Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // Platform specific code for Win32.
     29 
     30 #define V8_WIN32_HEADERS_FULL
     31 #include "win32-headers.h"
     32 
     33 #include "v8.h"
     34 
     35 #include "platform.h"
     36 #include "vm-state-inl.h"
     37 
     38 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
     39 // refer to The Open Group Base Specification for specification of the correct
     40 // semantics for these functions.
     41 // (http://www.opengroup.org/onlinepubs/000095399/)
     42 #ifdef _MSC_VER
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 // Test for finite value - usually defined in math.h
     48 int isfinite(double x) {
     49   return _finite(x);
     50 }
     51 
     52 }  // namespace v8
     53 }  // namespace internal
     54 
     55 // Test for a NaN (not a number) value - usually defined in math.h
     56 int isnan(double x) {
     57   return _isnan(x);
     58 }
     59 
     60 
     61 // Test for infinity - usually defined in math.h
     62 int isinf(double x) {
     63   return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
     64 }
     65 
     66 
     67 // Test if x is less than y and both nominal - usually defined in math.h
     68 int isless(double x, double y) {
     69   return isnan(x) || isnan(y) ? 0 : x < y;
     70 }
     71 
     72 
     73 // Test if x is greater than y and both nominal - usually defined in math.h
     74 int isgreater(double x, double y) {
     75   return isnan(x) || isnan(y) ? 0 : x > y;
     76 }
     77 
     78 
     79 // Classify floating point number - usually defined in math.h
     80 int fpclassify(double x) {
     81   // Use the MS-specific _fpclass() for classification.
     82   int flags = _fpclass(x);
     83 
     84   // Determine class. We cannot use a switch statement because
     85   // the _FPCLASS_ constants are defined as flags.
     86   if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
     87   if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
     88   if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
     89   if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
     90 
     91   // All cases should be covered by the code above.
     92   ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
     93   return FP_NAN;
     94 }
     95 
     96 
     97 // Test sign - usually defined in math.h
     98 int signbit(double x) {
     99   // We need to take care of the special case of both positive
    100   // and negative versions of zero.
    101   if (x == 0)
    102     return _fpclass(x) & _FPCLASS_NZ;
    103   else
    104     return x < 0;
    105 }
    106 
    107 
    108 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
    109 // defined in strings.h.
    110 int strncasecmp(const char* s1, const char* s2, int n) {
    111   return _strnicmp(s1, s2, n);
    112 }
    113 
    114 #endif  // _MSC_VER
    115 
    116 
    117 // Extra functions for MinGW. Most of these are the _s functions which are in
    118 // the Microsoft Visual Studio C++ CRT.
    119 #ifdef __MINGW32__
    120 
    121 int localtime_s(tm* out_tm, const time_t* time) {
    122   tm* posix_local_time_struct = localtime(time);
    123   if (posix_local_time_struct == NULL) return 1;
    124   *out_tm = *posix_local_time_struct;
    125   return 0;
    126 }
    127 
    128 
    129 // Not sure this the correct interpretation of _mkgmtime
    130 time_t _mkgmtime(tm* timeptr) {
    131   return mktime(timeptr);
    132 }
    133 
    134 
    135 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
    136   *pFile = fopen(filename, mode);
    137   return *pFile != NULL ? 0 : 1;
    138 }
    139 
    140 
    141 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
    142                  const char* format, va_list argptr) {
    143   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
    144 }
    145 #define _TRUNCATE 0
    146 
    147 
    148 int strncpy_s(char* strDest, size_t numberOfElements,
    149               const char* strSource, size_t count) {
    150   strncpy(strDest, strSource, count);
    151   return 0;
    152 }
    153 
    154 
    155 inline void MemoryBarrier() {
    156   int barrier = 0;
    157   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
    158 }
    159 
    160 #endif  // __MINGW32__
    161 
    162 // Generate a pseudo-random number in the range 0-2^31-1. Usually
    163 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
    164 int random() {
    165   return rand();
    166 }
    167 
    168 
    169 namespace v8 {
    170 namespace internal {
    171 
    172 double ceiling(double x) {
    173   return ceil(x);
    174 }
    175 
    176 
    177 static Mutex* limit_mutex = NULL;
    178 
    179 #if defined(V8_TARGET_ARCH_IA32)
    180 static OS::MemCopyFunction memcopy_function = NULL;
    181 static Mutex* memcopy_function_mutex = OS::CreateMutex();
    182 // Defined in codegen-ia32.cc.
    183 OS::MemCopyFunction CreateMemCopyFunction();
    184 
    185 // Copy memory area to disjoint memory area.
    186 void OS::MemCopy(void* dest, const void* src, size_t size) {
    187   if (memcopy_function == NULL) {
    188     ScopedLock lock(memcopy_function_mutex);
    189     if (memcopy_function == NULL) {
    190       OS::MemCopyFunction temp = CreateMemCopyFunction();
    191       MemoryBarrier();
    192       memcopy_function = temp;
    193     }
    194   }
    195   // Note: here we rely on dependent reads being ordered. This is true
    196   // on all architectures we currently support.
    197   (*memcopy_function)(dest, src, size);
    198 #ifdef DEBUG
    199   CHECK_EQ(0, memcmp(dest, src, size));
    200 #endif
    201 }
    202 #endif  // V8_TARGET_ARCH_IA32
    203 
    204 #ifdef _WIN64
    205 typedef double (*ModuloFunction)(double, double);
    206 static ModuloFunction modulo_function = NULL;
    207 static Mutex* modulo_function_mutex = OS::CreateMutex();
    208 // Defined in codegen-x64.cc.
    209 ModuloFunction CreateModuloFunction();
    210 
    211 double modulo(double x, double y) {
    212   if (modulo_function == NULL) {
    213     ScopedLock lock(modulo_function_mutex);
    214     if (modulo_function == NULL) {
    215       ModuloFunction temp = CreateModuloFunction();
    216       MemoryBarrier();
    217       modulo_function = temp;
    218     }
    219   }
    220   // Note: here we rely on dependent reads being ordered. This is true
    221   // on all architectures we currently support.
    222   return (*modulo_function)(x, y);
    223 }
    224 #else  // Win32
    225 
    226 double modulo(double x, double y) {
    227   // Workaround MS fmod bugs. ECMA-262 says:
    228   // dividend is finite and divisor is an infinity => result equals dividend
    229   // dividend is a zero and divisor is nonzero finite => result equals dividend
    230   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
    231       !(x == 0 && (y != 0 && isfinite(y)))) {
    232     x = fmod(x, y);
    233   }
    234   return x;
    235 }
    236 
    237 #endif  // _WIN64
    238 
    239 // ----------------------------------------------------------------------------
    240 // The Time class represents time on win32. A timestamp is represented as
    241 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
    242 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    243 // January 1, 1970.
    244 
    245 class Time {
    246  public:
    247   // Constructors.
    248   Time();
    249   explicit Time(double jstime);
    250   Time(int year, int mon, int day, int hour, int min, int sec);
    251 
    252   // Convert timestamp to JavaScript representation.
    253   double ToJSTime();
    254 
    255   // Set timestamp to current time.
    256   void SetToCurrentTime();
    257 
    258   // Returns the local timezone offset in milliseconds east of UTC. This is
    259   // the number of milliseconds you must add to UTC to get local time, i.e.
    260   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    261   // routine also takes into account whether daylight saving is effect
    262   // at the time.
    263   int64_t LocalOffset();
    264 
    265   // Returns the daylight savings time offset for the time in milliseconds.
    266   int64_t DaylightSavingsOffset();
    267 
    268   // Returns a string identifying the current timezone for the
    269   // timestamp taking into account daylight saving.
    270   char* LocalTimezone();
    271 
    272  private:
    273   // Constants for time conversion.
    274   static const int64_t kTimeEpoc = 116444736000000000LL;
    275   static const int64_t kTimeScaler = 10000;
    276   static const int64_t kMsPerMinute = 60000;
    277 
    278   // Constants for timezone information.
    279   static const int kTzNameSize = 128;
    280   static const bool kShortTzNames = false;
    281 
    282   // Timezone information. We need to have static buffers for the
    283   // timezone names because we return pointers to these in
    284   // LocalTimezone().
