFormulaWithSameRegs(const Formula &F) const; 1015 bool InsertFormula(const Formula &F); 1016 void DeleteFormula(Formula &F); 1017 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1018 1019 void print(raw_ostream &OS) const; 1020 void dump() const; 1021 }; 1022 1023 } 1024 1025 /// HasFormula - Test whether this use as a formula which has the same 1026 /// registers as the given formula. 1027 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1028 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1029 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1030 // Unstable sort by host order ok, because this is only used for uniquifying. 1031 std::sort(Key.begin(), Key.end()); 1032 return Uniquifier.count(Key); 1033 } 1034 1035 /// InsertFormula - If the given formula has not yet been inserted, add it to 1036 /// the list, and return true. Return false otherwise. 1037 bool LSRUse::InsertFormula(const Formula &F) { 1038 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1039 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1040 // Unstable sort by host order ok, because this is only used for uniquifying. 1041 std::sort(Key.begin(), Key.end()); 1042 1043 if (!Uniquifier.insert(Key).second) 1044 return false; 1045 1046 // Using a register to hold the value of 0 is not profitable. 1047 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1048 "Zero allocated in a scaled register!"); 1049 #ifndef NDEBUG 1050 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1051 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1052 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1053 #endif 1054 1055 // Add the formula to the list. 1056 Formulae.push_back(F); 1057 1058 // Record registers now being used by this use. 1059 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1060 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1061 1062 return true; 1063 } 1064 1065 /// DeleteFormula - Remove the given formula from this use's list. 1066 void LSRUse::DeleteFormula(Formula &F) { 1067 if (&F != &Formulae.back()) 1068 std::swap(F, Formulae.back()); 1069 Formulae.pop_back(); 1070 assert(!Formulae.empty() && "LSRUse has no formulae left!"); 1071 } 1072 1073 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1074 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1075 // Now that we've filtered out some formulae, recompute the Regs set. 1076 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1077 Regs.clear(); 1078 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1079 E = Formulae.end(); I != E; ++I) { 1080 const Formula &F = *I; 1081 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1082 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1083 } 1084 1085 // Update the RegTracker. 1086 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1087 E = OldRegs.end(); I != E; ++I) 1088 if (!Regs.count(*I)) 1089 RegUses.DropRegister(*I, LUIdx); 1090 } 1091 1092 void LSRUse::print(raw_ostream &OS) const { 1093 OS << "LSR Use: Kind="; 1094 switch (Kind) { 1095 case Basic: OS << "Basic"; break; 1096 case Special: OS << "Special"; break; 1097 case ICmpZero: OS << "ICmpZero"; break; 1098 case Address: 1099 OS << "Address of "; 1100 if (AccessTy->isPointerTy()) 1101 OS << "pointer"; // the full pointer type could be really verbose 1102 else 1103 OS << *AccessTy; 1104 } 1105 1106 OS << ", Offsets={"; 1107 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1108 E = Offsets.end(); I != E; ++I) { 1109 OS << *I; 1110 if (llvm::next(I) != E) 1111 OS << ','; 1112 } 1113 OS << '}'; 1114 1115 if (AllFixupsOutsideLoop) 1116 OS << ", all-fixups-outside-loop"; 1117 1118 if (WidestFixupType) 1119 OS << ", widest fixup type: " << *WidestFixupType; 1120 } 1121 1122 void LSRUse::dump() const { 1123 print(errs()); errs() << '\n'; 1124 } 1125 1126 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1127 /// be completely folded into the user instruction at isel time. This includes 1128 /// address-mode folding and special icmp tricks. 1129 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1130 LSRUse::KindType Kind, Type *AccessTy, 1131 const TargetLowering *TLI) { 1132 switch (Kind) { 1133 case LSRUse::Address: 1134 // If we have low-level target information, ask the target if it can 1135 // completely fold this address. 1136 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1137 1138 // Otherwise, just guess that reg+reg addressing is legal. 1139 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1140 1141 case LSRUse::ICmpZero: 1142 // There's not even a target hook for querying whether it would be legal to 1143 // fold a GV into an ICmp. 1144 if (AM.BaseGV) 1145 return false; 1146 1147 // ICmp only has two operands; don't allow more than two non-trivial parts. 1148 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1149 return false; 1150 1151 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1152 // putting the scaled register in the other operand of the icmp. 1153 if (AM.Scale != 0 && AM.Scale != -1) 1154 return false; 1155 1156 // If we have low-level target information, ask the target if it can fold an 1157 // integer immediate on an icmp. 1158 if (AM.BaseOffs != 0) { 1159 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs); 1160 return false; 1161 } 1162 1163 return true; 1164 1165 case LSRUse::Basic: 1166 // Only handle single-register values. 1167 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1168 1169 case LSRUse::Special: 1170 // Only handle -1 scales, or no scale. 1171 return AM.Scale == 0 || AM.Scale == -1; 1172 } 1173 1174 return false; 1175 } 1176 1177 static bool isLegalUse(TargetLowering::AddrMode AM, 1178 int64_t MinOffset, int64_t MaxOffset, 1179 LSRUse::KindType Kind, Type *AccessTy, 1180 const TargetLowering *TLI) { 1181 // Check for overflow. 1182 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1183 (MinOffset > 0)) 1184 return false; 1185 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1186 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1187 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1188 // Check for overflow. 1189 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1190 (MaxOffset > 0)) 1191 return false; 1192 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1193 return isLegalUse(AM, Kind, AccessTy, TLI); 1194 } 1195 return false; 1196 } 1197 1198 static bool isAlwaysFoldable(int64_t BaseOffs, 1199 GlobalValue *BaseGV, 1200 bool HasBaseReg, 1201 LSRUse::KindType Kind, Type *AccessTy, 1202 const TargetLowering *TLI) { 1203 // Fast-path: zero is always foldable. 1204 if (BaseOffs == 0 && !BaseGV) return true; 1205 1206 // Conservatively, create an address with an immediate and a 1207 // base and a scale. 1208 TargetLowering::AddrMode AM; 1209 AM.BaseOffs = BaseOffs; 1210 AM.BaseGV = BaseGV; 1211 AM.HasBaseReg = HasBaseReg; 1212 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1213 1214 // Canonicalize a scale of 1 to a base register if the formula doesn't 1215 // already have a base register. 1216 if (!AM.HasBaseReg && AM.Scale == 1) { 1217 AM.Scale = 0; 1218 AM.HasBaseReg = true; 1219 } 1220 1221 return isLegalUse(AM, Kind, AccessTy, TLI); 1222 } 1223 1224 static bool isAlwaysFoldable(const SCEV *S, 1225 int64_t MinOffset, int64_t MaxOffset, 1226 bool HasBaseReg, 1227 LSRUse::KindType Kind, Type *AccessTy, 1228 const TargetLowering *TLI, 1229 ScalarEvolution &SE) { 1230 // Fast-path: zero is always foldable. 1231 if (S->isZero()) return true; 1232 1233 // Conservatively, create an address with an immediate and a 1234 // base and a scale. 1235 int64_t BaseOffs = ExtractImmediate(S, SE); 1236 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1237 1238 // If there's anything else involved, it's not foldable. 1239 if (!S->isZero()) return false; 1240 1241 // Fast-path: zero is always foldable. 1242 if (BaseOffs == 0 && !BaseGV) return true; 1243 1244 // Conservatively, create an address with an immediate and a 1245 // base and a scale. 1246 TargetLowering::AddrMode AM; 1247 AM.BaseOffs = BaseOffs; 1248 AM.BaseGV = BaseGV; 1249 AM.HasBaseReg = HasBaseReg; 1250 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1251 1252 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1253 } 1254 1255 namespace { 1256 1257 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1258 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1259 struct UseMapDenseMapInfo { 1260 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1261 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1262 } 1263 1264 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1265 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1266 } 1267 1268 static unsigned 1269 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1270 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1271 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1272 return Result; 1273 } 1274 1275 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1276 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1277 return LHS == RHS; 1278 } 1279 }; 1280 1281 /// LSRInstance - This class holds state for the main loop strength reduction 1282 /// logic. 1283 class LSRInstance { 1284 IVUsers &IU; 1285 ScalarEvolution &SE; 1286 DominatorTree &DT; 1287 LoopInfo &LI; 1288 const TargetLowering *const TLI; 1289 Loop *const L; 1290 bool Changed; 1291 1292 /// IVIncInsertPos - This is the insert position that the current loop's 1293 /// induction variable increment should be placed. In simple loops, this is 1294 /// the latch block's terminator. But in more complicated cases, this is a 1295 /// position which will dominate all the in-loop post-increment users. 1296 Instruction *IVIncInsertPos; 1297 1298 /// Factors - Interesting factors between use strides. 1299 SmallSetVector<int64_t, 8> Factors; 1300 1301 /// Types - Interesting use types, to facilitate truncation reuse. 1302 SmallSetVector<Type *, 4> Types; 1303 1304 /// Fixups - The list of operands which are to be replaced. 1305 SmallVector<LSRFixup, 16> Fixups; 1306 1307 /// Uses - The list of interesting uses. 1308 SmallVector<LSRUse, 16> Uses; 1309 1310 /// RegUses - Track which uses use which register candidates. 1311 RegUseTracker RegUses; 1312 1313 void OptimizeShadowIV(); 1314 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1315 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1316 void OptimizeLoopTermCond(); 1317 1318 void CollectInterestingTypesAndFactors(); 1319 void CollectFixupsAndInitialFormulae(); 1320 1321 LSRFixup &getNewFixup() { 1322 Fixups.push_back(LSRFixup()); 1323 return Fixups.back(); 1324 } 1325 1326 // Support for sharing of LSRUses between LSRFixups. 1327 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1328 size_t, 1329 UseMapDenseMapInfo> UseMapTy; 1330 UseMapTy UseMap; 1331 1332 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1333 LSRUse::KindType Kind, Type *AccessTy); 1334 1335 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1336 LSRUse::KindType Kind, 1337 Type *AccessTy); 1338 1339 void DeleteUse(LSRUse &LU, size_t LUIdx); 1340 1341 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1342 1343 public: 1344 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1345 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1346 void CountRegisters(const Formula &F, size_t LUIdx); 1347 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1348 1349 void CollectLoopInvariantFixupsAndFormulae(); 1350 1351 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1352 unsigned Depth = 0); 1353 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1354 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1355 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1356 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1357 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1358 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1359 void GenerateCrossUseConstantOffsets(); 1360 void GenerateAllReuseFormulae(); 1361 1362 void FilterOutUndesirableDedicatedRegisters(); 1363 1364 size_t EstimateSearchSpaceComplexity() const; 1365 void NarrowSearchSpaceByDetectingSupersets(); 1366 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1367 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1368 void NarrowSearchSpaceByPickingWinnerRegs(); 1369 void NarrowSearchSpaceUsingHeuristics(); 1370 1371 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1372 Cost &SolutionCost, 1373 SmallVectorImpl<const Formula *> &Workspace, 1374 const Cost &CurCost, 1375 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1376 DenseSet<const SCEV *> &VisitedRegs) const; 1377 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1378 1379 BasicBlock::iterator 1380 HoistInsertPosition(BasicBlock::iterator IP, 1381 const SmallVectorImpl<Instruction *> &Inputs) const; 1382 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1383 const LSRFixup &LF, 1384 const LSRUse &LU) const; 1385 1386 Value *Expand(const LSRFixup &LF, 1387 const Formula &F, 1388 BasicBlock::iterator IP, 1389 SCEVExpander &Rewriter, 1390 SmallVectorImpl<WeakVH> &DeadInsts) const; 1391 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1392 const Formula &F, 1393 SCEVExpander &Rewriter, 1394 SmallVectorImpl<WeakVH> &DeadInsts, 1395 Pass *P) const; 1396 void Rewrite(const LSRFixup &LF, 1397 const Formula &F, 1398 SCEVExpander &Rewriter, 1399 SmallVectorImpl<WeakVH> &DeadInsts, 1400 Pass *P) const; 1401 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1402 Pass *P); 1403 1404 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1405 1406 bool getChanged() const { return Changed; } 1407 1408 void print_factors_and_types(raw_ostream &OS) const; 1409 void print_fixups(raw_ostream &OS) const; 1410 void print_uses(raw_ostream &OS) const; 1411 void print(raw_ostream &OS) const; 1412 void dump() const; 1413 }; 1414 1415 } 1416 1417 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1418 /// inside the loop then try to eliminate the cast operation. 