Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86DisassemblerShared.h"
     18 #include "X86RecognizableInstr.h"
     19 #include "X86ModRMFilters.h"
     20 
     21 #include "llvm/Support/ErrorHandling.h"
     22 
     23 #include <string>
     24 
     25 using namespace llvm;
     26 
     27 #define MRM_MAPPING     \
     28   MAP(C1, 33)           \
     29   MAP(C2, 34)           \
     30   MAP(C3, 35)           \
     31   MAP(C4, 36)           \
     32   MAP(C8, 37)           \
     33   MAP(C9, 38)           \
     34   MAP(E8, 39)           \
     35   MAP(F0, 40)           \
     36   MAP(F8, 41)           \
     37   MAP(F9, 42)           \
     38   MAP(D0, 45)           \
     39   MAP(D1, 46)
     40 
     41 // A clone of X86 since we can't depend on something that is generated.
     42 namespace X86Local {
     43   enum {
     44     Pseudo      = 0,
     45     RawFrm      = 1,
     46     AddRegFrm   = 2,
     47     MRMDestReg  = 3,
     48     MRMDestMem  = 4,
     49     MRMSrcReg   = 5,
     50     MRMSrcMem   = 6,
     51     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
     52     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
     53     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
     54     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
     55     MRMInitReg  = 32,
     56 #define MAP(from, to) MRM_##from = to,
     57     MRM_MAPPING
     58 #undef MAP
     59     RawFrmImm8  = 43,
     60     RawFrmImm16 = 44,
     61     lastMRM
     62   };
     63 
     64   enum {
     65     TB  = 1,
     66     REP = 2,
     67     D8 = 3, D9 = 4, DA = 5, DB = 6,
     68     DC = 7, DD = 8, DE = 9, DF = 10,
     69     XD = 11,  XS = 12,
     70     T8 = 13,  P_TA = 14,
     71     A6 = 15,  A7 = 16, T8XD = 17, T8XS = 18
     72   };
     73 }
     74 
     75 // If rows are added to the opcode extension tables, then corresponding entries
     76 // must be added here.
     77 //
     78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
     79 // that byte to ONE_BYTE_EXTENSION_TABLES.
     80 //
     81 // If the row corresponds to two bytes where the first is 0f, add an entry for
     82 // the second byte to TWO_BYTE_EXTENSION_TABLES.
     83 //
     84 // If the row corresponds to some other set of bytes, you will need to modify
     85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
     86 // to the X86 TD files, except in two cases: if the first two bytes of such a
     87 // new combination are 0f 38 or 0f 3a, you just have to add maps called
     88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
     89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
     90 // in RecognizableInstr::emitDecodePath().
     91 
     92 #define ONE_BYTE_EXTENSION_TABLES \
     93   EXTENSION_TABLE(80)             \
     94   EXTENSION_TABLE(81)             \
     95   EXTENSION_TABLE(82)             \
     96   EXTENSION_TABLE(83)             \
     97   EXTENSION_TABLE(8f)             \
     98   EXTENSION_TABLE(c0)             \
     99   EXTENSION_TABLE(c1)             \
    100   EXTENSION_TABLE(c6)             \
    101   EXTENSION_TABLE(c7)             \
    102   EXTENSION_TABLE(d0)             \
    103   EXTENSION_TABLE(d1)             \
    104   EXTENSION_TABLE(d2)             \
    105   EXTENSION_TABLE(d3)             \
    106   EXTENSION_TABLE(f6)             \
    107   EXTENSION_TABLE(f7)             \
    108   EXTENSION_TABLE(fe)             \
    109   EXTENSION_TABLE(ff)
    110 
    111 #define TWO_BYTE_EXTENSION_TABLES \
    112   EXTENSION_TABLE(00)             \
    113   EXTENSION_TABLE(01)             \
    114   EXTENSION_TABLE(18)             \
    115   EXTENSION_TABLE(71)             \
    116   EXTENSION_TABLE(72)             \
    117   EXTENSION_TABLE(73)             \
    118   EXTENSION_TABLE(ae)             \
    119   EXTENSION_TABLE(ba)             \
    120   EXTENSION_TABLE(c7)
    121 
    122 #define THREE_BYTE_38_EXTENSION_TABLES \
    123   EXTENSION_TABLE(F3)
    124 
    125 using namespace X86Disassembler;
    126 
    127 /// needsModRMForDecode - Indicates whether a particular instruction requires a
    128 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
    129 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
    130 ///   0b11.
    131 ///
    132 /// @param form - The form of the instruction.
    133 /// @return     - true if the form implies that a ModR/M byte is required, false
    134 ///               otherwise.
    135 static bool needsModRMForDecode(uint8_t form) {
    136   if (form == X86Local::MRMDestReg    ||
    137      form == X86Local::MRMDestMem    ||
    138      form == X86Local::MRMSrcReg     ||
    139      form == X86Local::MRMSrcMem     ||
    140      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
    141      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
    142     return true;
    143   else
    144     return false;
    145 }
    146 
    147 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    148 ///   the ModR/M byte to be 0b11.
    149 ///
    150 /// @param form - The form of the instruction.
    151 /// @return     - true if the form implies that Mod must be 0b11, false
    152 ///               otherwise.
    153 static bool isRegFormat(uint8_t form) {
    154   if (form == X86Local::MRMDestReg ||
    155      form == X86Local::MRMSrcReg  ||
    156      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
    157     return true;
    158   else
    159     return false;
    160 }
    161 
    162 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    163 ///   Useful for switch statements and the like.
    164 ///
    165 /// @param init - A reference to the BitsInit to be decoded.
    166 /// @return     - The field, with the first bit in the BitsInit as the lowest
    167 ///               order bit.
    168 static uint8_t byteFromBitsInit(BitsInit &init) {
    169   int width = init.getNumBits();
    170 
    171   assert(width <= 8 && "Field is too large for uint8_t!");
    172 
    173   int     index;
    174   uint8_t mask = 0x01;
    175 
    176   uint8_t ret = 0;
    177 
    178   for (index = 0; index < width; index++) {
    179     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    180       ret |= mask;
    181 
    182     mask <<= 1;
    183   }
    184 
    185   return ret;
    186 }
    187 
    188 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    189 ///   name of the field.
    190 ///
    191 /// @param rec  - The record from which to extract the value.