    285   static bool tz_initialized_;
    286   static TIME_ZONE_INFORMATION tzinfo_;
    287   static char std_tz_name_[kTzNameSize];
    288   static char dst_tz_name_[kTzNameSize];
    289 
    290   // Initialize the timezone information (if not already done).
    291   static void TzSet();
    292 
    293   // Guess the name of the timezone from the bias.
    294   static const char* GuessTimezoneNameFromBias(int bias);
    295 
    296   // Return whether or not daylight savings time is in effect at this time.
    297   bool InDST();
    298 
    299   // Return the difference (in milliseconds) between this timestamp and
    300   // another timestamp.
    301   int64_t Diff(Time* other);
    302 
    303   // Accessor for FILETIME representation.
    304   FILETIME& ft() { return time_.ft_; }
    305 
    306   // Accessor for integer representation.
    307   int64_t& t() { return time_.t_; }
    308 
    309   // Although win32 uses 64-bit integers for representing timestamps,
    310   // these are packed into a FILETIME structure. The FILETIME structure
    311   // is just a struct representing a 64-bit integer. The TimeStamp union
    312   // allows access to both a FILETIME and an integer representation of
    313   // the timestamp.
    314   union TimeStamp {
    315     FILETIME ft_;
    316     int64_t t_;
    317   };
    318 
    319   TimeStamp time_;
    320 };
    321 
    322 // Static variables.
    323 bool Time::tz_initialized_ = false;
    324 TIME_ZONE_INFORMATION Time::tzinfo_;
    325 char Time::std_tz_name_[kTzNameSize];
    326 char Time::dst_tz_name_[kTzNameSize];
    327 
    328 
    329 // Initialize timestamp to start of epoc.
    330 Time::Time() {
    331   t() = 0;
    332 }
    333 
    334 
    335 // Initialize timestamp from a JavaScript timestamp.
    336 Time::Time(double jstime) {
    337   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    338 }
    339 
    340 
    341 // Initialize timestamp from date/time components.
    342 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
    343   SYSTEMTIME st;
    344   st.wYear = year;
    345   st.wMonth = mon;
    346   st.wDay = day;
    347   st.wHour = hour;
    348   st.wMinute = min;
    349   st.wSecond = sec;
    350   st.wMilliseconds = 0;
    351   SystemTimeToFileTime(&st, &ft());
    352 }
    353 
    354 
    355 // Convert timestamp to JavaScript timestamp.
    356 double Time::ToJSTime() {
    357   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    358 }
    359 
    360 
    361 // Guess the name of the timezone from the bias.
    362 // The guess is very biased towards the northern hemisphere.
    363 const char* Time::GuessTimezoneNameFromBias(int bias) {
    364   static const int kHour = 60;
    365   switch (-bias) {
    366     case -9*kHour: return "Alaska";
    367     case -8*kHour: return "Pacific";
    368     case -7*kHour: return "Mountain";
    369     case -6*kHour: return "Central";
    370     case -5*kHour: return "Eastern";
    371     case -4*kHour: return "Atlantic";
    372     case  0*kHour: return "GMT";
    373     case +1*kHour: return "Central Europe";
    374     case +2*kHour: return "Eastern Europe";
    375     case +3*kHour: return "Russia";
    376     case +5*kHour + 30: return "India";
    377     case +8*kHour: return "China";
    378     case +9*kHour: return "Japan";
    379     case +12*kHour: return "New Zealand";
    380     default: return "Local";
    381   }
    382 }
    383 
    384 
    385 // Initialize timezone information. The timezone information is obtained from
    386 // windows. If we cannot get the timezone information we fall back to CET.
    387 // Please notice that this code is not thread-safe.
    388 void Time::TzSet() {
    389   // Just return if timezone information has already been initialized.
    390   if (tz_initialized_) return;
    391 
    392   // Initialize POSIX time zone data.
    393   _tzset();
    394   // Obtain timezone information from operating system.
    395   memset(&tzinfo_, 0, sizeof(tzinfo_));
    396   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    397     // If we cannot get timezone information we fall back to CET.
    398     tzinfo_.Bias = -60;
    399     tzinfo_.StandardDate.wMonth = 10;
    400     tzinfo_.StandardDate.wDay = 5;
    401     tzinfo_.StandardDate.wHour = 3;
    402     tzinfo_.StandardBias = 0;
    403     tzinfo_.DaylightDate.wMonth = 3;
    404     tzinfo_.DaylightDate.wDay = 5;
    405     tzinfo_.DaylightDate.wHour = 2;
    406     tzinfo_.DaylightBias = -60;
    407   }
    408 
    409   // Make standard and DST timezone names.
    410   OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
    411                "%S",
    412                tzinfo_.StandardName);
    413   std_tz_name_[kTzNameSize - 1] = '\0';
    414   OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
    415                "%S",
    416                tzinfo_.DaylightName);
    417   dst_tz_name_[kTzNameSize - 1] = '\0';
    418 
    419   // If OS returned empty string or resource id (like "@tzres.dll,-211")
    420   // simply guess the name from the UTC bias of the timezone.
    421   // To properly resolve the resource identifier requires a library load,
    422   // which is not possible in a sandbox.
    423   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    424     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
    425                  "%s Standard Time",
    426                  GuessTimezoneNameFromBias(tzinfo_.Bias));
    427   }
    428   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    429     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
    430                  "%s Daylight Time",
    431                  GuessTimezoneNameFromBias(tzinfo_.Bias));
    432   }
    433 
    434   // Timezone information initialized.
    435   tz_initialized_ = true;
    436 }
    437 
    438 
    439 // Return the difference in milliseconds between this and another timestamp.
    440 int64_t Time::Diff(Time* other) {
    441   return (t() - other->t()) / kTimeScaler;
    442 }
    443 
    444 
    445 // Set timestamp to current time.
    446 void Time::SetToCurrentTime() {
    447   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    448   // Because we're fast, we like fast timers which have at least a
    449   // 1ms resolution.
    450   //
    451   // timeGetTime() provides 1ms granularity when combined with
    452   // timeBeginPeriod().  If the host application for v8 wants fast
    453   // timers, it can use timeBeginPeriod to increase the resolution.
    454   //
    455   // Using timeGetTime() has a drawback because it is a 32bit value
    456   // and hence rolls-over every ~49days.
    457   //
    458   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    459   // and then use timeGetTime to extrapolate current time from the
    460   // start time.  To deal with rollovers, we resync the clock
    461   // any time when more than kMaxClockElapsedTime has passed or
    462   // whenever timeGetTime creates a rollover.
    463 
    464   static bool initialized = false;
    465   static TimeStamp init_time;
    466   static DWORD init_ticks;
    467   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    468   static const int64_t kMaxClockElapsedTime =
    469       60*kHundredNanosecondsPerSecond;  // 1 minute
    470 
    471   // If we are uninitialized, we need to resync the clock.
    472   bool needs_resync = !initialized;
    473 
    474   // Get the current time.
    475   TimeStamp time_now;
    476   GetSystemTimeAsFileTime(&time_now.ft_);
    477   DWORD ticks_now = timeGetTime();
    478 
    479   // Check if we need to resync due to clock rollover.
    480   needs_resync |= ticks_now < init_ticks;
    481 
    482   // Check if we need to resync due to elapsed time.
    483   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    484 
    485   // Resync the clock if necessary.
    486   if (needs_resync) {
    487     GetSystemTimeAsFileTime(&init_time.ft_);
    488     init_ticks = ticks_now = timeGetTime();
    489     initialized = true;
    490   }
    491 
    492   // Finally, compute the actual time.  Why is this so hard.
    493   DWORD elapsed = ticks_now - init_ticks;
    494   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    495 }
    496 
    497 
    498 // Return the local timezone offset in milliseconds east of UTC. This
    499 // takes into account whether daylight saving is in effect at the time.
    500 // Only times in the 32-bit Unix range may be passed to this function.
    501 // Also, adding the time-zone offset to the input must not overflow.
    502 // The function EquivalentTime() in date.js guarantees this.
    503 int64_t Time::LocalOffset() {
    504   // Initialize timezone information, if needed.
    505   TzSet();
    506 
    507   Time rounded_to_second(*this);
    508   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
    509       1000 * kTimeScaler;
    510   // Convert to local time using POSIX localtime function.
    511   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    512   // very slow.  Other browsers use localtime().
