1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/APValue.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Lex/LiteralSupport.h" 24 #include "clang/Lex/Lexer.h" 25 #include "clang/Sema/SemaDiagnostic.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 using namespace clang; 33 34 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 35 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 36 /// but also int expressions which are produced by things like comparisons in 37 /// C. 38 bool Expr::isKnownToHaveBooleanValue() const { 39 const Expr *E = IgnoreParens(); 40 41 // If this value has _Bool type, it is obvious 0/1. 42 if (E->getType()->isBooleanType()) return true; 43 // If this is a non-scalar-integer type, we don't care enough to try. 44 if (!E->getType()->isIntegralOrEnumerationType()) return false; 45 46 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 47 switch (UO->getOpcode()) { 48 case UO_Plus: 49 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 50 default: 51 return false; 52 } 53 } 54 55 // Only look through implicit casts. If the user writes 56 // '(int) (a && b)' treat it as an arbitrary int. 57 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 58 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 59 60 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 61 switch (BO->getOpcode()) { 62 default: return false; 63 case BO_LT: // Relational operators. 64 case BO_GT: 65 case BO_LE: 66 case BO_GE: 67 case BO_EQ: // Equality operators. 68 case BO_NE: 69 case BO_LAnd: // AND operator. 70 case BO_LOr: // Logical OR operator. 71 return true; 72 73 case BO_And: // Bitwise AND operator. 74 case BO_Xor: // Bitwise XOR operator. 75 case BO_Or: // Bitwise OR operator. 76 // Handle things like (x==2)|(y==12). 77 return BO->getLHS()->isKnownToHaveBooleanValue() && 78 BO->getRHS()->isKnownToHaveBooleanValue(); 79 80 case BO_Comma: 81 case BO_Assign: 82 return BO->getRHS()->isKnownToHaveBooleanValue(); 83 } 84 } 85 86 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 87 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 88 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 89 90 return false; 91 } 92 93 // Amusing macro metaprogramming hack: check whether a class provides 94 // a more specific implementation of getExprLoc(). 95 namespace { 96 /// This implementation is used when a class provides a custom 97 /// implementation of getExprLoc. 98 template <class E, class T> 99 SourceLocation getExprLocImpl(const Expr *expr, 100 SourceLocation (T::*v)() const) { 101 return static_cast<const E*>(expr)->getExprLoc(); 102 } 103 104 /// This implementation is used when a class doesn't provide 105 /// a custom implementation of getExprLoc. Overload resolution 106 /// should pick it over the implementation above because it's 107 /// more specialized according to function template partial ordering. 108 template <class E> 109 SourceLocation getExprLocImpl(const Expr *expr, 110 SourceLocation (Expr::*v)() const) { 111 return static_cast<const E*>(expr)->getSourceRange().getBegin(); 112 } 113 } 114 115 SourceLocation Expr::getExprLoc() const { 116 switch (getStmtClass()) { 117 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 118 #define ABSTRACT_STMT(type) 119 #define STMT(type, base) \ 120 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; 121 #define EXPR(type, base) \ 122 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 123 #include "clang/AST/StmtNodes.inc" 124 } 125 llvm_unreachable("unknown statement kind"); 126 return SourceLocation(); 127 } 128 129 //===----------------------------------------------------------------------===// 130 // Primary Expressions. 131 //===----------------------------------------------------------------------===// 132 133 /// \brief Compute the type-, value-, and instantiation-dependence of a 134 /// declaration reference 135 /// based on the declaration being referenced. 136 static void computeDeclRefDependence(NamedDecl *D, QualType T, 137 bool &TypeDependent, 138 bool &ValueDependent, 139 bool &InstantiationDependent) { 140 TypeDependent = false; 141 ValueDependent = false; 142 InstantiationDependent = false; 143 144 // (TD) C++ [temp.dep.expr]p3: 145 // An id-expression is type-dependent if it contains: 146 // 147 // and 148 // 149 // (VD) C++ [temp.dep.constexpr]p2: 150 // An identifier is value-dependent if it is: 151 152 // (TD) - an identifier that was declared with dependent type 153 // (VD) - a name declared with a dependent type, 154 if (T->isDependentType()) { 155 TypeDependent = true; 156 ValueDependent = true; 157 InstantiationDependent = true; 158 return; 159 } else if (T->isInstantiationDependentType()) { 160 InstantiationDependent = true; 161 } 162 163 // (TD) - a conversion-function-id that specifies a dependent type 164 if (D->getDeclName().getNameKind() 165 == DeclarationName::CXXConversionFunctionName) { 166 QualType T = D->getDeclName().getCXXNameType(); 167 if (T->isDependentType()) { 168 TypeDependent = true; 169 ValueDependent = true; 170 InstantiationDependent = true; 171 return; 172 } 173 174 if (T->isInstantiationDependentType()) 175 InstantiationDependent = true; 176 } 177 178 // (VD) - the name of a non-type template parameter, 179 if (isa<NonTypeTemplateParmDecl>(D)) { 180 ValueDependent = true; 181 InstantiationDependent = true; 182 return; 183 } 184 185 // (VD) - a constant with integral or enumeration type and is 186 // initialized with an expression that is value-dependent. 187 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 188 if (Var->getType()->isIntegralOrEnumerationType() && 189 Var->getType().getCVRQualifiers() == Qualifiers::Const) { 190 if (const Expr *Init = Var->getAnyInitializer()) 191 if (Init->isValueDependent()) { 192 ValueDependent = true; 193 InstantiationDependent = true; 194 } 195 } 196 197 // (VD) - FIXME: Missing from the standard: 198 // - a member function or a static data member of the current 199 // instantiation 200 else if (Var->isStaticDataMember() && 201 Var->getDeclContext()->isDependentContext()) { 202 ValueDependent = true; 203 InstantiationDependent = true; 204 } 205 206 return; 207 } 208 209 // (VD) - FIXME: Missing from the standard: 210 // - a member function or a static data member of the current 211 // instantiation 212 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 213 ValueDependent = true; 214 InstantiationDependent = true; 215 return; 216 } 217 } 218 219 void DeclRefExpr::computeDependence() { 220 bool TypeDependent = false; 221 bool ValueDependent = false; 222 bool InstantiationDependent = false; 223 computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent, 224 InstantiationDependent); 225 226 // (TD) C++ [temp.dep.expr]p3: 227 // An id-expression is type-dependent if it contains: 228 // 229 // and 230 // 231 // (VD) C++ [temp.dep.constexpr]p2: 232 // An identifier is value-dependent if it is: 233 if (!TypeDependent && !ValueDependent && 234 hasExplicitTemplateArgs() && 235 TemplateSpecializationType::anyDependentTemplateArguments( 236 getTemplateArgs(), 237 getNumTemplateArgs(), 238 InstantiationDependent)) { 239 TypeDependent = true; 240 ValueDependent = true; 241 InstantiationDependent = true; 242 } 243 244 ExprBits.TypeDependent = TypeDependent; 245 ExprBits.ValueDependent = ValueDependent; 246 ExprBits.InstantiationDependent = InstantiationDependent; 247 248 // Is the declaration a parameter pack? 249 if (getDecl()->isParameterPack()) 250 ExprBits.ContainsUnexpandedParameterPack = true; 251 } 252 253 DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc, 254 ValueDecl *D, const DeclarationNameInfo &NameInfo, 255 NamedDecl *FoundD, 256 const TemplateArgumentListInfo *TemplateArgs, 257 QualType T, ExprValueKind VK) 258 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 259 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 260 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 261 if (QualifierLoc) 262 getInternalQualifierLoc() = QualifierLoc; 263 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 264 if (FoundD) 265 getInternalFoundDecl() = FoundD; 266 DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0; 267 if (TemplateArgs) { 268 bool Dependent = false; 269 bool InstantiationDependent = false; 270 bool ContainsUnexpandedParameterPack = false; 271 getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent, 272 InstantiationDependent, 273 ContainsUnexpandedParameterPack); 274 if (InstantiationDependent) 275 setInstantiationDependent(true); 276 } 277 DeclRefExprBits.HadMultipleCandidates = 0; 278 279 computeDependence(); 280 } 281 282 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 283 NestedNameSpecifierLoc QualifierLoc, 284 ValueDecl *D, 285 SourceLocation NameLoc, 286 QualType T, 287 ExprValueKind VK, 288 NamedDecl *FoundD, 289 const TemplateArgumentListInfo *TemplateArgs) { 290 return Create(Context, QualifierLoc, D, 291 DeclarationNameInfo(D->getDeclName(), NameLoc), 292 T, VK, FoundD, TemplateArgs); 293 } 294 295 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 296 NestedNameSpecifierLoc QualifierLoc, 297 ValueDecl *D, 298 const DeclarationNameInfo &NameInfo, 299 QualType T, 300 ExprValueKind VK, 301 NamedDecl *FoundD, 302 const TemplateArgumentListInfo *TemplateArgs) { 303 // Filter out cases where the found Decl is the same as the value refenenced. 304 if (D == FoundD) 305 FoundD = 0; 306 307 std::size_t Size = sizeof(DeclRefExpr); 308 if (QualifierLoc != 0) 309 Size += sizeof(NestedNameSpecifierLoc); 310 if (FoundD) 311 Size += sizeof(NamedDecl *); 312 if (TemplateArgs) 313 Size += ASTTemplateArgumentListInfo::sizeFor(*TemplateArgs); 314 315 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 316 return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs, 317 T, VK); 318 } 319 320 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, 321 bool HasQualifier, 322 bool HasFoundDecl, 323 bool HasExplicitTemplateArgs, 324 unsigned NumTemplateArgs) { 325 std::size_t Size = sizeof(DeclRefExpr); 326 if (HasQualifier) 327 Size += sizeof(NestedNameSpecifierLoc); 328 if (HasFoundDecl) 329 Size += sizeof(NamedDecl *); 330 if (HasExplicitTemplateArgs) 331 Size += ASTTemplateArgumentListInfo::sizeFor(NumTemplateArgs); 332 333 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 334 return new (Mem) DeclRefExpr(EmptyShell()); 335 } 336 337 SourceRange DeclRefExpr::getSourceRange() const { 338 SourceRange R = getNameInfo().getSourceRange(); 339 if (hasQualifier()) 340 R.setBegin(getQualifierLoc().getBeginLoc()); 341 if (hasExplicitTemplateArgs()) 342 R.setEnd(getRAngleLoc()); 343 return R; 344 } 345 346 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 347 // expr" policy instead. 348 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 349 ASTContext &Context = CurrentDecl->getASTContext(); 350 351 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 352 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) 353 return FD->getNameAsString(); 354 355 llvm::SmallString<256> Name; 356 llvm::raw_svector_ostream Out(Name); 357 358 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 359 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 360 Out << "virtual "; 361 if (MD->isStatic()) 362 Out << "static "; 363 } 364 365 PrintingPolicy Policy(Context.getLangOptions()); 366 367 std::string Proto = FD->getQualifiedNameAsString(Policy); 368 369 const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); 370 const FunctionProtoType *FT = 0; 371 if (FD->hasWrittenPrototype()) 372 FT = dyn_cast<FunctionProtoType>(AFT); 373 374 Proto += "("; 375 if (FT) { 376 llvm::raw_string_ostream POut(Proto); 377 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 378 if (i) POut << ", "; 379 std::string Param; 380 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); 381 POut << Param; 382 } 383 384 if (FT->isVariadic()) { 385 if (FD->getNumParams()) POut << ", "; 386 POut << "..."; 387 } 388 } 389 Proto += ")"; 390 391 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 392 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); 393 if (ThisQuals.hasConst()) 394 Proto += " const"; 395 if (ThisQuals.hasVolatile()) 396 Proto += " volatile"; 397 } 398 399 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 400 AFT->getResultType().getAsStringInternal(Proto, Policy); 401 402 Out << Proto; 403 404 Out.flush(); 405 return Name.str().str(); 406 } 407 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 408 llvm::SmallString<256> Name; 409 llvm::raw_svector_ostream Out(Name); 410 Out << (MD->isInstanceMethod() ? '-' : '+'); 411 Out << '['; 412 413 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 414 // a null check to avoid a crash. 415 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 416 Out << *ID; 417 418 if (const ObjCCategoryImplDecl *CID = 419 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 420 Out << '(' << CID << ')'; 421 422 Out << ' '; 423 Out << MD->getSelector().getAsString(); 424 Out << ']'; 425 426 Out.flush(); 427 return Name.str().str(); 428 } 429 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 430 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 431 return "top level"; 432 } 433 return ""; 434 } 435 436 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { 437 if (hasAllocation()) 438 C.Deallocate(pVal); 439 440 BitWidth = Val.getBitWidth(); 441 unsigned NumWords = Val.getNumWords(); 442 const uint64_t* Words = Val.getRawData(); 443 if (NumWords > 1) { 444 pVal = new (C) uint64_t[NumWords]; 445 std::copy(Words, Words + NumWords, pVal); 446 } else if (NumWords == 1) 447 VAL = Words[0]; 448 else 449 VAL = 0; 450 } 451 452 IntegerLiteral * 453 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, 454 QualType type, SourceLocation l) { 455 return new (C) IntegerLiteral(C, V, type, l); 456 } 457 458 IntegerLiteral * 459 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { 460 return new (C) IntegerLiteral(Empty); 461 } 462 463 FloatingLiteral * 464 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, 465 bool isexact, QualType Type, SourceLocation L) { 466 return new (C) FloatingLiteral(C, V, isexact, Type, L); 467 } 468 469 FloatingLiteral * 470 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { 471 return new (C) FloatingLiteral(Empty); 472 } 473 474 /// getValueAsApproximateDouble - This returns the value as an inaccurate 475 /// double. Note that this may cause loss of precision, but is useful for 476 /// debugging dumps, etc. 477 double FloatingLiteral::getValueAsApproximateDouble() const { 478 llvm::APFloat V = getValue(); 479 bool ignored; 480 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 481 &ignored); 482 return V.convertToDouble(); 483 } 484 485 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str, 486 StringKind Kind, bool Pascal, QualType Ty, 487 const SourceLocation *Loc, 488 unsigned NumStrs) { 489 // Allocate enough space for the StringLiteral plus an array of locations for 490 // any concatenated string tokens. 