Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Expr.h"
     15 #include "clang/AST/ExprCXX.h"
     16 #include "clang/AST/APValue.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Lex/LiteralSupport.h"
     24 #include "clang/Lex/Lexer.h"
     25 #include "clang/Sema/SemaDiagnostic.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <algorithm>
     32 using namespace clang;
     33 
     34 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
     35 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
     36 /// but also int expressions which are produced by things like comparisons in
     37 /// C.
     38 bool Expr::isKnownToHaveBooleanValue() const {
     39   const Expr *E = IgnoreParens();
     40 
     41   // If this value has _Bool type, it is obvious 0/1.
     42   if (E->getType()->isBooleanType()) return true;
     43   // If this is a non-scalar-integer type, we don't care enough to try.
     44   if (!E->getType()->isIntegralOrEnumerationType()) return false;
     45 
     46   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
     47     switch (UO->getOpcode()) {
     48     case UO_Plus:
     49       return UO->getSubExpr()->isKnownToHaveBooleanValue();
     50     default:
     51       return false;
     52     }
     53   }
     54 
     55   // Only look through implicit casts.  If the user writes
     56   // '(int) (a && b)' treat it as an arbitrary int.
     57   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
     58     return CE->getSubExpr()->isKnownToHaveBooleanValue();
     59 
     60   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     61     switch (BO->getOpcode()) {
     62     default: return false;
     63     case BO_LT:   // Relational operators.
     64     case BO_GT:
     65     case BO_LE:
     66     case BO_GE:
     67     case BO_EQ:   // Equality operators.
     68     case BO_NE:
     69     case BO_LAnd: // AND operator.
     70     case BO_LOr:  // Logical OR operator.
     71       return true;
     72 
     73     case BO_And:  // Bitwise AND operator.
     74     case BO_Xor:  // Bitwise XOR operator.
     75     case BO_Or:   // Bitwise OR operator.
     76       // Handle things like (x==2)|(y==12).
     77       return BO->getLHS()->isKnownToHaveBooleanValue() &&
     78              BO->getRHS()->isKnownToHaveBooleanValue();
     79 
     80     case BO_Comma:
     81     case BO_Assign:
     82       return BO->getRHS()->isKnownToHaveBooleanValue();
     83     }
     84   }
     85 
     86   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
     87     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
     88            CO->getFalseExpr()->isKnownToHaveBooleanValue();
     89 
     90   return false;
     91 }
     92 
     93 // Amusing macro metaprogramming hack: check whether a class provides
     94 // a more specific implementation of getExprLoc().
     95 namespace {
     96   /// This implementation is used when a class provides a custom
     97   /// implementation of getExprLoc.
     98   template <class E, class T>
     99   SourceLocation getExprLocImpl(const Expr *expr,
    100                                 SourceLocation (T::*v)() const) {
    101     return static_cast<const E*>(expr)->getExprLoc();
    102   }
    103 
    104   /// This implementation is used when a class doesn't provide
    105   /// a custom implementation of getExprLoc.  Overload resolution
    106   /// should pick it over the implementation above because it's
    107   /// more specialized according to function template partial ordering.
    108   template <class E>
    109   SourceLocation getExprLocImpl(const Expr *expr,
    110                                 SourceLocation (Expr::*v)() const) {
    111     return static_cast<const E*>(expr)->getSourceRange().getBegin();
    112   }
    113 }
    114 
    115 SourceLocation Expr::getExprLoc() const {
    116   switch (getStmtClass()) {
    117   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    118 #define ABSTRACT_STMT(type)
    119 #define STMT(type, base) \
    120   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
    121 #define EXPR(type, base) \
    122   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    123 #include "clang/AST/StmtNodes.inc"
    124   }
    125   llvm_unreachable("unknown statement kind");
    126   return SourceLocation();
    127 }
    128 
    129 //===----------------------------------------------------------------------===//
    130 // Primary Expressions.
    131 //===----------------------------------------------------------------------===//
    132 
    133 /// \brief Compute the type-, value-, and instantiation-dependence of a
    134 /// declaration reference
    135 /// based on the declaration being referenced.