    192 /// @param name - The name of the field in the record.
    193 /// @return     - The field, as translated by byteFromBitsInit().
    194 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    195   BitsInit* bits = rec->getValueAsBitsInit(name);
    196   return byteFromBitsInit(*bits);
    197 }
    198 
    199 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    200                                      const CodeGenInstruction &insn,
    201                                      InstrUID uid) {
    202   UID = uid;
    203 
    204   Rec = insn.TheDef;
    205   Name = Rec->getName();
    206   Spec = &tables.specForUID(UID);
    207 
    208   if (!Rec->isSubClassOf("X86Inst")) {
    209     ShouldBeEmitted = false;
    210     return;
    211   }
    212 
    213   Prefix   = byteFromRec(Rec, "Prefix");
    214   Opcode   = byteFromRec(Rec, "Opcode");
    215   Form     = byteFromRec(Rec, "FormBits");
    216   SegOvr   = byteFromRec(Rec, "SegOvrBits");
    217 
    218   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
    219   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    220   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
    221   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
    222   HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
    223   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    224   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    225   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
    226   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    227 
    228   Name      = Rec->getName();
    229   AsmString = Rec->getValueAsString("AsmString");
    230 
    231   Operands = &insn.Operands.OperandList;
    232 
    233   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
    234                      (Name.find("CRC32") != Name.npos);
    235   HasFROperands    = hasFROperands();
    236   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
    237 
    238   // Check for 64-bit inst which does not require REX
    239   Is32Bit = false;
    240   Is64Bit = false;
    241   // FIXME: Is there some better way to check for In64BitMode?
    242   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    243   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    244     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
    245       Is32Bit = true;
    246       break;
    247     }
    248     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
    249       Is64Bit = true;
    250       break;
    251     }
    252   }
    253   // FIXME: These instructions aren't marked as 64-bit in any way
    254   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
    255              Rec->getName() == "MASKMOVDQU64" ||
    256              Rec->getName() == "POPFS64" ||
    257              Rec->getName() == "POPGS64" ||
    258              Rec->getName() == "PUSHFS64" ||
    259              Rec->getName() == "PUSHGS64" ||
    260              Rec->getName() == "REX64_PREFIX" ||
    261              Rec->getName().find("MOV64") != Name.npos ||
    262              Rec->getName().find("PUSH64") != Name.npos ||
    263              Rec->getName().find("POP64") != Name.npos;
    264 
    265   ShouldBeEmitted  = true;
    266 }
    267 
    268 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    269 	const CodeGenInstruction &insn,
    270                                    InstrUID uid)
    271 {
    272   // Ignore "asm parser only" instructions.
    273   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    274     return;
    275 
    276   RecognizableInstr recogInstr(tables, insn, uid);
    277 
    278   recogInstr.emitInstructionSpecifier(tables);
    279 
    280   if (recogInstr.shouldBeEmitted())
    281     recogInstr.emitDecodePath(tables);
    282 }
    283 
    284 InstructionContext RecognizableInstr::insnContext() const {
    285   InstructionContext insnContext;
    286 
    287   if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
    288     if (HasVEX_LPrefix && HasVEX_WPrefix)
    289       llvm_unreachable("Don't support VEX.L and VEX.W together");
    290     else if (HasOpSizePrefix && HasVEX_LPrefix)
    291       insnContext = IC_VEX_L_OPSIZE;
    292     else if (HasOpSizePrefix && HasVEX_WPrefix)
    293       insnContext = IC_VEX_W_OPSIZE;
    294     else if (HasOpSizePrefix)
    295       insnContext = IC_VEX_OPSIZE;
    296     else if (HasVEX_LPrefix &&
    297              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    298       insnContext = IC_VEX_L_XS;
    299     else if (HasVEX_LPrefix &&
    300              (Prefix == X86Local::XD || Prefix == X86Local::T8XD))
    301       insnContext = IC_VEX_L_XD;
    302     else if (HasVEX_WPrefix &&
    303              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    304       insnContext = IC_VEX_W_XS;
    305     else if (HasVEX_WPrefix &&
    306              (Prefix == X86Local::XD || Prefix == X86Local::T8XD))
    307       insnContext = IC_VEX_W_XD;
    308     else if (HasVEX_WPrefix)
    309       insnContext = IC_VEX_W;
    310     else if (HasVEX_LPrefix)
    311       insnContext = IC_VEX_L;
    312     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD)
    313       insnContext = IC_VEX_XD;
    314     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    315       insnContext = IC_VEX_XS;
    316     else
    317       insnContext = IC_VEX;
    318   } else if (Is64Bit || HasREX_WPrefix) {
    319     if (HasREX_WPrefix && HasOpSizePrefix)
    320       insnContext = IC_64BIT_REXW_OPSIZE;
    321     else if (HasOpSizePrefix &&
    322              (Prefix == X86Local::XD || Prefix == X86Local::T8XD))
    323       insnContext = IC_64BIT_XD_OPSIZE;
    324     else if (HasOpSizePrefix &&
    325              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    326       insnContext = IC_64BIT_XS_OPSIZE;
    327     else if (HasOpSizePrefix)
    328       insnContext = IC_64BIT_OPSIZE;
    329     else if (HasREX_WPrefix &&
    330              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    331       insnContext = IC_64BIT_REXW_XS;
    332     else if (HasREX_WPrefix &&
    333              (Prefix == X86Local::XD || Prefix == X86Local::T8XD))
    334       insnContext = IC_64BIT_REXW_XD;
    335     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD)
    336       insnContext = IC_64BIT_XD;
    337     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    338       insnContext = IC_64BIT_XS;
    339     else if (HasREX_WPrefix)
    340       insnContext = IC_64BIT_REXW;
    341     else
    342       insnContext = IC_64BIT;
    343   } else {
    344     if (HasOpSizePrefix &&
    345         (Prefix == X86Local::XD || Prefix == X86Local::T8XD))
    346       insnContext = IC_XD_OPSIZE;
    347     else if (HasOpSizePrefix &&
    348              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    349       insnContext = IC_XS_OPSIZE;
    350     else if (HasOpSizePrefix)
    351       insnContext = IC_OPSIZE;
    352     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD)
    353       insnContext = IC_XD;
    354     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS ||
    355              Prefix == X86Local::REP)
    356       insnContext = IC_XS;
    357     else
    358       insnContext = IC;
    359   }
    360 
    361   return insnContext;
    362 }
    363 
    364 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
    365   ///////////////////
    366   // FILTER_STRONG
    367   //
    368 
    369   // Filter out intrinsics
    370 
    371   if (!Rec->isSubClassOf("X86Inst"))
    372     return FILTER_STRONG;
    373 
    374   if (Form == X86Local::Pseudo ||
    375       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
    376     return FILTER_STRONG;
    377 
    378   if (Form == X86Local::MRMInitReg)
    379     return FILTER_STRONG;
    380 
    381 
    382   // Filter out artificial instructions
    383 
    384   if (Name.find("TAILJMP") != Name.npos    ||
    385       Name.find("_Int") != Name.npos       ||
    386       Name.find("_int") != Name.npos       ||
    387       Name.find("Int_") != Name.npos       ||
    388       Name.find("_NOREX") != Name.npos     ||
    389       Name.find("_TC") != Name.npos        ||
    390       Name.find("EH_RETURN") != Name.npos  ||
    391       Name.find("V_SET") != Name.npos      ||
    392       Name.find("LOCK_") != Name.npos      ||
    393       Name.find("WIN") != Name.npos        ||
    394       Name.find("_AVX") != Name.npos       ||
    395       Name.find("2SDL") != Name.npos)
    396     return FILTER_STRONG;
    397 
    398   // Filter out instructions with segment override prefixes.
