Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with code generation of C++ expressions
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Frontend/CodeGenOptions.h"
     15 #include "CodeGenFunction.h"
     16 #include "CGCXXABI.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CGDebugInfo.h"
     19 #include "llvm/Intrinsics.h"
     20 #include "llvm/Support/CallSite.h"
     21 
     22 using namespace clang;
     23 using namespace CodeGen;
     24 
     25 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
     26                                           llvm::Value *Callee,
     27                                           ReturnValueSlot ReturnValue,
     28                                           llvm::Value *This,
     29                                           llvm::Value *VTT,
     30                                           CallExpr::const_arg_iterator ArgBeg,
     31                                           CallExpr::const_arg_iterator ArgEnd) {
     32   assert(MD->isInstance() &&
     33          "Trying to emit a member call expr on a static method!");
     34 
     35   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
     36 
     37   CallArgList Args;
     38 
     39   // Push the this ptr.
     40   Args.add(RValue::get(This), MD->getThisType(getContext()));
     41 
     42   // If there is a VTT parameter, emit it.
     43   if (VTT) {
     44     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
     45     Args.add(RValue::get(VTT), T);
     46   }
     47 
     48   // And the rest of the call args
     49   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
     50 
     51   QualType ResultType = FPT->getResultType();
     52   return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
     53                                                  FPT->getExtInfo()),
     54                   Callee, ReturnValue, Args, MD);
     55 }
     56 
     57 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
     58   const Expr *E = Base;
     59 
     60   while (true) {
     61     E = E->IgnoreParens();
     62     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     63       if (CE->getCastKind() == CK_DerivedToBase ||
     64           CE->getCastKind() == CK_UncheckedDerivedToBase ||
     65           CE->getCastKind() == CK_NoOp) {
     66         E = CE->getSubExpr();
     67         continue;
     68       }
     69     }
     70 
     71     break;
     72   }
     73 
     74   QualType DerivedType = E->getType();
     75   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
     76     DerivedType = PTy->getPointeeType();
     77 
     78   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
     79 }
     80 
     81 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
     82 // quite what we want.
     83 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
     84   while (true) {
     85     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
     86       E = PE->getSubExpr();
     87       continue;
     88     }
     89 
     90     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     91       if (CE->getCastKind() == CK_NoOp) {
     92         E = CE->getSubExpr();
     93         continue;
     94       }
     95     }
     96     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
     97       if (UO->getOpcode() == UO_Extension) {
     98         E = UO->getSubExpr();
     99         continue;
    100       }
    101     }
    102     return E;
    103   }
    104 }
    105 
    106 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
    107 /// expr can be devirtualized.
    108 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
    109                                                const Expr *Base,
    110                                                const CXXMethodDecl *MD) {
    111 
    112   // When building with -fapple-kext, all calls must go through the vtable since
    113   // the kernel linker can do runtime patching of vtables.
    114   if (Context.getLangOptions().AppleKext)
    115     return false;
    116 
    117   // If the most derived class is marked final, we know that no subclass can
    118   // override this member function and so we can devirtualize it. For example:
    119   //
    120   // struct A { virtual void f(); }
    121   // struct B final : A { };
    122   //
    123   // void f(B *b) {
    124   //   b->f();
    125   // }
    126   //
    127   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
    128   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
    129     return true;
    130 
    131   // If the member function is marked 'final', we know that it can't be
    132   // overridden and can therefore devirtualize it.
    133   if (MD->hasAttr<FinalAttr>())
    134     return true;
    135 
    136   // Similarly, if the class itself is marked 'final' it can't be overridden
    137   // and we can therefore devirtualize the member function call.
    138   if (MD->getParent()->hasAttr<FinalAttr>())
    139     return true;
    140 
    141   Base = skipNoOpCastsAndParens(Base);
    142   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
    143     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    144       // This is a record decl. We know the type and can devirtualize it.
    145       return VD->getType()->isRecordType();
    146     }
    147 
    148     return false;
    149   }
    150 
    151   // We can always devirtualize calls on temporary object expressions.
    152   if (isa<CXXConstructExpr>(Base))
    153     return true;
    154 
    155   // And calls on bound temporaries.
    156   if (isa<CXXBindTemporaryExpr>(Base))
    157     return true;
    158 
    159   // Check if this is a call expr that returns a record type.
    160   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
    161     return CE->getCallReturnType()->isRecordType();
    162 
    163   // We can't devirtualize the call.
    164   return false;
    165 }
    166 
    167 // Note: This function also emit constructor calls to support a MSVC
    168 // extensions allowing explicit constructor function call.
    169 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
    170                                               ReturnValueSlot ReturnValue) {
    171   const Expr *callee = CE->getCallee()->IgnoreParens();
    172 
    173   if (isa<BinaryOperator>(callee))
    174     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
    175 
    176   const MemberExpr *ME = cast<MemberExpr>(callee);
    177   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
    178 
    179   CGDebugInfo *DI = getDebugInfo();
    180   if (DI && CGM.getCodeGenOpts().LimitDebugInfo
    181       && !isa<CallExpr>(ME->getBase())) {
    182     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
    183     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
    184       DI->getOrCreateRecordType(PTy->getPointeeType(),
    185                                 MD->getParent()->getLocation());
    186     }
    187   }
    188 
    189   if (MD->isStatic()) {
    190     // The method is static, emit it as we would a regular call.
    191     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    192     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
    193                     ReturnValue, CE->arg_begin(), CE->arg_end());
    194   }
    195 
    196   // Compute the object pointer.
    197   llvm::Value *This;
    198   if (ME->isArrow())
    199     This = EmitScalarExpr(ME->getBase());
    200   else
    201     This = EmitLValue(ME->getBase()).getAddress();
    202 
    203   if (MD->isTrivial()) {
    204     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
    205     if (isa<CXXConstructorDecl>(MD) &&
    206         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
    207       return RValue::get(0);
    208 
    209     if (MD->isCopyAssignmentOperator()) {
    210       // We don't like to generate the trivial copy assignment operator when
    211       // it isn't necessary; just produce the proper effect here.
    212       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    213       EmitAggregateCopy(This, RHS, CE->getType());
    214       return RValue::get(This);
    215     }
    216 
    217     if (isa<CXXConstructorDecl>(MD) &&
    218         cast<CXXConstructorDecl>(MD)->isCopyConstructor()) {
    219       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    220       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
    221                                      CE->arg_begin(), CE->arg_end());
    222       return RValue::get(This);
    223     }
    224     llvm_unreachable("unknown trivial member function");
    225   }
    226 
    227   // Compute the function type we're calling.
    228   const CGFunctionInfo *FInfo = 0;
    229   if (isa<CXXDestructorDecl>(MD))
    230     FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
    231                                            Dtor_Complete);
    232   else if (isa<CXXConstructorDecl>(MD))
    233     FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD),
    234                                             Ctor_Complete);
    235   else
    236     FInfo = &CGM.getTypes().getFunctionInfo(MD);
    237 
    238   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    239   llvm::Type *Ty
    240     = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic());
    241 
    242   // C++ [class.virtual]p12:
    243   //   Explicit qualification with the scope operator (5.1) suppresses the
    244   //   virtual call mechanism.