    136 static void computeDeclRefDependence(NamedDecl *D, QualType T,
    137                                      bool &TypeDependent,
    138                                      bool &ValueDependent,
    139                                      bool &InstantiationDependent) {
    140   TypeDependent = false;
    141   ValueDependent = false;
    142   InstantiationDependent = false;
    143 
    144   // (TD) C++ [temp.dep.expr]p3:
    145   //   An id-expression is type-dependent if it contains:
    146   //
    147   // and
    148   //
    149   // (VD) C++ [temp.dep.constexpr]p2:
    150   //  An identifier is value-dependent if it is:
    151 
    152   //  (TD)  - an identifier that was declared with dependent type
    153   //  (VD)  - a name declared with a dependent type,
    154   if (T->isDependentType()) {
    155     TypeDependent = true;
    156     ValueDependent = true;
    157     InstantiationDependent = true;
    158     return;
    159   } else if (T->isInstantiationDependentType()) {
    160     InstantiationDependent = true;
    161   }
    162 
    163   //  (TD)  - a conversion-function-id that specifies a dependent type
    164   if (D->getDeclName().getNameKind()
    165                                 == DeclarationName::CXXConversionFunctionName) {
    166     QualType T = D->getDeclName().getCXXNameType();
    167     if (T->isDependentType()) {
    168       TypeDependent = true;
    169       ValueDependent = true;
    170       InstantiationDependent = true;
    171       return;
    172     }
    173 
    174     if (T->isInstantiationDependentType())
    175       InstantiationDependent = true;
    176   }
    177 
    178   //  (VD)  - the name of a non-type template parameter,
    179   if (isa<NonTypeTemplateParmDecl>(D)) {
    180     ValueDependent = true;
    181     InstantiationDependent = true;
    182     return;
    183   }
    184 
    185   //  (VD) - a constant with integral or enumeration type and is
    186   //         initialized with an expression that is value-dependent.
    187   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    188     if (Var->getType()->isIntegralOrEnumerationType() &&
    189         Var->getType().getCVRQualifiers() == Qualifiers::Const) {
    190       if (const Expr *Init = Var->getAnyInitializer())
    191         if (Init->isValueDependent()) {
    192           ValueDependent = true;
    193           InstantiationDependent = true;
    194         }
    195     }
    196 
    197     // (VD) - FIXME: Missing from the standard:
    198     //      -  a member function or a static data member of the current
    199     //         instantiation
    200     else if (Var->isStaticDataMember() &&
    201              Var->getDeclContext()->isDependentContext()) {
    202       ValueDependent = true;
    203       InstantiationDependent = true;
    204     }
    205 
    206     return;
    207   }
    208 
    209   // (VD) - FIXME: Missing from the standard:
    210   //      -  a member function or a static data member of the current
    211   //         instantiation
    212   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    213     ValueDependent = true;
    214     InstantiationDependent = true;
    215     return;
    216   }
    217 }
    218 
    219 void DeclRefExpr::computeDependence() {
    220   bool TypeDependent = false;
    221   bool ValueDependent = false;
    222   bool InstantiationDependent = false;
    223   computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent,
    224                            InstantiationDependent);
    225 
    226   // (TD) C++ [temp.dep.expr]p3:
    227   //   An id-expression is type-dependent if it contains:
    228   //
    229   // and
    230   //
    231   // (VD) C++ [temp.dep.constexpr]p2:
    232   //  An identifier is value-dependent if it is:
    233   if (!TypeDependent && !ValueDependent &&
    234       hasExplicitTemplateArgs() &&
    235       TemplateSpecializationType::anyDependentTemplateArguments(
    236                                                             getTemplateArgs(),
    237                                                        getNumTemplateArgs(),
    238                                                       InstantiationDependent)) {
    239     TypeDependent = true;
    240     ValueDependent = true;
    241     InstantiationDependent = true;
    242   }
    243 
    244   ExprBits.TypeDependent = TypeDependent;
    245   ExprBits.ValueDependent = ValueDependent;
    246   ExprBits.InstantiationDependent = InstantiationDependent;
    247 
    248   // Is the declaration a parameter pack?