    399   // They're too messy to handle now and we'll special case them if needed.
    400 
    401   if (SegOvr)
    402     return FILTER_STRONG;
    403 
    404   // Filter out instructions that can't be printed.
    405 
    406   if (AsmString.size() == 0)
    407     return FILTER_STRONG;
    408 
    409   // Filter out instructions with subreg operands.
    410 
    411   if (AsmString.find("subreg") != AsmString.npos)
    412     return FILTER_STRONG;
    413 
    414   /////////////////
    415   // FILTER_WEAK
    416   //
    417 
    418 
    419   // Filter out instructions with a LOCK prefix;
    420   //   prefer forms that do not have the prefix
    421   if (HasLockPrefix)
    422     return FILTER_WEAK;
    423 
    424   // Filter out alternate forms of AVX instructions
    425   if (Name.find("_alt") != Name.npos ||
    426       Name.find("XrYr") != Name.npos ||
    427       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
    428       Name.find("_64mr") != Name.npos ||
    429       Name.find("Xrr") != Name.npos ||
    430       Name.find("rr64") != Name.npos)
    431     return FILTER_WEAK;
    432 
    433   if (Name == "VMASKMOVDQU64"  ||
    434       Name == "VEXTRACTPSrr64" ||
    435       Name == "VMOVQd64rr"     ||
    436       Name == "VMOVQs64rr")
    437     return FILTER_WEAK;
    438 
    439   // Special cases.
    440 
    441   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
    442     return FILTER_WEAK;
    443   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
    444     return FILTER_WEAK;
    445 
    446   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
    447     return FILTER_WEAK;
    448   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
    449     return FILTER_WEAK;
    450   if (Name.find("Fs") != Name.npos)
    451     return FILTER_WEAK;
    452   if (Name == "MOVLPDrr"          ||
    453       Name == "MOVLPSrr"          ||
    454       Name == "PUSHFQ"            ||
    455       Name == "BSF16rr"           ||
    456       Name == "BSF16rm"           ||
    457       Name == "BSR16rr"           ||
    458       Name == "BSR16rm"           ||
    459       Name == "MOVSX16rm8"        ||
    460       Name == "MOVSX16rr8"        ||
    461       Name == "MOVZX16rm8"        ||
    462       Name == "MOVZX16rr8"        ||
    463       Name == "PUSH32i16"         ||
    464       Name == "PUSH64i16"         ||
    465       Name == "MOVPQI2QImr"       ||
    466       Name == "VMOVPQI2QImr"      ||
    467       Name == "MOVSDmr"           ||
    468       Name == "MOVSDrm"           ||
    469       Name == "MOVSSmr"           ||
    470       Name == "MOVSSrm"           ||
    471       Name == "MMX_MOVD64rrv164"  ||
    472       Name == "CRC32m16"          ||
    473       Name == "MOV64ri64i32"      ||
    474       Name == "CRC32r16")
    475     return FILTER_WEAK;
    476 
    477   if (HasFROperands && Name.find("MOV") != Name.npos &&
    478      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    479       (Name.find("to") != Name.npos)))
    480     return FILTER_WEAK;
    481 
    482   return FILTER_NORMAL;
    483 }
    484 
    485 bool RecognizableInstr::hasFROperands() const {
    486   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    487   unsigned numOperands = OperandList.size();
    488 
    489   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    490     const std::string &recName = OperandList[operandIndex].Rec->getName();
    491 
    492     if (recName.find("FR") != recName.npos)
    493       return true;
    494   }
    495   return false;
    496 }
    497 
    498 bool RecognizableInstr::has256BitOperands() const {
    499   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    500   unsigned numOperands = OperandList.size();
    501 
    502   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    503     const std::string &recName = OperandList[operandIndex].Rec->getName();
    504 
    505     if (!recName.compare("VR256") || !recName.compare("f256mem")) {
    506       return true;
    507     }
    508   }
    509   return false;
    510 }
    511 
    512 void RecognizableInstr::handleOperand(
    513   bool optional,
    514   unsigned &operandIndex,
    515   unsigned &physicalOperandIndex,
    516   unsigned &numPhysicalOperands,
    517   unsigned *operandMapping,
    518   OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) {
    519   if (optional) {
    520     if (physicalOperandIndex >= numPhysicalOperands)
    521       return;
    522   } else {
    523     assert(physicalOperandIndex < numPhysicalOperands);
    524   }
    525 
    526   while (operandMapping[operandIndex] != operandIndex) {
    527     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    528     Spec->operands[operandIndex].type =
    529       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    530     ++operandIndex;
    531   }
    532 
    533   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    534 
    535   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
    536                                                               HasOpSizePrefix);
    537   Spec->operands[operandIndex].type = typeFromString(typeName,
    538                                                      IsSSE,
    539                                                      HasREX_WPrefix,
    540                                                      HasOpSizePrefix);
    541 
    542   ++operandIndex;
    543   ++physicalOperandIndex;
    544 }
    545 
    546 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
    547   Spec->name       = Name;
    548 
    549   if (!Rec->isSubClassOf("X86Inst"))
    550     return;
    551 
    552   switch (filter()) {
    553   case FILTER_WEAK:
    554     Spec->filtered = true;
    555     break;
    556   case FILTER_STRONG:
    557     ShouldBeEmitted = false;
    558     return;
    559   case FILTER_NORMAL:
    560     break;
    561   }
    562 
    563   Spec->insnContext = insnContext();
    564 
    565   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    566 
    567   unsigned operandIndex;
    568   unsigned numOperands = OperandList.size();
    569   unsigned numPhysicalOperands = 0;
    570 
    571   // operandMapping maps from operands in OperandList to their originals.