1419 void LSRInstance::OptimizeShadowIV() { 1420 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1421 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1422 return; 1423 1424 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1425 UI != E; /* empty */) { 1426 IVUsers::const_iterator CandidateUI = UI; 1427 ++UI; 1428 Instruction *ShadowUse = CandidateUI->getUser(); 1429 Type *DestTy = NULL; 1430 1431 /* If shadow use is a int->float cast then insert a second IV 1432 to eliminate this cast. 1433 1434 for (unsigned i = 0; i < n; ++i) 1435 foo((double)i); 1436 1437 is transformed into 1438 1439 double d = 0.0; 1440 for (unsigned i = 0; i < n; ++i, ++d) 1441 foo(d); 1442 */ 1443 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) 1444 DestTy = UCast->getDestTy(); 1445 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) 1446 DestTy = SCast->getDestTy(); 1447 if (!DestTy) continue; 1448 1449 if (TLI) { 1450 // If target does not support DestTy natively then do not apply 1451 // this transformation. 1452 EVT DVT = TLI->getValueType(DestTy); 1453 if (!TLI->isTypeLegal(DVT)) continue; 1454 } 1455 1456 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1457 if (!PH) continue; 1458 if (PH->getNumIncomingValues() != 2) continue; 1459 1460 Type *SrcTy = PH->getType(); 1461 int Mantissa = DestTy->getFPMantissaWidth(); 1462 if (Mantissa == -1) continue; 1463 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1464 continue; 1465 1466 unsigned Entry, Latch; 1467 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1468 Entry = 0; 1469 Latch = 1; 1470 } else { 1471 Entry = 1; 1472 Latch = 0; 1473 } 1474 1475 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1476 if (!Init) continue; 1477 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); 1478 1479 BinaryOperator *Incr = 1480 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1481 if (!Incr) continue; 1482 if (Incr->getOpcode() != Instruction::Add 1483 && Incr->getOpcode() != Instruction::Sub) 1484 continue; 1485 1486 /* Initialize new IV, double d = 0.0 in above example. */ 1487 ConstantInt *C = NULL; 1488 if (Incr->getOperand(0) == PH) 1489 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1490 else if (Incr->getOperand(1) == PH) 1491 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1492 else 1493 continue; 1494 1495 if (!C) continue; 1496 1497 // Ignore negative constants, as the code below doesn't handle them 1498 // correctly. TODO: Remove this restriction. 1499 if (!C->getValue().isStrictlyPositive()) continue; 1500 1501 /* Add new PHINode. */ 1502 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1503 1504 /* create new increment. '++d' in above example. */ 1505 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1506 BinaryOperator *NewIncr = 1507 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1508 Instruction::FAdd : Instruction::FSub, 1509 NewPH, CFP, "IV.S.next.", Incr); 1510 1511 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1512 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1513 1514 /* Remove cast operation */ 1515 ShadowUse->replaceAllUsesWith(NewPH); 1516 ShadowUse->eraseFromParent(); 1517 Changed = true; 1518 break; 1519 } 1520 } 1521 1522 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1523 /// set the IV user and stride information and return true, otherwise return 1524 /// false. 1525 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1526 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1527 if (UI->getUser() == Cond) { 1528 // NOTE: we could handle setcc instructions with multiple uses here, but 1529 // InstCombine does it as well for simple uses, it's not clear that it 1530 // occurs enough in real life to handle. 1531 CondUse = UI; 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1538 /// a max computation. 1539 /// 1540 /// This is a narrow solution to a specific, but acute, problem. For loops 1541 /// like this: 1542 /// 1543 /// i = 0; 1544 /// do { 1545 /// p[i] = 0.0; 1546 /// } while (++i < n); 1547 /// 1548 /// the trip count isn't just 'n', because 'n' might not be positive. And 1549 /// unfortunately this can come up even for loops where the user didn't use 1550 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1551 /// will commonly be lowered like this: 1552 // 1553 /// if (n > 0) { 1554 /// i = 0; 1555 /// do { 1556 /// p[i] = 0.0; 1557 /// } while (++i < n); 1558 /// } 1559 /// 1560 /// and then it's possible for subsequent optimization to obscure the if 1561 /// test in such a way that indvars can't find it. 1562 /// 1563 /// When indvars can't find the if test in loops like this, it creates a 1564 /// max expression, which allows it to give the loop a canonical 1565 /// induction variable: 1566 /// 1567 /// i = 0; 1568 /// max = n < 1 ? 1 : n; 1569 /// do { 1570 /// p[i] = 0.0; 1571 /// } while (++i != max); 1572 /// 1573 /// Canonical induction variables are necessary because the loop passes 1574 /// are designed around them. The most obvious example of this is the 1575 /// LoopInfo analysis, which doesn't remember trip count values. It 1576 /// expects to be able to rediscover the trip count each time it is 1577 /// needed, and it does this using a simple analysis that only succeeds if 1578 /// the loop has a canonical induction variable. 1579 /// 1580 /// However, when it comes time to generate code, the maximum operation 1581 /// can be quite costly, especially if it's inside of an outer loop. 1582 /// 1583 /// This function solves this problem by detecting this type of loop and 1584 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1585 /// the instructions for the maximum computation. 1586 /// 1587 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1588 // Check that the loop matches the pattern we're looking for. 1589 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1590 Cond->getPredicate() != CmpInst::ICMP_NE) 1591 return Cond; 1592 1593 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1594 if (!Sel || !Sel->hasOneUse()) return Cond; 1595 1596 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1597 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1598 return Cond; 1599 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1600 1601 // Add one to the backedge-taken count to get the trip count. 1602 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1603 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1604 1605 // Check for a max calculation that matches the pattern. There's no check 1606 // for ICMP_ULE here because the comparison would be with zero, which 1607 // isn't interesting. 1608 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1609 const SCEVNAryExpr *Max = 0; 1610 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1611 Pred = ICmpInst::ICMP_SLE; 1612 Max = S; 1613 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1614 Pred = ICmpInst::ICMP_SLT; 1615 Max = S; 1616 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1617 Pred = ICmpInst::ICMP_ULT; 1618 Max = U; 1619 } else { 1620 // No match; bail. 1621 return Cond; 1622 } 1623 1624 // To handle a max with more than two operands, this optimization would 1625 // require additional checking and setup. 1626 if (Max->getNumOperands() != 2) 1627 return Cond; 1628 1629 const SCEV *MaxLHS = Max->getOperand(0); 1630 const SCEV *MaxRHS = Max->getOperand(1); 1631 1632 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1633 // for a comparison with 1. For <= and >=, a comparison with zero. 1634 if (!MaxLHS || 1635 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1636 return Cond; 1637 1638 // Check the relevant induction variable for conformance to 1639 // the pattern. 1640 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1641 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1642 if (!AR || !AR->isAffine() || 1643 AR->getStart() != One || 1644 AR->getStepRecurrence(SE) != One) 1645 return Cond; 1646 1647 assert(AR->getLoop() == L && 1648 "Loop condition operand is an addrec in a different loop!"); 1649 1650 // Check the right operand of the select, and remember it, as it will 1651 // be used in the new comparison instruction. 1652 Value *NewRHS = 0; 1653 if (ICmpInst::isTrueWhenEqual(Pred)) { 1654 // Look for n+1, and grab n. 1655 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1656 if (isa<ConstantInt>(BO->getOperand(1)) && 1657 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1658 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1659 NewRHS = BO->getOperand(0); 1660 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1661 if (isa<ConstantInt>(BO->getOperand(1)) && 1662 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1663 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1664 NewRHS = BO->getOperand(0); 1665 if (!NewRHS) 1666 return Cond; 1667 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1668 NewRHS = Sel->getOperand(1); 1669 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1670 NewRHS = Sel->getOperand(2); 1671 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1672 NewRHS = SU->getValue(); 1673 else 1674 // Max doesn't match expected pattern. 1675 return Cond; 1676 1677 // Determine the new comparison opcode. It may be signed or unsigned, 1678 // and the original comparison may be either equality or inequality. 1679 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1680 Pred = CmpInst::getInversePredicate(Pred); 1681 1682 // Ok, everything looks ok to change the condition into an SLT or SGE and 1683 // delete the max calculation. 1684 ICmpInst *NewCond = 1685 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1686 1687 // Delete the max calculation instructions. 1688 Cond->replaceAllUsesWith(NewCond); 1689 CondUse->setUser(NewCond); 1690 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1691 Cond->eraseFromParent(); 1692 Sel->eraseFromParent(); 1693 if (Cmp->use_empty()) 1694 Cmp->eraseFromParent(); 1695 return NewCond; 1696 } 1697 1698 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1699 /// postinc iv when possible. 1700 void 1701 LSRInstance::OptimizeLoopTermCond() { 1702 SmallPtrSet<Instruction *, 4> PostIncs; 1703 1704 BasicBlock *LatchBlock = L->getLoopLatch(); 1705 SmallVector<BasicBlock*, 8> ExitingBlocks; 1706 L->getExitingBlocks(ExitingBlocks); 1707 1708 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1709 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1710 1711 // Get the terminating condition for the loop if possible. If we 1712 // can, we want to change it to use a post-incremented version of its 1713 // induction variable, to allow coalescing the live ranges for the IV into 1714 // one register value. 1715 1716 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1717 if (!TermBr) 1718 continue; 1719 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1720 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1721 continue; 1722 1723 // Search IVUsesByStride to find Cond's IVUse if there is one. 1724 IVStrideUse *CondUse = 0; 1725 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1726 if (!FindIVUserForCond(Cond, CondUse)) 1727 continue; 1728 1729 // If the trip count is computed in terms of a max (due to ScalarEvolution 1730 // being unable to find a sufficient guard, for example), change the loop 1731 // comparison to use SLT or ULT instead of NE. 1732 // One consequence of doing this now is that it disrupts the count-down 1733 // optimization. That's not always a bad thing though, because in such 1734 // cases it may still be worthwhile to avoid a max. 1735 Cond = OptimizeMax(Cond, CondUse); 1736 1737 // If this exiting block dominates the latch block, it may also use 1738 // the post-inc value if it won't be shared with other uses. 1739 // Check for dominance. 1740 if (!DT.dominates(ExitingBlock, LatchBlock)) 1741 continue; 1742 1743 // Conservatively avoid trying to use the post-inc value in non-latch 1744 // exits if there may be pre-inc users in intervening blocks. 