    513 
    514   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    515   // POSIX seconds past 1/1/1970 0:00:00.
    516   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    517   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    518     return 0;
    519   }
    520   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    521   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    522 
    523   // Convert to local time, as struct with fields for day, hour, year, etc.
    524   tm posix_local_time_struct;
    525   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    526   // Convert local time in struct to POSIX time as if it were a UTC time.
    527   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
    528   Time localtime(1000.0 * local_posix_time);
    529 
    530   return localtime.Diff(&rounded_to_second);
    531 }
    532 
    533 
    534 // Return whether or not daylight savings time is in effect at this time.
    535 bool Time::InDST() {
    536   // Initialize timezone information, if needed.
    537   TzSet();
    538 
    539   // Determine if DST is in effect at the specified time.
    540   bool in_dst = false;
    541   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
    542     // Get the local timezone offset for the timestamp in milliseconds.
    543     int64_t offset = LocalOffset();
    544 
    545     // Compute the offset for DST. The bias parameters in the timezone info
    546     // are specified in minutes. These must be converted to milliseconds.
    547     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
    548 
    549     // If the local time offset equals the timezone bias plus the daylight
    550     // bias then DST is in effect.
    551     in_dst = offset == dstofs;
    552   }
    553 
    554   return in_dst;
    555 }
    556 
    557 
    558 // Return the daylight savings time offset for this time.
    559 int64_t Time::DaylightSavingsOffset() {
    560   return InDST() ? 60 * kMsPerMinute : 0;
    561 }
    562 
    563 
    564 // Returns a string identifying the current timezone for the
    565 // timestamp taking into account daylight saving.
    566 char* Time::LocalTimezone() {
    567   // Return the standard or DST time zone name based on whether daylight
    568   // saving is in effect at the given time.
    569   return InDST() ? dst_tz_name_ : std_tz_name_;
    570 }
    571 
    572 
    573 void OS::Setup() {
    574   // Seed the random number generator.
    575   // Convert the current time to a 64-bit integer first, before converting it
    576   // to an unsigned. Going directly can cause an overflow and the seed to be
    577   // set to all ones. The seed will be identical for different instances that
    578   // call this setup code within the same millisecond.
    579   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
    580   srand(static_cast<unsigned int>(seed));
    581   limit_mutex = CreateMutex();
    582 }
    583 
    584 
    585 // Returns the accumulated user time for thread.
    586 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    587   FILETIME dummy;
    588   uint64_t usertime;
    589 
    590   // Get the amount of time that the thread has executed in user mode.
    591   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    592                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    593 
    594   // Adjust the resolution to micro-seconds.
    595   usertime /= 10;
    596 
    597   // Convert to seconds and microseconds
    598   *secs = static_cast<uint32_t>(usertime / 1000000);
    599   *usecs = static_cast<uint32_t>(usertime % 1000000);
    600   return 0;
    601 }
    602 
    603 
    604 // Returns current time as the number of milliseconds since
    605 // 00:00:00 UTC, January 1, 1970.
    606 double OS::TimeCurrentMillis() {
    607   Time t;
    608   t.SetToCurrentTime();
    609   return t.ToJSTime();
    610 }
    611 
    612 // Returns the tickcounter based on timeGetTime.
    613 int64_t OS::Ticks() {
    614   return timeGetTime() * 1000;  // Convert to microseconds.
    615 }
    616 
    617 
    618 // Returns a string identifying the current timezone taking into
    619 // account daylight saving.
    620 const char* OS::LocalTimezone(double time) {
    621   return Time(time).LocalTimezone();
    622 }
    623 
    624 
    625 // Returns the local time offset in milliseconds east of UTC without
    626 // taking daylight savings time into account.
    627 double OS::LocalTimeOffset() {
    628   // Use current time, rounded to the millisecond.
    629   Time t(TimeCurrentMillis());
    630   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    631   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
    632 }
    633 
    634 
    635 // Returns the daylight savings offset in milliseconds for the given
    636 // time.
    637 double OS::DaylightSavingsOffset(double time) {
    638   int64_t offset = Time(time).DaylightSavingsOffset();
    639   return static_cast<double>(offset);
    640 }
    641 
    642 
    643 int OS::GetLastError() {
    644   return ::GetLastError();
    645 }
    646 
    647 
    648 // ----------------------------------------------------------------------------
    649 // Win32 console output.
    650 //
    651 // If a Win32 application is linked as a console application it has a normal
    652 // standard output and standard error. In this case normal printf works fine
    653 // for output. However, if the application is linked as a GUI application,
    654 // the process doesn't have a console, and therefore (debugging) output is lost.
    655 // This is the case if we are embedded in a windows program (like a browser).
    656 // In order to be able to get debug output in this case the the debugging
    657 // facility using OutputDebugString. This output goes to the active debugger
    658 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    659 
    660 enum OutputMode {
    661   UNKNOWN,  // Output method has not yet been determined.
    662   CONSOLE,  // Output is written to stdout.
    663   ODS       // Output is written to debug facility.
    664 };
    665 
    666 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    667 
    668 
    669 // Determine if the process has a console for output.
    670 static bool HasConsole() {
    671   // Only check the first time. Eventual race conditions are not a problem,
    672   // because all threads will eventually determine the same mode.
    673   if (output_mode == UNKNOWN) {
    674     // We cannot just check that the standard output is attached to a console
    675     // because this would fail if output is redirected to a file. Therefore we
    676     // say that a process does not have an output console if either the
    677     // standard output handle is invalid or its file type is unknown.
    678     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    679         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    680       output_mode = CONSOLE;
    681     else
    682       output_mode = ODS;
    683   }
    684   return output_mode == CONSOLE;
    685 }
    686 
    687 
    688 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    689   if (HasConsole()) {
    690     vfprintf(stream, format, args);
    691   } else {
    692     // It is important to use safe print here in order to avoid
    693     // overflowing the buffer. We might truncate the output, but this
    694     // does not crash.
    695     EmbeddedVector<char, 4096> buffer;
    696     OS::VSNPrintF(buffer, format, args);
    697     OutputDebugStringA(buffer.start());
    698   }
    699 }
    700 
    701 
    702 FILE* OS::FOpen(const char* path, const char* mode) {
    703   FILE* result;
    704   if (fopen_s(&result, path, mode) == 0) {
    705     return result;
    706   } else {
    707     return NULL;
    708   }
    709 }
    710 
    711 
    712 bool OS::Remove(const char* path) {
    713   return (DeleteFileA(path) != 0);
    714 }
    715 
    716 
    717 // Open log file in binary mode to avoid /n -> /r/n conversion.
    718 const char* const OS::LogFileOpenMode = "wb";
    719 
    720 
    721 // Print (debug) message to console.
    722 void OS::Print(const char* format, ...) {
    723   va_list args;
    724   va_start(args, format);
    725   VPrint(format, args);
    726   va_end(args);
    727 }
    728 
    729 
    730 void OS::VPrint(const char* format, va_list args) {
    731   VPrintHelper(stdout, format, args);
    732 }
    733 
    734 
    735 void OS::FPrint(FILE* out, const char* format, ...) {
    736   va_list args;
    737   va_start(args, format);
    738   VFPrint(out, format, args);
    739   va_end(args);
    740 }
    741 
    742 
    743 void OS::VFPrint(FILE* out, const char* format, va_list args) {
    744   VPrintHelper(out, format, args);
    745 }
    746 
    747 
    748 // Print error message to console.
    749 void OS::PrintError(const char* format, ...) {
    750   va_list args;
    751   va_start(args, format);
    752   VPrintError(format, args);
    753   va_end(args);
    754 }
    755 
    756 
    757 void OS::VPrintError(const char* format, va_list args) {
    758   VPrintHelper(stderr, format, args);
    759 }
    760 
    761 
    762 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
    763   va_list args;
    764   va_start(args, format);
    765   int result = VSNPrintF(str, format, args);
    766   va_end(args);
    767   return result;
    768 }
    769 
    770 
    771 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
    772   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
    773   // Make sure to zero-terminate the string if the output was
    774   // truncated or if there was an error.