491 void *Mem = C.Allocate(sizeof(StringLiteral)+ 492 sizeof(SourceLocation)*(NumStrs-1), 493 llvm::alignOf<StringLiteral>()); 494 StringLiteral *SL = new (Mem) StringLiteral(Ty); 495 496 // OPTIMIZE: could allocate this appended to the StringLiteral. 497 char *AStrData = new (C, 1) char[Str.size()]; 498 memcpy(AStrData, Str.data(), Str.size()); 499 SL->StrData = AStrData; 500 SL->ByteLength = Str.size(); 501 SL->Kind = Kind; 502 SL->IsPascal = Pascal; 503 SL->TokLocs[0] = Loc[0]; 504 SL->NumConcatenated = NumStrs; 505 506 if (NumStrs != 1) 507 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 508 return SL; 509 } 510 511 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { 512 void *Mem = C.Allocate(sizeof(StringLiteral)+ 513 sizeof(SourceLocation)*(NumStrs-1), 514 llvm::alignOf<StringLiteral>()); 515 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 516 SL->StrData = 0; 517 SL->ByteLength = 0; 518 SL->NumConcatenated = NumStrs; 519 return SL; 520 } 521 522 void StringLiteral::setString(ASTContext &C, StringRef Str) { 523 char *AStrData = new (C, 1) char[Str.size()]; 524 memcpy(AStrData, Str.data(), Str.size()); 525 StrData = AStrData; 526 ByteLength = Str.size(); 527 } 528 529 /// getLocationOfByte - Return a source location that points to the specified 530 /// byte of this string literal. 531 /// 532 /// Strings are amazingly complex. They can be formed from multiple tokens and 533 /// can have escape sequences in them in addition to the usual trigraph and 534 /// escaped newline business. This routine handles this complexity. 535 /// 536 SourceLocation StringLiteral:: 537 getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 538 const LangOptions &Features, const TargetInfo &Target) const { 539 assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings"); 540 541 // Loop over all of the tokens in this string until we find the one that 542 // contains the byte we're looking for. 543 unsigned TokNo = 0; 544 while (1) { 545 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 546 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 547 548 // Get the spelling of the string so that we can get the data that makes up 549 // the string literal, not the identifier for the macro it is potentially 550 // expanded through. 551 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 552 553 // Re-lex the token to get its length and original spelling. 554 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 555 bool Invalid = false; 556 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 557 if (Invalid) 558 return StrTokSpellingLoc; 559 560 const char *StrData = Buffer.data()+LocInfo.second; 561 562 // Create a langops struct and enable trigraphs. This is sufficient for 563 // relexing tokens. 564 LangOptions LangOpts; 565 LangOpts.Trigraphs = true; 566 567 // Create a lexer starting at the beginning of this token. 568 Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, 569 Buffer.end()); 570 Token TheTok; 571 TheLexer.LexFromRawLexer(TheTok); 572 573 // Use the StringLiteralParser to compute the length of the string in bytes. 574 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); 575 unsigned TokNumBytes = SLP.GetStringLength(); 576 577 // If the byte is in this token, return the location of the byte. 578 if (ByteNo < TokNumBytes || 579 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 580 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 581 582 // Now that we know the offset of the token in the spelling, use the 583 // preprocessor to get the offset in the original source. 584 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 585 } 586 587 // Move to the next string token. 588 ++TokNo; 589 ByteNo -= TokNumBytes; 590 } 591 } 592 593 594 595 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 596 /// corresponds to, e.g. "sizeof" or "[pre]++". 597 const char *UnaryOperator::getOpcodeStr(Opcode Op) { 598 switch (Op) { 599 default: llvm_unreachable("Unknown unary operator"); 600 case UO_PostInc: return "++"; 601 case UO_PostDec: return "--"; 602 case UO_PreInc: return "++"; 603 case UO_PreDec: return "--"; 604 case UO_AddrOf: return "&"; 605 case UO_Deref: return "*"; 606 case UO_Plus: return "+"; 607 case UO_Minus: return "-"; 608 case UO_Not: return "~"; 609 case UO_LNot: return "!"; 610 case UO_Real: return "__real"; 611 case UO_Imag: return "__imag"; 612 case UO_Extension: return "__extension__"; 613 } 614 } 615 616 UnaryOperatorKind 617 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 618 switch (OO) { 619 default: llvm_unreachable("No unary operator for overloaded function"); 620 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 621 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 622 case OO_Amp: return UO_AddrOf; 623 case OO_Star: return UO_Deref; 624 case OO_Plus: return UO_Plus; 625 case OO_Minus: return UO_Minus; 626 case OO_Tilde: return UO_Not; 627 case OO_Exclaim: return UO_LNot; 628 } 629 } 630 631 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 632 switch (Opc) { 633 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 634 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 635 case UO_AddrOf: return OO_Amp; 636 case UO_Deref: return OO_Star; 637 case UO_Plus: return OO_Plus; 638 case UO_Minus: return OO_Minus; 639 case UO_Not: return OO_Tilde; 640 case UO_LNot: return OO_Exclaim; 641 default: return OO_None; 642 } 643 } 644 645 646 //===----------------------------------------------------------------------===// 647 // Postfix Operators. 648 //===----------------------------------------------------------------------===// 649 650 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, 651 Expr **args, unsigned numargs, QualType t, ExprValueKind VK, 652 SourceLocation rparenloc) 653 : Expr(SC, t, VK, OK_Ordinary, 654 fn->isTypeDependent(), 655 fn->isValueDependent(), 656 fn->isInstantiationDependent(), 657 fn->containsUnexpandedParameterPack()), 658 NumArgs(numargs) { 659 660 SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; 661 SubExprs[FN] = fn; 662 for (unsigned i = 0; i != numargs; ++i) { 663 if (args[i]->isTypeDependent()) 664 ExprBits.TypeDependent = true; 665 if (args[i]->isValueDependent()) 666 ExprBits.ValueDependent = true; 667 if (args[i]->isInstantiationDependent()) 668 ExprBits.InstantiationDependent = true; 669 if (args[i]->containsUnexpandedParameterPack()) 670 ExprBits.ContainsUnexpandedParameterPack = true; 671 672 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 673 } 674 675 CallExprBits.NumPreArgs = NumPreArgs; 676 RParenLoc = rparenloc; 677 } 678 679 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, 680 QualType t, ExprValueKind VK, SourceLocation rparenloc) 681 : Expr(CallExprClass, t, VK, OK_Ordinary, 682 fn->isTypeDependent(), 683 fn->isValueDependent(), 684 fn->isInstantiationDependent(), 685 fn->containsUnexpandedParameterPack()), 686 NumArgs(numargs) { 687 688 SubExprs = new (C) Stmt*[numargs+PREARGS_START]; 689 SubExprs[FN] = fn; 690 for (unsigned i = 0; i != numargs; ++i) { 691 if (args[i]->isTypeDependent()) 692 ExprBits.TypeDependent = true; 693 if (args[i]->isValueDependent()) 694 ExprBits.ValueDependent = true; 695 if (args[i]->isInstantiationDependent()) 696 ExprBits.InstantiationDependent = true; 697 if (args[i]->containsUnexpandedParameterPack()) 698 ExprBits.ContainsUnexpandedParameterPack = true; 699 700 SubExprs[i+PREARGS_START] = args[i]; 701 } 702 703 CallExprBits.NumPreArgs = 0; 704 RParenLoc = rparenloc; 705 } 706 707 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) 708 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 709 // FIXME: Why do we allocate this? 710 SubExprs = new (C) Stmt*[PREARGS_START]; 711 CallExprBits.NumPreArgs = 0; 712 } 713 714 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, 715 EmptyShell Empty) 716 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 717 // FIXME: Why do we allocate this? 718 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 719 CallExprBits.NumPreArgs = NumPreArgs; 720 } 721 722 Decl *CallExpr::getCalleeDecl() { 723 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 724 725 while (SubstNonTypeTemplateParmExpr *NTTP 726 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 727 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 728 } 729 730 // If we're calling a dereference, look at the pointer instead. 731 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 732 if (BO->isPtrMemOp()) 733 CEE = BO->getRHS()->IgnoreParenCasts(); 734 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 735 if (UO->getOpcode() == UO_Deref) 736 CEE = UO->getSubExpr()->IgnoreParenCasts(); 737 } 738 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 739 return DRE->getDecl(); 740 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 741 return ME->getMemberDecl(); 742 743 return 0; 744 } 745 746 FunctionDecl *CallExpr::getDirectCallee() { 747 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 748 } 749 750 /// setNumArgs - This changes the number of arguments present in this call. 751 /// Any orphaned expressions are deleted by this, and any new operands are set 752 /// to null. 753 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { 754 // No change, just return. 755 if (NumArgs == getNumArgs()) return; 756 757 // If shrinking # arguments, just delete the extras and forgot them. 758 if (NumArgs < getNumArgs()) { 759 this->NumArgs = NumArgs; 760 return; 761 } 762 763 // Otherwise, we are growing the # arguments. New an bigger argument array. 764 unsigned NumPreArgs = getNumPreArgs(); 765 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 766 // Copy over args. 767 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 768 NewSubExprs[i] = SubExprs[i]; 769 // Null out new args. 770 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 771 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 772 NewSubExprs[i] = 0; 773 774 if (SubExprs) C.Deallocate(SubExprs); 775 SubExprs = NewSubExprs; 776 this->NumArgs = NumArgs; 777 } 778 779 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If 780 /// not, return 0. 781 unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const { 782 // All simple function calls (e.g. func()) are implicitly cast to pointer to 783 // function. As a result, we try and obtain the DeclRefExpr from the 784 // ImplicitCastExpr. 785 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 786 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 787 return 0; 788 789 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 790 if (!DRE) 791 return 0; 792 793 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 794 if (!FDecl) 795 return 0; 796 797 if (!FDecl->getIdentifier()) 798 return 0; 799 800 return FDecl->getBuiltinID(); 801 } 802 803 QualType CallExpr::getCallReturnType() const { 804 QualType CalleeType = getCallee()->getType(); 805 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 806 CalleeType = FnTypePtr->getPointeeType(); 807 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 808 CalleeType = BPT->getPointeeType(); 809 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) 810 // This should never be overloaded and so should never return null. 811 CalleeType = Expr::findBoundMemberType(getCallee()); 812 813 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 814 return FnType->getResultType(); 815 } 816 817 SourceRange CallExpr::getSourceRange() const { 818 if (isa<CXXOperatorCallExpr>(this)) 819 return cast<CXXOperatorCallExpr>(this)->getSourceRange(); 820 821 SourceLocation begin = getCallee()->getLocStart(); 822 if (begin.isInvalid() && getNumArgs() > 0) 823 begin = getArg(0)->getLocStart(); 824 SourceLocation end = getRParenLoc(); 825 if (end.isInvalid() && getNumArgs() > 0) 826 end = getArg(getNumArgs() - 1)->getLocEnd(); 827 return SourceRange(begin, end); 828 } 829 830 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, 831 SourceLocation OperatorLoc, 832 TypeSourceInfo *tsi, 833 OffsetOfNode* compsPtr, unsigned numComps, 834 Expr** exprsPtr, unsigned numExprs, 835 SourceLocation RParenLoc) { 836 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 837 sizeof(OffsetOfNode) * numComps + 838 sizeof(Expr*) * numExprs); 839 840 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, 841 exprsPtr, numExprs, RParenLoc); 842 } 843 844 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, 845 unsigned numComps, unsigned numExprs) { 846 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 847 sizeof(OffsetOfNode) * numComps + 848 sizeof(Expr*) * numExprs); 849 return new (Mem) OffsetOfExpr(numComps, numExprs); 850 } 851 852 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, 853 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 854 OffsetOfNode* compsPtr, unsigned numComps, 855 Expr** exprsPtr, unsigned numExprs, 856 SourceLocation RParenLoc) 857 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 858 /*TypeDependent=*/false, 859 /*ValueDependent=*/tsi->getType()->isDependentType(), 860 tsi->getType()->isInstantiationDependentType(), 861 tsi->getType()->containsUnexpandedParameterPack()), 862 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 863 NumComps(numComps), NumExprs(numExprs) 864 { 865 for(unsigned i = 0; i < numComps; ++i) { 866 setComponent(i, compsPtr[i]); 867 } 868 869 for(unsigned i = 0; i < numExprs; ++i) { 870 if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) 871 ExprBits.ValueDependent = true; 872 if (exprsPtr[i]->containsUnexpandedParameterPack()) 873 ExprBits.ContainsUnexpandedParameterPack = true; 874 875 setIndexExpr(i, exprsPtr[i]); 876 } 877 } 878 879 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 880 assert(getKind() == Field || getKind() == Identifier); 881 if (getKind() == Field) 882 return getField()->getIdentifier(); 883 884 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 885 } 886 887 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, 888 NestedNameSpecifierLoc QualifierLoc, 889 ValueDecl *memberdecl, 890 DeclAccessPair founddecl, 891 DeclarationNameInfo nameinfo, 892 const TemplateArgumentListInfo *targs, 893 QualType ty, 894 ExprValueKind vk, 895 ExprObjectKind ok) { 896 std::size_t Size = sizeof(MemberExpr); 897 898 bool hasQualOrFound = (QualifierLoc || 899 founddecl.getDecl() != memberdecl || 900 founddecl.getAccess() != memberdecl->getAccess()); 901 if (hasQualOrFound) 902 Size += sizeof(MemberNameQualifier); 903 904 if (targs) 905 Size += ASTTemplateArgumentListInfo::sizeFor(*targs); 906 907 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 908 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, 909 ty, vk, ok); 910 911 if (hasQualOrFound) { 912 // FIXME: Wrong. We should be looking at the member declaration we found. 