    572   // If operandMapping[i] != i, then the entry is a duplicate.
    573   unsigned operandMapping[X86_MAX_OPERANDS];
    574 
    575   bool hasFROperands = false;
    576 
    577   assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    578 
    579   for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    580     if (OperandList[operandIndex].Constraints.size()) {
    581       const CGIOperandList::ConstraintInfo &Constraint =
    582         OperandList[operandIndex].Constraints[0];
    583       if (Constraint.isTied()) {
    584         operandMapping[operandIndex] = Constraint.getTiedOperand();
    585       } else {
    586         ++numPhysicalOperands;
    587         operandMapping[operandIndex] = operandIndex;
    588       }
    589     } else {
    590       ++numPhysicalOperands;
    591       operandMapping[operandIndex] = operandIndex;
    592     }
    593 
    594     const std::string &recName = OperandList[operandIndex].Rec->getName();
    595 
    596     if (recName.find("FR") != recName.npos)
    597       hasFROperands = true;
    598   }
    599 
    600   if (hasFROperands && Name.find("MOV") != Name.npos &&
    601      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    602       (Name.find("to") != Name.npos)))
    603     ShouldBeEmitted = false;
    604 
    605   if (!ShouldBeEmitted)
    606     return;
    607 
    608 #define HANDLE_OPERAND(class)               \
    609   handleOperand(false,                      \
    610                 operandIndex,               \
    611                 physicalOperandIndex,       \
    612                 numPhysicalOperands,        \
    613                 operandMapping,             \
    614                 class##EncodingFromString);
    615 
    616 #define HANDLE_OPTIONAL(class)              \
    617   handleOperand(true,                       \
    618                 operandIndex,               \
    619                 physicalOperandIndex,       \
    620                 numPhysicalOperands,        \
    621                 operandMapping,             \
    622                 class##EncodingFromString);
    623 
    624   // operandIndex should always be < numOperands
    625   operandIndex = 0;
    626   // physicalOperandIndex should always be < numPhysicalOperands
    627   unsigned physicalOperandIndex = 0;
    628 
    629   switch (Form) {
    630   case X86Local::RawFrm:
    631     // Operand 1 (optional) is an address or immediate.
    632     // Operand 2 (optional) is an immediate.
    633     assert(numPhysicalOperands <= 2 &&
    634            "Unexpected number of operands for RawFrm");
    635     HANDLE_OPTIONAL(relocation)
    636     HANDLE_OPTIONAL(immediate)
    637     break;
    638   case X86Local::AddRegFrm:
    639     // Operand 1 is added to the opcode.
    640     // Operand 2 (optional) is an address.
    641     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    642            "Unexpected number of operands for AddRegFrm");
    643     HANDLE_OPERAND(opcodeModifier)
    644     HANDLE_OPTIONAL(relocation)
    645     break;
    646   case X86Local::MRMDestReg:
    647     // Operand 1 is a register operand in the R/M field.
    648     // Operand 2 is a register operand in the Reg/Opcode field.
    649     // - In AVX, there is a register operand in the VEX.vvvv field here -
    650     // Operand 3 (optional) is an immediate.
    651     if (HasVEX_4VPrefix)
    652       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    653              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
    654     else
    655       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    656              "Unexpected number of operands for MRMDestRegFrm");
    657 
    658     HANDLE_OPERAND(rmRegister)
    659 
    660     if (HasVEX_4VPrefix)
    661       // FIXME: In AVX, the register below becomes the one encoded
    662       // in ModRMVEX and the one above the one in the VEX.VVVV field
    663       HANDLE_OPERAND(vvvvRegister)
    664 
    665     HANDLE_OPERAND(roRegister)
    666     HANDLE_OPTIONAL(immediate)
    667     break;
    668   case X86Local::MRMDestMem:
    669     // Operand 1 is a memory operand (possibly SIB-extended)
    670     // Operand 2 is a register operand in the Reg/Opcode field.
    671     // - In AVX, there is a register operand in the VEX.vvvv field here -
    672     // Operand 3 (optional) is an immediate.
    673     if (HasVEX_4VPrefix)
    674       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    675              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    676     else
    677       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    678              "Unexpected number of operands for MRMDestMemFrm");
    679     HANDLE_OPERAND(memory)
    680 
    681     if (HasVEX_4VPrefix)
    682       // FIXME: In AVX, the register below becomes the one encoded
    683       // in ModRMVEX and the one above the one in the VEX.VVVV field
    684       HANDLE_OPERAND(vvvvRegister)
    685 
    686     HANDLE_OPERAND(roRegister)
    687     HANDLE_OPTIONAL(immediate)
    688     break;
    689   case X86Local::MRMSrcReg:
    690     // Operand 1 is a register operand in the Reg/Opcode field.
    691     // Operand 2 is a register operand in the R/M field.
    692     // - In AVX, there is a register operand in the VEX.vvvv field here -
    693     // Operand 3 (optional) is an immediate.
    694 
    695     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    696       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    697              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
    698     else
    699       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    700              "Unexpected number of operands for MRMSrcRegFrm");
    701 
    702     HANDLE_OPERAND(roRegister)
    703 
    704     if (HasVEX_4VPrefix)
    705       // FIXME: In AVX, the register below becomes the one encoded
    706       // in ModRMVEX and the one above the one in the VEX.VVVV field
    707       HANDLE_OPERAND(vvvvRegister)
    708 
    709     HANDLE_OPERAND(rmRegister)
    710 
    711     if (HasVEX_4VOp3Prefix)
    712       HANDLE_OPERAND(vvvvRegister)
    713 
    714     HANDLE_OPTIONAL(immediate)
    715     break;
    716   case X86Local::MRMSrcMem:
    717     // Operand 1 is a register operand in the Reg/Opcode field.