    245   //
    246   // We also don't emit a virtual call if the base expression has a record type
    247   // because then we know what the type is.
    248   bool UseVirtualCall;
    249   UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
    250                    && !canDevirtualizeMemberFunctionCalls(getContext(),
    251                                                           ME->getBase(), MD);
    252   llvm::Value *Callee;
    253   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    254     if (UseVirtualCall) {
    255       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
    256     } else {
    257       if (getContext().getLangOptions().AppleKext &&
    258           MD->isVirtual() &&
    259           ME->hasQualifier())
    260         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    261       else
    262         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
    263     }
    264   } else if (const CXXConstructorDecl *Ctor =
    265                dyn_cast<CXXConstructorDecl>(MD)) {
    266     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
    267   } else if (UseVirtualCall) {
    268       Callee = BuildVirtualCall(MD, This, Ty);
    269   } else {
    270     if (getContext().getLangOptions().AppleKext &&
    271         MD->isVirtual() &&
    272         ME->hasQualifier())
    273       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    274     else
    275       Callee = CGM.GetAddrOfFunction(MD, Ty);
    276   }
    277 
    278   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
    279                            CE->arg_begin(), CE->arg_end());
    280 }
    281 
    282 RValue
    283 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
    284                                               ReturnValueSlot ReturnValue) {
    285   const BinaryOperator *BO =
    286       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
    287   const Expr *BaseExpr = BO->getLHS();
    288   const Expr *MemFnExpr = BO->getRHS();
    289 
    290   const MemberPointerType *MPT =
    291     MemFnExpr->getType()->castAs<MemberPointerType>();
    292 
    293   const FunctionProtoType *FPT =
    294     MPT->getPointeeType()->castAs<FunctionProtoType>();
    295   const CXXRecordDecl *RD =
    296     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    297 
    298   // Get the member function pointer.
    299   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
    300 
    301   // Emit the 'this' pointer.
    302   llvm::Value *This;
    303 
    304   if (BO->getOpcode() == BO_PtrMemI)
    305     This = EmitScalarExpr(BaseExpr);
    306   else
    307     This = EmitLValue(BaseExpr).getAddress();
    308 
    309   // Ask the ABI to load the callee.  Note that This is modified.
    310   llvm::Value *Callee =
    311     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
    312 
    313   CallArgList Args;
    314 
    315   QualType ThisType =
    316     getContext().getPointerType(getContext().getTagDeclType(RD));
    317 
    318   // Push the this ptr.
    319   Args.add(RValue::get(This), ThisType);
    320 
    321   // And the rest of the call args
    322   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
    323   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee,
    324                   ReturnValue, Args);
    325 }
    326 
    327 RValue
    328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
    329                                                const CXXMethodDecl *MD,
    330                                                ReturnValueSlot ReturnValue) {
    331   assert(MD->isInstance() &&
    332          "Trying to emit a member call expr on a static method!");
    333   LValue LV = EmitLValue(E->getArg(0));
    334   llvm::Value *This = LV.getAddress();
    335 
    336   if (MD->isCopyAssignmentOperator()) {
    337     const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
    338     if (ClassDecl->hasTrivialCopyAssignment()) {
    339       assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
    340              "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
    341       llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
    342       QualType Ty = E->getType();
    343       EmitAggregateCopy(This, Src, Ty);
    344       return RValue::get(This);
    345     }
    346   }
    347 
    348   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
    349   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
    350                            E->arg_begin() + 1, E->arg_end());
    351 }
    352 
    353 void
    354 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
    355                                       AggValueSlot Dest) {
    356   assert(!Dest.isIgnored() && "Must have a destination!");
    357   const CXXConstructorDecl *CD = E->getConstructor();
    358 
    359   // If we require zero initialization before (or instead of) calling the
    360   // constructor, as can be the case with a non-user-provided default
    361   // constructor, emit the zero initialization now, unless destination is
    362   // already zeroed.
    363   if (E->requiresZeroInitialization() && !Dest.isZeroed())
    364     EmitNullInitialization(Dest.getAddr(), E->getType());
    365 
    366   // If this is a call to a trivial default constructor, do nothing.
    367   if (CD->isTrivial() && CD->isDefaultConstructor())
    368     return;
    369 
    370   // Elide the constructor if we're constructing from a temporary.
    371   // The temporary check is required because Sema sets this on NRVO
    372   // returns.
    373   if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
    374     assert(getContext().hasSameUnqualifiedType(E->getType(),
    375                                                E->getArg(0)->getType()));
    376     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
    377       EmitAggExpr(E->getArg(0), Dest);
    378       return;
    379     }
    380   }
    381 
    382   if (const ConstantArrayType *arrayType
    383         = getContext().getAsConstantArrayType(E->getType())) {
    384     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
    385                                E->arg_begin(), E->arg_end());
    386   } else {
    387     CXXCtorType Type = Ctor_Complete;
    388     bool ForVirtualBase = false;
    389 
    390     switch (E->getConstructionKind()) {
    391      case CXXConstructExpr::CK_Delegating:
    392       // We should be emitting a constructor; GlobalDecl will assert this
    393       Type = CurGD.getCtorType();
    394       break;
    395 
    396      case CXXConstructExpr::CK_Complete:
    397       Type = Ctor_Complete;
    398       break;
    399 
    400      case CXXConstructExpr::CK_VirtualBase:
    401       ForVirtualBase = true;
    402       // fall-through
    403 
    404      case CXXConstructExpr::CK_NonVirtualBase:
    405       Type = Ctor_Base;
    406     }
    407 
    408     // Call the constructor.
    409     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
    410                            E->arg_begin(), E->arg_end());
    411   }
    412 }
    413 
    414 void
    415 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
    416                                             llvm::Value *Src,
    417                                             const Expr *Exp) {
    418   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    419     Exp = E->getSubExpr();
    420   assert(isa<CXXConstructExpr>(Exp) &&
    421          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
    422   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
    423   const CXXConstructorDecl *CD = E->getConstructor();
    424   RunCleanupsScope Scope(*this);
    425 
    426   // If we require zero initialization before (or instead of) calling the
    427   // constructor, as can be the case with a non-user-provided default
    428   // constructor, emit the zero initialization now.
    429   // FIXME. Do I still need this for a copy ctor synthesis?
    430   if (E->requiresZeroInitialization())
    431     EmitNullInitialization(Dest, E->getType());
    432 
    433   assert(!getContext().getAsConstantArrayType(E->getType())
    434          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
    435   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
    436                                  E->arg_begin(), E->arg_end());
    437 }
    438 
    439 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
    440                                         const CXXNewExpr *E) {
    441   if (!E->isArray())
    442     return CharUnits::Zero();
    443 
    444   // No cookie is required if the operator new[] being used is the
    445   // reserved placement operator new[].