    775   if (n < 0 || n >= str.length()) {
    776     if (str.length() > 0)
    777       str[str.length() - 1] = '\0';
    778     return -1;
    779   } else {
    780     return n;
    781   }
    782 }
    783 
    784 
    785 char* OS::StrChr(char* str, int c) {
    786   return const_cast<char*>(strchr(str, c));
    787 }
    788 
    789 
    790 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
    791   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
    792   size_t buffer_size = static_cast<size_t>(dest.length());
    793   if (n + 1 > buffer_size)  // count for trailing '\0'
    794     n = _TRUNCATE;
    795   int result = strncpy_s(dest.start(), dest.length(), src, n);
    796   USE(result);
    797   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
    798 }
    799 
    800 
    801 // We keep the lowest and highest addresses mapped as a quick way of
    802 // determining that pointers are outside the heap (used mostly in assertions
    803 // and verification).  The estimate is conservative, ie, not all addresses in
    804 // 'allocated' space are actually allocated to our heap.  The range is
    805 // [lowest, highest), inclusive on the low and and exclusive on the high end.
    806 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
    807 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
    808 
    809 
    810 static void UpdateAllocatedSpaceLimits(void* address, int size) {
    811   ASSERT(limit_mutex != NULL);
    812   ScopedLock lock(limit_mutex);
    813 
    814   lowest_ever_allocated = Min(lowest_ever_allocated, address);
    815   highest_ever_allocated =
    816       Max(highest_ever_allocated,
    817           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
    818 }
    819 
    820 
    821 bool OS::IsOutsideAllocatedSpace(void* pointer) {
    822   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
    823     return true;
    824   // Ask the Windows API
    825   if (IsBadWritePtr(pointer, 1))
    826     return true;
    827   return false;
    828 }
    829 
    830 
    831 // Get the system's page size used by VirtualAlloc() or the next power
    832 // of two. The reason for always returning a power of two is that the
    833 // rounding up in OS::Allocate expects that.
    834 static size_t GetPageSize() {
    835   static size_t page_size = 0;
    836   if (page_size == 0) {
    837     SYSTEM_INFO info;
    838     GetSystemInfo(&info);
    839     page_size = RoundUpToPowerOf2(info.dwPageSize);
    840   }
    841   return page_size;
    842 }
    843 
    844 
    845 // The allocation alignment is the guaranteed alignment for
    846 // VirtualAlloc'ed blocks of memory.
    847 size_t OS::AllocateAlignment() {
    848   static size_t allocate_alignment = 0;
    849   if (allocate_alignment == 0) {
    850     SYSTEM_INFO info;
    851     GetSystemInfo(&info);
    852     allocate_alignment = info.dwAllocationGranularity;
    853   }
    854   return allocate_alignment;
    855 }
    856 
    857 
    858 void* OS::Allocate(const size_t requested,
    859                    size_t* allocated,
    860                    bool is_executable) {
    861   // The address range used to randomize RWX allocations in OS::Allocate
    862   // Try not to map pages into the default range that windows loads DLLs
    863   // Use a multiple of 64k to prevent committing unused memory.
    864   // Note: This does not guarantee RWX regions will be within the
    865   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
    866 #ifdef V8_HOST_ARCH_64_BIT
    867   static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
    868   static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
    869 #else
    870   static const intptr_t kAllocationRandomAddressMin = 0x04000000;
    871   static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
    872 #endif
    873 
    874   // VirtualAlloc rounds allocated size to page size automatically.
    875   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    876   intptr_t address = 0;
    877 
    878   // Windows XP SP2 allows Data Excution Prevention (DEP).
    879   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    880 
    881   // For exectutable pages try and randomize the allocation address
    882   if (prot == PAGE_EXECUTE_READWRITE &&
    883       msize >= static_cast<size_t>(Page::kPageSize)) {
    884     address = (V8::RandomPrivate(Isolate::Current()) << kPageSizeBits)
    885       | kAllocationRandomAddressMin;
    886     address &= kAllocationRandomAddressMax;
    887   }
    888 
    889   LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
    890                               msize,
    891                               MEM_COMMIT | MEM_RESERVE,
    892                               prot);
    893   if (mbase == NULL && address != 0)
    894     mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
    895 
    896   if (mbase == NULL) {
    897     LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
    898     return NULL;
    899   }
    900 
    901   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
    902 
    903   *allocated = msize;
    904   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
    905   return mbase;
    906 }
    907 
    908 
    909 void OS::Free(void* address, const size_t size) {
    910   // TODO(1240712): VirtualFree has a return value which is ignored here.
    911   VirtualFree(address, 0, MEM_RELEASE);
    912   USE(size);
    913 }
    914 
    915 
    916 #ifdef ENABLE_HEAP_PROTECTION
    917 
    918 void OS::Protect(void* address, size_t size) {
    919   // TODO(1240712): VirtualProtect has a return value which is ignored here.
    920   DWORD old_protect;
    921   VirtualProtect(address, size, PAGE_READONLY, &old_protect);
    922 }
    923 
    924 
    925 void OS::Unprotect(void* address, size_t size, bool is_executable) {
    926   // TODO(1240712): VirtualProtect has a return value which is ignored here.
    927   DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    928   DWORD old_protect;
    929   VirtualProtect(address, size, new_protect, &old_protect);
    930 }
    931 
    932 #endif
    933 
    934 
    935 void OS::Sleep(int milliseconds) {
    936   ::Sleep(milliseconds);
    937 }
    938 
    939 
    940 void OS::Abort() {
    941   if (!IsDebuggerPresent()) {
    942 #ifdef _MSC_VER
    943     // Make the MSVCRT do a silent abort.
    944     _set_abort_behavior(0, _WRITE_ABORT_MSG);
    945     _set_abort_behavior(0, _CALL_REPORTFAULT);
    946 #endif  // _MSC_VER
    947     abort();
    948   } else {
    949     DebugBreak();
    950   }
    951 }
    952 
    953 
    954 void OS::DebugBreak() {
    955 #ifdef _MSC_VER
    956   __debugbreak();
    957 #else
    958   ::DebugBreak();
    959 #endif
    960 }
    961 
    962 
    963 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
    964  public:
    965   Win32MemoryMappedFile(HANDLE file,
    966                         HANDLE file_mapping,
    967                         void* memory,
    968                         int size)
    969       : file_(file),
    970         file_mapping_(file_mapping),
    971         memory_(memory),
    972         size_(size) { }
    973   virtual ~Win32MemoryMappedFile();
    974   virtual void* memory() { return memory_; }
    975   virtual int size() { return size_; }
    976  private:
    977   HANDLE file_;
    978   HANDLE file_mapping_;
    979   void* memory_;
    980   int size_;
    981 };
    982 
    983 
    984 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    985   // Open a physical file
    986   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    987       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
    988   if (file == INVALID_HANDLE_VALUE) return NULL;
    989 
    990   int size = static_cast<int>(GetFileSize(file, NULL));
    991 
    992   // Create a file mapping for the physical file
    993   HANDLE file_mapping = CreateFileMapping(file, NULL,
    994       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    995   if (file_mapping == NULL) return NULL;
    996 
    997   // Map a view of the file into memory
    998   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    999   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
   1000 }
   1001 
   1002 
   1003 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
   1004     void* initial) {
   1005   // Open a physical file
   1006   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
   1007       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
   1008   if (file == NULL) return NULL;
   1009   // Create a file mapping for the physical file
   1010   HANDLE file_mapping = CreateFileMapping(file, NULL,
   1011       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
   1012   if (file_mapping == NULL) return NULL;
   1013   // Map a view of the file into memory
   1014   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
   1015   if (memory) memmove(memory, initial, size);
   1016   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
   1017 }
   1018 
   1019 
   1020 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
   1021   if (memory_ != NULL)
   1022     UnmapViewOfFile(memory_);
   1023   CloseHandle(file_mapping_);
   1024   CloseHandle(file_);
   1025 }
   1026 
   1027 
   1028 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
   1029 // dynamically. This is to avoid being depending on dbghelp.dll and
   1030 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
   1031 // kernel32.dll at some point so loading functions defines in TlHelp32.h
   1032 // dynamically might not be necessary any more - for some versions of Windows?).
   1033 
   1034 // Function pointers to functions dynamically loaded from dbghelp.dll.