    249   if (getDecl()->isParameterPack())
    250     ExprBits.ContainsUnexpandedParameterPack = true;
    251 }
    252 
    253 DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
    254                          ValueDecl *D, const DeclarationNameInfo &NameInfo,
    255                          NamedDecl *FoundD,
    256                          const TemplateArgumentListInfo *TemplateArgs,
    257                          QualType T, ExprValueKind VK)
    258   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    259     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    260   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    261   if (QualifierLoc)
    262     getInternalQualifierLoc() = QualifierLoc;
    263   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    264   if (FoundD)
    265     getInternalFoundDecl() = FoundD;
    266   DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0;
    267   if (TemplateArgs) {
    268     bool Dependent = false;
    269     bool InstantiationDependent = false;
    270     bool ContainsUnexpandedParameterPack = false;
    271     getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent,
    272                                              InstantiationDependent,
    273                                              ContainsUnexpandedParameterPack);
    274     if (InstantiationDependent)
    275       setInstantiationDependent(true);
    276   }
    277   DeclRefExprBits.HadMultipleCandidates = 0;
    278 
    279   computeDependence();
    280 }
    281 
    282 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    283                                  NestedNameSpecifierLoc QualifierLoc,
    284                                  ValueDecl *D,
    285                                  SourceLocation NameLoc,
    286                                  QualType T,
    287                                  ExprValueKind VK,
    288                                  NamedDecl *FoundD,
    289                                  const TemplateArgumentListInfo *TemplateArgs) {
    290   return Create(Context, QualifierLoc, D,
    291                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    292                 T, VK, FoundD, TemplateArgs);
    293 }
    294 
    295 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    296                                  NestedNameSpecifierLoc QualifierLoc,
    297                                  ValueDecl *D,
    298                                  const DeclarationNameInfo &NameInfo,
    299                                  QualType T,
    300                                  ExprValueKind VK,
    301                                  NamedDecl *FoundD,
    302                                  const TemplateArgumentListInfo *TemplateArgs) {
    303   // Filter out cases where the found Decl is the same as the value refenenced.
    304   if (D == FoundD)
    305     FoundD = 0;
    306 
    307   std::size_t Size = sizeof(DeclRefExpr);
    308   if (QualifierLoc != 0)
    309     Size += sizeof(NestedNameSpecifierLoc);
    310   if (FoundD)
    311     Size += sizeof(NamedDecl *);
    312   if (TemplateArgs)
    313     Size += ASTTemplateArgumentListInfo::sizeFor(*TemplateArgs);
    314 
    315   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    316   return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs,
    317                                T, VK);
    318 }
    319 
    320 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
    321                                       bool HasQualifier,
    322                                       bool HasFoundDecl,
    323                                       bool HasExplicitTemplateArgs,
    324                                       unsigned NumTemplateArgs) {
    325   std::size_t Size = sizeof(DeclRefExpr);
    326   if (HasQualifier)
    327     Size += sizeof(NestedNameSpecifierLoc);
    328   if (HasFoundDecl)
    329     Size += sizeof(NamedDecl *);
    330   if (HasExplicitTemplateArgs)
    331     Size += ASTTemplateArgumentListInfo::sizeFor(NumTemplateArgs);
    332 
    333   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    334   return new (Mem) DeclRefExpr(EmptyShell());
    335 }
    336 
    337 SourceRange DeclRefExpr::getSourceRange() const {
    338   SourceRange R = getNameInfo().getSourceRange();
    339   if (hasQualifier())
    340     R.setBegin(getQualifierLoc().getBeginLoc());
    341   if (hasExplicitTemplateArgs())
    342     R.setEnd(getRAngleLoc());
    343   return R;
    344 }
    345 
    346 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    347 // expr" policy instead.
