Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes how to lower LLVM code to machine code.  This has two
     11 // main components:
     12 //
     13 //  1. Which ValueTypes are natively supported by the target.
     14 //  2. Which operations are supported for supported ValueTypes.
     15 //  3. Cost thresholds for alternative implementations of certain operations.
     16 //
     17 // In addition it has a few other components, like information about FP
     18 // immediates.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_TARGET_TARGETLOWERING_H
     23 #define LLVM_TARGET_TARGETLOWERING_H
     24 
     25 #include "llvm/CallingConv.h"
     26 #include "llvm/InlineAsm.h"
     27 #include "llvm/Attributes.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/CodeGen/RuntimeLibcalls.h"
     31 #include "llvm/Support/DebugLoc.h"
     32 #include "llvm/Target/TargetCallingConv.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include <climits>
     35 #include <map>
     36 #include <vector>
     37 
     38 namespace llvm {
     39   class AllocaInst;
     40   class APFloat;
     41   class CallInst;
     42   class CCState;
     43   class Function;
     44   class FastISel;
     45   class FunctionLoweringInfo;
     46   class ImmutableCallSite;
     47   class MachineBasicBlock;
     48   class MachineFunction;
     49   class MachineFrameInfo;
     50   class MachineInstr;
     51   class MachineJumpTableInfo;
     52   class MCContext;
     53   class MCExpr;
     54   class SDNode;
     55   class SDValue;
     56   class SelectionDAG;
     57   template<typename T> class SmallVectorImpl;
     58   class TargetData;
     59   class TargetMachine;
     60   class TargetRegisterClass;
     61   class TargetLoweringObjectFile;
     62   class Value;
     63 
     64   // FIXME: should this be here?
     65   namespace TLSModel {
     66     enum Model {
     67       GeneralDynamic,
     68       LocalDynamic,
     69       InitialExec,
     70       LocalExec
     71     };
     72   }
     73   TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
     74 
     75 
     76 //===----------------------------------------------------------------------===//
     77 /// TargetLowering - This class defines information used to lower LLVM code to
     78 /// legal SelectionDAG operators that the target instruction selector can accept
     79 /// natively.
     80 ///
     81 /// This class also defines callbacks that targets must implement to lower
     82 /// target-specific constructs to SelectionDAG operators.
     83 ///
     84 class TargetLowering {
     85   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
     86   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
     87 public:
     88   /// LegalizeAction - This enum indicates whether operations are valid for a
     89   /// target, and if not, what action should be used to make them valid.
     90   enum LegalizeAction {
     91     Legal,      // The target natively supports this operation.
     92     Promote,    // This operation should be executed in a larger type.
     93     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     94     Custom      // Use the LowerOperation hook to implement custom lowering.
     95   };
     96 
     97   /// LegalizeAction - This enum indicates whether a types are legal for a
     98   /// target, and if not, what action should be used to make them valid.
     99   enum LegalizeTypeAction {
    100     TypeLegal,           // The target natively supports this type.
    101     TypePromoteInteger,  // Replace this integer with a larger one.
    102     TypeExpandInteger,   // Split this integer into two of half the size.
    103     TypeSoftenFloat,     // Convert this float to a same size integer type.
    104     TypeExpandFloat,     // Split this float into two of half the size.
    105     TypeScalarizeVector, // Replace this one-element vector with its element.
    106     TypeSplitVector,     // Split this vector into two of half the size.
    107     TypeWidenVector      // This vector should be widened into a larger vector.
    108   };
    109 
    110   enum BooleanContent { // How the target represents true/false values.
    111     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    112     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    113     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    114   };
    115 
    116   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    117     switch (Content) {
    118     default:
    119       assert(false && "Unknown BooleanContent!");
    120     case UndefinedBooleanContent:
    121       // Extend by adding rubbish bits.
    122       return ISD::ANY_EXTEND;
    123     case ZeroOrOneBooleanContent:
    124       // Extend by adding zero bits.
    125       return ISD::ZERO_EXTEND;
    126     case ZeroOrNegativeOneBooleanContent:
    127       // Extend by copying the sign bit.
    128       return ISD::SIGN_EXTEND;
    129     }
    130   }
    131 
    132   /// NOTE: The constructor takes ownership of TLOF.
    133   explicit TargetLowering(const TargetMachine &TM,
    134                           const TargetLoweringObjectFile *TLOF);
    135   virtual ~TargetLowering();
    136 
    137   const TargetMachine &getTargetMachine() const { return TM; }
    138   const TargetData *getTargetData() const { return TD; }
    139   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
    140 
    141   bool isBigEndian() const { return !IsLittleEndian; }
    142   bool isLittleEndian() const { return IsLittleEndian; }
    143   MVT getPointerTy() const { return PointerTy; }
    144   virtual MVT getShiftAmountTy(EVT LHSTy) const;
    145 
    146   /// isSelectExpensive - Return true if the select operation is expensive for
    147   /// this target.
    148   bool isSelectExpensive() const { return SelectIsExpensive; }
    149 
    150   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
    151   /// a sequence of several shifts, adds, and multiplies for this target.
    152   bool isIntDivCheap() const { return IntDivIsCheap; }
    153 
    154   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
    155   /// srl/add/sra.
    156   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
    157 
    158   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
    159   /// that should be avoided.
    160   bool isJumpExpensive() const { return JumpIsExpensive; }
    161 
    162   /// getSetCCResultType - Return the ValueType of the result of SETCC
    163   /// operations.  Also used to obtain the target's preferred type for
    164   /// the condition operand of SELECT and BRCOND nodes.  In the case of
    165   /// BRCOND the argument passed is MVT::Other since there are no other
    166   /// operands to get a type hint from.
    167   virtual EVT getSetCCResultType(EVT VT) const;
    168 
    169   /// getCmpLibcallReturnType - Return the ValueType for comparison
    170   /// libcalls. Comparions libcalls include floating point comparion calls,
    171   /// and Ordered/Unordered check calls on floating point numbers.
    172   virtual
    173   MVT::SimpleValueType getCmpLibcallReturnType() const;
    174 
    175   /// getBooleanContents - For targets without i1 registers, this gives the
    176   /// nature of the high-bits of boolean values held in types wider than i1.
    177   /// "Boolean values" are special true/false values produced by nodes like
    178   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    179   /// Not to be confused with general values promoted from i1.
    180   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
    181   /// parameter selects between the two kinds.  For example on X86 a scalar
    182   /// boolean should be zero extended from i1, while the elements of a vector
    183   /// of booleans should be sign extended from i1.
    184   BooleanContent getBooleanContents(bool isVec) const {
    185     return isVec ? BooleanVectorContents : BooleanContents;
    186   }
    187 
    188   /// getSchedulingPreference - Return target scheduling preference.
    189   Sched::Preference getSchedulingPreference() const {
    190     return SchedPreferenceInfo;
    191   }
    192 
    193   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
    194   /// different scheduling heuristics for different nodes. This function returns
    195   /// the preference (or none) for the given node.
    196   virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
    197     return Sched::None;
    198   }
    199 
    200   /// getRegClassFor - Return the register class that should be used for the
    201   /// specified value type.
    202   virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
    203     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
    204     TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    205     assert(RC && "This value type is not natively supported!");
    206     return RC;
    207   }
    208 
    209   /// getRepRegClassFor - Return the 'representative' register class for the
    210   /// specified value type. The 'representative' register class is the largest
    211   /// legal super-reg register class for the register class of the value type.
    212   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
    213   /// while the rep register class is GR64 on x86_64.
    214   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
    215     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
    216     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
    217     return RC;
    218   }
    219 
    220   /// getRepRegClassCostFor - Return the cost of the 'representative' register
    221   /// class for the specified value type.
    222   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
    223     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
    224     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
    225   }
    226 
    227   /// isTypeLegal - Return true if the target has native support for the
    228   /// specified value type.  This means that it has a register that directly
    229   /// holds it without promotions or expansions.
    230   bool isTypeLegal(EVT VT) const {
    231     assert(!VT.isSimple() ||
    232            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    233     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
    234   }
    235 
    236   class ValueTypeActionImpl {
    237     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    238     /// that indicates how instruction selection should deal with the type.
    239     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    240 
    241   public:
    242     ValueTypeActionImpl() {
    243       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
    244     }
    245 
    246     LegalizeTypeAction getTypeAction(MVT VT) const {
    247       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    248     }
    249 
    250     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
    251       unsigned I = VT.getSimpleVT().SimpleTy;
    252       ValueTypeActions[I] = Action;
    253     }
    254   };
    255 
    256   const ValueTypeActionImpl &getValueTypeActions() const {
    257     return ValueTypeActions;
    258   }
    259 
    260   /// getTypeAction - Return how we should legalize values of this type, either
    261   /// it is already legal (return 'Legal') or we need to promote it to a larger
    262   /// type (return 'Promote'), or we need to expand it into multiple registers
    263   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
    264   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    265     return getTypeConversion(Context, VT).first;
    266   }
    267   LegalizeTypeAction getTypeAction(MVT VT) const {
    268     return ValueTypeActions.getTypeAction(VT);
    269   }
    270 
    271   /// getTypeToTransformTo - For types supported by the target, this is an
    272   /// identity function.  For types that must be promoted to larger types, this
    273   /// returns the larger type to promote to.  For integer types that are larger
    274   /// than the largest integer register, this contains one step in the expansion
    275   /// to get to the smaller register. For illegal floating point types, this
    276   /// returns the integer type to transform to.