    718     // Operand 2 is a memory operand (possibly SIB-extended)
    719     // - In AVX, there is a register operand in the VEX.vvvv field here -
    720     // Operand 3 (optional) is an immediate.
    721 
    722     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    723       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    724              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
    725     else
    726       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    727              "Unexpected number of operands for MRMSrcMemFrm");
    728 
    729     HANDLE_OPERAND(roRegister)
    730 
    731     if (HasVEX_4VPrefix)
    732       // FIXME: In AVX, the register below becomes the one encoded
    733       // in ModRMVEX and the one above the one in the VEX.VVVV field
    734       HANDLE_OPERAND(vvvvRegister)
    735 
    736     HANDLE_OPERAND(memory)
    737 
    738     if (HasVEX_4VOp3Prefix)
    739       HANDLE_OPERAND(vvvvRegister)
    740 
    741     HANDLE_OPTIONAL(immediate)
    742     break;
    743   case X86Local::MRM0r:
    744   case X86Local::MRM1r:
    745   case X86Local::MRM2r:
    746   case X86Local::MRM3r:
    747   case X86Local::MRM4r:
    748   case X86Local::MRM5r:
    749   case X86Local::MRM6r:
    750   case X86Local::MRM7r:
    751     // Operand 1 is a register operand in the R/M field.
    752     // Operand 2 (optional) is an immediate or relocation.
    753     if (HasVEX_4VPrefix)
    754       assert(numPhysicalOperands <= 3 &&
    755              "Unexpected number of operands for MRMnRFrm with VEX_4V");
    756     else
    757       assert(numPhysicalOperands <= 2 &&
    758              "Unexpected number of operands for MRMnRFrm");
    759     if (HasVEX_4VPrefix)
    760       HANDLE_OPERAND(vvvvRegister)
    761     HANDLE_OPTIONAL(rmRegister)
    762     HANDLE_OPTIONAL(relocation)
    763     break;
    764   case X86Local::MRM0m:
    765   case X86Local::MRM1m:
    766   case X86Local::MRM2m:
    767   case X86Local::MRM3m:
    768   case X86Local::MRM4m:
    769   case X86Local::MRM5m:
    770   case X86Local::MRM6m:
    771   case X86Local::MRM7m:
    772     // Operand 1 is a memory operand (possibly SIB-extended)
    773     // Operand 2 (optional) is an immediate or relocation.
    774     if (HasVEX_4VPrefix)
    775       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    776              "Unexpected number of operands for MRMnMFrm");
    777     else
    778       assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    779              "Unexpected number of operands for MRMnMFrm");
    780     if (HasVEX_4VPrefix)
    781       HANDLE_OPERAND(vvvvRegister)
    782     HANDLE_OPERAND(memory)
    783     HANDLE_OPTIONAL(relocation)
    784     break;
    785   case X86Local::RawFrmImm8:
    786     // operand 1 is a 16-bit immediate
    787     // operand 2 is an 8-bit immediate
    788     assert(numPhysicalOperands == 2 &&
    789            "Unexpected number of operands for X86Local::RawFrmImm8");
    790     HANDLE_OPERAND(immediate)
    791     HANDLE_OPERAND(immediate)
    792     break;
    793   case X86Local::RawFrmImm16:
    794     // operand 1 is a 16-bit immediate
    795     // operand 2 is a 16-bit immediate
    796     HANDLE_OPERAND(immediate)
    797     HANDLE_OPERAND(immediate)
    798     break;
    799   case X86Local::MRMInitReg:
    800     // Ignored.
    801     break;
    802   }
    803 
    804   #undef HANDLE_OPERAND
    805   #undef HANDLE_OPTIONAL
    806 }
    807 
    808 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    809   // Special cases where the LLVM tables are not complete
    810 
    811 #define MAP(from, to)                     \
    812   case X86Local::MRM_##from:              \
    813     filter = new ExactFilter(0x##from);   \
    814     break;
    815 
    816   OpcodeType    opcodeType  = (OpcodeType)-1;
    817 
    818   ModRMFilter*  filter      = NULL;
    819   uint8_t       opcodeToSet = 0;
    820 
    821   switch (Prefix) {
    822   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
    823   case X86Local::XD:
    824   case X86Local::XS:
    825   case X86Local::TB:
    826     opcodeType = TWOBYTE;
    827 
    828     switch (Opcode) {
    829     default:
    830       if (needsModRMForDecode(Form))
    831         filter = new ModFilter(isRegFormat(Form));
    832       else
    833         filter = new DumbFilter();
    834       break;
    835 #define EXTENSION_TABLE(n) case 0x##n:
    836     TWO_BYTE_EXTENSION_TABLES
    837 #undef EXTENSION_TABLE
    838       switch (Form) {
    839       default:
    840         llvm_unreachable("Unhandled two-byte extended opcode");
    841       case X86Local::MRM0r:
    842       case X86Local::MRM1r:
    843       case X86Local::MRM2r:
    844       case X86Local::MRM3r:
    845       case X86Local::MRM4r:
    846       case X86Local::MRM5r:
    847       case X86Local::MRM6r:
    848       case X86Local::MRM7r:
    849         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    850         break;
    851       case X86Local::MRM0m:
    852       case X86Local::MRM1m:
    853       case X86Local::MRM2m:
    854       case X86Local::MRM3m:
    855       case X86Local::MRM4m:
    856       case X86Local::MRM5m:
    857       case X86Local::MRM6m:
    858       case X86Local::MRM7m:
    859         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    860         break;
    861       MRM_MAPPING
    862       } // switch (Form)
    863       break;
    864     } // switch (Opcode)
    865     opcodeToSet = Opcode;
    866     break;
    867   case X86Local::T8:
    868   case X86Local::T8XD:
    869   case X86Local::T8XS:
    870     opcodeType = THREEBYTE_38;
    871     switch (Opcode) {
    872     default:
    873       if (needsModRMForDecode(Form))
    874         filter = new ModFilter(isRegFormat(Form));
    875       else
    876         filter = new DumbFilter();
    877       break;
    878 #define EXTENSION_TABLE(n) case 0x##n:
    879     THREE_BYTE_38_EXTENSION_TABLES
    880 #undef EXTENSION_TABLE
    881       switch (Form) {
    882       default:
    883         llvm_unreachable("Unhandled two-byte extended opcode");
    884       case X86Local::MRM0r:
    885       case X86Local::MRM1r:
    886       case X86Local::MRM2r:
    887       case X86Local::MRM3r:
    888       case X86Local::MRM4r:
    889       case X86Local::MRM5r:
    890       case X86Local::MRM6r:
    891       case X86Local::MRM7r:
    892         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    893         break;
    894       case X86Local::MRM0m:
    895       case X86Local::MRM1m:
    896       case X86Local::MRM2m:
    897       case X86Local::MRM3m:
    898       case X86Local::MRM4m:
    899       case X86Local::MRM5m:
    900       case X86Local::MRM6m:
    901       case X86Local::MRM7m:
    902         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    903         break;
    904       MRM_MAPPING
    905       } // switch (Form)
    906       break;
    907     } // switch (Opcode)
    908     opcodeToSet = Opcode;
    909     break;
    910   case X86Local::P_TA:
    911     opcodeType = THREEBYTE_3A;
    912     if (needsModRMForDecode(Form))
    913       filter = new ModFilter(isRegFormat(Form));
    914     else
    915       filter = new DumbFilter();
    916     opcodeToSet = Opcode;
    917     break;
    918   case X86Local::A6:
    919     opcodeType = THREEBYTE_A6;
    920     if (needsModRMForDecode(Form))
    921       filter = new ModFilter(isRegFormat(Form));
    922     else
    923       filter = new DumbFilter();
    924     opcodeToSet = Opcode;
    925     break;
    926   case X86Local::A7:
    927     opcodeType = THREEBYTE_A7;
    928     if (needsModRMForDecode(Form))
    929       filter = new ModFilter(isRegFormat(Form));
    930     else
    931       filter = new DumbFilter();
    932     opcodeToSet = Opcode;
    933     break;
    934   case X86Local::D8:
    935   case X86Local::D9:
    936   case X86Local::DA:
    937   case X86Local::DB:
    938   case X86Local::DC:
    939   case X86Local::DD:
    940   case X86Local::DE:
    941   case X86Local::DF:
    942     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
    943     opcodeType = ONEBYTE;
    944     if (Form == X86Local::AddRegFrm) {
    945       Spec->modifierType = MODIFIER_MODRM;
    946       Spec->modifierBase = Opcode;
    947       filter = new AddRegEscapeFilter(Opcode);
    948     } else {
    949       filter = new EscapeFilter(true, Opcode);
    950     }
    951     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
    952     break;
    953   case X86Local::REP:
    954   default:
    955     opcodeType = ONEBYTE;
    956     switch (Opcode) {
    957 #define EXTENSION_TABLE(n) case 0x##n:
    958     ONE_BYTE_EXTENSION_TABLES
    959 #undef EXTENSION_TABLE
    960       switch (Form) {
    961       default:
    962         llvm_unreachable("Fell through the cracks of a single-byte "
    963                          "extended opcode");
    964       case X86Local::MRM0r:
    965       case X86Local::MRM1r:
    966       case X86Local::MRM2r:
    967       case X86Local::MRM3r:
    968       case X86Local::MRM4r:
    969       case X86Local::MRM5r:
    970       case X86Local::MRM6r:
    971       case X86Local::MRM7r:
    972         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    973         break;
    974       case X86Local::MRM0m:
    975       case X86Local::MRM1m:
    976       case X86Local::MRM2m:
    977       case X86Local::MRM3m:
    978       case X86Local::MRM4m:
    979       case X86Local::MRM5m:
    980       case X86Local::MRM6m:
    981       case X86Local::MRM7m:
    982         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    983         break;
    984       MRM_MAPPING
    985       } // switch (Form)
    986       break;
    987     case 0xd8:
    988     case 0xd9:
    989     case 0xda:
    990     case 0xdb:
    991     case 0xdc:
    992     case 0xdd:
    993     case 0xde:
    994     case 0xdf:
    995       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
    996       break;
    997     default:
    998       if (needsModRMForDecode(Form))
    999         filter = new ModFilter(isRegFormat(Form));
   1000       else
   1001         filter = new DumbFilter();
   1002       break;
   1003     } // switch (Opcode)
   1004     opcodeToSet = Opcode;
   1005   } // switch (Prefix)
   1006 
   1007   assert(opcodeType != (OpcodeType)-1 &&
   1008          "Opcode type not set");
   1009   assert(filter && "Filter not set");
   1010 
   1011   if (Form == X86Local::AddRegFrm) {
   1012     if(Spec->modifierType != MODIFIER_MODRM) {
   1013       assert(opcodeToSet < 0xf9 &&
   1014              "Not enough room for all ADDREG_FRM operands");
   1015 
   1016       uint8_t currentOpcode;
   1017 
   1018       for (currentOpcode = opcodeToSet;
   1019            currentOpcode < opcodeToSet + 8;
   1020            ++currentOpcode)
   1021         tables.setTableFields(opcodeType,
   1022                               insnContext(),
   1023                               currentOpcode,
   1024                               *filter,
   1025                               UID, Is32Bit, IgnoresVEX_L);
   1026 
   1027       Spec->modifierType = MODIFIER_OPCODE;
   1028       Spec->modifierBase = opcodeToSet;
   1029     } else {
   1030       // modifierBase was set where MODIFIER_MODRM was set
   1031       tables.setTableFields(opcodeType,
   1032                             insnContext(),
   1033                             opcodeToSet,
   1034                             *filter,
   1035                             UID, Is32Bit, IgnoresVEX_L);
   1036     }
   1037   } else {
   1038     tables.setTableFields(opcodeType,
   1039                           insnContext(),
   1040                           opcodeToSet,
   1041                           *filter,
   1042                           UID, Is32Bit, IgnoresVEX_L);
   1043 
   1044     Spec->modifierType = MODIFIER_NONE;
   1045     Spec->modifierBase = opcodeToSet;
   1046   }
   1047 
   1048   delete filter;
   1049 
   1050 #undef MAP
   1051 }
   1052 
   1053 #define TYPE(str, type) if (s == str) return type;
   1054 OperandType RecognizableInstr::typeFromString(const std::string &s,
   1055                                               bool isSSE,
   1056                                               bool hasREX_WPrefix,
   1057                                               bool hasOpSizePrefix) {
   1058   if (isSSE) {
   1059     // For SSE instructions, we ignore the OpSize prefix and force operand
   1060     // sizes.