    348 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    349   ASTContext &Context = CurrentDecl->getASTContext();
    350 
    351   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    352     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
    353       return FD->getNameAsString();
    354 
    355     llvm::SmallString<256> Name;
    356     llvm::raw_svector_ostream Out(Name);
    357 
    358     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    359       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    360         Out << "virtual ";
    361       if (MD->isStatic())
    362         Out << "static ";
    363     }
    364 
    365     PrintingPolicy Policy(Context.getLangOptions());
    366 
    367     std::string Proto = FD->getQualifiedNameAsString(Policy);
    368 
    369     const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
    370     const FunctionProtoType *FT = 0;
    371     if (FD->hasWrittenPrototype())
    372       FT = dyn_cast<FunctionProtoType>(AFT);
    373 
    374     Proto += "(";
    375     if (FT) {
    376       llvm::raw_string_ostream POut(Proto);
    377       for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    378         if (i) POut << ", ";
    379         std::string Param;
    380         FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
    381         POut << Param;
    382       }
    383 
    384       if (FT->isVariadic()) {
    385         if (FD->getNumParams()) POut << ", ";
    386         POut << "...";
    387       }
    388     }
    389     Proto += ")";
    390 
    391     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    392       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
    393       if (ThisQuals.hasConst())
    394         Proto += " const";
    395       if (ThisQuals.hasVolatile())
    396         Proto += " volatile";
    397     }
    398 
    399     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    400       AFT->getResultType().getAsStringInternal(Proto, Policy);
    401 
    402     Out << Proto;
    403 
    404     Out.flush();
    405     return Name.str().str();
    406   }
    407   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    408     llvm::SmallString<256> Name;
    409     llvm::raw_svector_ostream Out(Name);
    410     Out << (MD->isInstanceMethod() ? '-' : '+');
    411     Out << '[';
    412 
    413     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    414     // a null check to avoid a crash.
    415     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    416       Out << *ID;
    417 
    418     if (const ObjCCategoryImplDecl *CID =
    419         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    420       Out << '(' << CID << ')';
    421 
    422     Out <<  ' ';
    423     Out << MD->getSelector().getAsString();
    424     Out <<  ']';
    425 
    426     Out.flush();
    427     return Name.str().str();
    428   }
    429   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    430     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    431     return "top level";
    432   }
    433   return "";
    434 }
    435 
    436 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
    437   if (hasAllocation())
    438     C.Deallocate(pVal);
    439 
    440   BitWidth = Val.getBitWidth();
    441   unsigned NumWords = Val.getNumWords();
    442   const uint64_t* Words = Val.getRawData();
    443   if (NumWords > 1) {
    444     pVal = new (C) uint64_t[NumWords];
    445     std::copy(Words, Words + NumWords, pVal);
    446   } else if (NumWords == 1)
    447     VAL = Words[0];
    448   else
    449     VAL = 0;
    450 }
    451 
    452 IntegerLiteral *
    453 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
    454                        QualType type, SourceLocation l) {
    455   return new (C) IntegerLiteral(C, V, type, l);
    456 }
    457 
    458 IntegerLiteral *
    459 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
    460   return new (C) IntegerLiteral(Empty);
    461 }
    462 
    463 FloatingLiteral *
    464 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
    465                         bool isexact, QualType Type, SourceLocation L) {
    466   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    467 }
    468 
    469 FloatingLiteral *
    470 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
    471   return new (C) FloatingLiteral(Empty);
    472 }
    473 
    474 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    475 /// double.  Note that this may cause loss of precision, but is useful for
    476 /// debugging dumps, etc.
    477 double FloatingLiteral::getValueAsApproximateDouble() const {
    478   llvm::APFloat V = getValue();
    479   bool ignored;
    480   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    481             &ignored);
    482   return V.convertToDouble();
    483 }
    484 
    485 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
    486                                      StringKind Kind, bool Pascal, QualType Ty,
    487                                      const SourceLocation *Loc,
    488                                      unsigned NumStrs) {
    489   // Allocate enough space for the StringLiteral plus an array of locations for
    490   // any concatenated string tokens.
    491   void *Mem = C.Allocate(sizeof(StringLiteral)+
    492                          sizeof(SourceLocation)*(NumStrs-1),
    493                          llvm::alignOf<StringLiteral>());
    494   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    495 
    496   // OPTIMIZE: could allocate this appended to the StringLiteral.
    497   char *AStrData = new (C, 1) char[Str.size()];
    498   memcpy(AStrData, Str.data(), Str.size());
    499   SL->StrData = AStrData;
    500   SL->ByteLength = Str.size();
    501   SL->Kind = Kind;
    502   SL->IsPascal = Pascal;
    503   SL->TokLocs[0] = Loc[0];
    504   SL->NumConcatenated = NumStrs;
    505 
    506   if (NumStrs != 1)
    507     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    508   return SL;
    509 }
    510 
    511 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
    512   void *Mem = C.Allocate(sizeof(StringLiteral)+
    513                          sizeof(SourceLocation)*(NumStrs-1),
    514                          llvm::alignOf<StringLiteral>());
    515   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    516   SL->StrData = 0;
    517   SL->ByteLength = 0;
    518   SL->NumConcatenated = NumStrs;
    519   return SL;
    520 }
    521 
    522 void StringLiteral::setString(ASTContext &C, StringRef Str) {
    523   char *AStrData = new (C, 1) char[Str.size()];
    524   memcpy(AStrData, Str.data(), Str.size());
    525   StrData = AStrData;
    526   ByteLength = Str.size();
    527 }
    528 
    529 /// getLocationOfByte - Return a source location that points to the specified
    530 /// byte of this string literal.