913 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 914 E->setValueDependent(true); 915 E->setTypeDependent(true); 916 E->setInstantiationDependent(true); 917 } 918 else if (QualifierLoc && 919 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 920 E->setInstantiationDependent(true); 921 922 E->HasQualifierOrFoundDecl = true; 923 924 MemberNameQualifier *NQ = E->getMemberQualifier(); 925 NQ->QualifierLoc = QualifierLoc; 926 NQ->FoundDecl = founddecl; 927 } 928 929 if (targs) { 930 bool Dependent = false; 931 bool InstantiationDependent = false; 932 bool ContainsUnexpandedParameterPack = false; 933 E->HasExplicitTemplateArgumentList = true; 934 E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent, 935 InstantiationDependent, 936 ContainsUnexpandedParameterPack); 937 if (InstantiationDependent) 938 E->setInstantiationDependent(true); 939 } 940 941 return E; 942 } 943 944 SourceRange MemberExpr::getSourceRange() const { 945 SourceLocation StartLoc; 946 if (isImplicitAccess()) { 947 if (hasQualifier()) 948 StartLoc = getQualifierLoc().getBeginLoc(); 949 else 950 StartLoc = MemberLoc; 951 } else { 952 // FIXME: We don't want this to happen. Rather, we should be able to 953 // detect all kinds of implicit accesses more cleanly. 954 StartLoc = getBase()->getLocStart(); 955 if (StartLoc.isInvalid()) 956 StartLoc = MemberLoc; 957 } 958 959 SourceLocation EndLoc = 960 HasExplicitTemplateArgumentList? getRAngleLoc() 961 : getMemberNameInfo().getEndLoc(); 962 963 return SourceRange(StartLoc, EndLoc); 964 } 965 966 void CastExpr::CheckCastConsistency() const { 967 switch (getCastKind()) { 968 case CK_DerivedToBase: 969 case CK_UncheckedDerivedToBase: 970 case CK_DerivedToBaseMemberPointer: 971 case CK_BaseToDerived: 972 case CK_BaseToDerivedMemberPointer: 973 assert(!path_empty() && "Cast kind should have a base path!"); 974 break; 975 976 case CK_CPointerToObjCPointerCast: 977 assert(getType()->isObjCObjectPointerType()); 978 assert(getSubExpr()->getType()->isPointerType()); 979 goto CheckNoBasePath; 980 981 case CK_BlockPointerToObjCPointerCast: 982 assert(getType()->isObjCObjectPointerType()); 983 assert(getSubExpr()->getType()->isBlockPointerType()); 984 goto CheckNoBasePath; 985 986 case CK_BitCast: 987 // Arbitrary casts to C pointer types count as bitcasts. 988 // Otherwise, we should only have block and ObjC pointer casts 989 // here if they stay within the type kind. 990 if (!getType()->isPointerType()) { 991 assert(getType()->isObjCObjectPointerType() == 992 getSubExpr()->getType()->isObjCObjectPointerType()); 993 assert(getType()->isBlockPointerType() == 994 getSubExpr()->getType()->isBlockPointerType()); 995 } 996 goto CheckNoBasePath; 997 998 case CK_AnyPointerToBlockPointerCast: 999 assert(getType()->isBlockPointerType()); 1000 assert(getSubExpr()->getType()->isAnyPointerType() && 1001 !getSubExpr()->getType()->isBlockPointerType()); 1002 goto CheckNoBasePath; 1003 1004 // These should not have an inheritance path. 1005 case CK_Dynamic: 1006 case CK_ToUnion: 1007 case CK_ArrayToPointerDecay: 1008 case CK_FunctionToPointerDecay: 1009 case CK_NullToMemberPointer: 1010 case CK_NullToPointer: 1011 case CK_ConstructorConversion: 1012 case CK_IntegralToPointer: 1013 case CK_PointerToIntegral: 1014 case CK_ToVoid: 1015 case CK_VectorSplat: 1016 case CK_IntegralCast: 1017 case CK_IntegralToFloating: 1018 case CK_FloatingToIntegral: 1019 case CK_FloatingCast: 1020 case CK_ObjCObjectLValueCast: 1021 case CK_FloatingRealToComplex: 1022 case CK_FloatingComplexToReal: 1023 case CK_FloatingComplexCast: 1024 case CK_FloatingComplexToIntegralComplex: 1025 case CK_IntegralRealToComplex: 1026 case CK_IntegralComplexToReal: 1027 case CK_IntegralComplexCast: 1028 case CK_IntegralComplexToFloatingComplex: 1029 case CK_ARCProduceObject: 1030 case CK_ARCConsumeObject: 1031 case CK_ARCReclaimReturnedObject: 1032 case CK_ARCExtendBlockObject: 1033 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1034 goto CheckNoBasePath; 1035 1036 case CK_Dependent: 1037 case CK_LValueToRValue: 1038 case CK_GetObjCProperty: 1039 case CK_NoOp: 1040 case CK_PointerToBoolean: 1041 case CK_IntegralToBoolean: 1042 case CK_FloatingToBoolean: 1043 case CK_MemberPointerToBoolean: 1044 case CK_FloatingComplexToBoolean: 1045 case CK_IntegralComplexToBoolean: 1046 case CK_LValueBitCast: // -> bool& 1047 case CK_UserDefinedConversion: // operator bool() 1048 CheckNoBasePath: 1049 assert(path_empty() && "Cast kind should not have a base path!"); 1050 break; 1051 } 1052 } 1053 1054 const char *CastExpr::getCastKindName() const { 1055 switch (getCastKind()) { 1056 case CK_Dependent: 1057 return "Dependent"; 1058 case CK_BitCast: 1059 return "BitCast"; 1060 case CK_LValueBitCast: 1061 return "LValueBitCast"; 1062 case CK_LValueToRValue: 1063 return "LValueToRValue"; 1064 case CK_GetObjCProperty: 1065 return "GetObjCProperty"; 1066 case CK_NoOp: 1067 return "NoOp"; 1068 case CK_BaseToDerived: 1069 return "BaseToDerived"; 1070 case CK_DerivedToBase: 1071 return "DerivedToBase"; 1072 case CK_UncheckedDerivedToBase: 1073 return "UncheckedDerivedToBase"; 1074 case CK_Dynamic: 1075 return "Dynamic"; 1076 case CK_ToUnion: 1077 return "ToUnion"; 1078 case CK_ArrayToPointerDecay: 1079 return "ArrayToPointerDecay"; 1080 case CK_FunctionToPointerDecay: 1081 return "FunctionToPointerDecay"; 1082 case CK_NullToMemberPointer: 1083 return "NullToMemberPointer"; 1084 case CK_NullToPointer: 1085 return "NullToPointer"; 1086 case CK_BaseToDerivedMemberPointer: 1087 return "BaseToDerivedMemberPointer"; 1088 case CK_DerivedToBaseMemberPointer: 1089 return "DerivedToBaseMemberPointer"; 1090 case CK_UserDefinedConversion: 1091 return "UserDefinedConversion"; 1092 case CK_ConstructorConversion: 1093 return "ConstructorConversion"; 1094 case CK_IntegralToPointer: 1095 return "IntegralToPointer"; 1096 case CK_PointerToIntegral: 1097 return "PointerToIntegral"; 1098 case CK_PointerToBoolean: 1099 return "PointerToBoolean"; 1100 case CK_ToVoid: 1101 return "ToVoid"; 1102 case CK_VectorSplat: 1103 return "VectorSplat"; 1104 case CK_IntegralCast: 1105 return "IntegralCast"; 1106 case CK_IntegralToBoolean: 1107 return "IntegralToBoolean"; 1108 case CK_IntegralToFloating: 1109 return "IntegralToFloating"; 1110 case CK_FloatingToIntegral: 1111 return "FloatingToIntegral"; 1112 case CK_FloatingCast: 1113 return "FloatingCast"; 1114 case CK_FloatingToBoolean: 1115 return "FloatingToBoolean"; 1116 case CK_MemberPointerToBoolean: 1117 return "MemberPointerToBoolean"; 1118 case CK_CPointerToObjCPointerCast: 1119 return "CPointerToObjCPointerCast"; 1120 case CK_BlockPointerToObjCPointerCast: 1121 return "BlockPointerToObjCPointerCast"; 1122 case CK_AnyPointerToBlockPointerCast: 1123 return "AnyPointerToBlockPointerCast"; 1124 case CK_ObjCObjectLValueCast: 1125 return "ObjCObjectLValueCast"; 1126 case CK_FloatingRealToComplex: 1127 return "FloatingRealToComplex"; 1128 case CK_FloatingComplexToReal: 1129 return "FloatingComplexToReal"; 1130 case CK_FloatingComplexToBoolean: 1131 return "FloatingComplexToBoolean"; 1132 case CK_FloatingComplexCast: 1133 return "FloatingComplexCast"; 1134 case CK_FloatingComplexToIntegralComplex: 1135 return "FloatingComplexToIntegralComplex"; 1136 case CK_IntegralRealToComplex: 1137 return "IntegralRealToComplex"; 1138 case CK_IntegralComplexToReal: 1139 return "IntegralComplexToReal"; 1140 case CK_IntegralComplexToBoolean: 1141 return "IntegralComplexToBoolean"; 1142 case CK_IntegralComplexCast: 1143 return "IntegralComplexCast"; 1144 case CK_IntegralComplexToFloatingComplex: 1145 return "IntegralComplexToFloatingComplex"; 1146 case CK_ARCConsumeObject: 1147 return "ARCConsumeObject"; 1148 case CK_ARCProduceObject: 1149 return "ARCProduceObject"; 1150 case CK_ARCReclaimReturnedObject: 1151 return "ARCReclaimReturnedObject"; 1152 case CK_ARCExtendBlockObject: 1153 return "ARCCExtendBlockObject"; 1154 } 1155 1156 llvm_unreachable("Unhandled cast kind!"); 1157 return 0; 1158 } 1159 1160 Expr *CastExpr::getSubExprAsWritten() { 1161 Expr *SubExpr = 0; 1162 CastExpr *E = this; 1163 do { 1164 SubExpr = E->getSubExpr(); 1165 1166 // Skip through reference binding to temporary. 1167 if (MaterializeTemporaryExpr *Materialize 1168 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1169 SubExpr = Materialize->GetTemporaryExpr(); 1170 1171 // Skip any temporary bindings; they're implicit. 1172 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1173 SubExpr = Binder->getSubExpr(); 1174 1175 // Conversions by constructor and conversion functions have a 1176 // subexpression describing the call; strip it off. 1177 if (E->getCastKind() == CK_ConstructorConversion) 1178 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1179 else if (E->getCastKind() == CK_UserDefinedConversion) 1180 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1181 1182 // If the subexpression we're left with is an implicit cast, look 1183 // through that, too. 1184 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1185 1186 return SubExpr; 1187 } 1188 1189 CXXBaseSpecifier **CastExpr::path_buffer() { 1190 switch (getStmtClass()) { 1191 #define ABSTRACT_STMT(x) 1192 #define CASTEXPR(Type, Base) \ 1193 case Stmt::Type##Class: \ 1194 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1195 #define STMT(Type, Base) 1196 #include "clang/AST/StmtNodes.inc" 1197 default: 1198 llvm_unreachable("non-cast expressions not possible here"); 1199 return 0; 1200 } 1201 } 1202 1203 void CastExpr::setCastPath(const CXXCastPath &Path) { 1204 assert(Path.size() == path_size()); 1205 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1206 } 1207 1208 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, 1209 CastKind Kind, Expr *Operand, 1210 const CXXCastPath *BasePath, 1211 ExprValueKind VK) { 1212 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1213 void *Buffer = 1214 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1215 ImplicitCastExpr *E = 1216 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1217 if (PathSize) E->setCastPath(*BasePath); 1218 return E; 1219 } 1220 1221 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, 1222 unsigned PathSize) { 1223 void *Buffer = 1224 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1225 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1226 } 1227 1228 1229 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, 1230 ExprValueKind VK, CastKind K, Expr *Op, 1231 const CXXCastPath *BasePath, 1232 TypeSourceInfo *WrittenTy, 1233 SourceLocation L, SourceLocation R) { 1234 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1235 void *Buffer = 1236 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1237 CStyleCastExpr *E = 1238 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1239 if (PathSize) E->setCastPath(*BasePath); 1240 return E; 1241 } 1242 1243 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { 1244 void *Buffer = 1245 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1246 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1247 } 1248 1249 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1250 /// corresponds to, e.g. "<<=". 1251 const char *BinaryOperator::getOpcodeStr(Opcode Op) { 1252 switch (Op) { 1253 case BO_PtrMemD: return ".*"; 1254 case BO_PtrMemI: return "->*"; 1255 case BO_Mul: return "*"; 1256 case BO_Div: return "/"; 1257 case BO_Rem: return "%"; 1258 case BO_Add: return "+"; 1259 case BO_Sub: return "-"; 1260 case BO_Shl: return "<<"; 1261 case BO_Shr: return ">>"; 1262 case BO_LT: return "<"; 1263 case BO_GT: return ">"; 1264 case BO_LE: return "<="; 1265 case BO_GE: return ">="; 1266 case BO_EQ: return "=="; 1267 case BO_NE: return "!