    446   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    447     return CharUnits::Zero();
    448 
    449   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
    450 }
    451 
    452 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
    453                                         const CXXNewExpr *e,
    454                                         llvm::Value *&numElements,
    455                                         llvm::Value *&sizeWithoutCookie) {
    456   QualType type = e->getAllocatedType();
    457 
    458   if (!e->isArray()) {
    459     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    460     sizeWithoutCookie
    461       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    462     return sizeWithoutCookie;
    463   }
    464 
    465   // The width of size_t.
    466   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
    467 
    468   // Figure out the cookie size.
    469   llvm::APInt cookieSize(sizeWidth,
    470                          CalculateCookiePadding(CGF, e).getQuantity());
    471 
    472   // Emit the array size expression.
    473   // We multiply the size of all dimensions for NumElements.
    474   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
    475   numElements = CGF.EmitScalarExpr(e->getArraySize());
    476   assert(isa<llvm::IntegerType>(numElements->getType()));
    477 
    478   // The number of elements can be have an arbitrary integer type;
    479   // essentially, we need to multiply it by a constant factor, add a
    480   // cookie size, and verify that the result is representable as a
    481   // size_t.  That's just a gloss, though, and it's wrong in one
    482   // important way: if the count is negative, it's an error even if
    483   // the cookie size would bring the total size >= 0.
    484   bool isSigned
    485     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
    486   llvm::IntegerType *numElementsType
    487     = cast<llvm::IntegerType>(numElements->getType());
    488   unsigned numElementsWidth = numElementsType->getBitWidth();
    489 
    490   // Compute the constant factor.
    491   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
    492   while (const ConstantArrayType *CAT
    493              = CGF.getContext().getAsConstantArrayType(type)) {
    494     type = CAT->getElementType();
    495     arraySizeMultiplier *= CAT->getSize();
    496   }
    497 
    498   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    499   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
    500   typeSizeMultiplier *= arraySizeMultiplier;
    501 
    502   // This will be a size_t.
    503   llvm::Value *size;
    504 
    505   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
    506   // Don't bloat the -O0 code.
    507   if (llvm::ConstantInt *numElementsC =
    508         dyn_cast<llvm::ConstantInt>(numElements)) {
    509     const llvm::APInt &count = numElementsC->getValue();
    510 
    511     bool hasAnyOverflow = false;
    512 
    513     // If 'count' was a negative number, it's an overflow.
    514     if (isSigned && count.isNegative())
    515       hasAnyOverflow = true;
    516 
    517     // We want to do all this arithmetic in size_t.  If numElements is
    518     // wider than that, check whether it's already too big, and if so,
    519     // overflow.
    520     else if (numElementsWidth > sizeWidth &&
    521              numElementsWidth - sizeWidth > count.countLeadingZeros())
    522       hasAnyOverflow = true;
    523 
    524     // Okay, compute a count at the right width.
    525     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
    526 
    527     // Scale numElements by that.  This might overflow, but we don't
    528     // care because it only overflows if allocationSize does, too, and
    529     // if that overflows then we shouldn't use this.
    530     numElements = llvm::ConstantInt::get(CGF.SizeTy,
    531                                          adjustedCount * arraySizeMultiplier);
    532 
    533     // Compute the size before cookie, and track whether it overflowed.
    534     bool overflow;
    535     llvm::APInt allocationSize
    536       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    537     hasAnyOverflow |= overflow;
    538 
    539     // Add in the cookie, and check whether it's overflowed.
    540     if (cookieSize != 0) {
    541       // Save the current size without a cookie.  This shouldn't be
    542       // used if there was overflow.
    543       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    544 
    545       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
    546       hasAnyOverflow |= overflow;
    547     }
    548 
    549     // On overflow, produce a -1 so operator new will fail.
    550     if (hasAnyOverflow) {
    551       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    552     } else {
    553       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    554     }
    555 
    556   // Otherwise, we might need to use the overflow intrinsics.
    557   } else {
    558     // There are up to four conditions we need to test for:
    559     // 1) if isSigned, we need to check whether numElements is negative;
    560     // 2) if numElementsWidth > sizeWidth, we need to check whether
    561     //   numElements is larger than something representable in size_t;
    562     // 3) we need to compute
    563     //      sizeWithoutCookie := numElements * typeSizeMultiplier
    564     //    and check whether it overflows; and
    565     // 4) if we need a cookie, we need to compute
    566     //      size := sizeWithoutCookie + cookieSize
    567     //    and check whether it overflows.
    568 
    569     llvm::Value *hasOverflow = 0;
    570 
    571     // If numElementsWidth > sizeWidth, then one way or another, we're
    572     // going to have to do a comparison for (2), and this happens to
    573     // take care of (1), too.
    574     if (numElementsWidth > sizeWidth) {
    575       llvm::APInt threshold(numElementsWidth, 1);
    576       threshold <<= sizeWidth;
    577 
    578       llvm::Value *thresholdV
    579         = llvm::ConstantInt::get(numElementsType, threshold);
    580 
    581       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
    582       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
    583 
    584     // Otherwise, if we're signed, we want to sext up to size_t.
    585     } else if (isSigned) {
    586       if (numElementsWidth < sizeWidth)
    587         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
    588 
    589       // If there's a non-1 type size multiplier, then we can do the
    590       // signedness check at the same time as we do the multiply
    591       // because a negative number times anything will cause an
    592       // unsigned overflow.  Otherwise, we have to do it here.
    593       if (typeSizeMultiplier == 1)
    594         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
    595                                       llvm::ConstantInt::get(CGF.SizeTy, 0));
    596 
    597     // Otherwise, zext up to size_t if necessary.
    598     } else if (numElementsWidth < sizeWidth) {
    599       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    600     }
    601 
    602     assert(numElements->getType() == CGF.SizeTy);
    603 
    604     size = numElements;
    605 
    606     // Multiply by the type size if necessary.  This multiplier
    607     // includes all the factors for nested arrays.
    608     //
    609     // This step also causes numElements to be scaled up by the
    610     // nested-array factor if necessary.  Overflow on this computation
    611     // can be ignored because the result shouldn't be used if
    612     // allocation fails.
    613     if (typeSizeMultiplier != 1) {
    614       llvm::Value *umul_with_overflow
    615         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
    616 
    617       llvm::Value *tsmV =
    618         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
    619       llvm::Value *result =
    620         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
    621 
    622       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    623       if (hasOverflow)
    624         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    625       else
    626         hasOverflow = overflowed;
    627 
    628       size = CGF.Builder.CreateExtractValue(result, 0);
    629 
    630       // Also scale up numElements by the array size multiplier.
    631       if (arraySizeMultiplier != 1) {
    632         // If the base element type size is 1, then we can re-use the
    633         // multiply we just did.
    634         if (typeSize.isOne()) {
    635           assert(arraySizeMultiplier == typeSizeMultiplier);
    636           numElements = size;
    637 
    638         // Otherwise we need a separate multiply.
    639         } else {
    640           llvm::Value *asmV =
    641             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
    642           numElements = CGF.Builder.CreateMul(numElements, asmV);
    643         }
    644       }
    645     } else {
    646       // numElements doesn't need to be scaled.
    647       assert(arraySizeMultiplier == 1);
    648     }
    649 
    650     // Add in the cookie size if necessary.