    531 ///
    532 /// Strings are amazingly complex.  They can be formed from multiple tokens and
    533 /// can have escape sequences in them in addition to the usual trigraph and
    534 /// escaped newline business.  This routine handles this complexity.
    535 ///
    536 SourceLocation StringLiteral::
    537 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
    538                   const LangOptions &Features, const TargetInfo &Target) const {
    539   assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
    540 
    541   // Loop over all of the tokens in this string until we find the one that
    542   // contains the byte we're looking for.
    543   unsigned TokNo = 0;
    544   while (1) {
    545     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
    546     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
    547 
    548     // Get the spelling of the string so that we can get the data that makes up
    549     // the string literal, not the identifier for the macro it is potentially
    550     // expanded through.
    551     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
    552 
    553     // Re-lex the token to get its length and original spelling.
    554     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
    555     bool Invalid = false;
    556     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
    557     if (Invalid)
    558       return StrTokSpellingLoc;
    559 
    560     const char *StrData = Buffer.data()+LocInfo.second;
    561 
    562     // Create a langops struct and enable trigraphs.  This is sufficient for
    563     // relexing tokens.
    564     LangOptions LangOpts;
    565     LangOpts.Trigraphs = true;
    566 
    567     // Create a lexer starting at the beginning of this token.
    568     Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
    569                    Buffer.end());
    570     Token TheTok;
    571     TheLexer.LexFromRawLexer(TheTok);
    572 
    573     // Use the StringLiteralParser to compute the length of the string in bytes.
    574     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
    575     unsigned TokNumBytes = SLP.GetStringLength();
    576 
    577     // If the byte is in this token, return the location of the byte.
    578     if (ByteNo < TokNumBytes ||
    579         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
    580       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
    581 
    582       // Now that we know the offset of the token in the spelling, use the
    583       // preprocessor to get the offset in the original source.
    584       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
    585     }
    586 
    587     // Move to the next string token.
    588     ++TokNo;
    589     ByteNo -= TokNumBytes;
    590   }
    591 }
    592 
    593 
    594 
    595 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
    596 /// corresponds to, e.g. "sizeof" or "[pre]++".
    597 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
    598   switch (Op) {
    599   default: llvm_unreachable("Unknown unary operator");
    600   case UO_PostInc: return "++";
    601   case UO_PostDec: return "--";
    602   case UO_PreInc:  return "++";
    603   case UO_PreDec:  return "--";
    604   case UO_AddrOf:  return "&";
    605   case UO_Deref:   return "*";
    606   case UO_Plus:    return "+";
    607   case UO_Minus:   return "-";
    608   case UO_Not:     return "~";
    609   case UO_LNot:    return "!";
    610   case UO_Real:    return "__real";
    611   case UO_Imag:    return "__imag";
    612   case UO_Extension: return "__extension__";
    613   }
    614 }
    615 
    616 UnaryOperatorKind
    617 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
    618   switch (OO) {
    619   default: llvm_unreachable("No unary operator for overloaded function");
    620   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
    621   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
    622   case OO_Amp:        return UO_AddrOf;
    623   case OO_Star:       return UO_Deref;
    624   case OO_Plus:       return UO_Plus;
    625   case OO_Minus:      return UO_Minus;
    626   case OO_Tilde:      return UO_Not;
    627   case OO_Exclaim:    return UO_LNot;
    628   }
    629 }
    630 
    631 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
    632   switch (Opc) {
    633   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
    634   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
    635   case UO_AddrOf: return OO_Amp;
    636   case UO_Deref: return OO_Star;
    637   case UO_Plus: return OO_Plus;
    638   case UO_Minus: return OO_Minus;
    639   case UO_Not: return OO_Tilde;
    640   case UO_LNot: return OO_Exclaim;
    641   default: return OO_None;
    642   }
    643 }
    644 
    645 
    646 //===----------------------------------------------------------------------===//
    647 // Postfix Operators.