1745 if (LatchBlock != ExitingBlock) 1746 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1747 // Test if the use is reachable from the exiting block. This dominator 1748 // query is a conservative approximation of reachability. 1749 if (&*UI != CondUse && 1750 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1751 // Conservatively assume there may be reuse if the quotient of their 1752 // strides could be a legal scale. 1753 const SCEV *A = IU.getStride(*CondUse, L); 1754 const SCEV *B = IU.getStride(*UI, L); 1755 if (!A || !B) continue; 1756 if (SE.getTypeSizeInBits(A->getType()) != 1757 SE.getTypeSizeInBits(B->getType())) { 1758 if (SE.getTypeSizeInBits(A->getType()) > 1759 SE.getTypeSizeInBits(B->getType())) 1760 B = SE.getSignExtendExpr(B, A->getType()); 1761 else 1762 A = SE.getSignExtendExpr(A, B->getType()); 1763 } 1764 if (const SCEVConstant *D = 1765 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1766 const ConstantInt *C = D->getValue(); 1767 // Stride of one or negative one can have reuse with non-addresses. 1768 if (C->isOne() || C->isAllOnesValue()) 1769 goto decline_post_inc; 1770 // Avoid weird situations. 1771 if (C->getValue().getMinSignedBits() >= 64 || 1772 C->getValue().isMinSignedValue()) 1773 goto decline_post_inc; 1774 // Without TLI, assume that any stride might be valid, and so any 1775 // use might be shared. 1776 if (!TLI) 1777 goto decline_post_inc; 1778 // Check for possible scaled-address reuse. 1779 Type *AccessTy = getAccessType(UI->getUser()); 1780 TargetLowering::AddrMode AM; 1781 AM.Scale = C->getSExtValue(); 1782 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1783 goto decline_post_inc; 1784 AM.Scale = -AM.Scale; 1785 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1786 goto decline_post_inc; 1787 } 1788 } 1789 1790 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1791 << *Cond << '\n'); 1792 1793 // It's possible for the setcc instruction to be anywhere in the loop, and 1794 // possible for it to have multiple users. If it is not immediately before 1795 // the exiting block branch, move it. 1796 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1797 if (Cond->hasOneUse()) { 1798 Cond->moveBefore(TermBr); 1799 } else { 1800 // Clone the terminating condition and insert into the loopend. 1801 ICmpInst *OldCond = Cond; 1802 Cond = cast<ICmpInst>(Cond->clone()); 1803 Cond->setName(L->getHeader()->getName() + ".termcond"); 1804 ExitingBlock->getInstList().insert(TermBr, Cond); 1805 1806 // Clone the IVUse, as the old use still exists! 1807 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1808 TermBr->replaceUsesOfWith(OldCond, Cond); 1809 } 1810 } 1811 1812 // If we get to here, we know that we can transform the setcc instruction to 1813 // use the post-incremented version of the IV, allowing us to coalesce the 1814 // live ranges for the IV correctly. 1815 CondUse->transformToPostInc(L); 1816 Changed = true; 1817 1818 PostIncs.insert(Cond); 1819 decline_post_inc:; 1820 } 1821 1822 // Determine an insertion point for the loop induction variable increment. It 1823 // must dominate all the post-inc comparisons we just set up, and it must 1824 // dominate the loop latch edge. 1825 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1826 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1827 E = PostIncs.end(); I != E; ++I) { 1828 BasicBlock *BB = 1829 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1830 (*I)->getParent()); 1831 if (BB == (*I)->getParent()) 1832 IVIncInsertPos = *I; 1833 else if (BB != IVIncInsertPos->getParent()) 1834 IVIncInsertPos = BB->getTerminator(); 1835 } 1836 } 1837 1838 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1839 /// at the given offset and other details. If so, update the use and 1840 /// return true. 1841 bool 1842 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1843 LSRUse::KindType Kind, Type *AccessTy) { 1844 int64_t NewMinOffset = LU.MinOffset; 1845 int64_t NewMaxOffset = LU.MaxOffset; 1846 Type *NewAccessTy = AccessTy; 1847 1848 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1849 // something conservative, however this can pessimize in the case that one of 1850 // the uses will have all its uses outside the loop, for example. 1851 if (LU.Kind != Kind) 1852 return false; 1853 // Conservatively assume HasBaseReg is true for now. 1854 if (NewOffset < LU.MinOffset) { 1855 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1856 Kind, AccessTy, TLI)) 1857 return false; 1858 NewMinOffset = NewOffset; 1859 } else if (NewOffset > LU.MaxOffset) { 1860 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1861 Kind, AccessTy, TLI)) 1862 return false; 1863 NewMaxOffset = NewOffset; 1864 } 1865 // Check for a mismatched access type, and fall back conservatively as needed. 1866 // TODO: Be less conservative when the type is similar and can use the same 1867 // addressing modes. 1868 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1869 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1870 1871 // Update the use. 1872 LU.MinOffset = NewMinOffset; 1873 LU.MaxOffset = NewMaxOffset; 1874 LU.AccessTy = NewAccessTy; 1875 if (NewOffset != LU.Offsets.back()) 1876 LU.Offsets.push_back(NewOffset); 1877 return true; 1878 } 1879 1880 /// getUse - Return an LSRUse index and an offset value for a fixup which 1881 /// needs the given expression, with the given kind and optional access type. 1882 /// Either reuse an existing use or create a new one, as needed. 1883 std::pair<size_t, int64_t> 1884 LSRInstance::getUse(const SCEV *&Expr, 1885 LSRUse::KindType Kind, Type *AccessTy) { 1886 const SCEV *Copy = Expr; 1887 int64_t Offset = ExtractImmediate(Expr, SE); 1888 1889 // Basic uses can't accept any offset, for example. 1890 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1891 Expr = Copy; 1892 Offset = 0; 1893 } 1894 1895 std::pair<UseMapTy::iterator, bool> P = 1896 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1897 if (!P.second) { 1898 // A use already existed with this base. 1899 size_t LUIdx = P.first->second; 1900 LSRUse &LU = Uses[LUIdx]; 1901 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1902 // Reuse this use. 1903 return std::make_pair(LUIdx, Offset); 1904 } 1905 1906 // Create a new use. 1907 size_t LUIdx = Uses.size(); 1908 P.first->second = LUIdx; 1909 Uses.push_back(LSRUse(Kind, AccessTy)); 1910 LSRUse &LU = Uses[LUIdx]; 1911 1912 // We don't need to track redundant offsets, but we don't need to go out 1913 // of our way here to avoid them. 1914 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1915 LU.Offsets.push_back(Offset); 1916 1917 LU.MinOffset = Offset; 1918 LU.MaxOffset = Offset; 1919 return std::make_pair(LUIdx, Offset); 1920 } 1921 1922 /// DeleteUse - Delete the given use from the Uses list. 1923 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1924 if (&LU != &Uses.back()) 1925 std::swap(LU, Uses.back()); 1926 Uses.pop_back(); 1927 1928 // Update RegUses. 1929 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 1930 } 1931 1932 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 1933 /// a formula that has the same registers as the given formula. 1934 LSRUse * 1935 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 1936 const LSRUse &OrigLU) { 1937 // Search all uses for the formula. This could be more clever. 1938 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 1939 LSRUse &LU = Uses[LUIdx]; 1940 // Check whether this use is close enough to OrigLU, to see whether it's 1941 // worthwhile looking through its formulae. 1942 // Ignore ICmpZero uses because they may contain formulae generated by 1943 // GenerateICmpZeroScales, in which case adding fixup offsets may 1944 // be invalid. 1945 if (&LU != &OrigLU && 1946 LU.Kind != LSRUse::ICmpZero && 1947 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 1948 LU.WidestFixupType == OrigLU.WidestFixupType && 1949 LU.HasFormulaWithSameRegs(OrigF)) { 1950 // Scan through this use's formulae. 1951 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 1952 E = LU.Formulae.end(); I != E; ++I) { 1953 const Formula &F = *I; 1954 // Check to see if this formula has the same registers and symbols 1955 // as OrigF. 1956 if (F.BaseRegs == OrigF.BaseRegs && 1957 F.ScaledReg == OrigF.ScaledReg && 1958 F.AM.BaseGV == OrigF.AM.BaseGV && 1959 F.AM.Scale == OrigF.AM.Scale && 1960 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 1961 if (F.AM.BaseOffs == 0) 1962 return &LU; 1963 // This is the formula where all the registers and symbols matched; 1964 // there aren't going to be any others. Since we declined it, we 1965 // can skip the rest of the formulae and procede to the next LSRUse. 1966 break; 1967 } 1968 } 1969 } 1970 } 1971 1972 // Nothing looked good. 1973 return 0; 1974 } 1975 1976 void LSRInstance::CollectInterestingTypesAndFactors() { 1977 SmallSetVector<const SCEV *, 4> Strides; 1978 1979 // Collect interesting types and strides. 1980 SmallVector<const SCEV *, 4> Worklist; 1981 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 1982 const SCEV *Expr = IU.getExpr(*UI); 1983 1984 // Collect interesting types. 1985 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 1986 1987 // Add strides for mentioned loops. 1988 Worklist.push_back(Expr); 1989 do { 1990 const SCEV *S = Worklist.pop_back_val(); 1991 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1992 Strides.insert(AR->getStepRecurrence(SE)); 1993 Worklist.push_back(AR->getStart()); 1994 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1995 Worklist.append(Add->op_begin(), Add->op_end()); 1996 } 1997 } while (!Worklist.empty()); 1998 } 1999 2000 // Compute interesting factors from the set of interesting strides. 2001 for (SmallSetVector<const SCEV *, 4>::const_iterator 2002 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2003 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2004 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2005 const SCEV *OldStride = *I; 2006 const SCEV *NewStride = *NewStrideIter; 2007 2008 if (SE.getTypeSizeInBits(OldStride->getType()) != 2009 SE.getTypeSizeInBits(NewStride->getType())) { 2010 if (SE.getTypeSizeInBits(OldStride->getType()) > 2011 SE.getTypeSizeInBits(NewStride->getType())) 2012 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2013 else 2014 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2015 } 2016 if (const SCEVConstant *Factor = 2017 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2018 SE, true))) { 2019 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2020 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2021 } else if (const SCEVConstant *Factor = 2022 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2023 NewStride, 2024 SE, true))) { 2025 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2026 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2027 } 2028 } 2029 2030 // If all uses use the same type, don't bother looking for truncation-based 2031 // reuse. 2032 if (Types.size() == 1) 2033 Types.clear(); 2034 2035 DEBUG(print_factors_and_types(dbgs())); 2036 } 2037 2038 void LSRInstance::CollectFixupsAndInitialFormulae() { 2039 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2040 // Record the uses. 2041 LSRFixup &LF = getNewFixup(); 2042 LF.UserInst = UI->getUser(); 2043 LF.OperandValToReplace = UI->getOperandValToReplace(); 2044 LF.PostIncLoops = UI->getPostIncLoops(); 2045 2046 LSRUse::KindType Kind = LSRUse::Basic; 2047 Type *AccessTy = 0; 2048 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2049 Kind = LSRUse::Address; 2050 AccessTy = getAccessType(LF.UserInst); 2051 } 2052 2053 const SCEV *S = IU.getExpr(*UI); 2054 2055 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2056 // (N - i == 0), and this allows (N - i) to be the expression that we work 2057 // with rather than just N or i, so we can consider the register 2058 // requirements for both N and i at the same time. Limiting this code to 2059 // equality icmps is not a problem because all interesting loops use 2060 // equality icmps, thanks to IndVarSimplify. 2061 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2062 if (CI->isEquality()) { 2063 // Swap the operands if needed to put the OperandValToReplace on the 2064 // left, for consistency. 2065 Value *NV = CI->getOperand(1); 2066 if (NV == LF.OperandValToReplace) { 2067 CI->setOperand(1, CI->getOperand(0)); 2068 CI->setOperand(0, NV); 2069 NV = CI->getOperand(1); 2070 Changed = true; 2071 } 2072 2073 // x == y --> x - y == 0 2074 const SCEV *N = SE.getSCEV(NV); 2075 if (SE.isLoopInvariant(N, L)) { 2076 // S is normalized, so normalize N before folding it into S 2077 // to keep the result normalized. 2078 N = TransformForPostIncUse(Normalize, N, CI, 0, 2079 LF.PostIncLoops, SE, DT); 2080 Kind = LSRUse::ICmpZero; 2081 S = SE.getMinusSCEV(N, S); 2082 } 2083 2084 // -1 and the negations of all interesting strides (except the negation 2085 // of -1) are now also interesting. 