    651     if (cookieSize != 0) {
    652       sizeWithoutCookie = size;
    653 
    654       llvm::Value *uadd_with_overflow
    655         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
    656 
    657       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
    658       llvm::Value *result =
    659         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
    660 
    661       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    662       if (hasOverflow)
    663         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    664       else
    665         hasOverflow = overflowed;
    666 
    667       size = CGF.Builder.CreateExtractValue(result, 0);
    668     }
    669 
    670     // If we had any possibility of dynamic overflow, make a select to
    671     // overwrite 'size' with an all-ones value, which should cause
    672     // operator new to throw.
    673     if (hasOverflow)
    674       size = CGF.Builder.CreateSelect(hasOverflow,
    675                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
    676                                       size);
    677   }
    678 
    679   if (cookieSize == 0)
    680     sizeWithoutCookie = size;
    681   else
    682     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
    683 
    684   return size;
    685 }
    686 
    687 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
    688                                     llvm::Value *NewPtr) {
    689 
    690   assert(E->getNumConstructorArgs() == 1 &&
    691          "Can only have one argument to initializer of POD type.");
    692 
    693   const Expr *Init = E->getConstructorArg(0);
    694   QualType AllocType = E->getAllocatedType();
    695 
    696   unsigned Alignment =
    697     CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
    698   if (!CGF.hasAggregateLLVMType(AllocType))
    699     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment),
    700                        false);
    701   else if (AllocType->isAnyComplexType())
    702     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
    703                                 AllocType.isVolatileQualified());
    704   else {
    705     AggValueSlot Slot
    706       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), true);
    707     CGF.EmitAggExpr(Init, Slot);
    708   }
    709 }
    710 
    711 void
    712 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
    713                                          llvm::Value *NewPtr,
    714                                          llvm::Value *NumElements) {
    715   // We have a POD type.
    716   if (E->getNumConstructorArgs() == 0)
    717     return;
    718 
    719   llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    720 
    721   // Create a temporary for the loop index and initialize it with 0.
    722   llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
    723   llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
    724   Builder.CreateStore(Zero, IndexPtr);
    725 
    726   // Start the loop with a block that tests the condition.
    727   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    728   llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
    729 
    730   EmitBlock(CondBlock);
    731 
    732   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    733 
    734   // Generate: if (loop-index < number-of-elements fall to the loop body,
    735   // otherwise, go to the block after the for-loop.
    736   llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
    737   llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
    738   // If the condition is true, execute the body.
    739   Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    740 
    741   EmitBlock(ForBody);
    742 
    743   llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
    744   // Inside the loop body, emit the constructor call on the array element.
    745   Counter = Builder.CreateLoad(IndexPtr);
    746   llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
    747                                                    "arrayidx");
    748   StoreAnyExprIntoOneUnit(*this, E, Address);
    749 
    750   EmitBlock(ContinueBlock);
    751 
    752   // Emit the increment of the loop counter.
    753   llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
    754   Counter = Builder.CreateLoad(IndexPtr);
    755   NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
    756   Builder.CreateStore(NextVal, IndexPtr);
    757 
    758   // Finally, branch back up to the condition for the next iteration.
    759   EmitBranch(CondBlock);
    760 
    761   // Emit the fall-through block.
    762   EmitBlock(AfterFor, true);
    763 }
    764 
    765 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
    766                            llvm::Value *NewPtr, llvm::Value *Size) {
    767   CGF.EmitCastToVoidPtr(NewPtr);
    768   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
    769   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
    770                            Alignment.getQuantity(), false);
    771 }
    772 
    773 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
    774                                llvm::Value *NewPtr,
    775                                llvm::Value *NumElements,
    776                                llvm::Value *AllocSizeWithoutCookie) {
    777   if (E->isArray()) {
    778     if (CXXConstructorDecl *Ctor = E->getConstructor()) {
    779       bool RequiresZeroInitialization = false;
    780       if (Ctor->getParent()->hasTrivialDefaultConstructor()) {
    781         // If new expression did not specify value-initialization, then there
    782         // is no initialization.
    783         if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
    784           return;
    785 
    786         if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
    787           // Optimization: since zero initialization will just set the memory
    788           // to all zeroes, generate a single memset to do it in one shot.
    789           EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
    790                          AllocSizeWithoutCookie);
    791           return;
    792         }
    793 
    794         RequiresZeroInitialization = true;
    795       }
    796 
    797       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
    798                                      E->constructor_arg_begin(),
    799                                      E->constructor_arg_end(),
    800                                      RequiresZeroInitialization);
    801       return;
    802     } else if (E->getNumConstructorArgs() == 1 &&
    803                isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
    804       // Optimization: since zero initialization will just set the memory
    805       // to all zeroes, generate a single memset to do it in one shot.
    806       EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
    807                      AllocSizeWithoutCookie);
    808       return;
    809     } else {
    810       CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
    811       return;
    812     }
    813   }
    814 
    815   if (CXXConstructorDecl *Ctor = E->getConstructor()) {
    816     // Per C++ [expr.new]p15, if we have an initializer, then we're performing
    817     // direct initialization. C++ [dcl.init]p5 requires that we
    818     // zero-initialize storage if there are no user-declared constructors.
    819     if (E->hasInitializer() &&
    820         !Ctor->getParent()->hasUserDeclaredConstructor() &&
    821         !Ctor->getParent()->isEmpty())
    822       CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
    823 
    824     CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
    825                                NewPtr, E->constructor_arg_begin(),
    826                                E->constructor_arg_end());
    827 
    828     return;
    829   }
    830   // We have a POD type.
    831   if (E->getNumConstructorArgs() == 0)
    832     return;
    833 
    834   StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
    835 }
    836 
    837 namespace {
    838   /// A cleanup to call the given 'operator delete' function upon
    839   /// abnormal exit from a new expression.
    840   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
    841     size_t NumPlacementArgs;
    842     const FunctionDecl *OperatorDelete;
    843     llvm::Value *Ptr;
    844     llvm::Value *AllocSize;
    845 
    846     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
    847 
    848   public:
    849     static size_t getExtraSize(size_t NumPlacementArgs) {
    850       return NumPlacementArgs * sizeof(RValue);
    851     }
    852 
    853     CallDeleteDuringNew(size_t NumPlacementArgs,
    854                         const FunctionDecl *OperatorDelete,
    855                         llvm::Value *Ptr,
    856                         llvm::Value *AllocSize)
    857       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
    858         Ptr(Ptr), AllocSize(AllocSize) {}
    859 
    860     void setPlacementArg(unsigned I, RValue Arg) {
    861       assert(I < NumPlacementArgs && "index out of range");
    862       getPlacementArgs()[I] = Arg;
    863     }
    864 
    865     void Emit(CodeGenFunction &CGF, Flags flags) {
    866       const FunctionProtoType *FPT
    867         = OperatorDelete->getType()->getAs<FunctionProtoType>();
    868       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
    869              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
    870 
    871       CallArgList DeleteArgs;
    872 
    873       // The first argument is always a void*.