="; 1268 case BO_And: return "&"; 1269 case BO_Xor: return "^"; 1270 case BO_Or: return "|"; 1271 case BO_LAnd: return "&&"; 1272 case BO_LOr: return "||"; 1273 case BO_Assign: return "="; 1274 case BO_MulAssign: return "*="; 1275 case BO_DivAssign: return "/="; 1276 case BO_RemAssign: return "%="; 1277 case BO_AddAssign: return "+="; 1278 case BO_SubAssign: return "-="; 1279 case BO_ShlAssign: return "<<="; 1280 case BO_ShrAssign: return ">>="; 1281 case BO_AndAssign: return "&="; 1282 case BO_XorAssign: return "^="; 1283 case BO_OrAssign: return "|="; 1284 case BO_Comma: return ","; 1285 } 1286 1287 return ""; 1288 } 1289 1290 BinaryOperatorKind 1291 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1292 switch (OO) { 1293 default: llvm_unreachable("Not an overloadable binary operator"); 1294 case OO_Plus: return BO_Add; 1295 case OO_Minus: return BO_Sub; 1296 case OO_Star: return BO_Mul; 1297 case OO_Slash: return BO_Div; 1298 case OO_Percent: return BO_Rem; 1299 case OO_Caret: return BO_Xor; 1300 case OO_Amp: return BO_And; 1301 case OO_Pipe: return BO_Or; 1302 case OO_Equal: return BO_Assign; 1303 case OO_Less: return BO_LT; 1304 case OO_Greater: return BO_GT; 1305 case OO_PlusEqual: return BO_AddAssign; 1306 case OO_MinusEqual: return BO_SubAssign; 1307 case OO_StarEqual: return BO_MulAssign; 1308 case OO_SlashEqual: return BO_DivAssign; 1309 case OO_PercentEqual: return BO_RemAssign; 1310 case OO_CaretEqual: return BO_XorAssign; 1311 case OO_AmpEqual: return BO_AndAssign; 1312 case OO_PipeEqual: return BO_OrAssign; 1313 case OO_LessLess: return BO_Shl; 1314 case OO_GreaterGreater: return BO_Shr; 1315 case OO_LessLessEqual: return BO_ShlAssign; 1316 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1317 case OO_EqualEqual: return BO_EQ; 1318 case OO_ExclaimEqual: return BO_NE; 1319 case OO_LessEqual: return BO_LE; 1320 case OO_GreaterEqual: return BO_GE; 1321 case OO_AmpAmp: return BO_LAnd; 1322 case OO_PipePipe: return BO_LOr; 1323 case OO_Comma: return BO_Comma; 1324 case OO_ArrowStar: return BO_PtrMemI; 1325 } 1326 } 1327 1328 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1329 static const OverloadedOperatorKind OverOps[] = { 1330 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1331 OO_Star, OO_Slash, OO_Percent, 1332 OO_Plus, OO_Minus, 1333 OO_LessLess, OO_GreaterGreater, 1334 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1335 OO_EqualEqual, OO_ExclaimEqual, 1336 OO_Amp, 1337 OO_Caret, 1338 OO_Pipe, 1339 OO_AmpAmp, 1340 OO_PipePipe, 1341 OO_Equal, OO_StarEqual, 1342 OO_SlashEqual, OO_PercentEqual, 1343 OO_PlusEqual, OO_MinusEqual, 1344 OO_LessLessEqual, OO_GreaterGreaterEqual, 1345 OO_AmpEqual, OO_CaretEqual, 1346 OO_PipeEqual, 1347 OO_Comma 1348 }; 1349 return OverOps[Opc]; 1350 } 1351 1352 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, 1353 Expr **initExprs, unsigned numInits, 1354 SourceLocation rbraceloc) 1355 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1356 false, false), 1357 InitExprs(C, numInits), 1358 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), 1359 HadArrayRangeDesignator(false) 1360 { 1361 for (unsigned I = 0; I != numInits; ++I) { 1362 if (initExprs[I]->isTypeDependent()) 1363 ExprBits.TypeDependent = true; 1364 if (initExprs[I]->isValueDependent()) 1365 ExprBits.ValueDependent = true; 1366 if (initExprs[I]->isInstantiationDependent()) 1367 ExprBits.InstantiationDependent = true; 1368 if (initExprs[I]->containsUnexpandedParameterPack()) 1369 ExprBits.ContainsUnexpandedParameterPack = true; 1370 } 1371 1372 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); 1373 } 1374 1375 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { 1376 if (NumInits > InitExprs.size()) 1377 InitExprs.reserve(C, NumInits); 1378 } 1379 1380 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { 1381 InitExprs.resize(C, NumInits, 0); 1382 } 1383 1384 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { 1385 if (Init >= InitExprs.size()) { 1386 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); 1387 InitExprs.back() = expr; 1388 return 0; 1389 } 1390 1391 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1392 InitExprs[Init] = expr; 1393 return Result; 1394 } 1395 1396 void InitListExpr::setArrayFiller(Expr *filler) { 1397 ArrayFillerOrUnionFieldInit = filler; 1398 // Fill out any "holes" in the array due to designated initializers. 1399 Expr **inits = getInits(); 1400 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1401 if (inits[i] == 0) 1402 inits[i] = filler; 1403 } 1404 1405 SourceRange InitListExpr::getSourceRange() const { 1406 if (SyntacticForm) 1407 return SyntacticForm->getSourceRange(); 1408 SourceLocation Beg = LBraceLoc, End = RBraceLoc; 1409 if (Beg.isInvalid()) { 1410 // Find the first non-null initializer. 1411 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1412 E = InitExprs.end(); 1413 I != E; ++I) { 1414 if (Stmt *S = *I) { 1415 Beg = S->getLocStart(); 1416 break; 1417 } 1418 } 1419 } 1420 if (End.isInvalid()) { 1421 // Find the first non-null initializer from the end. 1422 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1423 E = InitExprs.rend(); 1424 I != E; ++I) { 1425 if (Stmt *S = *I) { 1426 End = S->getSourceRange().getEnd(); 1427 break; 1428 } 1429 } 1430 } 1431 return SourceRange(Beg, End); 1432 } 1433 1434 /// getFunctionType - Return the underlying function type for this block. 1435 /// 1436 const FunctionType *BlockExpr::getFunctionType() const { 1437 return getType()->getAs<BlockPointerType>()-> 1438 getPointeeType()->getAs<FunctionType>(); 1439 } 1440 1441 SourceLocation BlockExpr::getCaretLocation() const { 1442 return TheBlock->getCaretLocation(); 1443 } 1444 const Stmt *BlockExpr::getBody() const { 1445 return TheBlock->getBody(); 1446 } 1447 Stmt *BlockExpr::getBody() { 1448 return TheBlock->getBody(); 1449 } 1450 1451 1452 //===----------------------------------------------------------------------===// 1453 // Generic Expression Routines 1454 //===----------------------------------------------------------------------===// 1455 1456 /// isUnusedResultAWarning - Return true if this immediate expression should 1457 /// be warned about if the result is unused. If so, fill in Loc and Ranges 1458 /// with location to warn on and the source range[s] to report with the 1459 /// warning. 1460 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, 1461 SourceRange &R2, ASTContext &Ctx) const { 1462 // Don't warn if the expr is type dependent. The type could end up 1463 // instantiating to void. 1464 if (isTypeDependent()) 1465 return false; 1466 1467 switch (getStmtClass()) { 1468 default: 1469 if (getType()->isVoidType()) 1470 return false; 1471 Loc = getExprLoc(); 1472 R1 = getSourceRange(); 1473 return true; 1474 case ParenExprClass: 1475 return cast<ParenExpr>(this)->getSubExpr()-> 1476 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1477 case GenericSelectionExprClass: 1478 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 1479 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1480 case UnaryOperatorClass: { 1481 const UnaryOperator *UO = cast<UnaryOperator>(this); 1482 1483 switch (UO->getOpcode()) { 1484 default: break; 1485 case UO_PostInc: 1486 case UO_PostDec: 1487 case UO_PreInc: 1488 case UO_PreDec: // ++/-- 1489 return false; // Not a warning. 1490 case UO_Deref: 1491 // Dereferencing a volatile pointer is a side-effect. 1492 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1493 return false; 1494 break; 1495 case UO_Real: 1496 case UO_Imag: 1497 // accessing a piece of a volatile complex is a side-effect. 1498 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 1499 .isVolatileQualified()) 1500 return false; 1501 break; 1502 case UO_Extension: 1503 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1504 } 1505 Loc = UO->getOperatorLoc(); 1506 R1 = UO->getSubExpr()->getSourceRange(); 1507 return true; 1508 } 1509 case BinaryOperatorClass: { 1510 const BinaryOperator *BO = cast<BinaryOperator>(this); 1511 switch (BO->getOpcode()) { 1512 default: 1513 break; 1514 // Consider the RHS of comma for side effects. LHS was checked by 1515 // Sema::CheckCommaOperands. 1516 case BO_Comma: 1517 // ((foo = <blah>), 0) is an idiom for hiding the result (and 1518 // lvalue-ness) of an assignment written in a macro. 1519 if (IntegerLiteral *IE = 1520 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 1521 if (IE->getValue() == 0) 1522 return false; 1523 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1524 // Consider '||', '&&' to have side effects if the LHS or RHS does. 1525 case BO_LAnd: 1526 case BO_LOr: 1527 if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || 1528 !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1529 return false; 1530 break; 1531 } 1532 if (BO->isAssignmentOp()) 1533 return false; 1534 Loc = BO->getOperatorLoc(); 1535 R1 = BO->getLHS()->getSourceRange(); 1536 R2 = BO->getRHS()->getSourceRange(); 1537 return true; 1538 } 1539 case CompoundAssignOperatorClass: 1540 case VAArgExprClass: 1541 case AtomicExprClass: 1542 return false; 1543 1544 case ConditionalOperatorClass: { 1545 // If only one of the LHS or RHS is a warning, the operator might 1546 // be being used for control flow. Only warn if both the LHS and 1547 // RHS are warnings. 1548 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 1549 if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1550 return false; 1551 if (!Exp->getLHS()) 1552 return true; 1553 return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1554 } 1555 1556 case MemberExprClass: 1557 // If the base pointer or element is to a volatile pointer/field, accessing 1558 // it is a side effect. 1559 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1560 return false; 1561 Loc = cast<MemberExpr>(this)->getMemberLoc(); 1562 R1 = SourceRange(Loc, Loc); 1563 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 1564 return true; 1565 1566 case ArraySubscriptExprClass: 1567 // If the base pointer or element is to a volatile pointer/field, accessing 1568 // it is a side effect. 1569 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1570 return false; 1571 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 1572 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 1573 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 1574 return true; 1575 1576 case CXXOperatorCallExprClass: { 1577 // We warn about operator== and operator!= even when user-defined operator 1578 // overloads as there is no reasonable way to define these such that they 1579 // have non-trivial, desirable side-effects. See the -Wunused-comparison 1580 // warning: these operators are commonly typo'ed, and so warning on them 1581 // provides additional value as well. If this list is updated, 1582 // DiagnoseUnusedComparison should be as well. 1583 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 1584 if (Op->getOperator() == OO_EqualEqual || 1585 Op->getOperator() == OO_ExclaimEqual) { 1586 Loc = Op->getOperatorLoc(); 1587 R1 = Op->getSourceRange(); 1588 return true; 1589 } 1590 1591 // Fallthrough for generic call handling. 1592 } 1593 case CallExprClass: 1594 case CXXMemberCallExprClass: { 1595 // If this is a direct call, get the callee. 1596 const CallExpr *CE = cast<CallExpr>(this); 1597 if (const Decl *FD = CE->getCalleeDecl()) { 1598 // If the callee has attribute pure, const, or warn_unused_result, warn 1599 // about it. void foo() { strlen("bar"); } should warn. 1600 // 1601 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 1602 // updated to match for QoI. 1603 if (FD->getAttr<WarnUnusedResultAttr>() || 1604 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { 1605 Loc = CE->getCallee()->getLocStart(); 1606 R1 = CE->getCallee()->getSourceRange(); 1607 1608 if (unsigned NumArgs = CE->getNumArgs()) 1609 R2 = SourceRange(CE->getArg(0)->getLocStart(), 1610 CE->getArg(NumArgs-1)->getLocEnd()); 1611 return true; 1612 } 1613 } 1614 return false; 1615 } 1616 1617 case CXXTemporaryObjectExprClass: 1618 case CXXConstructExprClass: 1619 return false; 1620 1621 case ObjCMessageExprClass: { 1622 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 1623 if (Ctx.getLangOptions().ObjCAutoRefCount && 1624 ME->isInstanceMessage() && 1625 !ME->getType()->isVoidType() && 1626 ME->getSelector().getIdentifierInfoForSlot(0) && 1627 ME->getSelector().getIdentifierInfoForSlot(0) 1628 ->getName().startswith("init")) { 1629 Loc = getExprLoc(); 1630 R1 = ME->getSourceRange(); 1631 return true; 1632 } 1633 1634 const ObjCMethodDecl *MD = ME->getMethodDecl(); 1635 if (MD && MD->getAttr<WarnUnusedResultAttr>()) { 1636 Loc = getExprLoc(); 1637 return true; 1638 } 1639 return false; 1640 } 1641 1642 case ObjCPropertyRefExprClass: 1643 Loc = getExprLoc(); 1644 R1 = getSourceRange(); 1645 return true; 1646 1647 case StmtExprClass: { 1648 // Statement exprs don't logically have side effects themselves, but are 1649 // sometimes used in macros in ways that give them a type that is unused. 1650 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 1651 // however, if the result of the stmt expr is dead, we don't want to emit a 1652 // warning. 1653 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 1654 if (!CS->body_empty()) { 1655 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 1656 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1657 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 1658 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 1659 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1660 } 1661 1662 if (getType()->isVoidType()) 1663 return false; 1664 Loc = cast<StmtExpr>(this)->getLParenLoc(); 1665 R1 = getSourceRange(); 1666 return true; 1667 } 1668 case CStyleCastExprClass: 1669 // If this is an explicit cast to void, allow it. People do this when they 1670 // think they know what they're doing :). 1671 if (getType()->isVoidType()) 1672 return false; 1673 Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); 1674 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); 1675 return true; 1676 case CXXFunctionalCastExprClass: { 1677 if (getType()->isVoidType()) 1678 return false; 1679 const CastExpr *CE = cast<CastExpr>(this); 1680 1681 // If this is a cast to void or a constructor conversion, check the operand. 1682 // Otherwise, the result of the cast is unused. 