    277   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    278     return getTypeConversion(Context, VT).second;
    279   }
    280 
    281   /// getTypeToExpandTo - For types supported by the target, this is an
    282   /// identity function.  For types that must be expanded (i.e. integer types
    283   /// that are larger than the largest integer register or illegal floating
    284   /// point types), this returns the largest legal type it will be expanded to.
    285   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    286     assert(!VT.isVector());
    287     while (true) {
    288       switch (getTypeAction(Context, VT)) {
    289       case TypeLegal:
    290         return VT;
    291       case TypeExpandInteger:
    292         VT = getTypeToTransformTo(Context, VT);
    293         break;
    294       default:
    295         assert(false && "Type is not legal nor is it to be expanded!");
    296         return VT;
    297       }
    298     }
    299     return VT;
    300   }
    301 
    302   /// getVectorTypeBreakdown - Vector types are broken down into some number of
    303   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
    304   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
    305   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
    306   ///
    307   /// This method returns the number of registers needed, and the VT for each
    308   /// register.  It also returns the VT and quantity of the intermediate values
    309   /// before they are promoted/expanded.
    310   ///
    311   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    312                                   EVT &IntermediateVT,
    313                                   unsigned &NumIntermediates,
    314                                   EVT &RegisterVT) const;
    315 
    316   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
    317   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
    318   /// this is the case, it returns true and store the intrinsic
    319   /// information into the IntrinsicInfo that was passed to the function.
    320   struct IntrinsicInfo {
    321     unsigned     opc;         // target opcode
    322     EVT          memVT;       // memory VT
    323     const Value* ptrVal;      // value representing memory location
    324     int          offset;      // offset off of ptrVal
    325     unsigned     align;       // alignment
    326     bool         vol;         // is volatile?
    327     bool         readMem;     // reads memory?
    328     bool         writeMem;    // writes memory?
    329   };
    330 
    331   virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
    332                                   const CallInst &I, unsigned Intrinsic) const {
    333     return false;
    334   }
    335 
    336   /// isFPImmLegal - Returns true if the target can instruction select the
    337   /// specified FP immediate natively. If false, the legalizer will materialize
    338   /// the FP immediate as a load from a constant pool.
    339   virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
    340     return false;
    341   }
    342 
    343   /// isShuffleMaskLegal - Targets can use this to indicate that they only
    344   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    345   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
    346   /// are assumed to be legal.
    347   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    348                                   EVT VT) const {
    349     return true;
    350   }
    351 
    352   /// canOpTrap - Returns true if the operation can trap for the value type.
    353   /// VT must be a legal type. By default, we optimistically assume most
    354   /// operations don't trap except for divide and remainder.
    355   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    356 
    357   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    358   /// used by Targets can use this to indicate if there is a suitable
    359   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    360   /// pool entry.
    361   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    362                                       EVT VT) const {
    363     return false;
    364   }
    365 
    366   /// getOperationAction - Return how this operation should be treated: either
    367   /// it is legal, needs to be promoted to a larger size, needs to be
    368   /// expanded to some other code sequence, or the target has a custom expander
    369   /// for it.
    370   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    371     if (VT.isExtended()) return Expand;
    372     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
    373     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    374     return (LegalizeAction)OpActions[I][Op];
    375   }
    376 
    377   /// isOperationLegalOrCustom - Return true if the specified operation is
    378   /// legal on this target or can be made legal with custom lowering. This
    379   /// is used to help guide high-level lowering decisions.
    380   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    381     return (VT == MVT::Other || isTypeLegal(VT)) &&
    382       (getOperationAction(Op, VT) == Legal ||
    383        getOperationAction(Op, VT) == Custom);
    384   }
    385 
    386   /// isOperationLegal - Return true if the specified operation is legal on this
    387   /// target.
    388   bool isOperationLegal(unsigned Op, EVT VT) const {
    389     return (VT == MVT::Other || isTypeLegal(VT)) &&
    390            getOperationAction(Op, VT) == Legal;
    391   }
    392 
    393   /// getLoadExtAction - Return how this load with extension should be treated:
    394   /// either it is legal, needs to be promoted to a larger size, needs to be
    395   /// expanded to some other code sequence, or the target has a custom expander
    396   /// for it.
    397   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
    398     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
    399            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    400            "Table isn't big enough!");
    401     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
    402   }
    403 
    404   /// isLoadExtLegal - Return true if the specified load with extension is legal
    405   /// on this target.
    406   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    407     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
    408   }
    409 
    410   /// getTruncStoreAction - Return how this store with truncation should be
    411   /// treated: either it is legal, needs to be promoted to a larger size, needs
    412   /// to be expanded to some other code sequence, or the target has a custom
    413   /// expander for it.
    414   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    415     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    416            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    417            "Table isn't big enough!");
    418     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
    419                                             [MemVT.getSimpleVT().SimpleTy];
    420   }
    421 
    422   /// isTruncStoreLegal - Return true if the specified store with truncation is
    423   /// legal on this target.
    424   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    425     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    426            getTruncStoreAction(ValVT, MemVT) == Legal;
    427   }
    428 
    429   /// getIndexedLoadAction - Return how the indexed load should be treated:
    430   /// either it is legal, needs to be promoted to a larger size, needs to be
    431   /// expanded to some other code sequence, or the target has a custom expander
    432   /// for it.
    433   LegalizeAction
    434   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
    435     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    436            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    437            "Table isn't big enough!");
    438     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    439     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    440   }
    441 
    442   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
    443   /// on this target.
    444   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    445     return VT.isSimple() &&
    446       (getIndexedLoadAction(IdxMode, VT) == Legal ||
    447        getIndexedLoadAction(IdxMode, VT) == Custom);
    448   }
    449 
    450   /// getIndexedStoreAction - Return how the indexed store should be treated:
    451   /// either it is legal, needs to be promoted to a larger size, needs to be
    452   /// expanded to some other code sequence, or the target has a custom expander
    453   /// for it.
    454   LegalizeAction
    455   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
    456     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    457            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    458            "Table isn't big enough!");
    459     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    460     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    461   }
    462 
    463   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
    464   /// on this target.
    465   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    466     return VT.isSimple() &&
    467       (getIndexedStoreAction(IdxMode, VT) == Legal ||
    468        getIndexedStoreAction(IdxMode, VT) == Custom);
    469   }
    470 
    471   /// getCondCodeAction - Return how the condition code should be treated:
    472   /// either it is legal, needs to be expanded to some other code sequence,
    473   /// or the target has a custom expander for it.
    474   LegalizeAction
    475   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
    476     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    477            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
    478            "Table isn't big enough!");
    479     LegalizeAction Action = (LegalizeAction)
    480       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
    481     assert(Action != Promote && "Can't promote condition code!");
    482     return Action;
    483   }
    484 
    485   /// isCondCodeLegal - Return true if the specified condition code is legal
    486   /// on this target.
    487   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
    488     return getCondCodeAction(CC, VT) == Legal ||
    489            getCondCodeAction(CC, VT) == Custom;
    490   }
    491 
    492 
    493   /// getTypeToPromoteTo - If the action for this operation is to promote, this
    494   /// method returns the ValueType to promote to.
    495   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
    496     assert(getOperationAction(Op, VT) == Promote &&
    497            "This operation isn't promoted!");
    498 
    499     // See if this has an explicit type specified.
    500     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    501              MVT::SimpleValueType>::const_iterator PTTI =
    502       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
    503     if (PTTI != PromoteToType.end()) return PTTI->second;
    504 
    505     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    506            "Cannot autopromote this type, add it with AddPromotedToType.");
    507 
    508     EVT NVT = VT;
    509     do {
    510       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
    511       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    512              "Didn't find type to promote to!");
    513     } while (!isTypeLegal(NVT) ||
    514               getOperationAction(Op, NVT) == Promote);
    515     return NVT;
    516   }
    517 
    518   /// getValueType - Return the EVT corresponding to this LLVM type.
    519   /// This is fixed by the LLVM operations except for the pointer size.  If
    520   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
    521   /// counterpart (e.g. structs), otherwise it will assert.
    522   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    523     EVT VT = EVT::getEVT(Ty, AllowUnknown);
    524     return VT == MVT::iPTR ? PointerTy : VT;
    525   }
    526 
    527   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    528   /// function arguments in the caller parameter area.  This is the actual
    529   /// alignment, not its logarithm.
    530   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    531 
    532   /// getRegisterType - Return the type of registers that this ValueType will
    533   /// eventually require.
    534   EVT getRegisterType(MVT VT) const {
    535     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    536     return RegisterTypeForVT[VT.SimpleTy];
    537   }
    538 
    539   /// getRegisterType - Return the type of registers that this ValueType will
    540   /// eventually require.
    541   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
    542     if (VT.isSimple()) {
    543       assert((unsigned)VT.getSimpleVT().SimpleTy <
    544                 array_lengthof(RegisterTypeForVT));
    545       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    546     }
    547     if (VT.isVector()) {
    548       EVT VT1, RegisterVT;
    549       unsigned NumIntermediates;
    550       (void)getVectorTypeBreakdown(Context, VT, VT1,
    551                                    NumIntermediates, RegisterVT);
    552       return RegisterVT;
    553     }
    554     if (VT.isInteger()) {
    555       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    556     }
    557     assert(0 && "Unsupported extended type!");
    558     return EVT(MVT::Other); // Not reached
    559   }
    560 
    561   /// getNumRegisters - Return the number of registers that this ValueType will
    562   /// eventually require.  This is one for any types promoted to live in larger
    563   /// registers, but may be more than one for types (like i64) that are split
    564   /// into pieces.  For types like i140, which are first promoted then expanded,
    565   /// it is the number of registers needed to hold all the bits of the original
    566   /// type.  For an i140 on a 32 bit machine this means 5 registers.