   1061     TYPE("GR16",              TYPE_R16)
   1062     TYPE("GR32",              TYPE_R32)
   1063     TYPE("GR64",              TYPE_R64)
   1064   }
   1065   if(hasREX_WPrefix) {
   1066     // For instructions with a REX_W prefix, a declared 32-bit register encoding
   1067     // is special.
   1068     TYPE("GR32",              TYPE_R32)
   1069   }
   1070   if(!hasOpSizePrefix) {
   1071     // For instructions without an OpSize prefix, a declared 16-bit register or
   1072     // immediate encoding is special.
   1073     TYPE("GR16",              TYPE_R16)
   1074     TYPE("i16imm",            TYPE_IMM16)
   1075   }
   1076   TYPE("i16mem",              TYPE_Mv)
   1077   TYPE("i16imm",              TYPE_IMMv)
   1078   TYPE("i16i8imm",            TYPE_IMMv)
   1079   TYPE("GR16",                TYPE_Rv)
   1080   TYPE("i32mem",              TYPE_Mv)
   1081   TYPE("i32imm",              TYPE_IMMv)
   1082   TYPE("i32i8imm",            TYPE_IMM32)
   1083   TYPE("u32u8imm",            TYPE_IMM32)
   1084   TYPE("GR32",                TYPE_Rv)
   1085   TYPE("i64mem",              TYPE_Mv)
   1086   TYPE("i64i32imm",           TYPE_IMM64)
   1087   TYPE("i64i8imm",            TYPE_IMM64)
   1088   TYPE("GR64",                TYPE_R64)
   1089   TYPE("i8mem",               TYPE_M8)
   1090   TYPE("i8imm",               TYPE_IMM8)
   1091   TYPE("GR8",                 TYPE_R8)
   1092   TYPE("VR128",               TYPE_XMM128)
   1093   TYPE("f128mem",             TYPE_M128)
   1094   TYPE("f256mem",             TYPE_M256)
   1095   TYPE("FR64",                TYPE_XMM64)
   1096   TYPE("f64mem",              TYPE_M64FP)
   1097   TYPE("sdmem",               TYPE_M64FP)
   1098   TYPE("FR32",                TYPE_XMM32)
   1099   TYPE("f32mem",              TYPE_M32FP)
   1100   TYPE("ssmem",               TYPE_M32FP)
   1101   TYPE("RST",                 TYPE_ST)
   1102   TYPE("i128mem",             TYPE_M128)
   1103   TYPE("i256mem",             TYPE_M256)
   1104   TYPE("i64i32imm_pcrel",     TYPE_REL64)
   1105   TYPE("i16imm_pcrel",        TYPE_REL16)
   1106   TYPE("i32imm_pcrel",        TYPE_REL32)
   1107   TYPE("SSECC",               TYPE_IMM3)
   1108   TYPE("brtarget",            TYPE_RELv)
   1109   TYPE("uncondbrtarget",      TYPE_RELv)
   1110   TYPE("brtarget8",           TYPE_REL8)
   1111   TYPE("f80mem",              TYPE_M80FP)
   1112   TYPE("lea32mem",            TYPE_LEA)
   1113   TYPE("lea64_32mem",         TYPE_LEA)
   1114   TYPE("lea64mem",            TYPE_LEA)
   1115   TYPE("VR64",                TYPE_MM64)
   1116   TYPE("i64imm",              TYPE_IMMv)
   1117   TYPE("opaque32mem",         TYPE_M1616)
   1118   TYPE("opaque48mem",         TYPE_M1632)
   1119   TYPE("opaque80mem",         TYPE_M1664)
   1120   TYPE("opaque512mem",        TYPE_M512)
   1121   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
   1122   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
   1123   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
   1124   TYPE("offset8",             TYPE_MOFFS8)
   1125   TYPE("offset16",            TYPE_MOFFS16)
   1126   TYPE("offset32",            TYPE_MOFFS32)
   1127   TYPE("offset64",            TYPE_MOFFS64)
   1128   TYPE("VR256",               TYPE_XMM256)
   1129   TYPE("GR16_NOAX",           TYPE_Rv)
   1130   TYPE("GR32_NOAX",           TYPE_Rv)
   1131   TYPE("GR64_NOAX",           TYPE_R64)
   1132   errs() << "Unhandled type string " << s << "\n";
   1133   llvm_unreachable("Unhandled type string");
   1134 }
   1135 #undef TYPE
   1136 
   1137 #define ENCODING(str, encoding) if (s == str) return encoding;
   1138 OperandEncoding RecognizableInstr::immediateEncodingFromString
   1139   (const std::string &s,
   1140    bool hasOpSizePrefix) {
   1141   if(!hasOpSizePrefix) {
   1142     // For instructions without an OpSize prefix, a declared 16-bit register or
   1143     // immediate encoding is special.
   1144     ENCODING("i16imm",        ENCODING_IW)
   1145   }
   1146   ENCODING("i32i8imm",        ENCODING_IB)
   1147   ENCODING("u32u8imm",        ENCODING_IB)
   1148   ENCODING("SSECC",           ENCODING_IB)
   1149   ENCODING("i16imm",          ENCODING_Iv)
   1150   ENCODING("i16i8imm",        ENCODING_IB)
   1151   ENCODING("i32imm",          ENCODING_Iv)
   1152   ENCODING("i64i32imm",       ENCODING_ID)
   1153   ENCODING("i64i8imm",        ENCODING_IB)
   1154   ENCODING("i8imm",           ENCODING_IB)
   1155   // This is not a typo.  Instructions like BLENDVPD put
   1156   // register IDs in 8-bit immediates nowadays.