    874       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
    875       DeleteArgs.add(RValue::get(Ptr), *AI++);
    876 
    877       // A member 'operator delete' can take an extra 'size_t' argument.
    878       if (FPT->getNumArgs() == NumPlacementArgs + 2)
    879         DeleteArgs.add(RValue::get(AllocSize), *AI++);
    880 
    881       // Pass the rest of the arguments, which must match exactly.
    882       for (unsigned I = 0; I != NumPlacementArgs; ++I)
    883         DeleteArgs.add(getPlacementArgs()[I], *AI++);
    884 
    885       // Call 'operator delete'.
    886       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
    887                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
    888                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
    889     }
    890   };
    891 
    892   /// A cleanup to call the given 'operator delete' function upon
    893   /// abnormal exit from a new expression when the new expression is
    894   /// conditional.
    895   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
    896     size_t NumPlacementArgs;
    897     const FunctionDecl *OperatorDelete;
    898     DominatingValue<RValue>::saved_type Ptr;
    899     DominatingValue<RValue>::saved_type AllocSize;
    900 
    901     DominatingValue<RValue>::saved_type *getPlacementArgs() {
    902       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
    903     }
    904 
    905   public:
    906     static size_t getExtraSize(size_t NumPlacementArgs) {
    907       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
    908     }
    909 
    910     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
    911                                    const FunctionDecl *OperatorDelete,
    912                                    DominatingValue<RValue>::saved_type Ptr,
    913                               DominatingValue<RValue>::saved_type AllocSize)
    914       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
    915         Ptr(Ptr), AllocSize(AllocSize) {}
    916 
    917     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
    918       assert(I < NumPlacementArgs && "index out of range");
    919       getPlacementArgs()[I] = Arg;
    920     }
    921 
    922     void Emit(CodeGenFunction &CGF, Flags flags) {
    923       const FunctionProtoType *FPT
    924         = OperatorDelete->getType()->getAs<FunctionProtoType>();
    925       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
    926              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
    927 
    928       CallArgList DeleteArgs;
    929 
    930       // The first argument is always a void*.
    931       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
    932       DeleteArgs.add(Ptr.restore(CGF), *AI++);
    933 
    934       // A member 'operator delete' can take an extra 'size_t' argument.
    935       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
    936         RValue RV = AllocSize.restore(CGF);
    937         DeleteArgs.add(RV, *AI++);
    938       }
    939 
    940       // Pass the rest of the arguments, which must match exactly.
    941       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
    942         RValue RV = getPlacementArgs()[I].restore(CGF);
    943         DeleteArgs.add(RV, *AI++);
    944       }
    945 
    946       // Call 'operator delete'.
    947       CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
    948                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
    949                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
    950     }
    951   };
    952 }
    953 
    954 /// Enter a cleanup to call 'operator delete' if the initializer in a
    955 /// new-expression throws.
    956 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
    957                                   const CXXNewExpr *E,
    958                                   llvm::Value *NewPtr,
    959                                   llvm::Value *AllocSize,
    960                                   const CallArgList &NewArgs) {
    961   // If we're not inside a conditional branch, then the cleanup will
    962   // dominate and we can do the easier (and more efficient) thing.
    963   if (!CGF.isInConditionalBranch()) {
    964     CallDeleteDuringNew *Cleanup = CGF.EHStack
    965       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
    966                                                  E->getNumPlacementArgs(),
    967                                                  E->getOperatorDelete(),
    968                                                  NewPtr, AllocSize);
    969     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
    970       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
    971 
    972     return;
    973   }
    974 
    975   // Otherwise, we need to save all this stuff.
    976   DominatingValue<RValue>::saved_type SavedNewPtr =
    977     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
    978   DominatingValue<RValue>::saved_type SavedAllocSize =
    979     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
    980 
    981   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
    982     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
    983                                                  E->getNumPlacementArgs(),
    984                                                  E->getOperatorDelete(),
    985                                                  SavedNewPtr,
    986                                                  SavedAllocSize);
    987   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
    988     Cleanup->setPlacementArg(I,
    989                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
    990 
    991   CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
    992 }
    993 
    994 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
    995   // The element type being allocated.
    996   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
    997 
    998   // 1. Build a call to the allocation function.
    999   FunctionDecl *allocator = E->getOperatorNew();
   1000   const FunctionProtoType *allocatorType =
   1001     allocator->getType()->castAs<FunctionProtoType>();
   1002 
   1003   CallArgList allocatorArgs;
   1004 
   1005   // The allocation size is the first argument.
   1006   QualType sizeType = getContext().getSizeType();
   1007 
   1008   llvm::Value *numElements = 0;
   1009   llvm::Value *allocSizeWithoutCookie = 0;
   1010   llvm::Value *allocSize =
   1011     EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie);
   1012 
   1013   allocatorArgs.add(RValue::get(allocSize), sizeType);
   1014 
   1015   // Emit the rest of the arguments.
   1016   // FIXME: Ideally, this should just use EmitCallArgs.
   1017   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
   1018 
   1019   // First, use the types from the function type.
   1020   // We start at 1 here because the first argument (the allocation size)
   1021   // has already been emitted.
   1022   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
   1023        ++i, ++placementArg) {
   1024     QualType argType = allocatorType->getArgType(i);
   1025 
   1026     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
   1027                                                placementArg->getType()) &&
   1028            "type mismatch in call argument!");
   1029 
   1030     EmitCallArg(allocatorArgs, *placementArg, argType);
   1031   }
   1032 
   1033   // Either we've emitted all the call args, or we have a call to a
   1034   // variadic function.
   1035   assert((placementArg == E->placement_arg_end() ||
   1036           allocatorType->isVariadic()) &&
   1037          "Extra arguments to non-variadic function!");
   1038 
   1039   // If we still have any arguments, emit them using the type of the argument.
   1040   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
   1041        placementArg != placementArgsEnd; ++placementArg) {
   1042     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
   1043   }
   1044 
   1045   // Emit the allocation call.  If the allocator is a global placement
   1046   // operator, just "inline" it directly.
   1047   RValue RV;
   1048   if (allocator->isReservedGlobalPlacementOperator()) {
   1049     assert(allocatorArgs.size() == 2);
   1050     RV = allocatorArgs[1].RV;
   1051     // TODO: kill any unnecessary computations done for the size
   1052     // argument.
   1053   } else {
   1054     RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType),
   1055                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
   1056                   allocatorArgs, allocator);
   1057   }
   1058 
   1059   // Emit a null check on the allocation result if the allocation
   1060   // function is allowed to return null (because it has a non-throwing
   1061   // exception spec; for this part, we inline
   1062   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
   1063   // interesting initializer.
   1064   bool nullCheck = allocatorType->isNothrow(getContext()) &&
   1065     !(allocType.isPODType(getContext()) && !E->hasInitializer());
   1066 
   1067   llvm::BasicBlock *nullCheckBB = 0;
   1068   llvm::BasicBlock *contBB = 0;
   1069 
   1070   llvm::Value *allocation = RV.getScalarVal();
   1071   unsigned AS =
   1072     cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
   1073 
   1074   // The null-check means that the initializer is conditionally
   1075   // evaluated.