    567   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    568     if (VT.isSimple()) {
    569       assert((unsigned)VT.getSimpleVT().SimpleTy <
    570                 array_lengthof(NumRegistersForVT));
    571       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    572     }
    573     if (VT.isVector()) {
    574       EVT VT1, VT2;
    575       unsigned NumIntermediates;
    576       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    577     }
    578     if (VT.isInteger()) {
    579       unsigned BitWidth = VT.getSizeInBits();
    580       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    581       return (BitWidth + RegWidth - 1) / RegWidth;
    582     }
    583     assert(0 && "Unsupported extended type!");
    584     return 0; // Not reached
    585   }
    586 
    587   /// ShouldShrinkFPConstant - If true, then instruction selection should
    588   /// seek to shrink the FP constant of the specified type to a smaller type
    589   /// in order to save space and / or reduce runtime.
    590   virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
    591 
    592   /// hasTargetDAGCombine - If true, the target has custom DAG combine
    593   /// transformations that it can perform for the specified node.
    594   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    595     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    596     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    597   }
    598 
    599   /// This function returns the maximum number of store operations permitted
    600   /// to replace a call to llvm.memset. The value is set by the target at the
    601   /// performance threshold for such a replacement. If OptSize is true,
    602   /// return the limit for functions that have OptSize attribute.
    603   /// @brief Get maximum # of store operations permitted for llvm.memset
    604   unsigned getMaxStoresPerMemset(bool OptSize) const {
    605     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
    606   }
    607 
    608   /// This function returns the maximum number of store operations permitted
    609   /// to replace a call to llvm.memcpy. The value is set by the target at the
    610   /// performance threshold for such a replacement. If OptSize is true,
    611   /// return the limit for functions that have OptSize attribute.
    612   /// @brief Get maximum # of store operations permitted for llvm.memcpy
    613   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    614     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
    615   }
    616 
    617   /// This function returns the maximum number of store operations permitted
    618   /// to replace a call to llvm.memmove. The value is set by the target at the
    619   /// performance threshold for such a replacement. If OptSize is true,
    620   /// return the limit for functions that have OptSize attribute.
    621   /// @brief Get maximum # of store operations permitted for llvm.memmove
    622   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    623     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
    624   }
    625 
    626   /// This function returns true if the target allows unaligned memory accesses.
    627   /// of the specified type. This is used, for example, in situations where an
    628   /// array copy/move/set is  converted to a sequence of store operations. It's
    629   /// use helps to ensure that such replacements don't generate code that causes
    630   /// an alignment error  (trap) on the target machine.
    631   /// @brief Determine if the target supports unaligned memory accesses.
    632   virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
    633     return false;
    634   }
    635 
    636   /// This function returns true if the target would benefit from code placement
    637   /// optimization.
    638   /// @brief Determine if the target should perform code placement optimization.
    639   bool shouldOptimizeCodePlacement() const {
    640     return benefitFromCodePlacementOpt;
    641   }
    642 
    643   /// getOptimalMemOpType - Returns the target specific optimal type for load
    644   /// and store operations as a result of memset, memcpy, and memmove
    645   /// lowering. If DstAlign is zero that means it's safe to destination
    646   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    647   /// means there isn't a need to check it against alignment requirement,
    648   /// probably because the source does not need to be loaded. If
    649   /// 'NonScalarIntSafe' is true, that means it's safe to return a
    650   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    651   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    652   /// constant so it does not need to be loaded.
    653   /// It returns EVT::Other if the type should be determined using generic
    654   /// target-independent logic.
    655   virtual EVT getOptimalMemOpType(uint64_t Size,
    656                                   unsigned DstAlign, unsigned SrcAlign,
    657                                   bool NonScalarIntSafe, bool MemcpyStrSrc,
    658                                   MachineFunction &MF) const {
    659     return MVT::Other;
    660   }
    661 
    662   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
    663   /// to implement llvm.setjmp.
    664   bool usesUnderscoreSetJmp() const {
    665     return UseUnderscoreSetJmp;
    666   }
    667 
    668   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
    669   /// to implement llvm.longjmp.
    670   bool usesUnderscoreLongJmp() const {
    671     return UseUnderscoreLongJmp;
    672   }
    673 
    674   /// getStackPointerRegisterToSaveRestore - If a physical register, this
    675   /// specifies the register that llvm.savestack/llvm.restorestack should save
    676   /// and restore.
    677   unsigned getStackPointerRegisterToSaveRestore() const {
    678     return StackPointerRegisterToSaveRestore;
    679   }
    680 
    681   /// getExceptionAddressRegister - If a physical register, this returns
    682   /// the register that receives the exception address on entry to a landing
    683   /// pad.
    684   unsigned getExceptionAddressRegister() const {
    685     return ExceptionPointerRegister;
    686   }
    687 
    688   /// getExceptionSelectorRegister - If a physical register, this returns
    689   /// the register that receives the exception typeid on entry to a landing
    690   /// pad.
    691   unsigned getExceptionSelectorRegister() const {
    692     return ExceptionSelectorRegister;
    693   }
    694 
    695   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
    696   /// set, the default is 200)
    697   unsigned getJumpBufSize() const {
    698     return JumpBufSize;
    699   }
    700 
    701   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
    702   /// (if never set, the default is 0)
    703   unsigned getJumpBufAlignment() const {
    704     return JumpBufAlignment;
    705   }
    706 
    707   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
    708   /// argument.
    709   unsigned getMinStackArgumentAlignment() const {
    710     return MinStackArgumentAlignment;
    711   }
    712 
    713   /// getMinFunctionAlignment - return the minimum function alignment.
    714   ///
    715   unsigned getMinFunctionAlignment() const {
    716     return MinFunctionAlignment;
    717   }
    718 
    719   /// getPrefFunctionAlignment - return the preferred function alignment.
    720   ///
    721   unsigned getPrefFunctionAlignment() const {
    722     return PrefFunctionAlignment;
    723   }
    724 
    725   /// getPrefLoopAlignment - return the preferred loop alignment.
    726   ///
    727   unsigned getPrefLoopAlignment() const {
    728     return PrefLoopAlignment;
    729   }
    730 
    731   /// getShouldFoldAtomicFences - return whether the combiner should fold
    732   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
    733   ///
    734   bool getShouldFoldAtomicFences() const {
    735     return ShouldFoldAtomicFences;
    736   }
    737 
    738   /// getInsertFencesFor - return whether the DAG builder should automatically
    739   /// insert fences and reduce ordering for atomics.
    740   ///
    741   bool getInsertFencesForAtomic() const {
    742     return InsertFencesForAtomic;
    743   }
    744 
    745   /// getPreIndexedAddressParts - returns true by value, base pointer and
    746   /// offset pointer and addressing mode by reference if the node's address
    747   /// can be legally represented as pre-indexed load / store address.
    748   virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    749                                          SDValue &Offset,
    750                                          ISD::MemIndexedMode &AM,
    751                                          SelectionDAG &DAG) const {
    752     return false;
    753   }
    754 
    755   /// getPostIndexedAddressParts - returns true by value, base pointer and
    756   /// offset pointer and addressing mode by reference if this node can be
    757   /// combined with a load / store to form a post-indexed load / store.
    758   virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
    759                                           SDValue &Base, SDValue &Offset,
    760                                           ISD::MemIndexedMode &AM,
    761                                           SelectionDAG &DAG) const {
    762     return false;
    763   }
    764 
    765   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    766   /// current function.  The returned value is a member of the
    767   /// MachineJumpTableInfo::JTEntryKind enum.
    768   virtual unsigned getJumpTableEncoding() const;
    769 
    770   virtual const MCExpr *
    771   LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    772                             const MachineBasicBlock *MBB, unsigned uid,
    773                             MCContext &Ctx) const {
    774     assert(0 && "Need to implement this hook if target has custom JTIs");
    775     return 0;
    776   }
    777 
    778   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    779   /// jumptable.
    780   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    781                                            SelectionDAG &DAG) const;
    782 
    783   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    784   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    785   /// MCExpr.
    786   virtual const MCExpr *
    787   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    788                                unsigned JTI, MCContext &Ctx) const;
    789 
    790   /// isOffsetFoldingLegal - Return true if folding a constant offset
    791   /// with the given GlobalAddress is legal.  It is frequently not legal in
    792   /// PIC relocation models.
    793   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    794 
    795   /// getStackCookieLocation - Return true if the target stores stack
    796   /// protector cookies at a fixed offset in some non-standard address
    797   /// space, and populates the address space and offset as
    798   /// appropriate.
    799   virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
    800     return false;
    801   }
    802 
    803   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
    804   /// used for loads / stores from the global.
    805   virtual unsigned getMaximalGlobalOffset() const {
    806     return 0;
    807   }
    808 
    809   //===--------------------------------------------------------------------===//
    810   // TargetLowering Optimization Methods
    811   //
    812 
    813   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
    814   /// SDValues for returning information from TargetLowering to its clients
    815   /// that want to combine
    816   struct TargetLoweringOpt {
    817     SelectionDAG &DAG;
    818     bool LegalTys;
    819     bool LegalOps;
    820     SDValue Old;
    821     SDValue New;
    822 
    823     explicit TargetLoweringOpt(SelectionDAG &InDAG,
    824                                bool LT, bool LO) :
    825       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
    826 
    827     bool LegalTypes() const { return LegalTys; }
    828     bool LegalOperations() const { return LegalOps; }
    829 
    830     bool CombineTo(SDValue O, SDValue N) {
    831       Old = O;
    832       New = N;
    833       return true;
    834     }
    835 
    836     /// ShrinkDemandedConstant - Check to see if the specified operand of the
    837     /// specified instruction is a constant integer.  If so, check to see if
    838     /// there are any bits set in the constant that are not demanded.  If so,
    839     /// shrink the constant and return true.