1683 if (CE->getCastKind() == CK_ToVoid || 1684 CE->getCastKind() == CK_ConstructorConversion) 1685 return (cast<CastExpr>(this)->getSubExpr() 1686 ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1687 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); 1688 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); 1689 return true; 1690 } 1691 1692 case ImplicitCastExprClass: 1693 // Check the operand, since implicit casts are inserted by Sema 1694 return (cast<ImplicitCastExpr>(this) 1695 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1696 1697 case CXXDefaultArgExprClass: 1698 return (cast<CXXDefaultArgExpr>(this) 1699 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1700 1701 case CXXNewExprClass: 1702 // FIXME: In theory, there might be new expressions that don't have side 1703 // effects (e.g. a placement new with an uninitialized POD). 1704 case CXXDeleteExprClass: 1705 return false; 1706 case CXXBindTemporaryExprClass: 1707 return (cast<CXXBindTemporaryExpr>(this) 1708 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1709 case ExprWithCleanupsClass: 1710 return (cast<ExprWithCleanups>(this) 1711 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1712 } 1713 } 1714 1715 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 1716 /// returns true, if it is; false otherwise. 1717 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 1718 const Expr *E = IgnoreParens(); 1719 switch (E->getStmtClass()) { 1720 default: 1721 return false; 1722 case ObjCIvarRefExprClass: 1723 return true; 1724 case Expr::UnaryOperatorClass: 1725 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1726 case ImplicitCastExprClass: 1727 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1728 case MaterializeTemporaryExprClass: 1729 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 1730 ->isOBJCGCCandidate(Ctx); 1731 case CStyleCastExprClass: 1732 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1733 case BlockDeclRefExprClass: 1734 case DeclRefExprClass: { 1735 1736 const Decl *D; 1737 if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) 1738 D = BDRE->getDecl(); 1739 else 1740 D = cast<DeclRefExpr>(E)->getDecl(); 1741 1742 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1743 if (VD->hasGlobalStorage()) 1744 return true; 1745 QualType T = VD->getType(); 1746 // dereferencing to a pointer is always a gc'able candidate, 1747 // unless it is __weak. 1748 return T->isPointerType() && 1749 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 1750 } 1751 return false; 1752 } 1753 case MemberExprClass: { 1754 const MemberExpr *M = cast<MemberExpr>(E); 1755 return M->getBase()->isOBJCGCCandidate(Ctx); 1756 } 1757 case ArraySubscriptExprClass: 1758 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 1759 } 1760 } 1761 1762 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 1763 if (isTypeDependent()) 1764 return false; 1765 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 1766 } 1767 1768 QualType Expr::findBoundMemberType(const Expr *expr) { 1769 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 1770 1771 // Bound member expressions are always one of these possibilities: 1772 // x->m x.m x->*y x.*y 1773 // (possibly parenthesized) 1774 1775 expr = expr->IgnoreParens(); 1776 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 1777 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 1778 return mem->getMemberDecl()->getType(); 1779 } 1780 1781 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 1782 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 1783 ->getPointeeType(); 1784 assert(type->isFunctionType()); 1785 return type; 1786 } 1787 1788 assert(isa<UnresolvedMemberExpr>(expr)); 1789 return QualType(); 1790 } 1791 1792 static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1, 1793 Expr::CanThrowResult CT2) { 1794 // CanThrowResult constants are ordered so that the maximum is the correct 1795 // merge result. 1796 return CT1 > CT2 ? CT1 : CT2; 1797 } 1798 1799 static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) { 1800 Expr *E = const_cast<Expr*>(CE); 1801 Expr::CanThrowResult R = Expr::CT_Cannot; 1802 for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) { 1803 R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C)); 1804 } 1805 return R; 1806 } 1807 1808 static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E, 1809 const Decl *D, 1810 bool NullThrows = true) { 1811 if (!D) 1812 return NullThrows ? Expr::CT_Can : Expr::CT_Cannot; 1813 1814 // See if we can get a function type from the decl somehow. 1815 const ValueDecl *VD = dyn_cast<ValueDecl>(D); 1816 if (!VD) // If we have no clue what we're calling, assume the worst. 1817 return Expr::CT_Can; 1818 1819 // As an extension, we assume that __attribute__((nothrow)) functions don't 1820 // throw. 1821 if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1822 return Expr::CT_Cannot; 1823 1824 QualType T = VD->getType(); 1825 const FunctionProtoType *FT; 1826 if ((FT = T->getAs<FunctionProtoType>())) { 1827 } else if (const PointerType *PT = T->getAs<PointerType>()) 1828 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1829 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1830 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1831 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1832 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1833 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1834 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1835 1836 if (!FT) 1837 return Expr::CT_Can; 1838 1839 if (FT->getExceptionSpecType() == EST_Delayed) { 1840 assert(isa<CXXConstructorDecl>(D) && 1841 "only constructor exception specs can be unknown"); 1842 Ctx.getDiagnostics().Report(E->getLocStart(), 1843 diag::err_exception_spec_unknown) 1844 << E->getSourceRange(); 1845 return Expr::CT_Can; 1846 } 1847 1848 return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can; 1849 } 1850 1851 static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1852 if (DC->isTypeDependent()) 1853 return Expr::CT_Dependent; 1854 1855 if (!DC->getTypeAsWritten()->isReferenceType()) 1856 return Expr::CT_Cannot; 1857 1858 if (DC->getSubExpr()->isTypeDependent()) 1859 return Expr::CT_Dependent; 1860 1861 return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot; 1862 } 1863 1864 static Expr::CanThrowResult CanTypeidThrow(ASTContext &C, 1865 const CXXTypeidExpr *DC) { 1866 if (DC->isTypeOperand()) 1867 return Expr::CT_Cannot; 1868 1869 Expr *Op = DC->getExprOperand(); 1870 if (Op->isTypeDependent()) 1871 return Expr::CT_Dependent; 1872 1873 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1874 if (!RT) 1875 return Expr::CT_Cannot; 1876 1877 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1878 return Expr::CT_Cannot; 1879 1880 if (Op->Classify(C).isPRValue()) 1881 return Expr::CT_Cannot; 1882 1883 return Expr::CT_Can; 1884 } 1885 1886 Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const { 1887 // C++ [expr.unary.noexcept]p3: 1888 // [Can throw] if in a potentially-evaluated context the expression would 1889 // contain: 1890 switch (getStmtClass()) { 1891 case CXXThrowExprClass: 1892 // - a potentially evaluated throw-expression 1893 return CT_Can; 1894 1895 case CXXDynamicCastExprClass: { 1896 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1897 // where T is a reference type, that requires a run-time check 1898 CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this)); 1899 if (CT == CT_Can) 1900 return CT; 1901 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1902 } 1903 1904 case CXXTypeidExprClass: 1905 // - a potentially evaluated typeid expression applied to a glvalue 1906 // expression whose type is a polymorphic class type 1907 return CanTypeidThrow(C, cast<CXXTypeidExpr>(this)); 1908 1909 // - a potentially evaluated call to a function, member function, function 1910 // pointer, or member function pointer that does not have a non-throwing 1911 // exception-specification 1912 case CallExprClass: 1913 case CXXOperatorCallExprClass: 1914 case CXXMemberCallExprClass: { 1915 const CallExpr *CE = cast<CallExpr>(this); 1916 CanThrowResult CT; 1917 if (isTypeDependent()) 1918 CT = CT_Dependent; 1919 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1920 CT = CT_Cannot; 1921 else 1922 CT = CanCalleeThrow(C, this, CE->getCalleeDecl()); 1923 if (CT == CT_Can) 1924 return CT; 1925 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1926 } 1927 1928 case CXXConstructExprClass: 1929 case CXXTemporaryObjectExprClass: { 1930 CanThrowResult CT = CanCalleeThrow(C, this, 1931 cast<CXXConstructExpr>(this)->getConstructor()); 1932 if (CT == CT_Can) 1933 return CT; 1934 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1935 } 1936 1937 case CXXNewExprClass: { 1938 CanThrowResult CT; 1939 if (isTypeDependent()) 1940 CT = CT_Dependent; 1941 else 1942 CT = MergeCanThrow( 1943 CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()), 1944 CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(), 1945 /*NullThrows*/false)); 1946 if (CT == CT_Can) 1947 return CT; 1948 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1949 } 1950 1951 case CXXDeleteExprClass: { 1952 CanThrowResult CT; 1953 QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType(); 1954 if (DTy.isNull() || DTy->isDependentType()) { 1955 CT = CT_Dependent; 1956 } else { 1957 CT = CanCalleeThrow(C, this, 1958 cast<CXXDeleteExpr>(this)->getOperatorDelete()); 1959 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1960 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1961 CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor())); 1962 } 1963 if (CT == CT_Can) 1964 return CT; 1965 } 1966 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1967 } 1968 1969 case CXXBindTemporaryExprClass: { 1970 // The bound temporary has to be destroyed again, which might throw. 1971 CanThrowResult CT = CanCalleeThrow(C, this, 1972 cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor()); 1973 if (CT == CT_Can) 1974 return CT; 1975 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1976 } 1977 1978 // ObjC message sends are like function calls, but never have exception 1979 // specs. 1980 case ObjCMessageExprClass: 1981 case ObjCPropertyRefExprClass: 1982 return CT_Can; 1983 1984 // Many other things have subexpressions, so we have to test those. 1985 // Some are simple: 1986 case ParenExprClass: 1987 case MemberExprClass: 1988 case CXXReinterpretCastExprClass: 1989 case CXXConstCastExprClass: 1990 case ConditionalOperatorClass: 1991 case CompoundLiteralExprClass: 1992 case ExtVectorElementExprClass: 1993 case InitListExprClass: 1994 case DesignatedInitExprClass: 1995 case ParenListExprClass: 1996 case VAArgExprClass: 1997 case CXXDefaultArgExprClass: 1998 case ExprWithCleanupsClass: 1999 case ObjCIvarRefExprClass: 2000 case ObjCIsaExprClass: 2001 case ShuffleVectorExprClass: 2002 return CanSubExprsThrow(C, this); 2003 2004 // Some might be dependent for other reasons. 2005 case UnaryOperatorClass: 2006 case ArraySubscriptExprClass: 2007 case ImplicitCastExprClass: 2008 case CStyleCastExprClass: 2009 case CXXStaticCastExprClass: 2010 case CXXFunctionalCastExprClass: 2011 case BinaryOperatorClass: 2012 case CompoundAssignOperatorClass: 2013 case MaterializeTemporaryExprClass: { 2014 CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot; 2015 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2016 } 2017 2018 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. 2019 case StmtExprClass: 2020 return CT_Can; 2021 2022 case ChooseExprClass: 2023 if (isTypeDependent() || isValueDependent()) 2024 return CT_Dependent; 2025 return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C); 2026 2027 case GenericSelectionExprClass: 2028 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 2029 return CT_Dependent; 2030 return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C); 2031 2032 // Some expressions are always dependent. 2033 case DependentScopeDeclRefExprClass: 2034 case CXXUnresolvedConstructExprClass: 2035 case CXXDependentScopeMemberExprClass: 2036 return CT_Dependent; 2037 2038 default: 2039 // All other expressions don't have subexpressions, or else they are 2040 // unevaluated. 2041 return CT_Cannot; 2042 } 2043 } 2044 2045 Expr* Expr::IgnoreParens() { 2046 Expr* E = this; 2047 while (true) { 2048 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2049 E = P->getSubExpr(); 2050 continue; 2051 } 2052 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2053 if (P->getOpcode() == UO_Extension) { 2054 E = P->getSubExpr(); 2055 continue; 2056 } 2057 } 2058 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2059 if (!P->isResultDependent()) { 2060 E = P->getResultExpr(); 2061 continue; 2062 } 2063 } 2064 return E; 2065 } 2066 } 2067 2068 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2069 /// or CastExprs or ImplicitCastExprs, returning their operand. 