   1035 #define DBGHELP_FUNCTION_LIST(V)  \
   1036   V(SymInitialize)                \
   1037   V(SymGetOptions)                \
   1038   V(SymSetOptions)                \
   1039   V(SymGetSearchPath)             \
   1040   V(SymLoadModule64)              \
   1041   V(StackWalk64)                  \
   1042   V(SymGetSymFromAddr64)          \
   1043   V(SymGetLineFromAddr64)         \
   1044   V(SymFunctionTableAccess64)     \
   1045   V(SymGetModuleBase64)
   1046 
   1047 // Function pointers to functions dynamically loaded from dbghelp.dll.
   1048 #define TLHELP32_FUNCTION_LIST(V)  \
   1049   V(CreateToolhelp32Snapshot)      \
   1050   V(Module32FirstW)                \
   1051   V(Module32NextW)
   1052 
   1053 // Define the decoration to use for the type and variable name used for
   1054 // dynamically loaded DLL function..
   1055 #define DLL_FUNC_TYPE(name) _##name##_
   1056 #define DLL_FUNC_VAR(name) _##name
   1057 
   1058 // Define the type for each dynamically loaded DLL function. The function
   1059 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
   1060 // from the Windows include files are redefined here to have the function
   1061 // definitions to be as close to the ones in the original .h files as possible.
   1062 #ifndef IN
   1063 #define IN
   1064 #endif
   1065 #ifndef VOID
   1066 #define VOID void
   1067 #endif
   1068 
   1069 // DbgHelp isn't supported on MinGW yet
   1070 #ifndef __MINGW32__
   1071 // DbgHelp.h functions.
   1072 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
   1073                                                        IN PSTR UserSearchPath,
   1074                                                        IN BOOL fInvadeProcess);
   1075 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
   1076 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
   1077 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
   1078     IN HANDLE hProcess,
   1079     OUT PSTR SearchPath,
   1080     IN DWORD SearchPathLength);
   1081 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
   1082     IN HANDLE hProcess,
   1083     IN HANDLE hFile,
   1084     IN PSTR ImageName,
   1085     IN PSTR ModuleName,
   1086     IN DWORD64 BaseOfDll,
   1087     IN DWORD SizeOfDll);
   1088 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
   1089     DWORD MachineType,
   1090     HANDLE hProcess,
   1091     HANDLE hThread,
   1092     LPSTACKFRAME64 StackFrame,
   1093     PVOID ContextRecord,
   1094     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
   1095     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
   1096     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
   1097     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
   1098 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
   1099     IN HANDLE hProcess,
   1100     IN DWORD64 qwAddr,
   1101     OUT PDWORD64 pdwDisplacement,
   1102     OUT PIMAGEHLP_SYMBOL64 Symbol);
   1103 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
   1104     IN HANDLE hProcess,
   1105     IN DWORD64 qwAddr,
   1106     OUT PDWORD pdwDisplacement,
   1107     OUT PIMAGEHLP_LINE64 Line64);
   1108 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
   1109 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
   1110     HANDLE hProcess,
   1111     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
   1112 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
   1113     HANDLE hProcess,
   1114     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
   1115 
   1116 // TlHelp32.h functions.
   1117 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
   1118     DWORD dwFlags,
   1119     DWORD th32ProcessID);
   1120 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
   1121                                                         LPMODULEENTRY32W lpme);
   1122 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
   1123                                                        LPMODULEENTRY32W lpme);
   1124 
   1125 #undef IN
   1126 #undef VOID
   1127 
   1128 // Declare a variable for each dynamically loaded DLL function.
   1129 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
   1130 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1131 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1132 #undef DEF_DLL_FUNCTION
   1133 
   1134 // Load the functions. This function has a lot of "ugly" macros in order to
   1135 // keep down code duplication.
   1136 
   1137 static bool LoadDbgHelpAndTlHelp32() {
   1138   static bool dbghelp_loaded = false;
   1139 
   1140   if (dbghelp_loaded) return true;
   1141 
   1142   HMODULE module;
   1143 
   1144   // Load functions from the dbghelp.dll module.
   1145   module = LoadLibrary(TEXT("dbghelp.dll"));
   1146   if (module == NULL) {
   1147     return false;
   1148   }
   1149 
   1150 #define LOAD_DLL_FUNC(name)                                                 \
   1151   DLL_FUNC_VAR(name) =                                                      \
   1152       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1153 
   1154 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1155 
   1156 #undef LOAD_DLL_FUNC
   1157 
   1158   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1159   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1160   module = LoadLibrary(TEXT("kernel32.dll"));
   1161   if (module == NULL) {
   1162     return false;
   1163   }
   1164 
   1165 #define LOAD_DLL_FUNC(name)                                                 \
   1166   DLL_FUNC_VAR(name) =                                                      \
   1167       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1168 
   1169 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1170 
   1171 #undef LOAD_DLL_FUNC
   1172 
   1173   // Check that all functions where loaded.
   1174   bool result =
   1175 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1176 
   1177 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1178 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1179 
   1180 #undef DLL_FUNC_LOADED
   1181   true;
   1182 
   1183   dbghelp_loaded = result;
   1184   return result;
   1185   // NOTE: The modules are never unloaded and will stay around until the
   1186   // application is closed.
   1187 }
   1188 
   1189 
   1190 // Load the symbols for generating stack traces.
   1191 static bool LoadSymbols(HANDLE process_handle) {
   1192   static bool symbols_loaded = false;
   1193 
   1194   if (symbols_loaded) return true;
   1195 
   1196   BOOL ok;
   1197 
   1198   // Initialize the symbol engine.
   1199   ok = _SymInitialize(process_handle,  // hProcess
   1200                       NULL,            // UserSearchPath
   1201                       false);          // fInvadeProcess
   1202   if (!ok) return false;
   1203 
   1204   DWORD options = _SymGetOptions();
   1205   options |= SYMOPT_LOAD_LINES;
   1206   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1207   options = _SymSetOptions(options);
   1208 
   1209   char buf[OS::kStackWalkMaxNameLen] = {0};
   1210   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1211   if (!ok) {
   1212     int err = GetLastError();
   1213     PrintF("%d\n", err);
   1214     return false;
   1215   }
   1216 
   1217   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1218       TH32CS_SNAPMODULE,       // dwFlags
   1219       GetCurrentProcessId());  // th32ProcessId
   1220   if (snapshot == INVALID_HANDLE_VALUE) return false;
   1221   MODULEENTRY32W module_entry;
   1222   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1223   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1224   while (cont) {
   1225     DWORD64 base;
   1226     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1227     // both unicode and ASCII strings even though the parameter is PSTR.
   1228     base = _SymLoadModule64(
   1229         process_handle,                                       // hProcess
   1230         0,                                                    // hFile
   1231         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1232         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1233         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1234         module_entry.modBaseSize);                            // SizeOfDll
   1235     if (base == 0) {
   1236       int err = GetLastError();
   1237       if (err != ERROR_MOD_NOT_FOUND &&
   1238           err != ERROR_INVALID_HANDLE) return false;
   1239     }
   1240     LOG(i::Isolate::Current(),
   1241         SharedLibraryEvent(
   1242             module_entry.szExePath,
   1243             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
   1244             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
   1245                                            module_entry.modBaseSize)));
   1246     cont = _Module32NextW(snapshot, &module_entry);
   1247   }
   1248   CloseHandle(snapshot);
   1249 
   1250   symbols_loaded = true;
   1251   return true;
   1252 }
   1253 
   1254 
   1255 void OS::LogSharedLibraryAddresses() {
   1256   // SharedLibraryEvents are logged when loading symbol information.
   1257   // Only the shared libraries loaded at the time of the call to
   1258   // LogSharedLibraryAddresses are logged.  DLLs loaded after
   1259   // initialization are not accounted for.
   1260   if (!LoadDbgHelpAndTlHelp32()) return;
   1261   HANDLE process_handle = GetCurrentProcess();
   1262   LoadSymbols(process_handle);
   1263 }
   1264 
   1265 
   1266 void OS::SignalCodeMovingGC() {
   1267 }
   1268 
   1269 
   1270 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
   1271 
   1272 // Switch off warning 4748 (/GS can not protect parameters and local variables
   1273 // from local buffer overrun because optimizations are disabled in function) as
   1274 // it is triggered by the use of inline assembler.