    840     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
    841 
    842     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    843     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    844     /// cast, but it could be generalized for targets with other types of
    845     /// implicit widening casts.
    846     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
    847                           DebugLoc dl);
    848   };
    849 
    850   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    851   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    852   /// use this information to simplify Op, create a new simplified DAG node and
    853   /// return true, returning the original and new nodes in Old and New.
    854   /// Otherwise, analyze the expression and return a mask of KnownOne and
    855   /// KnownZero bits for the expression (used to simplify the caller).
    856   /// The KnownZero/One bits may only be accurate for those bits in the
    857   /// DemandedMask.
    858   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
    859                             APInt &KnownZero, APInt &KnownOne,
    860                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
    861 
    862   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
    863   /// Mask are known to be either zero or one and return them in the
    864   /// KnownZero/KnownOne bitsets.
    865   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    866                                               const APInt &Mask,
    867                                               APInt &KnownZero,
    868                                               APInt &KnownOne,
    869                                               const SelectionDAG &DAG,
    870                                               unsigned Depth = 0) const;
    871 
    872   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
    873   /// targets that want to expose additional information about sign bits to the
    874   /// DAG Combiner.
    875   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    876                                                    unsigned Depth = 0) const;
    877 
    878   struct DAGCombinerInfo {
    879     void *DC;  // The DAG Combiner object.
    880     bool BeforeLegalize;
    881     bool BeforeLegalizeOps;
    882     bool CalledByLegalizer;
    883   public:
    884     SelectionDAG &DAG;
    885 
    886     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
    887       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
    888         CalledByLegalizer(cl), DAG(dag) {}
    889 
    890     bool isBeforeLegalize() const { return BeforeLegalize; }
    891     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
    892     bool isCalledByLegalizer() const { return CalledByLegalizer; }
    893 
    894     void AddToWorklist(SDNode *N);
    895     void RemoveFromWorklist(SDNode *N);
    896     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
    897                       bool AddTo = true);
    898     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
    899     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
    900 
    901     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
    902   };
    903 
    904   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
    905   /// and cc. If it is unable to simplify it, return a null SDValue.
    906   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
    907                           ISD::CondCode Cond, bool foldBooleans,
    908                           DAGCombinerInfo &DCI, DebugLoc dl) const;
    909 
    910   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
    911   /// node is a GlobalAddress + offset.
    912   virtual bool
    913   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    914 
    915   /// PerformDAGCombine - This method will be invoked for all target nodes and
    916   /// for any target-independent nodes that the target has registered with
    917   /// invoke it for.
    918   ///
    919   /// The semantics are as follows:
    920   /// Return Value:
    921   ///   SDValue.Val == 0   - No change was made
    922   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
    923   ///   otherwise          - N should be replaced by the returned Operand.
    924   ///
    925   /// In addition, methods provided by DAGCombinerInfo may be used to perform
    926   /// more complex transformations.
    927   ///
    928   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    929 
    930   /// isTypeDesirableForOp - Return true if the target has native support for
    931   /// the specified value type and it is 'desirable' to use the type for the
    932   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    933   /// instruction encodings are longer and some i16 instructions are slow.
    934   virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
    935     // By default, assume all legal types are desirable.
    936     return isTypeLegal(VT);
    937   }
    938 
    939   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
    940   /// to transform a floating point op of specified opcode to a equivalent op of
    941   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
    942   virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
    943     return false;
    944   }
    945 
    946   /// IsDesirableToPromoteOp - This method query the target whether it is
    947   /// beneficial for dag combiner to promote the specified node. If true, it
    948   /// should return the desired promotion type by reference.
    949   virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
    950     return false;
    951   }
    952 
    953   //===--------------------------------------------------------------------===//
    954   // TargetLowering Configuration Methods - These methods should be invoked by
    955   // the derived class constructor to configure this object for the target.
    956   //
    957 
    958 protected:
    959   /// setBooleanContents - Specify how the target extends the result of a
    960   /// boolean value from i1 to a wider type.  See getBooleanContents.
    961   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
    962   /// setBooleanVectorContents - Specify how the target extends the result
    963   /// of a vector boolean value from a vector of i1 to a wider type.  See
    964   /// getBooleanContents.
    965   void setBooleanVectorContents(BooleanContent Ty) {
    966     BooleanVectorContents = Ty;
    967   }
    968 
    969   /// setSchedulingPreference - Specify the target scheduling preference.
    970   void setSchedulingPreference(Sched::Preference Pref) {
    971     SchedPreferenceInfo = Pref;
    972   }
    973 
    974   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
    975   /// use _setjmp to implement llvm.setjmp or the non _ version.
    976   /// Defaults to false.
    977   void setUseUnderscoreSetJmp(bool Val) {
    978     UseUnderscoreSetJmp = Val;
    979   }
    980 
    981   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
    982   /// use _longjmp to implement llvm.longjmp or the non _ version.
    983   /// Defaults to false.
    984   void setUseUnderscoreLongJmp(bool Val) {
    985     UseUnderscoreLongJmp = Val;
    986   }
    987 
    988   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
    989   /// specifies the register that llvm.savestack/llvm.restorestack should save
    990   /// and restore.
    991   void setStackPointerRegisterToSaveRestore(unsigned R) {
    992     StackPointerRegisterToSaveRestore = R;
    993   }
    994 
    995   /// setExceptionPointerRegister - If set to a physical register, this sets
    996   /// the register that receives the exception address on entry to a landing
    997   /// pad.
    998   void setExceptionPointerRegister(unsigned R) {
    999     ExceptionPointerRegister = R;
   1000   }
   1001 
   1002   /// setExceptionSelectorRegister - If set to a physical register, this sets
   1003   /// the register that receives the exception typeid on entry to a landing
   1004   /// pad.
   1005   void setExceptionSelectorRegister(unsigned R) {
   1006     ExceptionSelectorRegister = R;
   1007   }
   1008 
   1009   /// SelectIsExpensive - Tells the code generator not to expand operations
   1010   /// into sequences that use the select operations if possible.
   1011   void setSelectIsExpensive(bool isExpensive = true) {
   1012     SelectIsExpensive = isExpensive;
   1013   }
   1014 
   1015   /// JumpIsExpensive - Tells the code generator not to expand sequence of
   1016   /// operations into a separate sequences that increases the amount of
   1017   /// flow control.
   1018   void setJumpIsExpensive(bool isExpensive = true) {
   1019     JumpIsExpensive = isExpensive;
   1020   }
   1021 
   1022   /// setIntDivIsCheap - Tells the code generator that integer divide is
   1023   /// expensive, and if possible, should be replaced by an alternate sequence
   1024   /// of instructions not containing an integer divide.
   1025   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
   1026 
   1027   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
   1028   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1029   /// it.
   1030   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
   1031 
   1032   /// addRegisterClass - Add the specified register class as an available
   1033   /// regclass for the specified value type.  This indicates the selector can
   1034   /// handle values of that class natively.
   1035   void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
   1036     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
   1037     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1038     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
   1039   }
   1040 
   1041   /// findRepresentativeClass - Return the largest legal super-reg register class
   1042   /// of the register class for the specified type and its associated "cost".
   1043   virtual std::pair<const TargetRegisterClass*, uint8_t>
   1044   findRepresentativeClass(EVT VT) const;
   1045 
   1046   /// computeRegisterProperties - Once all of the register classes are added,
   1047   /// this allows us to compute derived properties we expose.
   1048   void computeRegisterProperties();
   1049 
   1050   /// setOperationAction - Indicate that the specified operation does not work
   1051   /// with the specified type and indicate what to do about it.
   1052   void setOperationAction(unsigned Op, MVT VT,
   1053                           LegalizeAction Action) {
   1054     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1055     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1056   }
   1057 
   1058   /// setLoadExtAction - Indicate that the specified load with extension does
   1059   /// not work with the specified type and indicate what to do about it.
   1060   void setLoadExtAction(unsigned ExtType, MVT VT,
   1061                         LegalizeAction Action) {
   1062     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
   1063            "Table isn't big enough!");
   1064     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
   1065   }
   1066 
   1067   /// setTruncStoreAction - Indicate that the specified truncating store does
   1068   /// not work with the specified type and indicate what to do about it.
   1069   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1070                            LegalizeAction Action) {
   1071     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
   1072            "Table isn't big enough!");
   1073     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1074   }
   1075 
   1076   /// setIndexedLoadAction - Indicate that the specified indexed load does or
   1077   /// does not work with the specified type and indicate what to do abort
   1078   /// it. NOTE: All indexed mode loads are initialized to Expand in
   1079   /// TargetLowering.cpp
   1080   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1081                             LegalizeAction Action) {
   1082     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1083            (unsigned)Action < 0xf && "Table isn't big enough!");
   1084     // Load action are kept in the upper half.