2070 Expr *Expr::IgnoreParenCasts() { 2071 Expr *E = this; 2072 while (true) { 2073 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2074 E = P->getSubExpr(); 2075 continue; 2076 } 2077 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2078 E = P->getSubExpr(); 2079 continue; 2080 } 2081 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2082 if (P->getOpcode() == UO_Extension) { 2083 E = P->getSubExpr(); 2084 continue; 2085 } 2086 } 2087 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2088 if (!P->isResultDependent()) { 2089 E = P->getResultExpr(); 2090 continue; 2091 } 2092 } 2093 if (MaterializeTemporaryExpr *Materialize 2094 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2095 E = Materialize->GetTemporaryExpr(); 2096 continue; 2097 } 2098 if (SubstNonTypeTemplateParmExpr *NTTP 2099 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2100 E = NTTP->getReplacement(); 2101 continue; 2102 } 2103 return E; 2104 } 2105 } 2106 2107 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2108 /// casts. This is intended purely as a temporary workaround for code 2109 /// that hasn't yet been rewritten to do the right thing about those 2110 /// casts, and may disappear along with the last internal use. 2111 Expr *Expr::IgnoreParenLValueCasts() { 2112 Expr *E = this; 2113 while (true) { 2114 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2115 E = P->getSubExpr(); 2116 continue; 2117 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2118 if (P->getCastKind() == CK_LValueToRValue) { 2119 E = P->getSubExpr(); 2120 continue; 2121 } 2122 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2123 if (P->getOpcode() == UO_Extension) { 2124 E = P->getSubExpr(); 2125 continue; 2126 } 2127 } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2128 if (!P->isResultDependent()) { 2129 E = P->getResultExpr(); 2130 continue; 2131 } 2132 } else if (MaterializeTemporaryExpr *Materialize 2133 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2134 E = Materialize->GetTemporaryExpr(); 2135 continue; 2136 } else if (SubstNonTypeTemplateParmExpr *NTTP 2137 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2138 E = NTTP->getReplacement(); 2139 continue; 2140 } 2141 break; 2142 } 2143 return E; 2144 } 2145 2146 Expr *Expr::IgnoreParenImpCasts() { 2147 Expr *E = this; 2148 while (true) { 2149 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2150 E = P->getSubExpr(); 2151 continue; 2152 } 2153 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2154 E = P->getSubExpr(); 2155 continue; 2156 } 2157 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2158 if (P->getOpcode() == UO_Extension) { 2159 E = P->getSubExpr(); 2160 continue; 2161 } 2162 } 2163 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2164 if (!P->isResultDependent()) { 2165 E = P->getResultExpr(); 2166 continue; 2167 } 2168 } 2169 if (MaterializeTemporaryExpr *Materialize 2170 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2171 E = Materialize->GetTemporaryExpr(); 2172 continue; 2173 } 2174 if (SubstNonTypeTemplateParmExpr *NTTP 2175 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2176 E = NTTP->getReplacement(); 2177 continue; 2178 } 2179 return E; 2180 } 2181 } 2182 2183 Expr *Expr::IgnoreConversionOperator() { 2184 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2185 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2186 return MCE->getImplicitObjectArgument(); 2187 } 2188 return this; 2189 } 2190 2191 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2192 /// value (including ptr->int casts of the same size). Strip off any 2193 /// ParenExpr or CastExprs, returning their operand. 2194 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2195 Expr *E = this; 2196 while (true) { 2197 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2198 E = P->getSubExpr(); 2199 continue; 2200 } 2201 2202 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2203 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2204 // ptr<->int casts of the same width. We also ignore all identity casts. 2205 Expr *SE = P->getSubExpr(); 2206 2207 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2208 E = SE; 2209 continue; 2210 } 2211 2212 if ((E->getType()->isPointerType() || 2213 E->getType()->isIntegralType(Ctx)) && 2214 (SE->getType()->isPointerType() || 2215 SE->getType()->isIntegralType(Ctx)) && 2216 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2217 E = SE; 2218 continue; 2219 } 2220 } 2221 2222 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2223 if (P->getOpcode() == UO_Extension) { 2224 E = P->getSubExpr(); 2225 continue; 2226 } 2227 } 2228 2229 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2230 if (!P->isResultDependent()) { 2231 E = P->getResultExpr(); 2232 continue; 2233 } 2234 } 2235 2236 if (SubstNonTypeTemplateParmExpr *NTTP 2237 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2238 E = NTTP->getReplacement(); 2239 continue; 2240 } 2241 2242 return E; 2243 } 2244 } 2245 2246 bool Expr::isDefaultArgument() const { 2247 const Expr *E = this; 2248 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2249 E = M->GetTemporaryExpr(); 2250 2251 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2252 E = ICE->getSubExprAsWritten(); 2253 2254 return isa<CXXDefaultArgExpr>(E); 2255 } 2256 2257 /// \brief Skip over any no-op casts and any temporary-binding 2258 /// expressions. 2259 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2260 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2261 E = M->GetTemporaryExpr(); 2262 2263 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2264 if (ICE->getCastKind() == CK_NoOp) 2265 E = ICE->getSubExpr(); 2266 else 2267 break; 2268 } 2269 2270 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2271 E = BE->getSubExpr(); 2272 2273 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2274 if (ICE->getCastKind() == CK_NoOp) 2275 E = ICE->getSubExpr(); 2276 else 2277 break; 2278 } 2279 2280 return E->IgnoreParens(); 2281 } 2282 2283 /// isTemporaryObject - Determines if this expression produces a 2284 /// temporary of the given class type. 2285 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2286 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2287 return false; 2288 2289 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2290 2291 // Temporaries are by definition pr-values of class type. 2292 if (!E->Classify(C).isPRValue()) { 2293 // In this context, property reference is a message call and is pr-value. 2294 if (!isa<ObjCPropertyRefExpr>(E)) 2295 return false; 2296 } 2297 2298 // Black-list a few cases which yield pr-values of class type that don't 2299 // refer to temporaries of that type: 2300 2301 // - implicit derived-to-base conversions 2302 if (isa<ImplicitCastExpr>(E)) { 2303 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2304 case CK_DerivedToBase: 2305 case CK_UncheckedDerivedToBase: 2306 return false; 2307 default: 2308 break; 2309 } 2310 } 2311 2312 // - member expressions (all) 2313 if (isa<MemberExpr>(E)) 2314 return false; 2315 2316 // - opaque values (all) 2317 if (isa<OpaqueValueExpr>(E)) 2318 return false; 2319 2320 return true; 2321 } 2322 2323 bool Expr::isImplicitCXXThis() const { 2324 const Expr *E = this; 2325 2326 // Strip away parentheses and casts we don't care about. 2327 while (true) { 2328 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2329 E = Paren->getSubExpr(); 2330 continue; 2331 } 2332 2333 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2334 if (ICE->getCastKind() == CK_NoOp || 2335 ICE->getCastKind() == CK_LValueToRValue || 2336 ICE->getCastKind() == CK_DerivedToBase || 2337 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2338 E = ICE->getSubExpr(); 2339 continue; 2340 } 2341 } 2342 2343 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2344 if (UnOp->getOpcode() == UO_Extension) { 2345 E = UnOp->getSubExpr(); 2346 continue; 2347 } 2348 } 2349 2350 if (const MaterializeTemporaryExpr *M 2351 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2352 E = M->GetTemporaryExpr(); 2353 continue; 2354 } 2355 2356 break; 2357 } 2358 2359 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2360 return This->isImplicit(); 2361 2362 return false; 2363 } 2364 2365 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2366 /// in Exprs is type-dependent. 2367 bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { 2368 for (unsigned I = 0; I < NumExprs; ++I) 2369 if (Exprs[I]->isTypeDependent()) 2370 return true; 2371 2372 return false; 2373 } 2374 2375 /// hasAnyValueDependentArguments - Determines if any of the expressions 2376 /// in Exprs is value-dependent. 2377 bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { 2378 for (unsigned I = 0; I < NumExprs; ++I) 2379 if (Exprs[I]->isValueDependent()) 2380 return true; 2381 2382 return false; 2383 } 2384 2385 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { 2386 // This function is attempting whether an expression is an initializer 2387 // which can be evaluated at compile-time. isEvaluatable handles most 2388 // of the cases, but it can't deal with some initializer-specific 2389 // expressions, and it can't deal with aggregates; we deal with those here, 2390 // and fall back to isEvaluatable for the other cases. 2391 2392 // If we ever capture reference-binding directly in the AST, we can 2393 // kill the second parameter. 2394 2395 if (IsForRef) { 2396 EvalResult Result; 2397 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; 2398 } 2399 2400 switch (getStmtClass()) { 2401 default: break; 2402 case StringLiteralClass: 2403 case ObjCStringLiteralClass: 2404 case ObjCEncodeExprClass: 2405 return true; 2406 case CXXTemporaryObjectExprClass: 2407 case CXXConstructExprClass: { 2408 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2409 2410 // Only if it's 2411 // 1) an application of the trivial default constructor or 2412 if (!CE->getConstructor()->isTrivial()) return false; 2413 if (!CE->getNumArgs()) return true; 2414 2415 // 2) an elidable trivial copy construction of an operand which is 2416 // itself a constant initializer. Note that we consider the 2417 // operand on its own, *not* as a reference binding. 2418 return CE->isElidable() && 2419 CE->getArg(0)->isConstantInitializer(Ctx, false); 2420 } 2421 case CompoundLiteralExprClass: { 2422 // This handles gcc's extension that allows global initializers like 2423 // "struct x {int x;} x = (struct x) {};". 2424 // FIXME: This accepts other cases it shouldn't! 2425 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2426 return Exp->isConstantInitializer(Ctx, false); 2427 } 2428 case InitListExprClass: { 2429 // FIXME: This doesn't deal with fields with reference types correctly. 2430 // FIXME: This incorrectly allows pointers cast to integers to be assigned 2431 // to bitfields. 2432 const InitListExpr *Exp = cast<InitListExpr>(this); 2433 unsigned numInits = Exp->getNumInits(); 2434 for (unsigned i = 0; i < numInits; i++) { 2435 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) 2436 return false; 2437 } 2438 return true; 2439 } 2440 case ImplicitValueInitExprClass: 2441 return true; 2442 case ParenExprClass: 2443 return cast<ParenExpr>(this)->getSubExpr() 2444 ->isConstantInitializer(Ctx, IsForRef); 2445 case GenericSelectionExprClass: 2446 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 2447 return false; 2448 return cast<GenericSelectionExpr>(this)->getResultExpr() 2449 ->isConstantInitializer(Ctx, IsForRef); 2450 case ChooseExprClass: 2451 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) 2452 ->isConstantInitializer(Ctx, IsForRef); 2453 case UnaryOperatorClass: { 2454 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2455 if (Exp->getOpcode() == UO_Extension) 2456 return Exp->getSubExpr()->isConstantInitializer(Ctx, false); 2457 break; 2458 } 2459 case BinaryOperatorClass: { 2460 // Special case &&foo - &&bar. It would be nice to generalize this somehow 2461 // but this handles the common case. 2462 const BinaryOperator *Exp = cast<BinaryOperator>(this); 2463 if (Exp->getOpcode() == BO_Sub && 2464 isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && 2465 isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) 2466 return true; 2467 break; 2468 } 2469 case CXXFunctionalCastExprClass: 2470 case CXXStaticCastExprClass: 2471 case ImplicitCastExprClass: 2472 case CStyleCastExprClass: 2473 // Handle casts with a destination that's a struct or union; this 2474 // deals with both the gcc no-op struct cast extension and the 2475 // cast-to-union extension. 2476 if (getType()->isRecordType()) 2477 return cast<CastExpr>(this)->getSubExpr() 2478 ->isConstantInitializer(Ctx, false); 2479 2480 // Integer->integer casts can be handled here, which is important for 2481 // things like (int)(&&x-&&y). Scary but true. 2482 if (getType()->isIntegerType() && 2483 cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) 2484 return cast<CastExpr>(this)->getSubExpr() 2485 ->isConstantInitializer(Ctx, false); 2486 2487 break; 2488 2489 case MaterializeTemporaryExprClass: 2490 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2491 ->isConstantInitializer(Ctx, false); 2492 } 2493 return isEvaluatable(Ctx); 2494 } 2495 2496 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 2497 /// pointer constant or not, as well as the specific kind of constant detected. 2498 /// Null pointer constants can be integer constant expressions with the 2499 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 2500 /// (a GNU extension). 2501 Expr::NullPointerConstantKind 2502 Expr::isNullPointerConstant(ASTContext &Ctx, 2503 NullPointerConstantValueDependence NPC) const { 2504 if (isValueDependent()) { 2505 switch (NPC) { 2506 case NPC_NeverValueDependent: 2507 llvm_unreachable("Unexpected value dependent expression!"); 2508 case NPC_ValueDependentIsNull: 2509 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 2510 return NPCK_ZeroInteger; 2511 else 2512 return NPCK_NotNull; 2513 2514 case NPC_ValueDependentIsNotNull: 2515 return NPCK_NotNull; 2516 } 2517 } 2518 2519 // Strip off a cast to void*, if it exists. Except in C++. 2520 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 2521 if (!Ctx.getLangOptions().CPlusPlus) { 2522 // Check that it is a cast to void*. 2523 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 2524 QualType Pointee = PT->getPointeeType(); 2525 if (!Pointee.hasQualifiers() && 2526 Pointee->isVoidType() && // to void* 2527 CE->getSubExpr()->getType()->isIntegerType()) // from int. 2528 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2529 } 2530 } 2531 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 2532 // Ignore the ImplicitCastExpr type entirely. 2533 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2534 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 2535 // Accept ((void*)0) as a null pointer constant, as many other 2536 // implementations do. 2537 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2538 } else if (const GenericSelectionExpr *GE = 2539 dyn_cast<GenericSelectionExpr>(this)) { 2540 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 2541 } else if (const CXXDefaultArgExpr *DefaultArg 2542 = dyn_cast<CXXDefaultArgExpr>(this)) { 2543 // See through default argument expressions 2544 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 2545 } else if (isa<GNUNullExpr>(this)) { 2546 // The GNU __null extension is always a null pointer constant. 