2086 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2087 if (Factors[i] != -1) 2088 Factors.insert(-(uint64_t)Factors[i]); 2089 Factors.insert(-1); 2090 } 2091 2092 // Set up the initial formula for this use. 2093 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2094 LF.LUIdx = P.first; 2095 LF.Offset = P.second; 2096 LSRUse &LU = Uses[LF.LUIdx]; 2097 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2098 if (!LU.WidestFixupType || 2099 SE.getTypeSizeInBits(LU.WidestFixupType) < 2100 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2101 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2102 2103 // If this is the first use of this LSRUse, give it a formula. 2104 if (LU.Formulae.empty()) { 2105 InsertInitialFormula(S, LU, LF.LUIdx); 2106 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2107 } 2108 } 2109 2110 DEBUG(print_fixups(dbgs())); 2111 } 2112 2113 /// InsertInitialFormula - Insert a formula for the given expression into 2114 /// the given use, separating out loop-variant portions from loop-invariant 2115 /// and loop-computable portions. 2116 void 2117 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2118 Formula F; 2119 F.InitialMatch(S, L, SE); 2120 bool Inserted = InsertFormula(LU, LUIdx, F); 2121 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2122 } 2123 2124 /// InsertSupplementalFormula - Insert a simple single-register formula for 2125 /// the given expression into the given use. 2126 void 2127 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2128 LSRUse &LU, size_t LUIdx) { 2129 Formula F; 2130 F.BaseRegs.push_back(S); 2131 F.AM.HasBaseReg = true; 2132 bool Inserted = InsertFormula(LU, LUIdx, F); 2133 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2134 } 2135 2136 /// CountRegisters - Note which registers are used by the given formula, 2137 /// updating RegUses. 2138 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2139 if (F.ScaledReg) 2140 RegUses.CountRegister(F.ScaledReg, LUIdx); 2141 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2142 E = F.BaseRegs.end(); I != E; ++I) 2143 RegUses.CountRegister(*I, LUIdx); 2144 } 2145 2146 /// InsertFormula - If the given formula has not yet been inserted, add it to 2147 /// the list, and return true. Return false otherwise. 2148 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2149 if (!LU.InsertFormula(F)) 2150 return false; 2151 2152 CountRegisters(F, LUIdx); 2153 return true; 2154 } 2155 2156 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2157 /// loop-invariant values which we're tracking. These other uses will pin these 2158 /// values in registers, making them less profitable for elimination. 2159 /// TODO: This currently misses non-constant addrec step registers. 2160 /// TODO: Should this give more weight to users inside the loop? 2161 void 2162 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2163 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2164 SmallPtrSet<const SCEV *, 8> Inserted; 2165 2166 while (!Worklist.empty()) { 2167 const SCEV *S = Worklist.pop_back_val(); 2168 2169 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2170 Worklist.append(N->op_begin(), N->op_end()); 2171 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2172 Worklist.push_back(C->getOperand()); 2173 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2174 Worklist.push_back(D->getLHS()); 2175 Worklist.push_back(D->getRHS()); 2176 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2177 if (!Inserted.insert(U)) continue; 2178 const Value *V = U->getValue(); 2179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2180 // Look for instructions defined outside the loop. 2181 if (L->contains(Inst)) continue; 2182 } else if (isa<UndefValue>(V)) 2183 // Undef doesn't have a live range, so it doesn't matter. 2184 continue; 2185 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2186 UI != UE; ++UI) { 2187 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2188 // Ignore non-instructions. 2189 if (!UserInst) 2190 continue; 2191 // Ignore instructions in other functions (as can happen with 2192 // Constants). 2193 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2194 continue; 2195 // Ignore instructions not dominated by the loop. 2196 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2197 UserInst->getParent() : 2198 cast<PHINode>(UserInst)->getIncomingBlock( 2199 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2200 if (!DT.dominates(L->getHeader(), UseBB)) 2201 continue; 2202 // Ignore uses which are part of other SCEV expressions, to avoid 2203 // analyzing them multiple times. 2204 if (SE.isSCEVable(UserInst->getType())) { 2205 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2206 // If the user is a no-op, look through to its uses. 2207 if (!isa<SCEVUnknown>(UserS)) 2208 continue; 2209 if (UserS == U) { 2210 Worklist.push_back( 2211 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2212 continue; 2213 } 2214 } 2215 // Ignore icmp instructions which are already being analyzed. 2216 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2217 unsigned OtherIdx = !UI.getOperandNo(); 2218 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2219 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2220 continue; 2221 } 2222 2223 LSRFixup &LF = getNewFixup(); 2224 LF.UserInst = const_cast<Instruction *>(UserInst); 2225 LF.OperandValToReplace = UI.getUse(); 2226 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2227 LF.LUIdx = P.first; 2228 LF.Offset = P.second; 2229 LSRUse &LU = Uses[LF.LUIdx]; 2230 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2231 if (!LU.WidestFixupType || 2232 SE.getTypeSizeInBits(LU.WidestFixupType) < 2233 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2234 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2235 InsertSupplementalFormula(U, LU, LF.LUIdx); 2236 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2237 break; 2238 } 2239 } 2240 } 2241 } 2242 2243 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2244 /// separate registers. If C is non-null, multiply each subexpression by C. 2245 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2246 SmallVectorImpl<const SCEV *> &Ops, 2247 const Loop *L, 2248 ScalarEvolution &SE) { 2249 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2250 // Break out add operands. 2251 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2252 I != E; ++I) 2253 CollectSubexprs(*I, C, Ops, L, SE); 2254 return; 2255 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2256 // Split a non-zero base out of an addrec. 2257 if (!AR->getStart()->isZero()) { 2258 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2259 AR->getStepRecurrence(SE), 2260 AR->getLoop(), 2261 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2262 SCEV::FlagAnyWrap), 2263 C, Ops, L, SE); 2264 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2265 return; 2266 } 2267 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2268 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2269 if (Mul->getNumOperands() == 2) 2270 if (const SCEVConstant *Op0 = 2271 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2272 CollectSubexprs(Mul->getOperand(1), 2273 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2274 Ops, L, SE); 2275 return; 2276 } 2277 } 2278 2279 // Otherwise use the value itself, optionally with a scale applied. 2280 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2281 } 2282 2283 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2284 /// addrecs. 2285 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2286 Formula Base, 2287 unsigned Depth) { 2288 // Arbitrarily cap recursion to protect compile time. 2289 if (Depth >= 3) return; 2290 2291 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2292 const SCEV *BaseReg = Base.BaseRegs[i]; 2293 2294 SmallVector<const SCEV *, 8> AddOps; 2295 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2296 2297 if (AddOps.size() == 1) continue; 2298 2299 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2300 JE = AddOps.end(); J != JE; ++J) { 2301 2302 // Loop-variant "unknown" values are uninteresting; we won't be able to 2303 // do anything meaningful with them. 2304 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2305 continue; 2306 2307 // Don't pull a constant into a register if the constant could be folded 2308 // into an immediate field. 2309 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2310 Base.getNumRegs() > 1, 2311 LU.Kind, LU.AccessTy, TLI, SE)) 2312 continue; 2313 2314 // Collect all operands except *J. 2315 SmallVector<const SCEV *, 8> InnerAddOps 2316 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2317 InnerAddOps.append 2318 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2319 2320 // Don't leave just a constant behind in a register if the constant could 2321 // be folded into an immediate field. 2322 if (InnerAddOps.size() == 1 && 2323 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2324 Base.getNumRegs() > 1, 2325 LU.Kind, LU.AccessTy, TLI, SE)) 2326 continue; 2327 2328 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2329 if (InnerSum->isZero()) 2330 continue; 2331 Formula F = Base; 2332 2333 // Add the remaining pieces of the add back into the new formula. 2334 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2335 if (TLI && InnerSumSC && 2336 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2337 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2338 InnerSumSC->getValue()->getZExtValue())) { 2339 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2340 InnerSumSC->getValue()->getZExtValue(); 2341 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2342 } else 2343 F.BaseRegs[i] = InnerSum; 2344 2345 // Add J as its own register, or an unfolded immediate. 2346 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2347 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2348 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2349 SC->getValue()->getZExtValue())) 2350 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2351 SC->getValue()->getZExtValue(); 2352 else 2353 F.BaseRegs.push_back(*J); 2354 2355 if (InsertFormula(LU, LUIdx, F)) 2356 // If that formula hadn't been seen before, recurse to find more like 2357 // it. 2358 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2359 } 2360 } 2361 } 2362 2363 /// GenerateCombinations - Generate a formula consisting of all of the 2364 /// loop-dominating registers added into a single register. 2365 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2366 Formula Base) { 2367 // This method is only interesting on a plurality of registers. 2368 if (Base.BaseRegs.size() <= 1) return; 2369 2370 Formula F = Base; 2371 F.BaseRegs.clear(); 2372 SmallVector<const SCEV *, 4> Ops; 2373 for (SmallVectorImpl<const SCEV *>::const_iterator 2374 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2375 const SCEV *BaseReg = *I; 2376 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2377 !SE.hasComputableLoopEvolution(BaseReg, L)) 2378 Ops.push_back(BaseReg); 2379 else 2380 F.BaseRegs.push_back(BaseReg); 2381 } 2382 if (Ops.size() > 1) { 2383 const SCEV *Sum = SE.getAddExpr(Ops); 2384 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2385 // opportunity to fold something. For now, just ignore such cases 2386 // rather than proceed with zero in a register. 2387 if (!Sum->isZero()) { 2388 F.BaseRegs.push_back(Sum); 2389 (void)InsertFormula(LU, LUIdx, F); 2390 } 2391 } 2392 } 2393 2394 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2395 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2396 Formula Base) { 2397 // We can't add a symbolic offset if the address already contains one. 2398 if (Base.AM.BaseGV) return; 2399 2400 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2401 const SCEV *G = Base.BaseRegs[i]; 2402 GlobalValue *GV = ExtractSymbol(G, SE); 2403 if (G->isZero() || !GV) 2404 continue; 2405 Formula F = Base; 2406 F.AM.BaseGV = GV; 2407 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2408 LU.Kind, LU.AccessTy, TLI)) 2409 continue; 2410 F.BaseRegs[i] = G; 2411 (void)InsertFormula(LU, LUIdx, F); 2412 } 2413 } 2414 2415 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2416 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2417 Formula Base) { 2418 // TODO: For now, just add the min and max offset, because it usually isn't 2419 // worthwhile looking at everything inbetween. 2420 SmallVector<int64_t, 2> Worklist; 2421 Worklist.push_back(LU.MinOffset); 2422 if (LU.MaxOffset != LU.MinOffset) 2423 Worklist.push_back(LU.MaxOffset); 2424 2425 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2426 const SCEV *G = Base.BaseRegs[i]; 2427 2428 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2429 E = Worklist.end(); I != E; ++I) { 2430 Formula F = Base; 2431 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2432 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2433 LU.Kind, LU.AccessTy, TLI)) { 2434 // Add the offset to the base register. 