   1085     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1086     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1087   }
   1088 
   1089   /// setIndexedStoreAction - Indicate that the specified indexed store does or
   1090   /// does not work with the specified type and indicate what to do about
   1091   /// it. NOTE: All indexed mode stores are initialized to Expand in
   1092   /// TargetLowering.cpp
   1093   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1094                              LegalizeAction Action) {
   1095     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1096            (unsigned)Action < 0xf && "Table isn't big enough!");
   1097     // Store action are kept in the lower half.
   1098     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1099     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1100   }
   1101 
   1102   /// setCondCodeAction - Indicate that the specified condition code is or isn't
   1103   /// supported on the target and indicate what to do about it.
   1104   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1105                          LegalizeAction Action) {
   1106     assert(VT < MVT::LAST_VALUETYPE &&
   1107            (unsigned)CC < array_lengthof(CondCodeActions) &&
   1108            "Table isn't big enough!");
   1109     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
   1110     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
   1111   }
   1112 
   1113   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
   1114   /// promotion code defaults to trying a larger integer/fp until it can find
   1115   /// one that works.  If that default is insufficient, this method can be used
   1116   /// by the target to override the default.
   1117   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1118     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1119   }
   1120 
   1121   /// setTargetDAGCombine - Targets should invoke this method for each target
   1122   /// independent node that they want to provide a custom DAG combiner for by
   1123   /// implementing the PerformDAGCombine virtual method.
   1124   void setTargetDAGCombine(ISD::NodeType NT) {
   1125     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1126     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1127   }
   1128 
   1129   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
   1130   /// bytes); default is 200
   1131   void setJumpBufSize(unsigned Size) {
   1132     JumpBufSize = Size;
   1133   }
   1134 
   1135   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
   1136   /// alignment (in bytes); default is 0
   1137   void setJumpBufAlignment(unsigned Align) {
   1138     JumpBufAlignment = Align;
   1139   }
   1140 
   1141   /// setMinFunctionAlignment - Set the target's minimum function alignment (in
   1142   /// log2(bytes))
   1143   void setMinFunctionAlignment(unsigned Align) {
   1144     MinFunctionAlignment = Align;
   1145   }
   1146 
   1147   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
   1148   /// This should be set if there is a performance benefit to
   1149   /// higher-than-minimum alignment (in log2(bytes))
   1150   void setPrefFunctionAlignment(unsigned Align) {
   1151     PrefFunctionAlignment = Align;
   1152   }
   1153 
   1154   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
   1155   /// alignment is zero, it means the target does not care about loop alignment.
   1156   /// The alignment is specified in log2(bytes).
   1157   void setPrefLoopAlignment(unsigned Align) {
   1158     PrefLoopAlignment = Align;
   1159   }
   1160 
   1161   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
   1162   /// argument (in log2(bytes)).
   1163   void setMinStackArgumentAlignment(unsigned Align) {
   1164     MinStackArgumentAlignment = Align;
   1165   }
   1166 
   1167   /// setShouldFoldAtomicFences - Set if the target's implementation of the
   1168   /// atomic operation intrinsics includes locking. Default is false.
   1169   void setShouldFoldAtomicFences(bool fold) {
   1170     ShouldFoldAtomicFences = fold;
   1171   }
   1172 
   1173   /// setInsertFencesForAtomic - Set if the the DAG builder should
   1174   /// automatically insert fences and reduce the order of atomic memory
   1175   /// operations to Monotonic.
   1176   void setInsertFencesForAtomic(bool fence) {
   1177     InsertFencesForAtomic = fence;
   1178   }
   1179 
   1180 public:
   1181   //===--------------------------------------------------------------------===//
   1182   // Lowering methods - These methods must be implemented by targets so that
   1183   // the SelectionDAGLowering code knows how to lower these.
   1184   //
   1185 
   1186   /// LowerFormalArguments - This hook must be implemented to lower the
   1187   /// incoming (formal) arguments, described by the Ins array, into the
   1188   /// specified DAG. The implementation should fill in the InVals array
   1189   /// with legal-type argument values, and return the resulting token
   1190   /// chain value.
   1191   ///
   1192   virtual SDValue
   1193     LowerFormalArguments(SDValue Chain,
   1194                          CallingConv::ID CallConv, bool isVarArg,
   1195                          const SmallVectorImpl<ISD::InputArg> &Ins,
   1196                          DebugLoc dl, SelectionDAG &DAG,
   1197                          SmallVectorImpl<SDValue> &InVals) const {
   1198     assert(0 && "Not Implemented");
   1199     return SDValue();    // this is here to silence compiler errors
   1200   }
   1201 
   1202   /// LowerCallTo - This function lowers an abstract call to a function into an
   1203   /// actual call.  This returns a pair of operands.  The first element is the
   1204   /// return value for the function (if RetTy is not VoidTy).  The second
   1205   /// element is the outgoing token chain. It calls LowerCall to do the actual
   1206   /// lowering.
   1207   struct ArgListEntry {
   1208     SDValue Node;
   1209     Type* Ty;
   1210     bool isSExt  : 1;
   1211     bool isZExt  : 1;
   1212     bool isInReg : 1;
   1213     bool isSRet  : 1;
   1214     bool isNest  : 1;
   1215     bool isByVal : 1;
   1216     uint16_t Alignment;
   1217 
   1218     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   1219       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
   1220   };
   1221   typedef std::vector<ArgListEntry> ArgListTy;
   1222   std::pair<SDValue, SDValue>
   1223   LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
   1224               bool isVarArg, bool isInreg, unsigned NumFixedArgs,
   1225               CallingConv::ID CallConv, bool isTailCall,
   1226               bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
   1227               SelectionDAG &DAG, DebugLoc dl) const;
   1228 
   1229   /// LowerCall - This hook must be implemented to lower calls into the
   1230   /// the specified DAG. The outgoing arguments to the call are described
   1231   /// by the Outs array, and the values to be returned by the call are
   1232   /// described by the Ins array. The implementation should fill in the
   1233   /// InVals array with legal-type return values from the call, and return
   1234   /// the resulting token chain value.
   1235   virtual SDValue
   1236     LowerCall(SDValue Chain, SDValue Callee,
   1237               CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
   1238               const SmallVectorImpl<ISD::OutputArg> &Outs,
   1239               const SmallVectorImpl<SDValue> &OutVals,
   1240               const SmallVectorImpl<ISD::InputArg> &Ins,
   1241               DebugLoc dl, SelectionDAG &DAG,
   1242               SmallVectorImpl<SDValue> &InVals) const {
   1243     assert(0 && "Not Implemented");
   1244     return SDValue();    // this is here to silence compiler errors
   1245   }
   1246 
   1247   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
   1248   virtual void HandleByVal(CCState *, unsigned &) const {}
   1249 
   1250   /// CanLowerReturn - This hook should be implemented to check whether the
   1251   /// return values described by the Outs array can fit into the return
   1252   /// registers.  If false is returned, an sret-demotion is performed.
   1253   ///
   1254   virtual bool CanLowerReturn(CallingConv::ID CallConv,
   1255 			      MachineFunction &MF, bool isVarArg,
   1256                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1257                LLVMContext &Context) const
   1258   {
   1259     // Return true by default to get preexisting behavior.
   1260     return true;
   1261   }
   1262 
   1263   /// LowerReturn - This hook must be implemented to lower outgoing
   1264   /// return values, described by the Outs array, into the specified
   1265   /// DAG. The implementation should return the resulting token chain
   1266   /// value.
   1267   ///
   1268   virtual SDValue
   1269     LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   1270                 const SmallVectorImpl<ISD::OutputArg> &Outs,
   1271                 const SmallVectorImpl<SDValue> &OutVals,
   1272                 DebugLoc dl, SelectionDAG &DAG) const {
   1273     assert(0 && "Not Implemented");
   1274     return SDValue();    // this is here to silence compiler errors
   1275   }
   1276 
   1277   /// isUsedByReturnOnly - Return true if result of the specified node is used
   1278   /// by a return node only. This is used to determine whether it is possible
   1279   /// to codegen a libcall as tail call at legalization time.
   1280   virtual bool isUsedByReturnOnly(SDNode *N) const {
   1281     return false;
   1282   }
   1283 
   1284   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
   1285   /// call instruction as a tail call. This is used by optimization passes to
   1286   /// determine if it's profitable to duplicate return instructions to enable
   1287   /// tailcall optimization.
   1288   virtual bool mayBeEmittedAsTailCall(CallInst *CI) const {
   1289     return false;
   1290   }
   1291 
   1292   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
   1293   /// sign extend a zeroext/signext integer argument or return value.
   1294   /// FIXME: Most C calling convention requires the return type to be promoted,
   1295   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
   1296   /// necessary for non-C calling conventions. The frontend should handle this
   1297   /// and include all of the necessary information.
   1298   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1299                                        ISD::NodeType ExtendKind) const {
   1300     EVT MinVT = getRegisterType(Context, MVT::i32);
   1301     return VT.bitsLT(MinVT) ? MinVT : VT;
   1302   }
   1303 
   1304   /// LowerOperationWrapper - This callback is invoked by the type legalizer
   1305   /// to legalize nodes with an illegal operand type but legal result types.
   1306   /// It replaces the LowerOperation callback in the type Legalizer.
   1307   /// The reason we can not do away with LowerOperation entirely is that
   1308   /// LegalizeDAG isn't yet ready to use this callback.
   1309   /// TODO: Consider merging with ReplaceNodeResults.
   1310 
   1311   /// The target places new result values for the node in Results (their number
   1312   /// and types must exactly match those of the original return values of
   1313   /// the node), or leaves Results empty, which indicates that the node is not
   1314   /// to be custom lowered after all.