   1157   ENCODING("VR256",           ENCODING_IB)
   1158   ENCODING("VR128",           ENCODING_IB)
   1159   errs() << "Unhandled immediate encoding " << s << "\n";
   1160   llvm_unreachable("Unhandled immediate encoding");
   1161 }
   1162 
   1163 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
   1164   (const std::string &s,
   1165    bool hasOpSizePrefix) {
   1166   ENCODING("GR16",            ENCODING_RM)
   1167   ENCODING("GR32",            ENCODING_RM)
   1168   ENCODING("GR64",            ENCODING_RM)
   1169   ENCODING("GR8",             ENCODING_RM)
   1170   ENCODING("VR128",           ENCODING_RM)
   1171   ENCODING("FR64",            ENCODING_RM)
   1172   ENCODING("FR32",            ENCODING_RM)
   1173   ENCODING("VR64",            ENCODING_RM)
   1174   ENCODING("VR256",           ENCODING_RM)
   1175   errs() << "Unhandled R/M register encoding " << s << "\n";
   1176   llvm_unreachable("Unhandled R/M register encoding");
   1177 }
   1178 
   1179 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
   1180   (const std::string &s,
   1181    bool hasOpSizePrefix) {
   1182   ENCODING("GR16",            ENCODING_REG)
   1183   ENCODING("GR32",            ENCODING_REG)
   1184   ENCODING("GR64",            ENCODING_REG)
   1185   ENCODING("GR8",             ENCODING_REG)
   1186   ENCODING("VR128",           ENCODING_REG)
   1187   ENCODING("FR64",            ENCODING_REG)
   1188   ENCODING("FR32",            ENCODING_REG)
   1189   ENCODING("VR64",            ENCODING_REG)
   1190   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1191   ENCODING("DEBUG_REG",       ENCODING_REG)
   1192   ENCODING("CONTROL_REG",     ENCODING_REG)
   1193   ENCODING("VR256",           ENCODING_REG)
   1194   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1195   llvm_unreachable("Unhandled reg/opcode register encoding");
   1196 }
   1197 
   1198 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
   1199   (const std::string &s,
   1200    bool hasOpSizePrefix) {
   1201   ENCODING("GR32",            ENCODING_VVVV)
   1202   ENCODING("GR64",            ENCODING_VVVV)
   1203   ENCODING("FR32",            ENCODING_VVVV)
   1204   ENCODING("FR64",            ENCODING_VVVV)
   1205   ENCODING("VR128",           ENCODING_VVVV)
   1206   ENCODING("VR256",           ENCODING_VVVV)
   1207   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1208   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1209 }
   1210 
   1211 OperandEncoding RecognizableInstr::memoryEncodingFromString
   1212   (const std::string &s,
   1213    bool hasOpSizePrefix) {
   1214   ENCODING("i16mem",          ENCODING_RM)
   1215   ENCODING("i32mem",          ENCODING_RM)
   1216   ENCODING("i64mem",          ENCODING_RM)
   1217   ENCODING("i8mem",           ENCODING_RM)
   1218   ENCODING("ssmem",           ENCODING_RM)
   1219   ENCODING("sdmem",           ENCODING_RM)
   1220   ENCODING("f128mem",         ENCODING_RM)
   1221   ENCODING("f256mem",         ENCODING_RM)
   1222   ENCODING("f64mem",          ENCODING_RM)
   1223   ENCODING("f32mem",          ENCODING_RM)
   1224   ENCODING("i128mem",         ENCODING_RM)
   1225   ENCODING("i256mem",         ENCODING_RM)
   1226   ENCODING("f80mem",          ENCODING_RM)
   1227   ENCODING("lea32mem",        ENCODING_RM)
   1228   ENCODING("lea64_32mem",     ENCODING_RM)
   1229   ENCODING("lea64mem",        ENCODING_RM)
   1230   ENCODING("opaque32mem",     ENCODING_RM)
   1231   ENCODING("opaque48mem",     ENCODING_RM)
   1232   ENCODING("opaque80mem",     ENCODING_RM)
   1233   ENCODING("opaque512mem",    ENCODING_RM)
   1234   errs() << "Unhandled memory encoding " << s << "\n";
   1235   llvm_unreachable("Unhandled memory encoding");
   1236 }
   1237 
   1238 OperandEncoding RecognizableInstr::relocationEncodingFromString
   1239   (const std::string &s,
   1240    bool hasOpSizePrefix) {
   1241   if(!hasOpSizePrefix) {
   1242     // For instructions without an OpSize prefix, a declared 16-bit register or
   1243     // immediate encoding is special.
   1244     ENCODING("i16imm",        ENCODING_IW)
   1245   }
   1246   ENCODING("i16imm",          ENCODING_Iv)
   1247   ENCODING("i16i8imm",        ENCODING_IB)
   1248   ENCODING("i32imm",          ENCODING_Iv)
   1249   ENCODING("i32i8imm",        ENCODING_IB)
   1250   ENCODING("i64i32imm",       ENCODING_ID)
   1251   ENCODING("i64i8imm",        ENCODING_IB)
   1252   ENCODING("i8imm",           ENCODING_IB)
   1253   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1254   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1255   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1256   ENCODING("brtarget",        ENCODING_Iv)
   1257   ENCODING("brtarget8",       ENCODING_IB)
   1258   ENCODING("i64imm",          ENCODING_IO)
   1259   ENCODING("offset8",         ENCODING_Ia)
   1260   ENCODING("offset16",        ENCODING_Ia)
   1261   ENCODING("offset32",        ENCODING_Ia)
   1262   ENCODING("offset64",        ENCODING_Ia)
   1263   errs() << "Unhandled relocation encoding " << s << "\n";
   1264   llvm_unreachable("Unhandled relocation encoding");
   1265 }
   1266 
   1267 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
   1268   (const std::string &s,
   1269    bool hasOpSizePrefix) {
   1270   ENCODING("RST",             ENCODING_I)
   1271   ENCODING("GR32",            ENCODING_Rv)
   1272   ENCODING("GR64",            ENCODING_RO)
   1273   ENCODING("GR16",            ENCODING_Rv)
   1274   ENCODING("GR8",             ENCODING_RB)
   1275   ENCODING("GR16_NOAX",       ENCODING_Rv)
   1276   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1277   ENCODING("GR64_NOAX",       ENCODING_RO)
   1278   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1279   llvm_unreachable("Unhandled opcode modifier encoding");
   1280 }
   1281 #undef ENCODING
   1282