    648 //===----------------------------------------------------------------------===//
    649 
    650 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
    651                    Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
    652                    SourceLocation rparenloc)
    653   : Expr(SC, t, VK, OK_Ordinary,
    654          fn->isTypeDependent(),
    655          fn->isValueDependent(),
    656          fn->isInstantiationDependent(),
    657          fn->containsUnexpandedParameterPack()),
    658     NumArgs(numargs) {
    659 
    660   SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
    661   SubExprs[FN] = fn;
    662   for (unsigned i = 0; i != numargs; ++i) {
    663     if (args[i]->isTypeDependent())
    664       ExprBits.TypeDependent = true;
    665     if (args[i]->isValueDependent())
    666       ExprBits.ValueDependent = true;
    667     if (args[i]->isInstantiationDependent())
    668       ExprBits.InstantiationDependent = true;
    669     if (args[i]->containsUnexpandedParameterPack())
    670       ExprBits.ContainsUnexpandedParameterPack = true;
    671 
    672     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
    673   }
    674 
    675   CallExprBits.NumPreArgs = NumPreArgs;
    676   RParenLoc = rparenloc;
    677 }
    678 
    679 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
    680                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
    681   : Expr(CallExprClass, t, VK, OK_Ordinary,
    682          fn->isTypeDependent(),
    683          fn->isValueDependent(),
    684          fn->isInstantiationDependent(),
    685          fn->containsUnexpandedParameterPack()),
    686     NumArgs(numargs) {
    687 
    688   SubExprs = new (C) Stmt*[numargs+PREARGS_START];
    689   SubExprs[FN] = fn;
    690   for (unsigned i = 0; i != numargs; ++i) {
    691     if (args[i]->isTypeDependent())
    692       ExprBits.TypeDependent = true;
    693     if (args[i]->isValueDependent())
    694       ExprBits.ValueDependent = true;
    695     if (args[i]->isInstantiationDependent())
    696       ExprBits.InstantiationDependent = true;
    697     if (args[i]->containsUnexpandedParameterPack())
    698       ExprBits.ContainsUnexpandedParameterPack = true;
    699 
    700     SubExprs[i+PREARGS_START] = args[i];
    701   }
    702 
    703   CallExprBits.NumPreArgs = 0;
    704   RParenLoc = rparenloc;
    705 }
    706 
    707 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
    708   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
    709   // FIXME: Why do we allocate this?
    710   SubExprs = new (C) Stmt*[PREARGS_START];
    711   CallExprBits.NumPreArgs = 0;
    712 }
    713 
    714 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
    715                    EmptyShell Empty)
    716   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
    717   // FIXME: Why do we allocate this?
    718   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
    719   CallExprBits.NumPreArgs = NumPreArgs;
    720 }
    721 
    722 Decl *CallExpr::getCalleeDecl() {
    723   Expr *CEE = getCallee()->IgnoreParenImpCasts();
    724 
    725   while (SubstNonTypeTemplateParmExpr *NTTP
    726                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
    727     CEE = NTTP->getReplacement()->IgnoreParenCasts();
    728   }
    729 
    730   // If we're calling a dereference, look at the pointer instead.
    731   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
    732     if (BO->isPtrMemOp())
    733       CEE = BO->getRHS()->IgnoreParenCasts();
    734   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
    735     if (UO->getOpcode() == UO_Deref)
    736       CEE = UO->getSubExpr()->IgnoreParenCasts();
    737   }
    738   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
    739     return DRE->getDecl();
    740   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
    741     return ME->getMemberDecl();
    742 
    743   return 0;
    744 }
    745 
    746 FunctionDecl *CallExpr::getDirectCallee() {
    747   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
    748 }
    749 
    750 /// setNumArgs - This changes the number of arguments present in this call.
    751 /// Any orphaned expressions are deleted by this, and any new operands are set
    752 /// to null.
    753 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
    754   // No change, just return.
    755   if (NumArgs == getNumArgs()) return;
    756 
    757   // If shrinking # arguments, just delete the extras and forgot them.