   1315   /// The default implementation calls LowerOperation.
   1316   virtual void LowerOperationWrapper(SDNode *N,
   1317                                      SmallVectorImpl<SDValue> &Results,
   1318                                      SelectionDAG &DAG) const;
   1319 
   1320   /// LowerOperation - This callback is invoked for operations that are
   1321   /// unsupported by the target, which are registered to use 'custom' lowering,
   1322   /// and whose defined values are all legal.
   1323   /// If the target has no operations that require custom lowering, it need not
   1324   /// implement this.  The default implementation of this aborts.
   1325   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   1326 
   1327   /// ReplaceNodeResults - This callback is invoked when a node result type is
   1328   /// illegal for the target, and the operation was registered to use 'custom'
   1329   /// lowering for that result type.  The target places new result values for
   1330   /// the node in Results (their number and types must exactly match those of
   1331   /// the original return values of the node), or leaves Results empty, which
   1332   /// indicates that the node is not to be custom lowered after all.
   1333   ///
   1334   /// If the target has no operations that require custom lowering, it need not
   1335   /// implement this.  The default implementation aborts.
   1336   virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
   1337                                   SelectionDAG &DAG) const {
   1338     assert(0 && "ReplaceNodeResults not implemented for this target!");
   1339   }
   1340 
   1341   /// getTargetNodeName() - This method returns the name of a target specific
   1342   /// DAG node.
   1343   virtual const char *getTargetNodeName(unsigned Opcode) const;
   1344 
   1345   /// createFastISel - This method returns a target specific FastISel object,
   1346   /// or null if the target does not support "fast" ISel.
   1347   virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
   1348     return 0;
   1349   }
   1350 
   1351   //===--------------------------------------------------------------------===//
   1352   // Inline Asm Support hooks
   1353   //
   1354 
   1355   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
   1356   /// call to be explicit llvm code if it wants to.  This is useful for
   1357   /// turning simple inline asms into LLVM intrinsics, which gives the
   1358   /// compiler more information about the behavior of the code.
   1359   virtual bool ExpandInlineAsm(CallInst *CI) const {
   1360     return false;
   1361   }
   1362 
   1363   enum ConstraintType {
   1364     C_Register,            // Constraint represents specific register(s).
   1365     C_RegisterClass,       // Constraint represents any of register(s) in class.
   1366     C_Memory,              // Memory constraint.
   1367     C_Other,               // Something else.
   1368     C_Unknown              // Unsupported constraint.
   1369   };
   1370 
   1371   enum ConstraintWeight {
   1372     // Generic weights.
   1373     CW_Invalid  = -1,     // No match.
   1374     CW_Okay     = 0,      // Acceptable.
   1375     CW_Good     = 1,      // Good weight.
   1376     CW_Better   = 2,      // Better weight.
   1377     CW_Best     = 3,      // Best weight.
   1378 
   1379     // Well-known weights.
   1380     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   1381     CW_Register     = CW_Good,    // Register operands.
   1382     CW_Memory       = CW_Better,  // Memory operands.
   1383     CW_Constant     = CW_Best,    // Constant operand.
   1384     CW_Default      = CW_Okay     // Default or don't know type.
   1385   };
   1386 
   1387   /// AsmOperandInfo - This contains information for each constraint that we are
   1388   /// lowering.
   1389   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   1390     /// ConstraintCode - This contains the actual string for the code, like "m".
   1391     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
   1392     /// most closely matches the operand.
   1393     std::string ConstraintCode;
   1394 
   1395     /// ConstraintType - Information about the constraint code, e.g. Register,
   1396     /// RegisterClass, Memory, Other, Unknown.
   1397     TargetLowering::ConstraintType ConstraintType;
   1398 
   1399     /// CallOperandval - If this is the result output operand or a
   1400     /// clobber, this is null, otherwise it is the incoming operand to the
   1401     /// CallInst.  This gets modified as the asm is processed.
   1402     Value *CallOperandVal;
   1403 
   1404     /// ConstraintVT - The ValueType for the operand value.
   1405     EVT ConstraintVT;
   1406 
   1407     /// isMatchingInputConstraint - Return true of this is an input operand that
   1408     /// is a matching constraint like "4".
   1409     bool isMatchingInputConstraint() const;
   1410 
   1411     /// getMatchedOperand - If this is an input matching constraint, this method
   1412     /// returns the output operand it matches.
   1413     unsigned getMatchedOperand() const;
   1414 
   1415     /// Copy constructor for copying from an AsmOperandInfo.
   1416     AsmOperandInfo(const AsmOperandInfo &info)
   1417       : InlineAsm::ConstraintInfo(info),
   1418         ConstraintCode(info.ConstraintCode),
   1419         ConstraintType(info.ConstraintType),
   1420         CallOperandVal(info.CallOperandVal),
   1421         ConstraintVT(info.ConstraintVT) {
   1422     }
   1423 
   1424     /// Copy constructor for copying from a ConstraintInfo.
   1425     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
   1426       : InlineAsm::ConstraintInfo(info),
   1427         ConstraintType(TargetLowering::C_Unknown),
   1428         CallOperandVal(0), ConstraintVT(MVT::Other) {
   1429     }
   1430   };
   1431 
   1432   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   1433 
   1434   /// ParseConstraints - Split up the constraint string from the inline
   1435   /// assembly value into the specific constraints and their prefixes,
   1436   /// and also tie in the associated operand values.
   1437   /// If this returns an empty vector, and if the constraint string itself
   1438   /// isn't empty, there was an error parsing.
   1439   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
   1440 
   1441   /// Examine constraint type and operand type and determine a weight value.
   1442   /// The operand object must already have been set up with the operand type.
   1443   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   1444       AsmOperandInfo &info, int maIndex) const;
   1445 
   1446   /// Examine constraint string and operand type and determine a weight value.
   1447   /// The operand object must already have been set up with the operand type.
   1448   virtual ConstraintWeight getSingleConstraintMatchWeight(
   1449       AsmOperandInfo &info, const char *constraint) const;
   1450 
   1451   /// ComputeConstraintToUse - Determines the constraint code and constraint
   1452   /// type to use for the specific AsmOperandInfo, setting
   1453   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
   1454   /// being passed in is available, it can be passed in as Op, otherwise an
   1455   /// empty SDValue can be passed.
   1456   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   1457                                       SDValue Op,
   1458                                       SelectionDAG *DAG = 0) const;
   1459 
   1460   /// getConstraintType - Given a constraint, return the type of constraint it
   1461   /// is for this target.
   1462   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   1463 
   1464   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
   1465   /// {edx}), return the register number and the register class for the
   1466   /// register.
   1467   ///
   1468   /// Given a register class constraint, like 'r', if this corresponds directly
   1469   /// to an LLVM register class, return a register of 0 and the register class
   1470   /// pointer.
   1471   ///
   1472   /// This should only be used for C_Register constraints.  On error,
   1473   /// this returns a register number of 0 and a null register class pointer..
   1474   virtual std::pair<unsigned, const TargetRegisterClass*>
   1475     getRegForInlineAsmConstraint(const std::string &Constraint,
   1476                                  EVT VT) const;
   1477 
   1478   /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1479   /// with another that has more specific requirements based on the type of the
   1480   /// corresponding operand.  This returns null if there is no replacement to
   1481   /// make.
   1482   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   1483 
   1484   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1485   /// vector.  If it is invalid, don't add anything to Ops.
   1486   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   1487                                             std::vector<SDValue> &Ops,
   1488                                             SelectionDAG &DAG) const;
   1489 
   1490   //===--------------------------------------------------------------------===//
   1491   // Instruction Emitting Hooks
   1492   //
   1493 
   1494   // EmitInstrWithCustomInserter - This method should be implemented by targets
   1495   // that mark instructions with the 'usesCustomInserter' flag.  These
   1496   // instructions are special in various ways, which require special support to
   1497   // insert.  The specified MachineInstr is created but not inserted into any
   1498   // basic blocks, and this method is called to expand it into a sequence of
   1499   // instructions, potentially also creating new basic blocks and control flow.
   1500   virtual MachineBasicBlock *
   1501     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1502 
   1503   /// AdjustInstrPostInstrSelection - This method should be implemented by
   1504   /// targets that mark instructions with the 'hasPostISelHook' flag. These
   1505   /// instructions must be adjusted after instruction selection by target hooks.
   1506   /// e.g. To fill in optional defs for ARM 's' setting instructions.
   1507   virtual void
   1508   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   1509 
   1510   //===--------------------------------------------------------------------===//
   1511   // Addressing mode description hooks (used by LSR etc).
   1512   //
   1513 
   1514   /// AddrMode - This represents an addressing mode of:
   1515   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1516   /// If BaseGV is null,  there is no BaseGV.
   1517   /// If BaseOffs is zero, there is no base offset.
   1518   /// If HasBaseReg is false, there is no base register.
   1519   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1520   /// no scale.
   1521   ///
   1522   struct AddrMode {
   1523     GlobalValue *BaseGV;
   1524     int64_t      BaseOffs;
   1525     bool         HasBaseReg;
   1526     int64_t      Scale;
   1527     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1528   };
   1529 
   1530   /// isLegalAddressingMode - Return true if the addressing mode represented by
   1531   /// AM is legal for this target, for a load/store of the specified type.
   1532   /// The type may be VoidTy, in which case only return true if the addressing
   1533   /// mode is legal for a load/store of any legal type.
   1534   /// TODO: Handle pre/postinc as well.