   1275 #pragma warning(push)
   1276 #pragma warning(disable : 4748)
   1277 int OS::StackWalk(Vector<OS::StackFrame> frames) {
   1278   BOOL ok;
   1279 
   1280   // Load the required functions from DLL's.
   1281   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
   1282 
   1283   // Get the process and thread handles.
   1284   HANDLE process_handle = GetCurrentProcess();
   1285   HANDLE thread_handle = GetCurrentThread();
   1286 
   1287   // Read the symbols.
   1288   if (!LoadSymbols(process_handle)) return kStackWalkError;
   1289 
   1290   // Capture current context.
   1291   CONTEXT context;
   1292   RtlCaptureContext(&context);
   1293 
   1294   // Initialize the stack walking
   1295   STACKFRAME64 stack_frame;
   1296   memset(&stack_frame, 0, sizeof(stack_frame));
   1297 #ifdef  _WIN64
   1298   stack_frame.AddrPC.Offset = context.Rip;
   1299   stack_frame.AddrFrame.Offset = context.Rbp;
   1300   stack_frame.AddrStack.Offset = context.Rsp;
   1301 #else
   1302   stack_frame.AddrPC.Offset = context.Eip;
   1303   stack_frame.AddrFrame.Offset = context.Ebp;
   1304   stack_frame.AddrStack.Offset = context.Esp;
   1305 #endif
   1306   stack_frame.AddrPC.Mode = AddrModeFlat;
   1307   stack_frame.AddrFrame.Mode = AddrModeFlat;
   1308   stack_frame.AddrStack.Mode = AddrModeFlat;
   1309   int frames_count = 0;
   1310 
   1311   // Collect stack frames.
   1312   int frames_size = frames.length();
   1313   while (frames_count < frames_size) {
   1314     ok = _StackWalk64(
   1315         IMAGE_FILE_MACHINE_I386,    // MachineType
   1316         process_handle,             // hProcess
   1317         thread_handle,              // hThread
   1318         &stack_frame,               // StackFrame
   1319         &context,                   // ContextRecord
   1320         NULL,                       // ReadMemoryRoutine
   1321         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
   1322         _SymGetModuleBase64,        // GetModuleBaseRoutine
   1323         NULL);                      // TranslateAddress
   1324     if (!ok) break;
   1325 
   1326     // Store the address.
   1327     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
   1328     frames[frames_count].address =
   1329         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
   1330 
   1331     // Try to locate a symbol for this frame.
   1332     DWORD64 symbol_displacement;
   1333     SmartPointer<IMAGEHLP_SYMBOL64> symbol(
   1334         NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
   1335     if (symbol.is_empty()) return kStackWalkError;  // Out of memory.
   1336     memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
   1337     (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
   1338     (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
   1339     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
   1340                               stack_frame.AddrPC.Offset,  // Address
   1341                               &symbol_displacement,       // Displacement
   1342                               *symbol);                   // Symbol
   1343     if (ok) {
   1344       // Try to locate more source information for the symbol.
   1345       IMAGEHLP_LINE64 Line;
   1346       memset(&Line, 0, sizeof(Line));
   1347       Line.SizeOfStruct = sizeof(Line);
   1348       DWORD line_displacement;
   1349       ok = _SymGetLineFromAddr64(
   1350           process_handle,             // hProcess
   1351           stack_frame.AddrPC.Offset,  // dwAddr
   1352           &line_displacement,         // pdwDisplacement
   1353           &Line);                     // Line
   1354       // Format a text representation of the frame based on the information
   1355       // available.
   1356       if (ok) {
   1357         SNPrintF(MutableCStrVector(frames[frames_count].text,
   1358                                    kStackWalkMaxTextLen),
   1359                  "%s %s:%d:%d",
   1360                  (*symbol)->Name, Line.FileName, Line.LineNumber,
   1361                  line_displacement);
   1362       } else {
   1363         SNPrintF(MutableCStrVector(frames[frames_count].text,
   1364                                    kStackWalkMaxTextLen),
   1365                  "%s",
   1366                  (*symbol)->Name);
   1367       }
   1368       // Make sure line termination is in place.
   1369       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
   1370     } else {
   1371       // No text representation of this frame
   1372       frames[frames_count].text[0] = '\0';
   1373 
   1374       // Continue if we are just missing a module (for non C/C++ frames a
   1375       // module will never be found).
   1376       int err = GetLastError();
   1377       if (err != ERROR_MOD_NOT_FOUND) {
   1378         break;
   1379       }
   1380     }
   1381 
   1382     frames_count++;
   1383   }
   1384 
   1385   // Return the number of frames filled in.
   1386   return frames_count;
   1387 }
   1388 
   1389 // Restore warnings to previous settings.
   1390 #pragma warning(pop)
   1391 
   1392 #else  // __MINGW32__
   1393 void OS::LogSharedLibraryAddresses() { }
   1394 void OS::SignalCodeMovingGC() { }
   1395 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
   1396 #endif  // __MINGW32__
   1397 
   1398 
   1399 uint64_t OS::CpuFeaturesImpliedByPlatform() {
   1400   return 0;  // Windows runs on anything.
   1401 }
   1402 
   1403 
   1404 double OS::nan_value() {
   1405 #ifdef _MSC_VER
   1406   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
   1407   // in mask set, so value equals mask.
   1408   static const __int64 nanval = kQuietNaNMask;
   1409   return *reinterpret_cast<const double*>(&nanval);
   1410 #else  // _MSC_VER
   1411   return NAN;
   1412 #endif  // _MSC_VER
   1413 }
   1414 
   1415 
   1416 int OS::ActivationFrameAlignment() {
   1417 #ifdef _WIN64
   1418   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1419 #else
   1420   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1421 #endif
   1422 }
   1423 
   1424 
   1425 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
   1426   MemoryBarrier();
   1427   *ptr = value;
   1428 }
   1429 
   1430 
   1431 bool VirtualMemory::IsReserved() {
   1432   return address_ != NULL;
   1433 }
   1434 
   1435 
   1436 VirtualMemory::VirtualMemory(size_t size) {
   1437   address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
   1438   size_ = size;
   1439 }
   1440 
   1441 
   1442 VirtualMemory::~VirtualMemory() {
   1443   if (IsReserved()) {
   1444     if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
   1445   }
   1446 }
   1447 
   1448 
   1449 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1450   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1451   if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
   1452     return false;
   1453   }
   1454 
   1455   UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
   1456   return true;
   1457 }
   1458 
   1459 
   1460 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1461   ASSERT(IsReserved());
   1462   return VirtualFree(address, size, MEM_DECOMMIT) != false;
   1463 }
   1464 
   1465 
   1466 // ----------------------------------------------------------------------------
   1467 // Win32 thread support.
   1468 
   1469 // Definition of invalid thread handle and id.
   1470 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1471 
   1472 // Entry point for threads. The supplied argument is a pointer to the thread
   1473 // object. The entry function dispatches to the run method in the thread
   1474 // object. It is important that this function has __stdcall calling
   1475 // convention.
   1476 static unsigned int __stdcall ThreadEntry(void* arg) {
   1477   Thread* thread = reinterpret_cast<Thread*>(arg);
   1478   // This is also initialized by the last parameter to _beginthreadex() but we
   1479   // don't know which thread will run first (the original thread or the new
   1480   // one) so we initialize it here too.
   1481   Thread::SetThreadLocal(Isolate::isolate_key(), thread->isolate());
   1482   thread->Run();
   1483   return 0;
   1484 }
   1485 
   1486 
   1487 class Thread::PlatformData : public Malloced {
   1488  public:
   1489   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1490   HANDLE thread_;
   1491 };
   1492 
   1493 
   1494 // Initialize a Win32 thread object. The thread has an invalid thread
   1495 // handle until it is started.
   1496 
   1497 Thread::Thread(Isolate* isolate, const Options& options)
   1498     : isolate_(isolate),
   1499       stack_size_(options.stack_size) {
   1500   data_ = new PlatformData(kNoThread);
   1501   set_name(options.name);
   1502 }
   1503 
   1504 
   1505 Thread::Thread(Isolate* isolate, const char* name)
   1506     : isolate_(isolate),
   1507       stack_size_(0) {
   1508   data_ = new PlatformData(kNoThread);
   1509   set_name(name);
   1510 }
   1511 
   1512 
   1513 void Thread::set_name(const char* name) {
   1514   OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
   1515   name_[sizeof(name_) - 1] = '\0';
   1516 }
   1517 
   1518 
   1519 // Close our own handle for the thread.