    758   if (NumArgs < getNumArgs()) {
    759     this->NumArgs = NumArgs;
    760     return;
    761   }
    762 
    763   // Otherwise, we are growing the # arguments.  New an bigger argument array.
    764   unsigned NumPreArgs = getNumPreArgs();
    765   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
    766   // Copy over args.
    767   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
    768     NewSubExprs[i] = SubExprs[i];
    769   // Null out new args.
    770   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
    771        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
    772     NewSubExprs[i] = 0;
    773 
    774   if (SubExprs) C.Deallocate(SubExprs);
    775   SubExprs = NewSubExprs;
    776   this->NumArgs = NumArgs;
    777 }
    778 
    779 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
    780 /// not, return 0.
    781 unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
    782   // All simple function calls (e.g. func()) are implicitly cast to pointer to
    783   // function. As a result, we try and obtain the DeclRefExpr from the
    784   // ImplicitCastExpr.
    785   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
    786   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
    787     return 0;
    788 
    789   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
    790   if (!DRE)
    791     return 0;
    792 
    793   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
    794   if (!FDecl)
    795     return 0;
    796 
    797   if (!FDecl->getIdentifier())
    798     return 0;
    799 
    800   return FDecl->getBuiltinID();
    801 }
    802 
    803 QualType CallExpr::getCallReturnType() const {
    804   QualType CalleeType = getCallee()->getType();
    805   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
    806     CalleeType = FnTypePtr->getPointeeType();
    807   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
    808     CalleeType = BPT->getPointeeType();
    809   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
    810     // This should never be overloaded and so should never return null.
    811     CalleeType = Expr::findBoundMemberType(getCallee());
    812 
    813   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
    814   return FnType->getResultType();
    815 }
    816 
    817 SourceRange CallExpr::getSourceRange() const {
    818   if (isa<CXXOperatorCallExpr>(this))
    819     return cast<CXXOperatorCallExpr>(this)->getSourceRange();
    820 
    821   SourceLocation begin = getCallee()->getLocStart();
    822   if (begin.isInvalid() && getNumArgs() > 0)
    823     begin = getArg(0)->getLocStart();
    824   SourceLocation end = getRParenLoc();
    825   if (end.isInvalid() && getNumArgs() > 0)
    826     end = getArg(getNumArgs() - 1)->getLocEnd();
    827   return SourceRange(begin, end);
    828 }
    829 
    830 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
    831                                    SourceLocation OperatorLoc,
    832                                    TypeSourceInfo *tsi,
    833                                    OffsetOfNode* compsPtr, unsigned numComps,
    834                                    Expr** exprsPtr, unsigned numExprs,
    835                                    SourceLocation RParenLoc) {
    836   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
    837                          sizeof(OffsetOfNode) * numComps +
    838                          sizeof(Expr*) * numExprs);
    839 
    840   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
    841                                 exprsPtr, numExprs, RParenLoc);
    842 }
    843 
    844 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
    845                                         unsigned numComps, unsigned numExprs) {
    846   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
    847                          sizeof(OffsetOfNode) * numComps +
    848                          sizeof(Expr*) * numExprs);
    849   return new (Mem) OffsetOfExpr(numComps, numExprs);
    850 }
    851 
    852 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
    853                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
    854                            OffsetOfNode* compsPtr, unsigned numComps,
    855                            Expr** exprsPtr, unsigned numExprs,
    856                            SourceLocation RParenLoc)
    857   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
    858          /*TypeDependent=*/false,
    859          /*ValueDependent=*/tsi->getType()->isDependentType(),
    860          tsi->getType()->isInstantiationDependentType(),
    861          tsi->getType()->containsUnexpandedParameterPack()),
    862     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
    863     NumComps(numComps), NumExprs(numExprs)
    864 {
    865   for(unsigned i = 0; i < numComps; ++i) {
    866     setComponent(i, compsPtr[i]);
    867   }
    868 
    869   for(unsigned i = 0; i < numExprs; ++i) {
    870     if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
    871       ExprBits.ValueDependent = true;
    872     if (exprsPtr[i]->containsUnexpandedParameterPack())
    873       ExprBits.ContainsUnexpandedParameterPack = true;
    874 
    875     setIndexExpr(i, exprsPtr[i]);
    876   }
    877 }
    878 
    879 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
    880   assert(getKind() == Field || getKind() == Identifier);
    881   if (getKind() == Field)
    882     return getField()->getIdentifier();
    883 
    884   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
    885 }
    886 
    887 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
    888                                NestedNameSpecifierLoc QualifierLoc,
    889                                ValueDecl *memberdecl,
    890                                DeclAccessPair founddecl,
    891                                DeclarationNameInfo nameinfo,
    892                                const TemplateArgumentListInfo *targs,
    893                                QualType ty,
    894                                ExprValueKind vk,
    895                                ExprObjectKind ok) {
    896   std::size_t Size = sizeof(MemberExpr);
    897 
    898   bool hasQualOrFound = (QualifierLoc ||
    899                          founddecl.getDecl() != memberdecl ||
    900                          founddecl.getAccess() != memberdecl->getAccess());
    901   if (hasQualOrFound)
    902     Size += sizeof(MemberNameQualifier);
    903 
    904   if (targs)
    905     Size += ASTTemplateArgumentListInfo::sizeFor(*targs);
    906 
    907   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
    908   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
    909                                        ty, vk, ok);
    910 
    911   if (hasQualOrFound) {
    912     // FIXME: Wrong. We should be looking at the member declaration we found.