   1076   ConditionalEvaluation conditional(*this);
   1077 
   1078   if (nullCheck) {
   1079     conditional.begin(*this);
   1080 
   1081     nullCheckBB = Builder.GetInsertBlock();
   1082     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
   1083     contBB = createBasicBlock("new.cont");
   1084 
   1085     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
   1086     Builder.CreateCondBr(isNull, contBB, notNullBB);
   1087     EmitBlock(notNullBB);
   1088   }
   1089 
   1090   assert((allocSize == allocSizeWithoutCookie) ==
   1091          CalculateCookiePadding(*this, E).isZero());
   1092   if (allocSize != allocSizeWithoutCookie) {
   1093     assert(E->isArray());
   1094     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
   1095                                                        numElements,
   1096                                                        E, allocType);
   1097   }
   1098 
   1099   // If there's an operator delete, enter a cleanup to call it if an
   1100   // exception is thrown.
   1101   EHScopeStack::stable_iterator operatorDeleteCleanup;
   1102   if (E->getOperatorDelete() &&
   1103       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1104     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
   1105     operatorDeleteCleanup = EHStack.stable_begin();
   1106   }
   1107 
   1108   llvm::Type *elementPtrTy
   1109     = ConvertTypeForMem(allocType)->getPointerTo(AS);
   1110   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
   1111 
   1112   if (E->isArray()) {
   1113     EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
   1114 
   1115     // NewPtr is a pointer to the base element type.  If we're
   1116     // allocating an array of arrays, we'll need to cast back to the
   1117     // array pointer type.
   1118     llvm::Type *resultType = ConvertTypeForMem(E->getType());
   1119     if (result->getType() != resultType)
   1120       result = Builder.CreateBitCast(result, resultType);
   1121   } else {
   1122     EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
   1123   }
   1124 
   1125   // Deactivate the 'operator delete' cleanup if we finished
   1126   // initialization.
   1127   if (operatorDeleteCleanup.isValid())
   1128     DeactivateCleanupBlock(operatorDeleteCleanup);
   1129 
   1130   if (nullCheck) {
   1131     conditional.end(*this);
   1132 
   1133     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
   1134     EmitBlock(contBB);
   1135 
   1136     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
   1137     PHI->addIncoming(result, notNullBB);
   1138     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
   1139                      nullCheckBB);
   1140 
   1141     result = PHI;
   1142   }
   1143 
   1144   return result;
   1145 }
   1146 
   1147 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
   1148                                      llvm::Value *Ptr,
   1149                                      QualType DeleteTy) {
   1150   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
   1151 
   1152   const FunctionProtoType *DeleteFTy =
   1153     DeleteFD->getType()->getAs<FunctionProtoType>();
   1154 
   1155   CallArgList DeleteArgs;
   1156 
   1157   // Check if we need to pass the size to the delete operator.
   1158   llvm::Value *Size = 0;
   1159   QualType SizeTy;
   1160   if (DeleteFTy->getNumArgs() == 2) {
   1161     SizeTy = DeleteFTy->getArgType(1);
   1162     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
   1163     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
   1164                                   DeleteTypeSize.getQuantity());
   1165   }
   1166 
   1167   QualType ArgTy = DeleteFTy->getArgType(0);
   1168   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
   1169   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
   1170 
   1171   if (Size)
   1172     DeleteArgs.add(RValue::get(Size), SizeTy);
   1173 
   1174   // Emit the call to delete.
   1175   EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
   1176            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
   1177            DeleteArgs, DeleteFD);
   1178 }
   1179 
   1180 namespace {
   1181   /// Calls the given 'operator delete' on a single object.
   1182   struct CallObjectDelete : EHScopeStack::Cleanup {
   1183     llvm::Value *Ptr;
   1184     const FunctionDecl *OperatorDelete;
   1185     QualType ElementType;
   1186 
   1187     CallObjectDelete(llvm::Value *Ptr,
   1188                      const FunctionDecl *OperatorDelete,
   1189                      QualType ElementType)
   1190       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
   1191 
   1192     void Emit(CodeGenFunction &CGF, Flags flags) {
   1193       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
   1194     }
   1195   };
   1196 }
   1197 
   1198 /// Emit the code for deleting a single object.
   1199 static void EmitObjectDelete(CodeGenFunction &CGF,
   1200                              const FunctionDecl *OperatorDelete,
   1201                              llvm::Value *Ptr,
   1202                              QualType ElementType,
   1203                              bool UseGlobalDelete) {
   1204   // Find the destructor for the type, if applicable.  If the
   1205   // destructor is virtual, we'll just emit the vcall and return.
   1206   const CXXDestructorDecl *Dtor = 0;
   1207   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
   1208     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1209     if (!RD->hasTrivialDestructor()) {
   1210       Dtor = RD->getDestructor();
   1211 
   1212       if (Dtor->isVirtual()) {
   1213         if (UseGlobalDelete) {
   1214           // If we're supposed to call the global delete, make sure we do so
   1215           // even if the destructor throws.
   1216           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1217                                                     Ptr, OperatorDelete,
   1218                                                     ElementType);
   1219         }
   1220 
   1221         llvm::Type *Ty =
   1222           CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
   1223                                                                Dtor_Complete),
   1224                                          /*isVariadic=*/false);
   1225 
   1226         llvm::Value *Callee
   1227           = CGF.BuildVirtualCall(Dtor,
   1228                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
   1229                                  Ptr, Ty);
   1230         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
   1231                               0, 0);
   1232 
   1233         if (UseGlobalDelete) {
   1234           CGF.PopCleanupBlock();
   1235         }
   1236 
   1237         return;
   1238       }
   1239     }
   1240   }
   1241 
   1242   // Make sure that we call delete even if the dtor throws.
   1243   // This doesn't have to a conditional cleanup because we're going
   1244   // to pop it off in a second.
   1245   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1246                                             Ptr, OperatorDelete, ElementType);
   1247 
   1248   if (Dtor)
   1249     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1250                               /*ForVirtualBase=*/false, Ptr);
   1251   else if (CGF.getLangOptions().ObjCAutoRefCount &&
   1252            ElementType->isObjCLifetimeType()) {
   1253     switch (ElementType.getObjCLifetime()) {
   1254     case Qualifiers::OCL_None:
   1255     case Qualifiers::OCL_ExplicitNone:
   1256     case Qualifiers::OCL_Autoreleasing:
   1257       break;
   1258 
   1259     case Qualifiers::OCL_Strong: {
   1260       // Load the pointer value.
   1261       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
   1262                                              ElementType.isVolatileQualified());
   1263 
   1264       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
   1265       break;
   1266     }
   1267 
   1268     case Qualifiers::OCL_Weak:
   1269       CGF.EmitARCDestroyWeak(Ptr);
   1270       break;
   1271     }
   1272   }
   1273 
   1274   CGF.PopCleanupBlock();
   1275 }
   1276 
   1277 namespace {
   1278   /// Calls the given 'operator delete' on an array of objects.