   1535   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1536 
   1537   /// isLegalICmpImmediate - Return true if the specified immediate is legal
   1538   /// icmp immediate, that is the target has icmp instructions which can compare
   1539   /// a register against the immediate without having to materialize the
   1540   /// immediate into a register.
   1541   virtual bool isLegalICmpImmediate(int64_t Imm) const {
   1542     return true;
   1543   }
   1544 
   1545   /// isLegalAddImmediate - Return true if the specified immediate is legal
   1546   /// add immediate, that is the target has add instructions which can add
   1547   /// a register with the immediate without having to materialize the
   1548   /// immediate into a register.
   1549   virtual bool isLegalAddImmediate(int64_t Imm) const {
   1550     return true;
   1551   }
   1552 
   1553   /// isTruncateFree - Return true if it's free to truncate a value of
   1554   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
   1555   /// register EAX to i16 by referencing its sub-register AX.
   1556   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const {
   1557     return false;
   1558   }
   1559 
   1560   virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
   1561     return false;
   1562   }
   1563 
   1564   /// isZExtFree - Return true if any actual instruction that defines a
   1565   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
   1566   /// register. This does not necessarily include registers defined in
   1567   /// unknown ways, such as incoming arguments, or copies from unknown
   1568   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
   1569   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
   1570   /// all instructions that define 32-bit values implicit zero-extend the
   1571   /// result out to 64 bits.
   1572   virtual bool isZExtFree(Type *Ty1, Type *Ty2) const {
   1573     return false;
   1574   }
   1575 
   1576   virtual bool isZExtFree(EVT VT1, EVT VT2) const {
   1577     return false;
   1578   }
   1579 
   1580   /// isNarrowingProfitable - Return true if it's profitable to narrow
   1581   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
   1582   /// from i32 to i8 but not from i32 to i16.
   1583   virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
   1584     return false;
   1585   }
   1586 
   1587   //===--------------------------------------------------------------------===//
   1588   // Div utility functions
   1589   //
   1590   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   1591                          SelectionDAG &DAG) const;
   1592   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
   1593                       std::vector<SDNode*>* Created) const;
   1594   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
   1595                       std::vector<SDNode*>* Created) const;
   1596 
   1597 
   1598   //===--------------------------------------------------------------------===//
   1599   // Runtime Library hooks
   1600   //
   1601 
   1602   /// setLibcallName - Rename the default libcall routine name for the specified
   1603   /// libcall.
   1604   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1605     LibcallRoutineNames[Call] = Name;
   1606   }
   1607 
   1608   /// getLibcallName - Get the libcall routine name for the specified libcall.
   1609   ///
   1610   const char *getLibcallName(RTLIB::Libcall Call) const {
   1611     return LibcallRoutineNames[Call];
   1612   }
   1613 
   1614   /// setCmpLibcallCC - Override the default CondCode to be used to test the
   1615   /// result of the comparison libcall against zero.
   1616   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1617     CmpLibcallCCs[Call] = CC;
   1618   }
   1619 
   1620   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
   1621   /// the comparison libcall against zero.
   1622   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1623     return CmpLibcallCCs[Call];
   1624   }
   1625 
   1626   /// setLibcallCallingConv - Set the CallingConv that should be used for the
   1627   /// specified libcall.
   1628   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1629     LibcallCallingConvs[Call] = CC;
   1630   }
   1631 
   1632   /// getLibcallCallingConv - Get the CallingConv that should be used for the
   1633   /// specified libcall.
   1634   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1635     return LibcallCallingConvs[Call];
   1636   }
   1637 
   1638 private:
   1639   const TargetMachine &TM;
   1640   const TargetData *TD;
   1641   const TargetLoweringObjectFile &TLOF;
   1642 
   1643   /// We are in the process of implementing a new TypeLegalization action
   1644   /// which is the promotion of vector elements. This feature is under
   1645   /// development. Until this feature is complete, it is only enabled using a
   1646   /// flag. We pass this flag using a member because of circular dep issues.
   1647   /// This member will be removed with the flag once we complete the transition.
   1648   bool mayPromoteElements;
   1649 
   1650   /// PointerTy - The type to use for pointers, usually i32 or i64.
   1651   ///
   1652   MVT PointerTy;
   1653 
   1654   /// IsLittleEndian - True if this is a little endian target.
   1655   ///
   1656   bool IsLittleEndian;
   1657 
   1658   /// SelectIsExpensive - Tells the code generator not to expand operations
   1659   /// into sequences that use the select operations if possible.
   1660   bool SelectIsExpensive;
   1661 
   1662   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
   1663   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
   1664   /// a real cost model is in place.  If we ever optimize for size, this will be
   1665   /// set to true unconditionally.
   1666   bool IntDivIsCheap;
   1667 
   1668   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
   1669   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1670   /// it.
   1671   bool Pow2DivIsCheap;
   1672 
   1673   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
   1674   /// extra flow control instructions and should attempt to combine flow
   1675   /// control instructions via predication.
   1676   bool JumpIsExpensive;
   1677 
   1678   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
   1679   /// llvm.setjmp.  Defaults to false.
   1680   bool UseUnderscoreSetJmp;
   1681 
   1682   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
   1683   /// llvm.longjmp.  Defaults to false.
   1684   bool UseUnderscoreLongJmp;
   1685 
   1686   /// BooleanContents - Information about the contents of the high-bits in
   1687   /// boolean values held in a type wider than i1.  See getBooleanContents.
   1688   BooleanContent BooleanContents;
   1689   /// BooleanVectorContents - Information about the contents of the high-bits
   1690   /// in boolean vector values when the element type is wider than i1.  See
   1691   /// getBooleanContents.
   1692   BooleanContent BooleanVectorContents;
   1693 
   1694   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
   1695   /// total cycles or lowest register usage.
   1696   Sched::Preference SchedPreferenceInfo;
   1697 
   1698   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
   1699   unsigned JumpBufSize;
   1700 
   1701   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
   1702   /// buffers
   1703   unsigned JumpBufAlignment;
   1704 
   1705   /// MinStackArgumentAlignment - The minimum alignment that any argument
   1706   /// on the stack needs to have.
   1707   ///
   1708   unsigned MinStackArgumentAlignment;
   1709 
   1710   /// MinFunctionAlignment - The minimum function alignment (used when
   1711   /// optimizing for size, and to prevent explicitly provided alignment
   1712   /// from leading to incorrect code).
   1713   ///
   1714   unsigned MinFunctionAlignment;
   1715 
   1716   /// PrefFunctionAlignment - The preferred function alignment (used when
   1717   /// alignment unspecified and optimizing for speed).
   1718   ///
   1719   unsigned PrefFunctionAlignment;
   1720 
   1721   /// PrefLoopAlignment - The preferred loop alignment.
   1722   ///
   1723   unsigned PrefLoopAlignment;
   1724 
   1725   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
   1726   /// be folded into the enclosed atomic intrinsic instruction by the
   1727   /// combiner.
   1728   bool ShouldFoldAtomicFences;
   1729 
   1730   /// InsertFencesForAtomic - Whether the DAG builder should automatically
   1731   /// insert fences and reduce ordering for atomics.  (This will be set for
   1732   /// for most architectures with weak memory ordering.)
   1733   bool InsertFencesForAtomic;
   1734 
   1735   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
   1736   /// specifies the register that llvm.savestack/llvm.restorestack should save
   1737   /// and restore.
   1738   unsigned StackPointerRegisterToSaveRestore;
   1739 
   1740   /// ExceptionPointerRegister - If set to a physical register, this specifies
   1741   /// the register that receives the exception address on entry to a landing
   1742   /// pad.
   1743   unsigned ExceptionPointerRegister;
   1744 
   1745   /// ExceptionSelectorRegister - If set to a physical register, this specifies
   1746   /// the register that receives the exception typeid on entry to a landing
   1747   /// pad.
   1748   unsigned ExceptionSelectorRegister;
   1749 
   1750   /// RegClassForVT - This indicates the default register class to use for
   1751   /// each ValueType the target supports natively.
   1752   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1753   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1754   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1755 
   1756   /// RepRegClassForVT - This indicates the "representative" register class to
   1757   /// use for each ValueType the target supports natively. This information is
   1758   /// used by the scheduler to track register pressure. By default, the
   1759   /// representative register class is the largest legal super-reg register
   1760   /// class of the register class of the specified type. e.g. On x86, i8, i16,
   1761   /// and i32's representative class would be GR32.
   1762   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1763 
   1764   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
   1765   /// register class for each ValueType. The cost is used by the scheduler to
   1766   /// approximate register pressure.
   1767   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1768 
   1769   /// TransformToType - For any value types we are promoting or expanding, this
   1770   /// contains the value type that we are changing to.  For Expanded types, this
   1771   /// contains one step of the expand (e.g. i64 -> i32), even if there are
   1772   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
   1773   /// by the system, this holds the same type (e.g. i32 -> i32).
   1774   EVT TransformToType[MVT::LAST_VALUETYPE];
   1775 
   1776   /// OpActions - For each operation and each value type, keep a LegalizeAction
   1777   /// that indicates how instruction selection should deal with the operation.
   1778   /// Most operations are Legal (aka, supported natively by the target), but
   1779   /// operations that are not should be described.  Note that operations on
   1780   /// non-legal value types are not described here.
   1781   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1782 
   1783   /// LoadExtActions - For each load extension type and each value type,
   1784   /// keep a LegalizeAction that indicates how instruction selection should deal
   1785   /// with a load of a specific value type and extension type.