2435 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2436 // If it cancelled out, drop the base register, otherwise update it. 2437 if (NewG->isZero()) { 2438 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2439 F.BaseRegs.pop_back(); 2440 } else 2441 F.BaseRegs[i] = NewG; 2442 2443 (void)InsertFormula(LU, LUIdx, F); 2444 } 2445 } 2446 2447 int64_t Imm = ExtractImmediate(G, SE); 2448 if (G->isZero() || Imm == 0) 2449 continue; 2450 Formula F = Base; 2451 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2452 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2453 LU.Kind, LU.AccessTy, TLI)) 2454 continue; 2455 F.BaseRegs[i] = G; 2456 (void)InsertFormula(LU, LUIdx, F); 2457 } 2458 } 2459 2460 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2461 /// the comparison. For example, x == y -> x*c == y*c. 2462 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2463 Formula Base) { 2464 if (LU.Kind != LSRUse::ICmpZero) return; 2465 2466 // Determine the integer type for the base formula. 2467 Type *IntTy = Base.getType(); 2468 if (!IntTy) return; 2469 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2470 2471 // Don't do this if there is more than one offset. 2472 if (LU.MinOffset != LU.MaxOffset) return; 2473 2474 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2475 2476 // Check each interesting stride. 2477 for (SmallSetVector<int64_t, 8>::const_iterator 2478 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2479 int64_t Factor = *I; 2480 2481 // Check that the multiplication doesn't overflow. 2482 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2483 continue; 2484 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2485 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2486 continue; 2487 2488 // Check that multiplying with the use offset doesn't overflow. 2489 int64_t Offset = LU.MinOffset; 2490 if (Offset == INT64_MIN && Factor == -1) 2491 continue; 2492 Offset = (uint64_t)Offset * Factor; 2493 if (Offset / Factor != LU.MinOffset) 2494 continue; 2495 2496 Formula F = Base; 2497 F.AM.BaseOffs = NewBaseOffs; 2498 2499 // Check that this scale is legal. 2500 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2501 continue; 2502 2503 // Compensate for the use having MinOffset built into it. 2504 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2505 2506 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2507 2508 // Check that multiplying with each base register doesn't overflow. 2509 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2510 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2511 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2512 goto next; 2513 } 2514 2515 // Check that multiplying with the scaled register doesn't overflow. 2516 if (F.ScaledReg) { 2517 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2518 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2519 continue; 2520 } 2521 2522 // Check that multiplying with the unfolded offset doesn't overflow. 2523 if (F.UnfoldedOffset != 0) { 2524 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 2525 continue; 2526 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 2527 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 2528 continue; 2529 } 2530 2531 // If we make it here and it's legal, add it. 2532 (void)InsertFormula(LU, LUIdx, F); 2533 next:; 2534 } 2535 } 2536 2537 /// GenerateScales - Generate stride factor reuse formulae by making use of 2538 /// scaled-offset address modes, for example. 2539 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2540 // Determine the integer type for the base formula. 2541 Type *IntTy = Base.getType(); 2542 if (!IntTy) return; 2543 2544 // If this Formula already has a scaled register, we can't add another one. 2545 if (Base.AM.Scale != 0) return; 2546 2547 // Check each interesting stride. 2548 for (SmallSetVector<int64_t, 8>::const_iterator 2549 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2550 int64_t Factor = *I; 2551 2552 Base.AM.Scale = Factor; 2553 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2554 // Check whether this scale is going to be legal. 2555 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2556 LU.Kind, LU.AccessTy, TLI)) { 2557 // As a special-case, handle special out-of-loop Basic users specially. 2558 // TODO: Reconsider this special case. 2559 if (LU.Kind == LSRUse::Basic && 2560 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2561 LSRUse::Special, LU.AccessTy, TLI) && 2562 LU.AllFixupsOutsideLoop) 2563 LU.Kind = LSRUse::Special; 2564 else 2565 continue; 2566 } 2567 // For an ICmpZero, negating a solitary base register won't lead to 2568 // new solutions. 2569 if (LU.Kind == LSRUse::ICmpZero && 2570 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2571 continue; 2572 // For each addrec base reg, apply the scale, if possible. 2573 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2574 if (const SCEVAddRecExpr *AR = 2575 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2576 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2577 if (FactorS->isZero()) 2578 continue; 2579 // Divide out the factor, ignoring high bits, since we'll be 2580 // scaling the value back up in the end. 2581 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2582 // TODO: This could be optimized to avoid all the copying. 2583 Formula F = Base; 2584 F.ScaledReg = Quotient; 2585 F.DeleteBaseReg(F.BaseRegs[i]); 2586 (void)InsertFormula(LU, LUIdx, F); 2587 } 2588 } 2589 } 2590 } 2591 2592 /// GenerateTruncates - Generate reuse formulae from different IV types. 2593 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2594 // This requires TargetLowering to tell us which truncates are free. 2595 if (!TLI) return; 2596 2597 // Don't bother truncating symbolic values. 2598 if (Base.AM.BaseGV) return; 2599 2600 // Determine the integer type for the base formula. 2601 Type *DstTy = Base.getType(); 2602 if (!DstTy) return; 2603 DstTy = SE.getEffectiveSCEVType(DstTy); 2604 2605 for (SmallSetVector<Type *, 4>::const_iterator 2606 I = Types.begin(), E = Types.end(); I != E; ++I) { 2607 Type *SrcTy = *I; 2608 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2609 Formula F = Base; 2610 2611 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2612 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2613 JE = F.BaseRegs.end(); J != JE; ++J) 2614 *J = SE.getAnyExtendExpr(*J, SrcTy); 2615 2616 // TODO: This assumes we've done basic processing on all uses and 2617 // have an idea what the register usage is. 2618 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2619 continue; 2620 2621 (void)InsertFormula(LU, LUIdx, F); 2622 } 2623 } 2624 } 2625 2626 namespace { 2627 2628 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2629 /// defer modifications so that the search phase doesn't have to worry about 2630 /// the data structures moving underneath it. 2631 struct WorkItem { 2632 size_t LUIdx; 2633 int64_t Imm; 2634 const SCEV *OrigReg; 2635 2636 WorkItem(size_t LI, int64_t I, const SCEV *R) 2637 : LUIdx(LI), Imm(I), OrigReg(R) {} 2638 2639 void print(raw_ostream &OS) const; 2640 void dump() const; 2641 }; 2642 2643 } 2644 2645 void WorkItem::print(raw_ostream &OS) const { 2646 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2647 << " , add offset " << Imm; 2648 } 2649 2650 void WorkItem::dump() const { 2651 print(errs()); errs() << '\n'; 2652 } 2653 2654 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2655 /// distance apart and try to form reuse opportunities between them. 2656 void LSRInstance::GenerateCrossUseConstantOffsets() { 2657 // Group the registers by their value without any added constant offset. 2658 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2659 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2660 RegMapTy Map; 2661 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2662 SmallVector<const SCEV *, 8> Sequence; 2663 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2664 I != E; ++I) { 2665 const SCEV *Reg = *I; 2666 int64_t Imm = ExtractImmediate(Reg, SE); 2667 std::pair<RegMapTy::iterator, bool> Pair = 2668 Map.insert(std::make_pair(Reg, ImmMapTy())); 2669 if (Pair.second) 2670 Sequence.push_back(Reg); 2671 Pair.first->second.insert(std::make_pair(Imm, *I)); 2672 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2673 } 2674 2675 // Now examine each set of registers with the same base value. Build up 2676 // a list of work to do and do the work in a separate step so that we're 2677 // not adding formulae and register counts while we're searching. 2678 SmallVector<WorkItem, 32> WorkItems; 2679 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2680 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2681 E = Sequence.end(); I != E; ++I) { 2682 const SCEV *Reg = *I; 2683 const ImmMapTy &Imms = Map.find(Reg)->second; 2684 2685 // It's not worthwhile looking for reuse if there's only one offset. 2686 if (Imms.size() == 1) 2687 continue; 2688 2689 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2690 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2691 J != JE; ++J) 2692 dbgs() << ' ' << J->first; 2693 dbgs() << '\n'); 2694 2695 // Examine each offset. 2696 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2697 J != JE; ++J) { 2698 const SCEV *OrigReg = J->second; 2699 2700 int64_t JImm = J->first; 2701 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2702 2703 if (!isa<SCEVConstant>(OrigReg) && 2704 UsedByIndicesMap[Reg].count() == 1) { 2705 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2706 continue; 2707 } 2708 2709 // Conservatively examine offsets between this orig reg a few selected 2710 // other orig regs. 2711 ImmMapTy::const_iterator OtherImms[] = { 2712 Imms.begin(), prior(Imms.end()), 2713 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2714 }; 2715 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2716 ImmMapTy::const_iterator M = OtherImms[i]; 2717 if (M == J || M == JE) continue; 2718 2719 // Compute the difference between the two. 2720 int64_t Imm = (uint64_t)JImm - M->first; 2721 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2722 LUIdx = UsedByIndices.find_next(LUIdx)) 2723 // Make a memo of this use, offset, and register tuple. 2724 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2725 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2726 } 2727 } 2728 } 2729 2730 Map.clear(); 2731 Sequence.clear(); 2732 UsedByIndicesMap.clear(); 2733 UniqueItems.clear(); 2734 2735 // Now iterate through the worklist and add new formulae. 2736 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2737 E = WorkItems.end(); I != E; ++I) { 2738 const WorkItem &WI = *I; 2739 size_t LUIdx = WI.LUIdx; 2740 LSRUse &LU = Uses[LUIdx]; 2741 int64_t Imm = WI.Imm; 2742 const SCEV *OrigReg = WI.OrigReg; 2743 2744 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2745 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2746 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2747 2748 // TODO: Use a more targeted data structure. 2749 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2750 const Formula &F = LU.Formulae[L]; 2751 // Use the immediate in the scaled register. 2752 if (F.ScaledReg == OrigReg) { 2753 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2754 Imm * (uint64_t)F.AM.Scale; 2755 // Don't create 50 + reg(-50). 2756 if (F.referencesReg(SE.getSCEV( 2757 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2758 continue; 2759 Formula NewF = F; 2760 NewF.AM.BaseOffs = Offs; 2761 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2762 LU.Kind, LU.AccessTy, TLI)) 2763 continue; 2764 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2765 2766 // If the new scale is a constant in a register, and adding the constant 2767 // value to the immediate would produce a value closer to zero than the 2768 // immediate itself, then the formula isn't worthwhile. 2769 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2770 if (C->getValue()->isNegative() != 2771 (NewF.AM.BaseOffs < 0) && 2772 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2773 .ule(abs64(NewF.AM.BaseOffs))) 2774 continue; 2775 2776 // OK, looks good. 2777 (void)InsertFormula(LU, LUIdx, NewF); 2778 } else { 2779 // Use the immediate in a base register. 2780 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2781 const SCEV *BaseReg = F.BaseRegs[N]; 2782 if (BaseReg != OrigReg) 2783 continue; 2784 Formula NewF = F; 2785 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2786 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2787 LU.Kind, LU.AccessTy, TLI)) { 2788 if (!TLI || 2789 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 2790 continue; 2791 NewF = F; 2792 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 2793 } 2794 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2795 2796 // If the new formula has a constant in a register, and adding the 2797 // constant value to the immediate would produce a value closer to 2798 // zero than the immediate itself, then the formula isn't worthwhile. 