   1520 Thread::~Thread() {
   1521   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1522   delete data_;
   1523 }
   1524 
   1525 
   1526 // Create a new thread. It is important to use _beginthreadex() instead of
   1527 // the Win32 function CreateThread(), because the CreateThread() does not
   1528 // initialize thread specific structures in the C runtime library.
   1529 void Thread::Start() {
   1530   data_->thread_ = reinterpret_cast<HANDLE>(
   1531       _beginthreadex(NULL,
   1532                      static_cast<unsigned>(stack_size_),
   1533                      ThreadEntry,
   1534                      this,
   1535                      0,
   1536                      NULL));
   1537 }
   1538 
   1539 
   1540 // Wait for thread to terminate.
   1541 void Thread::Join() {
   1542   WaitForSingleObject(data_->thread_, INFINITE);
   1543 }
   1544 
   1545 
   1546 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1547   DWORD result = TlsAlloc();
   1548   ASSERT(result != TLS_OUT_OF_INDEXES);
   1549   return static_cast<LocalStorageKey>(result);
   1550 }
   1551 
   1552 
   1553 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1554   BOOL result = TlsFree(static_cast<DWORD>(key));
   1555   USE(result);
   1556   ASSERT(result);
   1557 }
   1558 
   1559 
   1560 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1561   return TlsGetValue(static_cast<DWORD>(key));
   1562 }
   1563 
   1564 
   1565 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1566   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1567   USE(result);
   1568   ASSERT(result);
   1569 }
   1570 
   1571 
   1572 
   1573 void Thread::YieldCPU() {
   1574   Sleep(0);
   1575 }
   1576 
   1577 
   1578 // ----------------------------------------------------------------------------
   1579 // Win32 mutex support.
   1580 //
   1581 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
   1582 // faster than Win32 Mutex objects because they are implemented using user mode
   1583 // atomic instructions. Therefore we only do ring transitions if there is lock
   1584 // contention.
   1585 
   1586 class Win32Mutex : public Mutex {
   1587  public:
   1588 
   1589   Win32Mutex() { InitializeCriticalSection(&cs_); }
   1590 
   1591   virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
   1592 
   1593   virtual int Lock() {
   1594     EnterCriticalSection(&cs_);
   1595     return 0;
   1596   }
   1597 
   1598   virtual int Unlock() {
   1599     LeaveCriticalSection(&cs_);
   1600     return 0;
   1601   }
   1602 
   1603 
   1604   virtual bool TryLock() {
   1605     // Returns non-zero if critical section is entered successfully entered.
   1606     return TryEnterCriticalSection(&cs_);
   1607   }
   1608 
   1609  private:
   1610   CRITICAL_SECTION cs_;  // Critical section used for mutex
   1611 };
   1612 
   1613 
   1614 Mutex* OS::CreateMutex() {
   1615   return new Win32Mutex();
   1616 }
   1617 
   1618 
   1619 // ----------------------------------------------------------------------------
   1620 // Win32 semaphore support.
   1621 //
   1622 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
   1623 // semaphores are anonymous. Also, the semaphores are initialized to have
   1624 // no upper limit on count.
   1625 
   1626 
   1627 class Win32Semaphore : public Semaphore {
   1628  public:
   1629   explicit Win32Semaphore(int count) {
   1630     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
   1631   }
   1632 
   1633   ~Win32Semaphore() {
   1634     CloseHandle(sem);
   1635   }
   1636 
   1637   void Wait() {
   1638     WaitForSingleObject(sem, INFINITE);
   1639   }
   1640 
   1641   bool Wait(int timeout) {
   1642     // Timeout in Windows API is in milliseconds.
   1643     DWORD millis_timeout = timeout / 1000;
   1644     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
   1645   }
   1646 
   1647   void Signal() {
   1648     LONG dummy;
   1649     ReleaseSemaphore(sem, 1, &dummy);
   1650   }
   1651 
   1652  private:
   1653   HANDLE sem;
   1654 };
   1655 
   1656 
   1657 Semaphore* OS::CreateSemaphore(int count) {
   1658   return new Win32Semaphore(count);
   1659 }
   1660 
   1661 
   1662 // ----------------------------------------------------------------------------
   1663 // Win32 socket support.
   1664 //
   1665 
   1666 class Win32Socket : public Socket {
   1667  public:
   1668   explicit Win32Socket() {
   1669     // Create the socket.
   1670     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
   1671   }
   1672   explicit Win32Socket(SOCKET socket): socket_(socket) { }
   1673   virtual ~Win32Socket() { Shutdown(); }
   1674 
   1675   // Server initialization.
   1676   bool Bind(const int port);
   1677   bool Listen(int backlog) const;
   1678   Socket* Accept() const;
   1679 
   1680   // Client initialization.
   1681   bool Connect(const char* host, const char* port);
   1682 
   1683   // Shutdown socket for both read and write.
   1684   bool Shutdown();
   1685 
   1686   // Data Transimission
   1687   int Send(const char* data, int len) const;
   1688   int Receive(char* data, int len) const;
   1689 
   1690   bool SetReuseAddress(bool reuse_address);
   1691 
   1692   bool IsValid() const { return socket_ != INVALID_SOCKET; }
   1693 
   1694  private:
   1695   SOCKET socket_;
   1696 };
   1697 
   1698 
   1699 bool Win32Socket::Bind(const int port) {
   1700   if (!IsValid())  {
   1701     return false;
   1702   }
   1703 
   1704   sockaddr_in addr;
   1705   memset(&addr, 0, sizeof(addr));
   1706   addr.sin_family = AF_INET;
   1707   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
   1708   addr.sin_port = htons(port);
   1709   int status = bind(socket_,
   1710                     reinterpret_cast<struct sockaddr *>(&addr),
   1711                     sizeof(addr));
   1712   return status == 0;
   1713 }
   1714 
   1715 
   1716 bool Win32Socket::Listen(int backlog) const {
   1717   if (!IsValid()) {
   1718     return false;
   1719   }
   1720 
   1721   int status = listen(socket_, backlog);
   1722   return status == 0;
   1723 }
   1724 
   1725 
   1726 Socket* Win32Socket::Accept() const {
   1727   if (!IsValid()) {
   1728     return NULL;
   1729   }
   1730 
   1731   SOCKET socket = accept(socket_, NULL, NULL);
   1732   if (socket == INVALID_SOCKET) {
   1733     return NULL;
   1734   } else {
   1735     return new Win32Socket(socket);
   1736   }
   1737 }
   1738 
   1739 
   1740 bool Win32Socket::Connect(const char* host, const char* port) {
   1741   if (!IsValid()) {
   1742     return false;
   1743   }
   1744 
   1745   // Lookup host and port.
   1746   struct addrinfo *result = NULL;
   1747   struct addrinfo hints;
   1748   memset(&hints, 0, sizeof(addrinfo));
   1749   hints.ai_family = AF_INET;
   1750   hints.ai_socktype = SOCK_STREAM;
   1751   hints.ai_protocol = IPPROTO_TCP;
   1752   int status = getaddrinfo(host, port, &hints, &result);
   1753   if (status != 0) {
   1754     return false;
   1755   }
   1756 
   1757   // Connect.
   1758   status = connect(socket_,
   1759                    result->ai_addr,
   1760                    static_cast<int>(result->ai_addrlen));
   1761   freeaddrinfo(result);
   1762   return status == 0;
   1763 }
   1764 
   1765 
   1766 bool Win32Socket::Shutdown() {
   1767   if (IsValid()) {
   1768     // Shutdown socket for both read and write.