   1786   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
   1787 
   1788   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
   1789   /// indicates whether a truncating store of a specific value type and
   1790   /// truncating type is legal.
   1791   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1792 
   1793   /// IndexedModeActions - For each indexed mode and each value type,
   1794   /// keep a pair of LegalizeAction that indicates how instruction
   1795   /// selection should deal with the load / store.  The first dimension is the
   1796   /// value_type for the reference. The second dimension represents the various
   1797   /// modes for load store.
   1798   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1799 
   1800   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
   1801   /// LegalizeAction that indicates how instruction selection should
   1802   /// deal with the condition code.
   1803   uint64_t CondCodeActions[ISD::SETCC_INVALID];
   1804 
   1805   ValueTypeActionImpl ValueTypeActions;
   1806 
   1807   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
   1808 
   1809   LegalizeKind
   1810   getTypeConversion(LLVMContext &Context, EVT VT) const {
   1811     // If this is a simple type, use the ComputeRegisterProp mechanism.
   1812     if (VT.isSimple()) {
   1813       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1814              array_lengthof(TransformToType));
   1815       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
   1816       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
   1817 
   1818       assert(
   1819         (!(NVT.isSimple() && LA != TypeLegal) ||
   1820          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
   1821          && "Promote may not follow Expand or Promote");
   1822 
   1823       return LegalizeKind(LA, NVT);
   1824     }
   1825 
   1826     // Handle Extended Scalar Types.
   1827     if (!VT.isVector()) {
   1828       assert(VT.isInteger() && "Float types must be simple");
   1829       unsigned BitSize = VT.getSizeInBits();
   1830       // First promote to a power-of-two size, then expand if necessary.
   1831       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1832         EVT NVT = VT.getRoundIntegerType(Context);
   1833         assert(NVT != VT && "Unable to round integer VT");
   1834         LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1835         // Avoid multi-step promotion.
   1836         if (NextStep.first == TypePromoteInteger) return NextStep;
   1837         // Return rounded integer type.
   1838         return LegalizeKind(TypePromoteInteger, NVT);
   1839       }
   1840 
   1841       return LegalizeKind(TypeExpandInteger,
   1842                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
   1843     }
   1844 
   1845     // Handle vector types.
   1846     unsigned NumElts = VT.getVectorNumElements();
   1847     EVT EltVT = VT.getVectorElementType();
   1848 
   1849     // Vectors with only one element are always scalarized.
   1850     if (NumElts == 1)
   1851       return LegalizeKind(TypeScalarizeVector, EltVT);
   1852 
   1853     // If we allow the promotion of vector elements using a flag,
   1854     // then try to widen vector elements until a legal type is found.
   1855     if (mayPromoteElements && EltVT.isInteger()) {
   1856       // Vectors with a number of elements that is not a power of two are always
   1857       // widened, for example <3 x float> -> <4 x float>.
   1858       if (!VT.isPow2VectorType()) {
   1859         NumElts = (unsigned)NextPowerOf2(NumElts);
   1860         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1861         return LegalizeKind(TypeWidenVector, NVT);
   1862       }
   1863 
   1864       // Examine the element type.
   1865       LegalizeKind LK = getTypeConversion(Context, EltVT);
   1866 
   1867       // If type is to be expanded, split the vector.
   1868       //  <4 x i140> -> <2 x i140>
   1869       if (LK.first == TypeExpandInteger)
   1870         return LegalizeKind(TypeSplitVector,
   1871                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
   1872 
   1873       // Promote the integer element types until a legal vector type is found
   1874       // or until the element integer type is too big. If a legal type was not
   1875       // found, fallback to the usual mechanism of widening/splitting the
   1876       // vector.
   1877       while (1) {
   1878         // Increase the bitwidth of the element to the next pow-of-two
   1879         // (which is greater than 8 bits).
   1880         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
   1881                                  ).getRoundIntegerType(Context);
   1882 
   1883         // Stop trying when getting a non-simple element type.
   1884         // Note that vector elements may be greater than legal vector element
   1885         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
   1886         if (!EltVT.isSimple()) break;
   1887 
   1888         // Build a new vector type and check if it is legal.
   1889         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1890         // Found a legal promoted vector type.
   1891         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   1892           return LegalizeKind(TypePromoteInteger,
   1893                               EVT::getVectorVT(Context, EltVT, NumElts));
   1894       }
   1895     }
   1896 
   1897     // Try to widen the vector until a legal type is found.
   1898     // If there is no wider legal type, split the vector.
   1899     while (1) {
   1900       // Round up to the next power of 2.
   1901       NumElts = (unsigned)NextPowerOf2(NumElts);
   1902 
   1903       // If there is no simple vector type with this many elements then there
   1904       // cannot be a larger legal vector type.  Note that this assumes that
   1905       // there are no skipped intermediate vector types in the simple types.
   1906       if (!EltVT.isSimple()) break;
   1907       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1908       if (LargerVector == MVT()) break;
   1909 
   1910       // If this type is legal then widen the vector.
   1911       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1912         return LegalizeKind(TypeWidenVector, LargerVector);
   1913     }
   1914 
   1915     // Widen odd vectors to next power of two.
   1916     if (!VT.isPow2VectorType()) {
   1917       EVT NVT = VT.getPow2VectorType(Context);
   1918       return LegalizeKind(TypeWidenVector, NVT);
   1919     }
   1920 
   1921     // Vectors with illegal element types are expanded.
   1922     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1923     return LegalizeKind(TypeSplitVector, NVT);
   1924 
   1925     assert(false && "Unable to handle this kind of vector type");
   1926     return LegalizeKind(TypeLegal, VT);
   1927   }
   1928 
   1929   std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
   1930 
   1931   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
   1932   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
   1933   /// which sets a bit in this array.
   1934   unsigned char
   1935   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1936 
   1937   /// PromoteToType - For operations that must be promoted to a specific type,
   1938   /// this holds the destination type.  This map should be sparse, so don't hold
   1939   /// it as an array.
   1940   ///
   1941   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1942   /// this with getTypeToPromoteTo(..).
   1943   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1944     PromoteToType;
   1945 
   1946   /// LibcallRoutineNames - Stores the name each libcall.
   1947   ///
   1948   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1949 
   1950   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
   1951   /// of each of the comparison libcall against zero.
   1952   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1953 
   1954   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
   1955   /// libcall.
   1956   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1957 
   1958 protected:
   1959   /// When lowering \@llvm.memset this field specifies the maximum number of
   1960   /// store operations that may be substituted for the call to memset. Targets
   1961   /// must set this value based on the cost threshold for that target. Targets
   1962   /// should assume that the memset will be done using as many of the largest
   1963   /// store operations first, followed by smaller ones, if necessary, per
   1964   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1965   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1966   /// store.  This only applies to setting a constant array of a constant size.
   1967   /// @brief Specify maximum number of store instructions per memset call.
   1968   unsigned maxStoresPerMemset;
   1969 
   1970   /// Maximum number of stores operations that may be substituted for the call
   1971   /// to memset, used for functions with OptSize attribute.
   1972   unsigned maxStoresPerMemsetOptSize;
   1973 
   1974   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1975   /// store operations that may be substituted for a call to memcpy. Targets
   1976   /// must set this value based on the cost threshold for that target. Targets
   1977   /// should assume that the memcpy will be done using as many of the largest
   1978   /// store operations first, followed by smaller ones, if necessary, per
   1979   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   1980   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   1981   /// and one 1-byte store. This only applies to copying a constant array of
   1982   /// constant size.
   1983   /// @brief Specify maximum bytes of store instructions per memcpy call.
   1984   unsigned maxStoresPerMemcpy;
   1985 
   1986   /// Maximum number of store operations that may be substituted for a call
   1987   /// to memcpy, used for functions with OptSize attribute.
   1988   unsigned maxStoresPerMemcpyOptSize;
   1989 
   1990   /// When lowering \@llvm.memmove this field specifies the maximum number of
   1991   /// store instructions that may be substituted for a call to memmove. Targets
   1992   /// must set this value based on the cost threshold for that target. Targets
   1993   /// should assume that the memmove will be done using as many of the largest
   1994   /// store operations first, followed by smaller ones, if necessary, per
   1995   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   1996   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   1997   /// applies to copying a constant array of constant size.
   1998   /// @brief Specify maximum bytes of store instructions per memmove call.
   1999   unsigned maxStoresPerMemmove;
   2000 
   2001   /// Maximum number of store instructions that may be substituted for a call
   2002   /// to memmove, used for functions with OpSize attribute.
   2003   unsigned maxStoresPerMemmoveOptSize;
   2004 
   2005   /// This field specifies whether the target can benefit from code placement
   2006   /// optimization.
   2007   bool benefitFromCodePlacementOpt;
   2008 
   2009 private:
   2010   /// isLegalRC - Return true if the value types that can be represented by the
   2011   /// specified register class are all legal.
   2012   bool isLegalRC(const TargetRegisterClass *RC) const;
   2013 
   2014   /// hasLegalSuperRegRegClasses - Return true if the specified register class
   2015   /// has one or more super-reg register classes that are legal.
   2016   bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
   2017 };
   2018 
   2019 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
   2020 /// compute the return value EVTs and flags, and optionally also
   2021 /// the offsets, if the return value is being lowered to memory.
   2022 void GetReturnInfo(Type* ReturnType, Attributes attr,
   2023                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2024                    const TargetLowering &TLI,
   2025                    SmallVectorImpl<uint64_t> *Offsets = 0);
   2026 
   2027 } // end llvm namespace
   2028 
   2029 #endif
   2030