2799 for (SmallVectorImpl<const SCEV *>::const_iterator 2800 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2801 J != JE; ++J) 2802 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2803 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2804 abs64(NewF.AM.BaseOffs)) && 2805 (C->getValue()->getValue() + 2806 NewF.AM.BaseOffs).countTrailingZeros() >= 2807 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2808 goto skip_formula; 2809 2810 // Ok, looks good. 2811 (void)InsertFormula(LU, LUIdx, NewF); 2812 break; 2813 skip_formula:; 2814 } 2815 } 2816 } 2817 } 2818 } 2819 2820 /// GenerateAllReuseFormulae - Generate formulae for each use. 2821 void 2822 LSRInstance::GenerateAllReuseFormulae() { 2823 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2824 // queries are more precise. 2825 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2826 LSRUse &LU = Uses[LUIdx]; 2827 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2828 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2829 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2830 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2831 } 2832 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2833 LSRUse &LU = Uses[LUIdx]; 2834 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2835 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2836 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2837 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2838 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2839 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2840 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2841 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2842 } 2843 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2844 LSRUse &LU = Uses[LUIdx]; 2845 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2846 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2847 } 2848 2849 GenerateCrossUseConstantOffsets(); 2850 2851 DEBUG(dbgs() << "\n" 2852 "After generating reuse formulae:\n"; 2853 print_uses(dbgs())); 2854 } 2855 2856 /// If there are multiple formulae with the same set of registers used 2857 /// by other uses, pick the best one and delete the others. 2858 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2859 DenseSet<const SCEV *> VisitedRegs; 2860 SmallPtrSet<const SCEV *, 16> Regs; 2861 #ifndef NDEBUG 2862 bool ChangedFormulae = false; 2863 #endif 2864 2865 // Collect the best formula for each unique set of shared registers. This 2866 // is reset for each use. 2867 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2868 BestFormulaeTy; 2869 BestFormulaeTy BestFormulae; 2870 2871 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2872 LSRUse &LU = Uses[LUIdx]; 2873 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2874 2875 bool Any = false; 2876 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2877 FIdx != NumForms; ++FIdx) { 2878 Formula &F = LU.Formulae[FIdx]; 2879 2880 SmallVector<const SCEV *, 2> Key; 2881 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2882 JE = F.BaseRegs.end(); J != JE; ++J) { 2883 const SCEV *Reg = *J; 2884 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2885 Key.push_back(Reg); 2886 } 2887 if (F.ScaledReg && 2888 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2889 Key.push_back(F.ScaledReg); 2890 // Unstable sort by host order ok, because this is only used for 2891 // uniquifying. 2892 std::sort(Key.begin(), Key.end()); 2893 2894 std::pair<BestFormulaeTy::const_iterator, bool> P = 2895 BestFormulae.insert(std::make_pair(Key, FIdx)); 2896 if (!P.second) { 2897 Formula &Best = LU.Formulae[P.first->second]; 2898 2899 Cost CostF; 2900 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2901 Regs.clear(); 2902 Cost CostBest; 2903 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2904 Regs.clear(); 2905 if (CostF < CostBest) 2906 std::swap(F, Best); 2907 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 2908 dbgs() << "\n" 2909 " in favor of formula "; Best.print(dbgs()); 2910 dbgs() << '\n'); 2911 #ifndef NDEBUG 2912 ChangedFormulae = true; 2913 #endif 2914 LU.DeleteFormula(F); 2915 --FIdx; 2916 --NumForms; 2917 Any = true; 2918 continue; 2919 } 2920 } 2921 2922 // Now that we've filtered out some formulae, recompute the Regs set. 2923 if (Any) 2924 LU.RecomputeRegs(LUIdx, RegUses); 2925 2926 // Reset this to prepare for the next use. 2927 BestFormulae.clear(); 2928 } 2929 2930 DEBUG(if (ChangedFormulae) { 2931 dbgs() << "\n" 2932 "After filtering out undesirable candidates:\n"; 2933 print_uses(dbgs()); 2934 }); 2935 } 2936 2937 // This is a rough guess that seems to work fairly well. 2938 static const size_t ComplexityLimit = UINT16_MAX; 2939 2940 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 2941 /// solutions the solver might have to consider. It almost never considers 2942 /// this many solutions because it prune the search space, but the pruning 2943 /// isn't always sufficient. 2944 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 2945 size_t Power = 1; 2946 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 2947 E = Uses.end(); I != E; ++I) { 2948 size_t FSize = I->Formulae.size(); 2949 if (FSize >= ComplexityLimit) { 2950 Power = ComplexityLimit; 2951 break; 2952 } 2953 Power *= FSize; 2954 if (Power >= ComplexityLimit) 2955 break; 2956 } 2957 return Power; 2958 } 2959 2960 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 2961 /// of the registers of another formula, it won't help reduce register 2962 /// pressure (though it may not necessarily hurt register pressure); remove 2963 /// it to simplify the system. 2964 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 2965 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2966 DEBUG(dbgs() << "The search space is too complex.\n"); 2967 2968 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 2969 "which use a superset of registers used by other " 2970 "formulae.\n"); 2971 2972 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2973 LSRUse &LU = Uses[LUIdx]; 2974 bool Any = false; 2975 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 2976 Formula &F = LU.Formulae[i]; 2977 // Look for a formula with a constant or GV in a register. If the use 2978 // also has a formula with that same value in an immediate field, 2979 // delete the one that uses a register. 2980 for (SmallVectorImpl<const SCEV *>::const_iterator 2981 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 2982 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 2983 Formula NewF = F; 2984 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 2985 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2986 (I - F.BaseRegs.begin())); 2987 if (LU.HasFormulaWithSameRegs(NewF)) { 2988 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 2989 LU.DeleteFormula(F); 2990 --i; 2991 --e; 2992 Any = true; 2993 break; 2994 } 2995 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 2996 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 2997 if (!F.AM.BaseGV) { 2998 Formula NewF = F; 2999 NewF.AM.BaseGV = GV; 3000 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3001 (I - F.BaseRegs.begin())); 3002 if (LU.HasFormulaWithSameRegs(NewF)) { 3003 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3004 dbgs() << '\n'); 3005 LU.DeleteFormula(F); 3006 --i; 3007 --e; 3008 Any = true; 3009 break; 3010 } 3011 } 3012 } 3013 } 3014 } 3015 if (Any) 3016 LU.RecomputeRegs(LUIdx, RegUses); 3017 } 3018 3019 DEBUG(dbgs() << "After pre-selection:\n"; 3020 print_uses(dbgs())); 3021 } 3022 } 3023 3024 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3025 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3026 /// them. 3027 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3028 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3029 DEBUG(dbgs() << "The search space is too complex.\n"); 3030 3031 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3032 "separated by a constant offset will use the same " 3033 "registers.\n"); 3034 3035 // This is especially useful for unrolled loops. 3036 3037 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3038 LSRUse &LU = Uses[LUIdx]; 3039 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3040 E = LU.Formulae.end(); I != E; ++I) { 3041 const Formula &F = *I; 3042 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3043 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3044 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3045 /*HasBaseReg=*/false, 3046 LU.Kind, LU.AccessTy)) { 3047 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3048 dbgs() << '\n'); 3049 3050 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3051 3052 // Update the relocs to reference the new use. 3053 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3054 E = Fixups.end(); I != E; ++I) { 3055 LSRFixup &Fixup = *I; 3056 if (Fixup.LUIdx == LUIdx) { 3057 Fixup.LUIdx = LUThatHas - &Uses.front(); 3058 Fixup.Offset += F.AM.BaseOffs; 3059 // Add the new offset to LUThatHas' offset list. 3060 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3061 LUThatHas->Offsets.push_back(Fixup.Offset); 3062 if (Fixup.Offset > LUThatHas->MaxOffset) 3063 LUThatHas->MaxOffset = Fixup.Offset; 3064 if (Fixup.Offset < LUThatHas->MinOffset) 3065 LUThatHas->MinOffset = Fixup.Offset; 3066 } 3067 DEBUG(dbgs() << "New fixup has offset " 3068 << Fixup.Offset << '\n'); 3069 } 3070 if (Fixup.LUIdx == NumUses-1) 3071 Fixup.LUIdx = LUIdx; 3072 } 3073 3074 // Delete formulae from the new use which are no longer legal. 3075 bool Any = false; 3076 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3077 Formula &F = LUThatHas->Formulae[i]; 3078 if (!isLegalUse(F.AM, 3079 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3080 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3081 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3082 dbgs() << '\n'); 3083 LUThatHas->DeleteFormula(F); 3084 --i; 3085 --e; 3086 Any = true; 3087 } 3088 } 3089 if (Any) 3090 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3091 3092 // Delete the old use. 3093 DeleteUse(LU, LUIdx); 3094 --LUIdx; 3095 --NumUses; 3096 break; 3097 } 3098 } 3099 } 3100 } 3101 } 3102 3103 DEBUG(dbgs() << "After pre-selection:\n"; 3104 print_uses(dbgs())); 3105 } 3106 } 3107 3108 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3109 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3110 /// we've done more filtering, as it may be able to find more formulae to 3111 /// eliminate. 3112 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3113 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3114 DEBUG(dbgs() << "The search space is too complex.\n"); 3115 3116 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3117 "undesirable dedicated registers.\n"); 3118 3119 FilterOutUndesirableDedicatedRegisters(); 3120 3121 DEBUG(dbgs() << "After pre-selection:\n"; 3122 print_uses(dbgs())); 3123 } 3124 } 3125 3126 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3127 /// to be profitable, and then in any use which has any reference to that 3128 /// register, delete all formulae which do not reference that register. 3129 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3130 // With all other options exhausted, loop until the system is simple 3131 // enough to handle. 3132 SmallPtrSet<const SCEV *, 4> Taken; 3133 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3134 // Ok, we have too many of formulae on our hands to conveniently handle. 3135 // Use a rough heuristic to thin out the list. 3136 DEBUG(dbgs() << "The search space is too complex.\n"); 3137 3138 // Pick the register which is used by the most LSRUses, which is likely 3139 // to be a good reuse register candidate. 3140 const SCEV *Best = 0; 3141 unsigned BestNum = 0; 3142 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3143 I != E; ++I) { 3144 const SCEV *Reg = *I; 3145 if (Taken.count(Reg)) 3146 continue; 3147 if (!Best) 3148 Best = Reg; 3149 else { 3150 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3151 if (Count > BestNum) { 3152 Best = Reg; 3153 BestNum = Count; 3154 } 3155 } 3156 } 3157 3158 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3159 << " will yield profitable reuse.