   1769     int status = shutdown(socket_, SD_BOTH);
   1770     closesocket(socket_);
   1771     socket_ = INVALID_SOCKET;
   1772     return status == SOCKET_ERROR;
   1773   }
   1774   return true;
   1775 }
   1776 
   1777 
   1778 int Win32Socket::Send(const char* data, int len) const {
   1779   int status = send(socket_, data, len, 0);
   1780   return status;
   1781 }
   1782 
   1783 
   1784 int Win32Socket::Receive(char* data, int len) const {
   1785   int status = recv(socket_, data, len, 0);
   1786   return status;
   1787 }
   1788 
   1789 
   1790 bool Win32Socket::SetReuseAddress(bool reuse_address) {
   1791   BOOL on = reuse_address ? true : false;
   1792   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
   1793                           reinterpret_cast<char*>(&on), sizeof(on));
   1794   return status == SOCKET_ERROR;
   1795 }
   1796 
   1797 
   1798 bool Socket::Setup() {
   1799   // Initialize Winsock32
   1800   int err;
   1801   WSADATA winsock_data;
   1802   WORD version_requested = MAKEWORD(1, 0);
   1803   err = WSAStartup(version_requested, &winsock_data);
   1804   if (err != 0) {
   1805     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
   1806   }
   1807 
   1808   return err == 0;
   1809 }
   1810 
   1811 
   1812 int Socket::LastError() {
   1813   return WSAGetLastError();
   1814 }
   1815 
   1816 
   1817 uint16_t Socket::HToN(uint16_t value) {
   1818   return htons(value);
   1819 }
   1820 
   1821 
   1822 uint16_t Socket::NToH(uint16_t value) {
   1823   return ntohs(value);
   1824 }
   1825 
   1826 
   1827 uint32_t Socket::HToN(uint32_t value) {
   1828   return htonl(value);
   1829 }
   1830 
   1831 
   1832 uint32_t Socket::NToH(uint32_t value) {
   1833   return ntohl(value);
   1834 }
   1835 
   1836 
   1837 Socket* OS::CreateSocket() {
   1838   return new Win32Socket();
   1839 }
   1840 
   1841 
   1842 #ifdef ENABLE_LOGGING_AND_PROFILING
   1843 
   1844 // ----------------------------------------------------------------------------
   1845 // Win32 profiler support.
   1846 
   1847 class Sampler::PlatformData : public Malloced {
   1848  public:
   1849   // Get a handle to the calling thread. This is the thread that we are
   1850   // going to profile. We need to make a copy of the handle because we are
   1851   // going to use it in the sampler thread. Using GetThreadHandle() will
   1852   // not work in this case. We're using OpenThread because DuplicateHandle
   1853   // for some reason doesn't work in Chrome's sandbox.
   1854   PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
   1855                                                THREAD_SUSPEND_RESUME |
   1856                                                THREAD_QUERY_INFORMATION,
   1857                                                false,
   1858                                                GetCurrentThreadId())) {}
   1859 
   1860   ~PlatformData() {
   1861     if (profiled_thread_ != NULL) {
   1862       CloseHandle(profiled_thread_);
   1863       profiled_thread_ = NULL;
   1864     }
   1865   }
   1866 
   1867   HANDLE profiled_thread() { return profiled_thread_; }
   1868 
   1869  private:
   1870   HANDLE profiled_thread_;
   1871 };
   1872 
   1873 
   1874 class SamplerThread : public Thread {
   1875  public:
   1876   explicit SamplerThread(int interval)
   1877       : Thread(NULL, "SamplerThread"),
   1878         interval_(interval) {}
   1879 
   1880   static void AddActiveSampler(Sampler* sampler) {
   1881     ScopedLock lock(mutex_);
   1882     SamplerRegistry::AddActiveSampler(sampler);
   1883     if (instance_ == NULL) {
   1884       instance_ = new SamplerThread(sampler->interval());
   1885       instance_->Start();
   1886     } else {
   1887       ASSERT(instance_->interval_ == sampler->interval());
   1888     }
   1889   }
   1890 
   1891   static void RemoveActiveSampler(Sampler* sampler) {
   1892     ScopedLock lock(mutex_);
   1893     SamplerRegistry::RemoveActiveSampler(sampler);
   1894     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
   1895       RuntimeProfiler::WakeUpRuntimeProfilerThreadBeforeShutdown();
   1896       instance_->Join();
   1897       delete instance_;
   1898       instance_ = NULL;
   1899     }
   1900   }
   1901 
   1902   // Implement Thread::Run().
   1903   virtual void Run() {
   1904     SamplerRegistry::State state;
   1905     while ((state = SamplerRegistry::GetState()) !=
   1906            SamplerRegistry::HAS_NO_SAMPLERS) {
   1907       bool cpu_profiling_enabled =
   1908           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
   1909       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
   1910       // When CPU profiling is enabled both JavaScript and C++ code is
   1911       // profiled. We must not suspend.
   1912       if (!cpu_profiling_enabled) {
   1913         if (rate_limiter_.SuspendIfNecessary()) continue;
   1914       }
   1915       if (cpu_profiling_enabled) {
   1916         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
   1917           return;
   1918         }
   1919       }
   1920       if (runtime_profiler_enabled) {
   1921         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
   1922           return;
   1923         }
   1924       }
   1925       OS::Sleep(interval_);
   1926     }
   1927   }
   1928 
   1929   static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
   1930     if (!sampler->isolate()->IsInitialized()) return;
   1931     if (!sampler->IsProfiling()) return;
   1932     SamplerThread* sampler_thread =
   1933         reinterpret_cast<SamplerThread*>(raw_sampler_thread);
   1934     sampler_thread->SampleContext(sampler);
   1935   }
   1936 
   1937   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
   1938     if (!sampler->isolate()->IsInitialized()) return;
   1939     sampler->isolate()->runtime_profiler()->NotifyTick();
   1940   }
   1941 
   1942   void SampleContext(Sampler* sampler) {
   1943     HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
   1944     if (profiled_thread == NULL) return;
   1945 
   1946     // Context used for sampling the register state of the profiled thread.
   1947     CONTEXT context;
   1948     memset(&context, 0, sizeof(context));
   1949 
   1950     TickSample sample_obj;
   1951     TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
   1952     if (sample == NULL) sample = &sample_obj;
   1953 
   1954     static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
   1955     if (SuspendThread(profiled_thread) == kSuspendFailed) return;
   1956     sample->state = sampler->isolate()->current_vm_state();
   1957 
   1958     context.ContextFlags = CONTEXT_FULL;
   1959     if (GetThreadContext(profiled_thread, &context) != 0) {
   1960 #if V8_HOST_ARCH_X64
   1961       sample->pc = reinterpret_cast<Address>(context.Rip);
   1962       sample->sp = reinterpret_cast<Address>(context.Rsp);
   1963       sample->fp = reinterpret_cast<Address>(context.Rbp);
   1964 #else
   1965       sample->pc = reinterpret_cast<Address>(context.Eip);
   1966       sample->sp = reinterpret_cast<Address>(context.Esp);
   1967       sample->fp = reinterpret_cast<Address>(context.Ebp);
   1968 #endif
   1969       sampler->SampleStack(sample);
   1970       sampler->Tick(sample);
   1971     }
   1972     ResumeThread(profiled_thread);
   1973   }
   1974 
   1975   const int interval_;
   1976   RuntimeProfilerRateLimiter rate_limiter_;
   1977 
   1978   // Protects the process wide state below.
   1979   static Mutex* mutex_;
   1980   static SamplerThread* instance_;
   1981 
   1982   DISALLOW_COPY_AND_ASSIGN(SamplerThread);
   1983 };
   1984 
   1985 
   1986 Mutex* SamplerThread::mutex_ = OS::CreateMutex();
   1987 SamplerThread* SamplerThread::instance_ = NULL;
   1988 
   1989 
   1990 Sampler::Sampler(Isolate* isolate, int interval)
   1991     : isolate_(isolate),
   1992       interval_(interval),
   1993       profiling_(false),
   1994       active_(false),
   1995       samples_taken_(0) {
   1996   data_ = new PlatformData;
   1997 }
   1998 
   1999 
   2000 Sampler::~Sampler() {
   2001   ASSERT(!IsActive());
   2002   delete data_;
   2003 }
   2004 
   2005 
   2006 void Sampler::Start() {
   2007   ASSERT(!IsActive());
   2008   SetActive(true);
   2009   SamplerThread::AddActiveSampler(this);
   2010 }
   2011 
   2012 
   2013 void Sampler::Stop() {
   2014   ASSERT(IsActive());
   2015   SamplerThread::RemoveActiveSampler(this);
   2016   SetActive(false);
   2017 }
   2018 
   2019 #endif  // ENABLE_LOGGING_AND_PROFILING
   2020 
   2021 } }  // namespace v8::internal
   2022