2547 return NPCK_GNUNull; 2548 } else if (const MaterializeTemporaryExpr *M 2549 = dyn_cast<MaterializeTemporaryExpr>(this)) { 2550 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 2551 } 2552 2553 // C++0x nullptr_t is always a null pointer constant. 2554 if (getType()->isNullPtrType()) 2555 return NPCK_CXX0X_nullptr; 2556 2557 if (const RecordType *UT = getType()->getAsUnionType()) 2558 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2559 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 2560 const Expr *InitExpr = CLE->getInitializer(); 2561 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 2562 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 2563 } 2564 // This expression must be an integer type. 2565 if (!getType()->isIntegerType() || 2566 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) 2567 return NPCK_NotNull; 2568 2569 // If we have an integer constant expression, we need to *evaluate* it and 2570 // test for the value 0. 2571 llvm::APSInt Result; 2572 bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0; 2573 2574 return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull); 2575 } 2576 2577 /// \brief If this expression is an l-value for an Objective C 2578 /// property, find the underlying property reference expression. 2579 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 2580 const Expr *E = this; 2581 while (true) { 2582 assert((E->getValueKind() == VK_LValue && 2583 E->getObjectKind() == OK_ObjCProperty) && 2584 "expression is not a property reference"); 2585 E = E->IgnoreParenCasts(); 2586 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 2587 if (BO->getOpcode() == BO_Comma) { 2588 E = BO->getRHS(); 2589 continue; 2590 } 2591 } 2592 2593 break; 2594 } 2595 2596 return cast<ObjCPropertyRefExpr>(E); 2597 } 2598 2599 FieldDecl *Expr::getBitField() { 2600 Expr *E = this->IgnoreParens(); 2601 2602 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2603 if (ICE->getCastKind() == CK_LValueToRValue || 2604 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 2605 E = ICE->getSubExpr()->IgnoreParens(); 2606 else 2607 break; 2608 } 2609 2610 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 2611 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 2612 if (Field->isBitField()) 2613 return Field; 2614 2615 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 2616 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 2617 if (Field->isBitField()) 2618 return Field; 2619 2620 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 2621 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 2622 return BinOp->getLHS()->getBitField(); 2623 2624 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 2625 return BinOp->getRHS()->getBitField(); 2626 } 2627 2628 return 0; 2629 } 2630 2631 bool Expr::refersToVectorElement() const { 2632 const Expr *E = this->IgnoreParens(); 2633 2634 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2635 if (ICE->getValueKind() != VK_RValue && 2636 ICE->getCastKind() == CK_NoOp) 2637 E = ICE->getSubExpr()->IgnoreParens(); 2638 else 2639 break; 2640 } 2641 2642 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 2643 return ASE->getBase()->getType()->isVectorType(); 2644 2645 if (isa<ExtVectorElementExpr>(E)) 2646 return true; 2647 2648 return false; 2649 } 2650 2651 /// isArrow - Return true if the base expression is a pointer to vector, 2652 /// return false if the base expression is a vector. 2653 bool ExtVectorElementExpr::isArrow() const { 2654 return getBase()->getType()->isPointerType(); 2655 } 2656 2657 unsigned ExtVectorElementExpr::getNumElements() const { 2658 if (const VectorType *VT = getType()->getAs<VectorType>()) 2659 return VT->getNumElements(); 2660 return 1; 2661 } 2662 2663 /// containsDuplicateElements - Return true if any element access is repeated. 2664 bool ExtVectorElementExpr::containsDuplicateElements() const { 2665 // FIXME: Refactor this code to an accessor on the AST node which returns the 2666 // "type" of component access, and share with code below and in Sema. 2667 StringRef Comp = Accessor->getName(); 2668 2669 // Halving swizzles do not contain duplicate elements. 2670 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 2671 return false; 2672 2673 // Advance past s-char prefix on hex swizzles. 2674 if (Comp[0] == 's' || Comp[0] == 'S') 2675 Comp = Comp.substr(1); 2676 2677 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 2678 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 2679 return true; 2680 2681 return false; 2682 } 2683 2684 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 2685 void ExtVectorElementExpr::getEncodedElementAccess( 2686 SmallVectorImpl<unsigned> &Elts) const { 2687 StringRef Comp = Accessor->getName(); 2688 if (Comp[0] == 's' || Comp[0] == 'S') 2689 Comp = Comp.substr(1); 2690 2691 bool isHi = Comp == "hi"; 2692 bool isLo = Comp == "lo"; 2693 bool isEven = Comp == "even"; 2694 bool isOdd = Comp == "odd"; 2695 2696 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 2697 uint64_t Index; 2698 2699 if (isHi) 2700 Index = e + i; 2701 else if (isLo) 2702 Index = i; 2703 else if (isEven) 2704 Index = 2 * i; 2705 else if (isOdd) 2706 Index = 2 * i + 1; 2707 else 2708 Index = ExtVectorType::getAccessorIdx(Comp[i]); 2709 2710 Elts.push_back(Index); 2711 } 2712 } 2713 2714 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2715 ExprValueKind VK, 2716 SourceLocation LBracLoc, 2717 SourceLocation SuperLoc, 2718 bool IsInstanceSuper, 2719 QualType SuperType, 2720 Selector Sel, 2721 ArrayRef<SourceLocation> SelLocs, 2722 SelectorLocationsKind SelLocsK, 2723 ObjCMethodDecl *Method, 2724 ArrayRef<Expr *> Args, 2725 SourceLocation RBracLoc) 2726 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 2727 /*TypeDependent=*/false, /*ValueDependent=*/false, 2728 /*InstantiationDependent=*/false, 2729 /*ContainsUnexpandedParameterPack=*/false), 2730 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2731 : Sel.getAsOpaquePtr())), 2732 Kind(IsInstanceSuper? SuperInstance : SuperClass), 2733 HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc), 2734 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2735 { 2736 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 2737 setReceiverPointer(SuperType.getAsOpaquePtr()); 2738 } 2739 2740 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2741 ExprValueKind VK, 2742 SourceLocation LBracLoc, 2743 TypeSourceInfo *Receiver, 2744 Selector Sel, 2745 ArrayRef<SourceLocation> SelLocs, 2746 SelectorLocationsKind SelLocsK, 2747 ObjCMethodDecl *Method, 2748 ArrayRef<Expr *> Args, 2749 SourceLocation RBracLoc) 2750 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 2751 T->isDependentType(), T->isInstantiationDependentType(), 2752 T->containsUnexpandedParameterPack()), 2753 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2754 : Sel.getAsOpaquePtr())), 2755 Kind(Class), 2756 HasMethod(Method != 0), IsDelegateInitCall(false), 2757 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2758 { 2759 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 2760 setReceiverPointer(Receiver); 2761 } 2762 2763 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2764 ExprValueKind VK, 2765 SourceLocation LBracLoc, 2766 Expr *Receiver, 2767 Selector Sel, 2768 ArrayRef<SourceLocation> SelLocs, 2769 SelectorLocationsKind SelLocsK, 2770 ObjCMethodDecl *Method, 2771 ArrayRef<Expr *> Args, 2772 SourceLocation RBracLoc) 2773 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 2774 Receiver->isTypeDependent(), 2775 Receiver->isInstantiationDependent(), 2776 Receiver->containsUnexpandedParameterPack()), 2777 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2778 : Sel.getAsOpaquePtr())), 2779 Kind(Instance), 2780 HasMethod(Method != 0), IsDelegateInitCall(false), 2781 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2782 { 2783 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 2784 setReceiverPointer(Receiver); 2785 } 2786 2787 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, 2788 ArrayRef<SourceLocation> SelLocs, 2789 SelectorLocationsKind SelLocsK) { 2790 setNumArgs(Args.size()); 2791 Expr **MyArgs = getArgs(); 2792 for (unsigned I = 0; I != Args.size(); ++I) { 2793 if (Args[I]->isTypeDependent()) 2794 ExprBits.TypeDependent = true; 2795 if (Args[I]->isValueDependent()) 2796 ExprBits.ValueDependent = true; 2797 if (Args[I]->isInstantiationDependent()) 2798 ExprBits.InstantiationDependent = true; 2799 if (Args[I]->containsUnexpandedParameterPack()) 2800 ExprBits.ContainsUnexpandedParameterPack = true; 2801 2802 MyArgs[I] = Args[I]; 2803 } 2804 2805 SelLocsKind = SelLocsK; 2806 if (SelLocsK == SelLoc_NonStandard) 2807 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); 2808 } 2809 2810 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2811 ExprValueKind VK, 2812 SourceLocation LBracLoc, 2813 SourceLocation SuperLoc, 2814 bool IsInstanceSuper, 2815 QualType SuperType, 2816 Selector Sel, 2817 ArrayRef<SourceLocation> SelLocs, 2818 ObjCMethodDecl *Method, 2819 ArrayRef<Expr *> Args, 2820 SourceLocation RBracLoc) { 2821 SelectorLocationsKind SelLocsK; 2822 ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 2823 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 2824 SuperType, Sel, SelLocs, SelLocsK, 2825 Method, Args, RBracLoc); 2826 } 2827 2828 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2829 ExprValueKind VK, 2830 SourceLocation LBracLoc, 2831 TypeSourceInfo *Receiver, 2832 Selector Sel, 2833 ArrayRef<SourceLocation> SelLocs, 2834 ObjCMethodDecl *Method, 2835 ArrayRef<Expr *> Args, 2836 SourceLocation RBracLoc) { 2837 SelectorLocationsKind SelLocsK; 2838 ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 2839 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 2840 SelLocs, SelLocsK, Method, Args, RBracLoc); 2841 } 2842 2843 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2844 ExprValueKind VK, 2845 SourceLocation LBracLoc, 2846 Expr *Receiver, 2847 Selector Sel, 2848 ArrayRef<SourceLocation> SelLocs, 2849 ObjCMethodDecl *Method, 2850 ArrayRef<Expr *> Args, 2851 SourceLocation RBracLoc) { 2852 SelectorLocationsKind SelLocsK; 2853 ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 2854 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 2855 SelLocs, SelLocsK, Method, Args, RBracLoc); 2856 } 2857 2858 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, 2859 unsigned NumArgs, 2860 unsigned NumStoredSelLocs) { 2861 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); 2862 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 2863 } 2864 2865 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, 2866 ArrayRef<Expr *> Args, 2867 SourceLocation RBraceLoc, 2868 ArrayRef<SourceLocation> SelLocs, 2869 Selector Sel, 2870 SelectorLocationsKind &SelLocsK) { 2871 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); 2872 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() 2873 : 0; 2874 return alloc(C, Args.size(), NumStoredSelLocs); 2875 } 2876 2877 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, 2878 unsigned NumArgs, 2879 unsigned NumStoredSelLocs) { 2880 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2881 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); 2882 return (ObjCMessageExpr *)C.Allocate(Size, 2883 llvm::AlignOf<ObjCMessageExpr>::Alignment); 2884 } 2885 2886 void ObjCMessageExpr::getSelectorLocs( 2887 SmallVectorImpl<SourceLocation> &SelLocs) const { 2888 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) 2889 SelLocs.push_back(getSelectorLoc(i)); 2890 } 2891 2892 SourceRange ObjCMessageExpr::getReceiverRange() const { 2893 switch (getReceiverKind()) { 2894 case Instance: 2895 return getInstanceReceiver()->getSourceRange(); 2896 2897 case Class: 2898 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 2899 2900 case SuperInstance: 2901 case SuperClass: 2902 return getSuperLoc(); 2903 } 2904 2905 return SourceLocation(); 2906 } 2907 2908 Selector ObjCMessageExpr::getSelector() const { 2909 if (HasMethod) 2910 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 2911 ->getSelector(); 2912 return Selector(SelectorOrMethod); 2913 } 2914 2915 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 2916 switch (getReceiverKind()) { 2917 case Instance: 2918 if (const ObjCObjectPointerType *Ptr 2919 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) 2920 return Ptr->getInterfaceDecl(); 2921 break; 2922 2923 case Class: 2924 if (const ObjCObjectType *Ty 2925 = getClassReceiver()->getAs<ObjCObjectType>()) 2926 return Ty->getInterface(); 2927 break; 2928 2929 case SuperInstance: 2930 if (const ObjCObjectPointerType *Ptr 2931 = getSuperType()->getAs<ObjCObjectPointerType>()) 2932 return Ptr->getInterfaceDecl(); 2933 break; 2934 2935 case SuperClass: 2936 if (const ObjCObjectType *Iface 2937 = getSuperType()->getAs<ObjCObjectType>()) 2938 return Iface->getInterface(); 2939 break; 2940 } 2941 2942 return 0; 2943 } 2944 2945 StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 2946 switch (getBridgeKind()) { 2947 case OBC_Bridge: 2948 return "__bridge"; 2949 case OBC_BridgeTransfer: 2950 return "__bridge_transfer"; 2951 case OBC_BridgeRetained: 2952 return "__bridge_retained"; 2953 } 2954 2955 return "__bridge"; 2956 } 2957 2958 bool ChooseExpr::isConditionTrue(const ASTContext &C) const { 2959 return getCond()->EvaluateKnownConstInt(C) != 0; 2960 } 2961 2962 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, 2963 QualType Type, SourceLocation BLoc, 2964 SourceLocation RP) 2965 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 2966 Type->isDependentType(), Type->isDependentType(), 2967 Type->isInstantiationDependentType(), 2968 Type->containsUnexpandedParameterPack()), 2969 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) 2970 { 2971 SubExprs = new (C) Stmt*[nexpr]; 2972 for (unsigned i = 0; i < nexpr; i++) { 2973 if (args[i]->isTypeDependent()) 2974 ExprBits.TypeDependent = true; 2975 if (args[i]->isValueDependent()) 2976 ExprBits.ValueDependent = true; 2977 if (args[i]->isInstantiationDependent()) 2978 