\n"); 3160 Taken.insert(Best); 3161 3162 // In any use with formulae which references this register, delete formulae 3163 // which don't reference it. 3164 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3165 LSRUse &LU = Uses[LUIdx]; 3166 if (!LU.Regs.count(Best)) continue; 3167 3168 bool Any = false; 3169 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3170 Formula &F = LU.Formulae[i]; 3171 if (!F.referencesReg(Best)) { 3172 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3173 LU.DeleteFormula(F); 3174 --e; 3175 --i; 3176 Any = true; 3177 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3178 continue; 3179 } 3180 } 3181 3182 if (Any) 3183 LU.RecomputeRegs(LUIdx, RegUses); 3184 } 3185 3186 DEBUG(dbgs() << "After pre-selection:\n"; 3187 print_uses(dbgs())); 3188 } 3189 } 3190 3191 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3192 /// formulae to choose from, use some rough heuristics to prune down the number 3193 /// of formulae. This keeps the main solver from taking an extraordinary amount 3194 /// of time in some worst-case scenarios. 3195 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3196 NarrowSearchSpaceByDetectingSupersets(); 3197 NarrowSearchSpaceByCollapsingUnrolledCode(); 3198 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3199 NarrowSearchSpaceByPickingWinnerRegs(); 3200 } 3201 3202 /// SolveRecurse - This is the recursive solver. 3203 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3204 Cost &SolutionCost, 3205 SmallVectorImpl<const Formula *> &Workspace, 3206 const Cost &CurCost, 3207 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3208 DenseSet<const SCEV *> &VisitedRegs) const { 3209 // Some ideas: 3210 // - prune more: 3211 // - use more aggressive filtering 3212 // - sort the formula so that the most profitable solutions are found first 3213 // - sort the uses too 3214 // - search faster: 3215 // - don't compute a cost, and then compare. compare while computing a cost 3216 // and bail early. 3217 // - track register sets with SmallBitVector 3218 3219 const LSRUse &LU = Uses[Workspace.size()]; 3220 3221 // If this use references any register that's already a part of the 3222 // in-progress solution, consider it a requirement that a formula must 3223 // reference that register in order to be considered. This prunes out 3224 // unprofitable searching. 3225 SmallSetVector<const SCEV *, 4> ReqRegs; 3226 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3227 E = CurRegs.end(); I != E; ++I) 3228 if (LU.Regs.count(*I)) 3229 ReqRegs.insert(*I); 3230 3231 bool AnySatisfiedReqRegs = false; 3232 SmallPtrSet<const SCEV *, 16> NewRegs; 3233 Cost NewCost; 3234 retry: 3235 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3236 E = LU.Formulae.end(); I != E; ++I) { 3237 const Formula &F = *I; 3238 3239 // Ignore formulae which do not use any of the required registers. 3240 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3241 JE = ReqRegs.end(); J != JE; ++J) { 3242 const SCEV *Reg = *J; 3243 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3244 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3245 F.BaseRegs.end()) 3246 goto skip; 3247 } 3248 AnySatisfiedReqRegs = true; 3249 3250 // Evaluate the cost of the current formula. If it's already worse than 3251 // the current best, prune the search at that point. 3252 NewCost = CurCost; 3253 NewRegs = CurRegs; 3254 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3255 if (NewCost < SolutionCost) { 3256 Workspace.push_back(&F); 3257 if (Workspace.size() != Uses.size()) { 3258 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3259 NewRegs, VisitedRegs); 3260 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3261 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3262 } else { 3263 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3264 dbgs() << ". Regs:"; 3265 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3266 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3267 dbgs() << ' ' << **I; 3268 dbgs() << '\n'); 3269 3270 SolutionCost = NewCost; 3271 Solution = Workspace; 3272 } 3273 Workspace.pop_back(); 3274 } 3275 skip:; 3276 } 3277 3278 // If none of the formulae had all of the required registers, relax the 3279 // constraint so that we don't exclude all formulae. 3280 if (!AnySatisfiedReqRegs) { 3281 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3282 ReqRegs.clear(); 3283 goto retry; 3284 } 3285 } 3286 3287 /// Solve - Choose one formula from each use. Return the results in the given 3288 /// Solution vector. 3289 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3290 SmallVector<const Formula *, 8> Workspace; 3291 Cost SolutionCost; 3292 SolutionCost.Loose(); 3293 Cost CurCost; 3294 SmallPtrSet<const SCEV *, 16> CurRegs; 3295 DenseSet<const SCEV *> VisitedRegs; 3296 Workspace.reserve(Uses.size()); 3297 3298 // SolveRecurse does all the work. 3299 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3300 CurRegs, VisitedRegs); 3301 3302 // Ok, we've now made all our decisions. 3303 DEBUG(dbgs() << "\n" 3304 "The chosen solution requires "; SolutionCost.print(dbgs()); 3305 dbgs() << ":\n"; 3306 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3307 dbgs() << " "; 3308 Uses[i].print(dbgs()); 3309 dbgs() << "\n" 3310 " "; 3311 Solution[i]->print(dbgs()); 3312 dbgs() << '\n'; 3313 }); 3314 3315 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3316 } 3317 3318 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3319 /// the dominator tree far as we can go while still being dominated by the 3320 /// input positions. This helps canonicalize the insert position, which 3321 /// encourages sharing. 3322 BasicBlock::iterator 3323 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3324 const SmallVectorImpl<Instruction *> &Inputs) 3325 const { 3326 for (;;) { 3327 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3328 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3329 3330 BasicBlock *IDom; 3331 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3332 if (!Rung) return IP; 3333 Rung = Rung->getIDom(); 3334 if (!Rung) return IP; 3335 IDom = Rung->getBlock(); 3336 3337 // Don't climb into a loop though. 3338 const Loop *IDomLoop = LI.getLoopFor(IDom); 3339 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3340 if (IDomDepth <= IPLoopDepth && 3341 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3342 break; 3343 } 3344 3345 bool AllDominate = true; 3346 Instruction *BetterPos = 0; 3347 Instruction *Tentative = IDom->getTerminator(); 3348 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3349 E = Inputs.end(); I != E; ++I) { 3350 Instruction *Inst = *I; 3351 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3352 AllDominate = false; 3353 break; 3354 } 3355 // Attempt to find an insert position in the middle of the block, 3356 // instead of at the end, so that it can be used for other expansions. 3357 if (IDom == Inst->getParent() && 3358 (!BetterPos || DT.dominates(BetterPos, Inst))) 3359 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3360 } 3361 if (!AllDominate) 3362 break; 3363 if (BetterPos) 3364 IP = BetterPos; 3365 else 3366 IP = Tentative; 3367 } 3368 3369 return IP; 3370 } 3371 3372 /// AdjustInsertPositionForExpand - Determine an input position which will be 3373 /// dominated by the operands and which will dominate the result. 3374 BasicBlock::iterator 3375 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3376 const LSRFixup &LF, 3377 const LSRUse &LU) const { 3378 // Collect some instructions which must be dominated by the 3379 // expanding replacement. These must be dominated by any operands that 3380 // will be required in the expansion. 3381 SmallVector<Instruction *, 4> Inputs; 3382 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3383 Inputs.push_back(I); 3384 if (LU.Kind == LSRUse::ICmpZero) 3385 if (Instruction *I = 3386 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3387 Inputs.push_back(I); 3388 if (LF.PostIncLoops.count(L)) { 3389 if (LF.isUseFullyOutsideLoop(L)) 3390 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3391 else 3392 Inputs.push_back(IVIncInsertPos); 3393 } 3394 // The expansion must also be dominated by the increment positions of any 3395 // loops it for which it is using post-inc mode. 3396 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3397 E = LF.PostIncLoops.end(); I != E; ++I) { 3398 const Loop *PIL = *I; 3399 if (PIL == L) continue; 3400 3401 // Be dominated by the loop exit. 3402 SmallVector<BasicBlock *, 4> ExitingBlocks; 3403 PIL->getExitingBlocks(ExitingBlocks); 3404 if (!ExitingBlocks.empty()) { 3405 BasicBlock *BB = ExitingBlocks[0]; 3406 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3407 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3408 Inputs.push_back(BB->getTerminator()); 3409 } 3410 } 3411 3412 // Then, climb up the immediate dominator tree as far as we can go while 3413 // still being dominated by the input positions. 3414 IP = HoistInsertPosition(IP, Inputs); 3415 3416 // Don't insert instructions before PHI nodes. 3417 while (isa<PHINode>(IP)) ++IP; 3418 3419 // Ignore debug intrinsics. 3420 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3421 3422 return IP; 3423 } 3424 3425 /// Expand - Emit instructions for the leading candidate expression for this 3426 /// LSRUse (this is called "expanding"). 3427 Value *LSRInstance::Expand(const LSRFixup &LF, 3428 const Formula &F, 3429 BasicBlock::iterator IP, 3430 SCEVExpander &Rewriter, 3431 SmallVectorImpl<WeakVH> &DeadInsts) const { 3432 const LSRUse &LU = Uses[LF.LUIdx]; 3433 3434 // Determine an input position which will be dominated by the operands and 3435 // which will dominate the result. 3436 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3437 3438 // Inform the Rewriter if we have a post-increment use, so that it can 3439 // perform an advantageous expansion. 3440 Rewriter.setPostInc(LF.PostIncLoops); 3441 3442 // This is the type that the user actually needs. 3443 Type *OpTy = LF.OperandValToReplace->getType(); 3444 // This will be the type that we'll initially expand to. 3445 Type *Ty = F.getType(); 3446 if (!Ty) 3447 // No type known; just expand directly to the ultimate type. 3448 Ty = OpTy; 3449 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3450 // Expand directly to the ultimate type if it's the right size. 3451 Ty = OpTy; 3452 // This is the type to do integer arithmetic in. 3453 Type *IntTy = SE.getEffectiveSCEVType(Ty); 3454 3455 // Build up a list of operands to add together to form the full base. 3456 SmallVector<const SCEV *, 8> Ops; 3457 3458 // Expand the BaseRegs portion. 3459 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3460 E = F.BaseRegs.end(); I != E; ++I) { 3461 const SCEV *Reg = *I; 3462 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3463 3464 // If we're expanding for a post-inc user, make the post-inc adjustment. 3465 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3466 Reg = TransformForPostIncUse(Denormalize, Reg, 3467 LF.UserInst, LF.OperandValToReplace, 3468 Loops, SE, DT); 3469 3470 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3471 } 3472 3473 // Flush the operand list to suppress SCEVExpander hoisting. 3474 if (!Ops.empty()) { 3475 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3476 Ops.clear(); 3477 Ops.push_back(SE.getUnknown(FullV)); 3478 } 3479 3480 // Expand the ScaledReg portion. 3481 Value *ICmpScaledV = 0; 3482 if (F.AM.Scale != 0) { 3483 const SCEV *ScaledS = F.ScaledReg; 3484 3485 // If we're expanding for a post-inc user, make the post-inc adjustment. 3486 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3487 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3488 LF.UserInst, LF.OperandValToReplace, 3489 Loops, SE, DT); 3490 3491 if (LU.Kind == LSRUse::ICmpZero) { 3492 // An interesting way of "folding" with an icmp is to use a negated 3493 // scale, which we'll implement by inserting it into the other operand 3494 // of the icmp. 3495 assert(F.AM.Scale == -1 && 3496 "The only scale supported by ICmpZero uses is -1!"); 3497 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3498 } else { 3499 // Otherwise just expand the scaled register and an explicit scale, 3500 // which is expected to be matched as part of the address. 3501 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3502 ScaledS = SE.getMulExpr(ScaledS, 3503 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3504 Ops.push_back(ScaledS); 3505 3506 // Flush the operand list to suppress SCEVExpander hoisting. 3507 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3508 Ops.clear(); 3509 Ops.push_back(SE.getUnknown(FullV)); 3510 } 3511 } 3512 3513 // Expand the GV portion. 3514 if (F.AM.BaseGV) { 3515 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3516 3517 // Flush the operand list to suppress SCEVExpander hoisting. 3518 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3519 Ops.clear(); 3520 Ops.push_back(SE.getUnknown(FullV)); 3521 } 3522 3523 // Expand the immediate portion. 3524 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3525 if (Offset != 0) { 3526 if (LU.Kind == LSRUse::ICmpZero) { 3527 // The other interesting way of "folding" with an ICmpZero is to use a 3528 // negated immediate. 