   1279   struct CallArrayDelete : EHScopeStack::Cleanup {
   1280     llvm::Value *Ptr;
   1281     const FunctionDecl *OperatorDelete;
   1282     llvm::Value *NumElements;
   1283     QualType ElementType;
   1284     CharUnits CookieSize;
   1285 
   1286     CallArrayDelete(llvm::Value *Ptr,
   1287                     const FunctionDecl *OperatorDelete,
   1288                     llvm::Value *NumElements,
   1289                     QualType ElementType,
   1290                     CharUnits CookieSize)
   1291       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
   1292         ElementType(ElementType), CookieSize(CookieSize) {}
   1293 
   1294     void Emit(CodeGenFunction &CGF, Flags flags) {
   1295       const FunctionProtoType *DeleteFTy =
   1296         OperatorDelete->getType()->getAs<FunctionProtoType>();
   1297       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
   1298 
   1299       CallArgList Args;
   1300 
   1301       // Pass the pointer as the first argument.
   1302       QualType VoidPtrTy = DeleteFTy->getArgType(0);
   1303       llvm::Value *DeletePtr
   1304         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
   1305       Args.add(RValue::get(DeletePtr), VoidPtrTy);
   1306 
   1307       // Pass the original requested size as the second argument.
   1308       if (DeleteFTy->getNumArgs() == 2) {
   1309         QualType size_t = DeleteFTy->getArgType(1);
   1310         llvm::IntegerType *SizeTy
   1311           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
   1312 
   1313         CharUnits ElementTypeSize =
   1314           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
   1315 
   1316         // The size of an element, multiplied by the number of elements.
   1317         llvm::Value *Size
   1318           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
   1319         Size = CGF.Builder.CreateMul(Size, NumElements);
   1320 
   1321         // Plus the size of the cookie if applicable.
   1322         if (!CookieSize.isZero()) {
   1323           llvm::Value *CookieSizeV
   1324             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
   1325           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
   1326         }
   1327 
   1328         Args.add(RValue::get(Size), size_t);
   1329       }
   1330 
   1331       // Emit the call to delete.
   1332       CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
   1333                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
   1334                    ReturnValueSlot(), Args, OperatorDelete);
   1335     }
   1336   };
   1337 }
   1338 
   1339 /// Emit the code for deleting an array of objects.
   1340 static void EmitArrayDelete(CodeGenFunction &CGF,
   1341                             const CXXDeleteExpr *E,
   1342                             llvm::Value *deletedPtr,
   1343                             QualType elementType) {
   1344   llvm::Value *numElements = 0;
   1345   llvm::Value *allocatedPtr = 0;
   1346   CharUnits cookieSize;
   1347   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
   1348                                       numElements, allocatedPtr, cookieSize);
   1349 
   1350   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
   1351 
   1352   // Make sure that we call delete even if one of the dtors throws.
   1353   const FunctionDecl *operatorDelete = E->getOperatorDelete();
   1354   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
   1355                                            allocatedPtr, operatorDelete,
   1356                                            numElements, elementType,
   1357                                            cookieSize);
   1358 
   1359   // Destroy the elements.
   1360   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
   1361     assert(numElements && "no element count for a type with a destructor!");
   1362 
   1363     llvm::Value *arrayEnd =
   1364       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
   1365 
   1366     // Note that it is legal to allocate a zero-length array, and we
   1367     // can never fold the check away because the length should always
   1368     // come from a cookie.
   1369     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
   1370                          CGF.getDestroyer(dtorKind),
   1371                          /*checkZeroLength*/ true,
   1372                          CGF.needsEHCleanup(dtorKind));
   1373   }
   1374 
   1375   // Pop the cleanup block.
   1376   CGF.PopCleanupBlock();
   1377 }
   1378 
   1379 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
   1380 
   1381   // Get at the argument before we performed the implicit conversion
   1382   // to void*.
   1383   const Expr *Arg = E->getArgument();
   1384   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
   1385     if (ICE->getCastKind() != CK_UserDefinedConversion &&
   1386         ICE->getType()->isVoidPointerType())
   1387       Arg = ICE->getSubExpr();
   1388     else
   1389       break;
   1390   }
   1391 
   1392   llvm::Value *Ptr = EmitScalarExpr(Arg);
   1393 
   1394   // Null check the pointer.
   1395   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
   1396   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
   1397 
   1398   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
   1399 
   1400   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
   1401   EmitBlock(DeleteNotNull);
   1402 
   1403   // We might be deleting a pointer to array.  If so, GEP down to the
   1404   // first non-array element.
   1405   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
   1406   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
   1407   if (DeleteTy->isConstantArrayType()) {
   1408     llvm::Value *Zero = Builder.getInt32(0);
   1409     llvm::SmallVector<llvm::Value*,8> GEP;
   1410 
   1411     GEP.push_back(Zero); // point at the outermost array
   1412 
   1413     // For each layer of array type we're pointing at:
   1414     while (const ConstantArrayType *Arr
   1415              = getContext().getAsConstantArrayType(DeleteTy)) {
   1416       // 1. Unpeel the array type.
   1417       DeleteTy = Arr->getElementType();
   1418 
   1419       // 2. GEP to the first element of the array.
   1420       GEP.push_back(Zero);
   1421     }
   1422 
   1423     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
   1424   }
   1425 
   1426   assert(ConvertTypeForMem(DeleteTy) ==
   1427          cast<llvm::PointerType>(Ptr->getType())->getElementType());
   1428 
   1429   if (E->isArrayForm()) {
   1430     EmitArrayDelete(*this, E, Ptr, DeleteTy);
   1431   } else {
   1432     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
   1433                      E->isGlobalDelete());
   1434   }
   1435 
   1436   EmitBlock(DeleteEnd);
   1437 }
   1438 
   1439 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
   1440   // void __cxa_bad_typeid();
   1441 
   1442   llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
   1443   llvm::FunctionType *FTy =
   1444   llvm::FunctionType::get(VoidTy, false);
   1445 
   1446   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
   1447 }
   1448 
   1449 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
   1450   llvm::Value *Fn = getBadTypeidFn(CGF);
   1451   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
   1452   CGF.Builder.CreateUnreachable();
   1453 }
   1454 
   1455 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
   1456                                          const Expr *E,
   1457                                          llvm::Type *StdTypeInfoPtrTy) {
   1458   // Get the vtable pointer.
   1459   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
   1460 
   1461   // C++ [expr.typeid]p2:
   1462   //   If the glvalue expression is obtained by applying the unary * operator to
   1463   //   a pointer and the pointer is a null pointer value, the typeid expression
   1464   //   throws the std::bad_typeid exception.
   1465   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
   1466     if (UO->getOpcode() == UO_Deref) {
   1467       llvm::BasicBlock *BadTypeidBlock =
   1468         CGF.createBasicBlock("typeid.bad_typeid");
   1469       llvm::BasicBlock *EndBlock =
   1470         CGF.createBasicBlock("typeid.end");
   1471 
   1472       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
   1473       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
   1474 
   1475       CGF.EmitBlock(BadTypeidBlock);
   1476       EmitBadTypeidCall(CGF);
   1477       CGF.EmitBlock(EndBlock);
   1478     }
   1479   }
   1480 
   1481   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
   1482                                         StdTypeInfoPtrTy->getPointerTo());
   1483 
   1484   // Load the type info.