ExprBits.InstantiationDependent = true; 2979 if (args[i]->containsUnexpandedParameterPack()) 2980 ExprBits.ContainsUnexpandedParameterPack = true; 2981 2982 SubExprs[i] = args[i]; 2983 } 2984 } 2985 2986 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, 2987 unsigned NumExprs) { 2988 if (SubExprs) C.Deallocate(SubExprs); 2989 2990 SubExprs = new (C) Stmt* [NumExprs]; 2991 this->NumExprs = NumExprs; 2992 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); 2993 } 2994 2995 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 2996 SourceLocation GenericLoc, Expr *ControllingExpr, 2997 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 2998 unsigned NumAssocs, SourceLocation DefaultLoc, 2999 SourceLocation RParenLoc, 3000 bool ContainsUnexpandedParameterPack, 3001 unsigned ResultIndex) 3002 : Expr(GenericSelectionExprClass, 3003 AssocExprs[ResultIndex]->getType(), 3004 AssocExprs[ResultIndex]->getValueKind(), 3005 AssocExprs[ResultIndex]->getObjectKind(), 3006 AssocExprs[ResultIndex]->isTypeDependent(), 3007 AssocExprs[ResultIndex]->isValueDependent(), 3008 AssocExprs[ResultIndex]->isInstantiationDependent(), 3009 ContainsUnexpandedParameterPack), 3010 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 3011 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 3012 ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 3013 RParenLoc(RParenLoc) { 3014 SubExprs[CONTROLLING] = ControllingExpr; 3015 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 3016 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 3017 } 3018 3019 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 3020 SourceLocation GenericLoc, Expr *ControllingExpr, 3021 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 3022 unsigned NumAssocs, SourceLocation DefaultLoc, 3023 SourceLocation RParenLoc, 3024 bool ContainsUnexpandedParameterPack) 3025 : Expr(GenericSelectionExprClass, 3026 Context.DependentTy, 3027 VK_RValue, 3028 OK_Ordinary, 3029 /*isTypeDependent=*/true, 3030 /*isValueDependent=*/true, 3031 /*isInstantiationDependent=*/true, 3032 ContainsUnexpandedParameterPack), 3033 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 3034 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 3035 ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 3036 RParenLoc(RParenLoc) { 3037 SubExprs[CONTROLLING] = ControllingExpr; 3038 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 3039 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 3040 } 3041 3042 //===----------------------------------------------------------------------===// 3043 // DesignatedInitExpr 3044 //===----------------------------------------------------------------------===// 3045 3046 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3047 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3048 if (Field.NameOrField & 0x01) 3049 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3050 else 3051 return getField()->getIdentifier(); 3052 } 3053 3054 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 3055 unsigned NumDesignators, 3056 const Designator *Designators, 3057 SourceLocation EqualOrColonLoc, 3058 bool GNUSyntax, 3059 Expr **IndexExprs, 3060 unsigned NumIndexExprs, 3061 Expr *Init) 3062 : Expr(DesignatedInitExprClass, Ty, 3063 Init->getValueKind(), Init->getObjectKind(), 3064 Init->isTypeDependent(), Init->isValueDependent(), 3065 Init->isInstantiationDependent(), 3066 Init->containsUnexpandedParameterPack()), 3067 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3068 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { 3069 this->Designators = new (C) Designator[NumDesignators]; 3070 3071 // Record the initializer itself. 3072 child_range Child = children(); 3073 *Child++ = Init; 3074 3075 // Copy the designators and their subexpressions, computing 3076 // value-dependence along the way. 3077 unsigned IndexIdx = 0; 3078 for (unsigned I = 0; I != NumDesignators; ++I) { 3079 this->Designators[I] = Designators[I]; 3080 3081 if (this->Designators[I].isArrayDesignator()) { 3082 // Compute type- and value-dependence. 3083 Expr *Index = IndexExprs[IndexIdx]; 3084 if (Index->isTypeDependent() || Index->isValueDependent()) 3085 ExprBits.ValueDependent = true; 3086 if (Index->isInstantiationDependent()) 3087 ExprBits.InstantiationDependent = true; 3088 // Propagate unexpanded parameter packs. 3089 if (Index->containsUnexpandedParameterPack()) 3090 ExprBits.ContainsUnexpandedParameterPack = true; 3091 3092 // Copy the index expressions into permanent storage. 3093 *Child++ = IndexExprs[IndexIdx++]; 3094 } else if (this->Designators[I].isArrayRangeDesignator()) { 3095 // Compute type- and value-dependence. 3096 Expr *Start = IndexExprs[IndexIdx]; 3097 Expr *End = IndexExprs[IndexIdx + 1]; 3098 if (Start->isTypeDependent() || Start->isValueDependent() || 3099 End->isTypeDependent() || End->isValueDependent()) { 3100 ExprBits.ValueDependent = true; 3101 ExprBits.InstantiationDependent = true; 3102 } else if (Start->isInstantiationDependent() || 3103 End->isInstantiationDependent()) { 3104 ExprBits.InstantiationDependent = true; 3105 } 3106 3107 // Propagate unexpanded parameter packs. 3108 if (Start->containsUnexpandedParameterPack() || 3109 End->containsUnexpandedParameterPack()) 3110 ExprBits.ContainsUnexpandedParameterPack = true; 3111 3112 // Copy the start/end expressions into permanent storage. 3113 *Child++ = IndexExprs[IndexIdx++]; 3114 *Child++ = IndexExprs[IndexIdx++]; 3115 } 3116 } 3117 3118 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); 3119 } 3120 3121 DesignatedInitExpr * 3122 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 3123 unsigned NumDesignators, 3124 Expr **IndexExprs, unsigned NumIndexExprs, 3125 SourceLocation ColonOrEqualLoc, 3126 bool UsesColonSyntax, Expr *Init) { 3127 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3128 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3129 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3130 ColonOrEqualLoc, UsesColonSyntax, 3131 IndexExprs, NumIndexExprs, Init); 3132 } 3133 3134 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 3135 unsigned NumIndexExprs) { 3136 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3137 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3138 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3139 } 3140 3141 void DesignatedInitExpr::setDesignators(ASTContext &C, 3142 const Designator *Desigs, 3143 unsigned NumDesigs) { 3144 Designators = new (C) Designator[NumDesigs]; 3145 NumDesignators = NumDesigs; 3146 for (unsigned I = 0; I != NumDesigs; ++I) 3147 Designators[I] = Desigs[I]; 3148 } 3149 3150 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3151 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3152 if (size() == 1) 3153 return DIE->getDesignator(0)->getSourceRange(); 3154 return SourceRange(DIE->getDesignator(0)->getStartLocation(), 3155 DIE->getDesignator(size()-1)->getEndLocation()); 3156 } 3157 3158 SourceRange DesignatedInitExpr::getSourceRange() const { 3159 SourceLocation StartLoc; 3160 Designator &First = 3161 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3162 if (First.isFieldDesignator()) { 3163 if (GNUSyntax) 3164 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3165 else 3166 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3167 } else 3168 StartLoc = 3169 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3170 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); 3171 } 3172 3173 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { 3174 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3175 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3176 Ptr += sizeof(DesignatedInitExpr); 3177 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3178 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3179 } 3180 3181 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { 3182 assert(D.Kind == Designator::ArrayRangeDesignator && 3183 "Requires array range designator"); 3184 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3185 Ptr += sizeof(DesignatedInitExpr); 3186 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3187 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3188 } 3189 3190 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { 3191 assert(D.Kind == Designator::ArrayRangeDesignator && 3192 "Requires array range designator"); 3193 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3194 Ptr += sizeof(DesignatedInitExpr); 3195 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3196 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3197 } 3198 3199 /// \brief Replaces the designator at index @p Idx with the series 3200 /// of designators in [First, Last). 3201 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, 3202 const Designator *First, 3203 const Designator *Last) { 3204 unsigned NumNewDesignators = Last - First; 3205 if (NumNewDesignators == 0) { 3206 std::copy_backward(Designators + Idx + 1, 3207 Designators + NumDesignators, 3208 Designators + Idx); 3209 --NumNewDesignators; 3210 return; 3211 } else if (NumNewDesignators == 1) { 3212 Designators[Idx] = *First; 3213 return; 3214 } 3215 3216 Designator *NewDesignators 3217 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3218 std::copy(Designators, Designators + Idx, NewDesignators); 3219 std::copy(First, Last, NewDesignators + Idx); 3220 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3221 NewDesignators + Idx + NumNewDesignators); 3222 Designators = NewDesignators; 3223 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3224 } 3225 3226 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, 3227 Expr **exprs, unsigned nexprs, 3228 SourceLocation rparenloc, QualType T) 3229 : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary, 3230 false, false, false, false), 3231 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3232 assert(!T.isNull() && "ParenListExpr must have a valid type"); 3233 Exprs = new (C) Stmt*[nexprs]; 3234 for (unsigned i = 0; i != nexprs; ++i) { 3235 if (exprs[i]->isTypeDependent()) 3236 ExprBits.TypeDependent = true; 3237 if (exprs[i]->isValueDependent()) 3238 ExprBits.ValueDependent = true; 3239 if (exprs[i]->isInstantiationDependent()) 3240 ExprBits.InstantiationDependent = true; 3241 if (exprs[i]->containsUnexpandedParameterPack()) 3242 ExprBits.ContainsUnexpandedParameterPack = true; 3243 3244 Exprs[i] = exprs[i]; 3245 } 3246 } 3247 3248 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3249 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3250 e = ewc->getSubExpr(); 3251 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3252 e = m->GetTemporaryExpr(); 3253 e = cast<CXXConstructExpr>(e)->getArg(0); 3254 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3255 e = ice->getSubExpr(); 3256 return cast<OpaqueValueExpr>(e); 3257 } 3258 3259 //===----------------------------------------------------------------------===// 3260 // ExprIterator. 3261 //===----------------------------------------------------------------------===// 3262 3263 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 3264 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 3265 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 3266 const Expr* ConstExprIterator::operator[](size_t idx) const { 3267 return cast<Expr>(I[idx]); 3268 } 3269 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 3270 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 3271 3272 //===----------------------------------------------------------------------===// 3273 // Child Iterators for iterating over subexpressions/substatements 3274 //===----------------------------------------------------------------------===// 3275 3276 // UnaryExprOrTypeTraitExpr 3277 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3278 // If this is of a type and the type is a VLA type (and not a typedef), the 3279 // size expression of the VLA needs to be treated as an executable expression. 3280 // Why isn't this weirdness documented better in StmtIterator? 3281 if (isArgumentType()) { 3282 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3283 getArgumentType().getTypePtr())) 3284 return child_range(child_iterator(T), child_iterator()); 3285 return child_range(); 3286 } 3287 return child_range(&Argument.Ex, &Argument.Ex + 1); 3288 } 3289 3290 // ObjCMessageExpr 3291 Stmt::child_range ObjCMessageExpr::children() { 3292 Stmt **begin; 3293 if (getReceiverKind() == Instance) 3294 begin = reinterpret_cast<Stmt **>(this + 1); 3295 else 3296 begin = reinterpret_cast<Stmt **>(getArgs()); 3297 return child_range(begin, 3298 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 3299 } 3300 3301 // Blocks 3302 BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK, 3303 SourceLocation l, bool ByRef, 3304 bool constAdded) 3305 : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false, 3306 d->isParameterPack()), 3307 D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded) 3308 { 3309 bool TypeDependent = false; 3310 bool ValueDependent = false; 3311 bool InstantiationDependent = false; 3312 computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent, 3313 InstantiationDependent); 3314 ExprBits.TypeDependent = TypeDependent; 3315 ExprBits.ValueDependent = ValueDependent; 3316 ExprBits.InstantiationDependent = InstantiationDependent; 3317 } 3318 3319 3320 AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, 3321 QualType t, AtomicOp op, SourceLocation RP) 3322 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 3323 false, false, false, false), 3324 NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 3325 { 3326 for (unsigned i = 0; i < nexpr; i++) { 3327 if (args[i]->isTypeDependent()) 3328 ExprBits.TypeDependent = true; 3329 if (args[i]->isValueDependent()) 3330 ExprBits.ValueDependent = true; 3331 if (args[i]->isInstantiationDependent()) 3332 ExprBits.InstantiationDependent = true; 3333 if (args[i]->containsUnexpandedParameterPack()) 3334 ExprBits.ContainsUnexpandedParameterPack = true; 3335 3336 SubExprs[i] = args[i]; 3337 } 3338 } 3339