3529 if (!ICmpScaledV) 3530 ICmpScaledV = ConstantInt::get(IntTy, -Offset); 3531 else { 3532 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3533 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3534 } 3535 } else { 3536 // Just add the immediate values. These again are expected to be matched 3537 // as part of the address. 3538 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3539 } 3540 } 3541 3542 // Expand the unfolded offset portion. 3543 int64_t UnfoldedOffset = F.UnfoldedOffset; 3544 if (UnfoldedOffset != 0) { 3545 // Just add the immediate values. 3546 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 3547 UnfoldedOffset))); 3548 } 3549 3550 // Emit instructions summing all the operands. 3551 const SCEV *FullS = Ops.empty() ? 3552 SE.getConstant(IntTy, 0) : 3553 SE.getAddExpr(Ops); 3554 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3555 3556 // We're done expanding now, so reset the rewriter. 3557 Rewriter.clearPostInc(); 3558 3559 // An ICmpZero Formula represents an ICmp which we're handling as a 3560 // comparison against zero. Now that we've expanded an expression for that 3561 // form, update the ICmp's other operand. 3562 if (LU.Kind == LSRUse::ICmpZero) { 3563 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3564 DeadInsts.push_back(CI->getOperand(1)); 3565 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3566 "a scale at the same time!"); 3567 if (F.AM.Scale == -1) { 3568 if (ICmpScaledV->getType() != OpTy) { 3569 Instruction *Cast = 3570 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3571 OpTy, false), 3572 ICmpScaledV, OpTy, "tmp", CI); 3573 ICmpScaledV = Cast; 3574 } 3575 CI->setOperand(1, ICmpScaledV); 3576 } else { 3577 assert(F.AM.Scale == 0 && 3578 "ICmp does not support folding a global value and " 3579 "a scale at the same time!"); 3580 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3581 -(uint64_t)Offset); 3582 if (C->getType() != OpTy) 3583 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3584 OpTy, false), 3585 C, OpTy); 3586 3587 CI->setOperand(1, C); 3588 } 3589 } 3590 3591 return FullV; 3592 } 3593 3594 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3595 /// of their operands effectively happens in their predecessor blocks, so the 3596 /// expression may need to be expanded in multiple places. 3597 void LSRInstance::RewriteForPHI(PHINode *PN, 3598 const LSRFixup &LF, 3599 const Formula &F, 3600 SCEVExpander &Rewriter, 3601 SmallVectorImpl<WeakVH> &DeadInsts, 3602 Pass *P) const { 3603 DenseMap<BasicBlock *, Value *> Inserted; 3604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3605 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3606 BasicBlock *BB = PN->getIncomingBlock(i); 3607 3608 // If this is a critical edge, split the edge so that we do not insert 3609 // the code on all predecessor/successor paths. We do this unless this 3610 // is the canonical backedge for this loop, which complicates post-inc 3611 // users. 3612 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3613 !isa<IndirectBrInst>(BB->getTerminator())) { 3614 Loop *PNLoop = LI.getLoopFor(PN->getParent()); 3615 if (!PNLoop || PN->getParent() != PNLoop->getHeader()) { 3616 // Split the critical edge. 3617 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P); 3618 3619 // If PN is outside of the loop and BB is in the loop, we want to 3620 // move the block to be immediately before the PHI block, not 3621 // immediately after BB. 3622 if (L->contains(BB) && !L->contains(PN)) 3623 NewBB->moveBefore(PN->getParent()); 3624 3625 // Splitting the edge can reduce the number of PHI entries we have. 3626 e = PN->getNumIncomingValues(); 3627 BB = NewBB; 3628 i = PN->getBasicBlockIndex(BB); 3629 } 3630 } 3631 3632 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3633 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3634 if (!Pair.second) 3635 PN->setIncomingValue(i, Pair.first->second); 3636 else { 3637 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3638 3639 // If this is reuse-by-noop-cast, insert the noop cast. 3640 Type *OpTy = LF.OperandValToReplace->getType(); 3641 if (FullV->getType() != OpTy) 3642 FullV = 3643 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3644 OpTy, false), 3645 FullV, LF.OperandValToReplace->getType(), 3646 "tmp", BB->getTerminator()); 3647 3648 PN->setIncomingValue(i, FullV); 3649 Pair.first->second = FullV; 3650 } 3651 } 3652 } 3653 3654 /// Rewrite - Emit instructions for the leading candidate expression for this 3655 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3656 /// the newly expanded value. 3657 void LSRInstance::Rewrite(const LSRFixup &LF, 3658 const Formula &F, 3659 SCEVExpander &Rewriter, 3660 SmallVectorImpl<WeakVH> &DeadInsts, 3661 Pass *P) const { 3662 // First, find an insertion point that dominates UserInst. For PHI nodes, 3663 // find the nearest block which dominates all the relevant uses. 3664 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3665 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3666 } else { 3667 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3668 3669 // If this is reuse-by-noop-cast, insert the noop cast. 3670 Type *OpTy = LF.OperandValToReplace->getType(); 3671 if (FullV->getType() != OpTy) { 3672 Instruction *Cast = 3673 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3674 FullV, OpTy, "tmp", LF.UserInst); 3675 FullV = Cast; 3676 } 3677 3678 // Update the user. ICmpZero is handled specially here (for now) because 3679 // Expand may have updated one of the operands of the icmp already, and 3680 // its new value may happen to be equal to LF.OperandValToReplace, in 3681 // which case doing replaceUsesOfWith leads to replacing both operands 3682 // with the same value. TODO: Reorganize this. 3683 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3684 LF.UserInst->setOperand(0, FullV); 3685 else 3686 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3687 } 3688 3689 DeadInsts.push_back(LF.OperandValToReplace); 3690 } 3691 3692 /// ImplementSolution - Rewrite all the fixup locations with new values, 3693 /// following the chosen solution. 3694 void 3695 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3696 Pass *P) { 3697 // Keep track of instructions we may have made dead, so that 3698 // we can remove them after we are done working. 3699 SmallVector<WeakVH, 16> DeadInsts; 3700 3701 SCEVExpander Rewriter(SE, "lsr"); 3702 Rewriter.disableCanonicalMode(); 3703 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3704 3705 // Expand the new value definitions and update the users. 3706 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3707 E = Fixups.end(); I != E; ++I) { 3708 const LSRFixup &Fixup = *I; 3709 3710 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3711 3712 Changed = true; 3713 } 3714 3715 // Clean up after ourselves. This must be done before deleting any 3716 // instructions. 3717 Rewriter.clear(); 3718 3719 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3720 } 3721 3722 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3723 : IU(P->getAnalysis<IVUsers>()), 3724 SE(P->getAnalysis<ScalarEvolution>()), 3725 DT(P->getAnalysis<DominatorTree>()), 3726 LI(P->getAnalysis<LoopInfo>()), 3727 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3728 3729 // If LoopSimplify form is not available, stay out of trouble. 3730 if (!L->isLoopSimplifyForm()) return; 3731 3732 // If there's no interesting work to be done, bail early. 3733 if (IU.empty()) return; 3734 3735 DEBUG(dbgs() << "\nLSR on loop "; 3736 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3737 dbgs() << ":\n"); 3738 3739 // First, perform some low-level loop optimizations. 3740 OptimizeShadowIV(); 3741 OptimizeLoopTermCond(); 3742 3743 // Start collecting data and preparing for the solver. 3744 CollectInterestingTypesAndFactors(); 3745 CollectFixupsAndInitialFormulae(); 3746 CollectLoopInvariantFixupsAndFormulae(); 3747 3748 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3749 print_uses(dbgs())); 3750 3751 // Now use the reuse data to generate a bunch of interesting ways 3752 // to formulate the values needed for the uses. 3753 GenerateAllReuseFormulae(); 3754 3755 FilterOutUndesirableDedicatedRegisters(); 3756 NarrowSearchSpaceUsingHeuristics(); 3757 3758 SmallVector<const Formula *, 8> Solution; 3759 Solve(Solution); 3760 3761 // Release memory that is no longer needed. 3762 Factors.clear(); 3763 Types.clear(); 3764 RegUses.clear(); 3765 3766 #ifndef NDEBUG 3767 // Formulae should be legal. 3768 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3769 E = Uses.end(); I != E; ++I) { 3770 const LSRUse &LU = *I; 3771 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3772 JE = LU.Formulae.end(); J != JE; ++J) 3773 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3774 LU.Kind, LU.AccessTy, TLI) && 3775 "Illegal formula generated!"); 3776 }; 3777 #endif 3778 3779 // Now that we've decided what we want, make it so. 3780 ImplementSolution(Solution, P); 3781 } 3782 3783 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3784 if (Factors.empty() && Types.empty()) return; 3785 3786 OS << "LSR has identified the following interesting factors and types: "; 3787 bool First = true; 3788 3789 for (SmallSetVector<int64_t, 8>::const_iterator 3790 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3791 if (!First) OS << ", "; 3792 First = false; 3793 OS << '*' << *I; 3794 } 3795 3796 for (SmallSetVector<Type *, 4>::const_iterator 3797 I = Types.begin(), E = Types.end(); I != E; ++I) { 3798 if (!First) OS << ", "; 3799 First = false; 3800 OS << '(' << **I << ')'; 3801 } 3802 OS << '\n'; 3803 } 3804 3805 void LSRInstance::print_fixups(raw_ostream &OS) const { 3806 OS << "LSR is examining the following fixup sites:\n"; 3807 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3808 E = Fixups.end(); I != E; ++I) { 3809 dbgs() << " "; 3810 I->print(OS); 3811 OS << '\n'; 3812 } 3813 } 3814 3815 void LSRInstance::print_uses(raw_ostream &OS) const { 3816 OS << "LSR is examining the following uses:\n"; 3817 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3818 E = Uses.end(); I != E; ++I) { 3819 const LSRUse &LU = *I; 3820 dbgs() << " "; 3821 LU.print(OS); 3822 OS << '\n'; 3823 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3824 JE = LU.Formulae.end(); J != JE; ++J) { 3825 OS << " "; 3826 J->print(OS); 3827 OS << '\n'; 3828 } 3829 } 3830 } 3831 3832 void LSRInstance::print(raw_ostream &OS) const { 3833 print_factors_and_types(OS); 3834 print_fixups(OS); 3835 print_uses(OS); 3836 } 3837 3838 void LSRInstance::dump() const { 3839 print(errs()); errs() << '\n'; 3840 } 3841 3842 namespace { 3843 3844 class LoopStrengthReduce : public LoopPass { 3845 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3846 /// transformation profitability. 3847 const TargetLowering *const TLI; 3848 3849 public: 3850 static char ID; // Pass ID, replacement for typeid 3851 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3852 3853 private: 3854 bool runOnLoop(Loop *L, LPPassManager &LPM); 3855 void getAnalysisUsage(AnalysisUsage &AU) const; 3856 }; 3857 3858 } 3859 3860 char LoopStrengthReduce::ID = 0; 3861 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 3862 "Loop Strength Reduction", false, false) 3863 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 3864 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3865 INITIALIZE_PASS_DEPENDENCY(IVUsers) 3866 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 3867 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3868 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 3869 "Loop Strength Reduction", false, false) 3870 3871 3872 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 3873 return new LoopStrengthReduce(TLI); 3874 } 3875 3876 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 3877 : LoopPass(ID), TLI(tli) { 3878 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 3879 } 3880 3881 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 3882 // We split critical edges, so we change the CFG. However, we do update 3883 // many analyses if they are around. 3884 AU.addPreservedID(LoopSimplifyID); 3885 3886 AU.addRequired<LoopInfo>(); 3887 AU.addPreserved<LoopInfo>(); 3888 AU.addRequiredID(LoopSimplifyID); 3889 AU.addRequired<DominatorTree>(); 3890 AU.addPreserved<DominatorTree>(); 3891 AU.addRequired<ScalarEvolution>(); 3892 AU.addPreserved<ScalarEvolution>(); 3893 // Requiring LoopSimplify a second time here prevents IVUsers from running 3894 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 3895 AU.addRequiredID(LoopSimplifyID); 3896 AU.addRequired<IVUsers>(); 3897 AU.addPreserved<IVUsers>(); 3898 } 3899 3900 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 3901 bool Changed = false; 3902 3903 // Run the main LSR transformation. 3904 Changed |= LSRInstance(TLI, L, this).getChanged(); 3905 3906 // At this point, it is worth checking to see if any recurrence PHIs are also 3907 // dead, so that we can remove them as well. 3908 Changed |= DeleteDeadPHIs(L->getHeader()); 3909 3910 return Changed; 3911 } 3912