   1485   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
   1486   return CGF.Builder.CreateLoad(Value);
   1487 }
   1488 
   1489 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
   1490   llvm::Type *StdTypeInfoPtrTy =
   1491     ConvertType(E->getType())->getPointerTo();
   1492 
   1493   if (E->isTypeOperand()) {
   1494     llvm::Constant *TypeInfo =
   1495       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
   1496     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
   1497   }
   1498 
   1499   // C++ [expr.typeid]p2:
   1500   //   When typeid is applied to a glvalue expression whose type is a
   1501   //   polymorphic class type, the result refers to a std::type_info object
   1502   //   representing the type of the most derived object (that is, the dynamic
   1503   //   type) to which the glvalue refers.
   1504   if (E->getExprOperand()->isGLValue()) {
   1505     if (const RecordType *RT =
   1506           E->getExprOperand()->getType()->getAs<RecordType>()) {
   1507       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1508       if (RD->isPolymorphic())
   1509         return EmitTypeidFromVTable(*this, E->getExprOperand(),
   1510                                     StdTypeInfoPtrTy);
   1511     }
   1512   }
   1513 
   1514   QualType OperandTy = E->getExprOperand()->getType();
   1515   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
   1516                                StdTypeInfoPtrTy);
   1517 }
   1518 
   1519 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
   1520   // void *__dynamic_cast(const void *sub,
   1521   //                      const abi::__class_type_info *src,
   1522   //                      const abi::__class_type_info *dst,
   1523   //                      std::ptrdiff_t src2dst_offset);
   1524 
   1525   llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   1526   llvm::Type *PtrDiffTy =
   1527     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1528 
   1529   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
   1530 
   1531   llvm::FunctionType *FTy =
   1532     llvm::FunctionType::get(Int8PtrTy, Args, false);
   1533 
   1534   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
   1535 }
   1536 
   1537 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
   1538   // void __cxa_bad_cast();
   1539 
   1540   llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
   1541   llvm::FunctionType *FTy =
   1542     llvm::FunctionType::get(VoidTy, false);
   1543 
   1544   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
   1545 }
   1546 
   1547 static void EmitBadCastCall(CodeGenFunction &CGF) {
   1548   llvm::Value *Fn = getBadCastFn(CGF);
   1549   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
   1550   CGF.Builder.CreateUnreachable();
   1551 }
   1552 
   1553 static llvm::Value *
   1554 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
   1555                     QualType SrcTy, QualType DestTy,
   1556                     llvm::BasicBlock *CastEnd) {
   1557   llvm::Type *PtrDiffLTy =
   1558     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1559   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1560 
   1561   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
   1562     if (PTy->getPointeeType()->isVoidType()) {
   1563       // C++ [expr.dynamic.cast]p7:
   1564       //   If T is "pointer to cv void," then the result is a pointer to the
   1565       //   most derived object pointed to by v.
   1566 
   1567       // Get the vtable pointer.
   1568       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
   1569 
   1570       // Get the offset-to-top from the vtable.
   1571       llvm::Value *OffsetToTop =
   1572         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
   1573       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
   1574 
   1575       // Finally, add the offset to the pointer.
   1576       Value = CGF.EmitCastToVoidPtr(Value);
   1577       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
   1578 
   1579       return CGF.Builder.CreateBitCast(Value, DestLTy);
   1580     }
   1581   }
   1582 
   1583   QualType SrcRecordTy;
   1584   QualType DestRecordTy;
   1585 
   1586   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
   1587     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
   1588     DestRecordTy = DestPTy->getPointeeType();
   1589   } else {
   1590     SrcRecordTy = SrcTy;
   1591     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
   1592   }
   1593 
   1594   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
   1595   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
   1596 
   1597   llvm::Value *SrcRTTI =
   1598     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
   1599   llvm::Value *DestRTTI =
   1600     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
   1601 
   1602   // FIXME: Actually compute a hint here.
   1603   llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
   1604 
   1605   // Emit the call to __dynamic_cast.
   1606   Value = CGF.EmitCastToVoidPtr(Value);
   1607   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
   1608                                   SrcRTTI, DestRTTI, OffsetHint);
   1609   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
   1610 
   1611   /// C++ [expr.dynamic.cast]p9:
   1612   ///   A failed cast to reference type throws std::bad_cast
   1613   if (DestTy->isReferenceType()) {
   1614     llvm::BasicBlock *BadCastBlock =
   1615       CGF.createBasicBlock("dynamic_cast.bad_cast");
   1616 
   1617     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
   1618     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
   1619 
   1620     CGF.EmitBlock(BadCastBlock);
   1621     EmitBadCastCall(CGF);
   1622   }
   1623 
   1624   return Value;
   1625 }
   1626 
   1627 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
   1628                                           QualType DestTy) {
   1629   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1630   if (DestTy->isPointerType())
   1631     return llvm::Constant::getNullValue(DestLTy);
   1632 
   1633   /// C++ [expr.dynamic.cast]p9:
   1634   ///   A failed cast to reference type throws std::bad_cast
   1635   EmitBadCastCall(CGF);
   1636 
   1637   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
   1638   return llvm::UndefValue::get(DestLTy);
   1639 }
   1640 
   1641 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
   1642                                               const CXXDynamicCastExpr *DCE) {
   1643   QualType DestTy = DCE->getTypeAsWritten();
   1644 
   1645   if (DCE->isAlwaysNull())
   1646     return EmitDynamicCastToNull(*this, DestTy);
   1647 
   1648   QualType SrcTy = DCE->getSubExpr()->getType();
   1649 
   1650   // C++ [expr.dynamic.cast]p4:
   1651   //   If the value of v is a null pointer value in the pointer case, the result
   1652   //   is the null pointer value of type T.
   1653   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
   1654 
   1655   llvm::BasicBlock *CastNull = 0;
   1656   llvm::BasicBlock *CastNotNull = 0;
   1657   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
   1658 
   1659   if (ShouldNullCheckSrcValue) {
   1660     CastNull = createBasicBlock("dynamic_cast.null");
   1661     CastNotNull = createBasicBlock("dynamic_cast.notnull");
   1662 
   1663     llvm::Value *IsNull = Builder.CreateIsNull(Value);
   1664     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
   1665     EmitBlock(CastNotNull);
   1666   }
   1667 
   1668   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
   1669 
   1670   if (ShouldNullCheckSrcValue) {
   1671     EmitBranch(CastEnd);
   1672 
   1673     EmitBlock(CastNull);
   1674     EmitBranch(CastEnd);
   1675   }
   1676 
   1677   EmitBlock(CastEnd);
   1678 
   1679   if (ShouldNullCheckSrcValue) {
   1680     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
   1681     PHI->addIncoming(Value, CastNotNull);
   1682     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
   1683 
   1684     Value = PHI;
   1685   }
   1686 
   1687   return Value;
   1688 }
   1689