    913     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
    914       E->setValueDependent(true);
    915       E->setTypeDependent(true);
    916       E->setInstantiationDependent(true);
    917     }
    918     else if (QualifierLoc &&
    919              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
    920       E->setInstantiationDependent(true);
    921 
    922     E->HasQualifierOrFoundDecl = true;
    923 
    924     MemberNameQualifier *NQ = E->getMemberQualifier();
    925     NQ->QualifierLoc = QualifierLoc;
    926     NQ->FoundDecl = founddecl;
    927   }
    928 
    929   if (targs) {
    930     bool Dependent = false;
    931     bool InstantiationDependent = false;
    932     bool ContainsUnexpandedParameterPack = false;
    933     E->HasExplicitTemplateArgumentList = true;
    934     E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent,
    935                                                 InstantiationDependent,
    936                                               ContainsUnexpandedParameterPack);
    937     if (InstantiationDependent)
    938       E->setInstantiationDependent(true);
    939   }
    940 
    941   return E;
    942 }
    943 
    944 SourceRange MemberExpr::getSourceRange() const {
    945   SourceLocation StartLoc;
    946   if (isImplicitAccess()) {
    947     if (hasQualifier())
    948       StartLoc = getQualifierLoc().getBeginLoc();
    949     else
    950       StartLoc = MemberLoc;
    951   } else {
    952     // FIXME: We don't want this to happen. Rather, we should be able to
    953     // detect all kinds of implicit accesses more cleanly.
    954     StartLoc = getBase()->getLocStart();
    955     if (StartLoc.isInvalid())
    956       StartLoc = MemberLoc;
    957   }
    958 
    959   SourceLocation EndLoc =
    960     HasExplicitTemplateArgumentList? getRAngleLoc()
    961                                    : getMemberNameInfo().getEndLoc();
    962 
    963   return SourceRange(StartLoc, EndLoc);
    964 }
    965 
    966 void CastExpr::CheckCastConsistency() const {
    967   switch (getCastKind()) {
    968   case CK_DerivedToBase:
    969   case CK_UncheckedDerivedToBase:
    970   case CK_DerivedToBaseMemberPointer:
    971   case CK_BaseToDerived:
    972   case CK_BaseToDerivedMemberPointer:
    973     assert(!path_empty() && "Cast kind should have a base path!");
    974     break;
    975 
    976   case CK_CPointerToObjCPointerCast:
    977     assert(getType()->isObjCObjectPointerType());
    978     assert(getSubExpr()->getType()->isPointerType());
    979     goto CheckNoBasePath;
    980 
    981   case CK_BlockPointerToObjCPointerCast:
    982     assert(getType()->isObjCObjectPointerType());
    983     assert(getSubExpr()->getType()->isBlockPointerType());
    984     goto CheckNoBasePath;
    985 
    986   case CK_BitCast:
    987     // Arbitrary casts to C pointer types count as bitcasts.
    988     // Otherwise, we should only have block and ObjC pointer casts
    989     // here if they stay within the type kind.
    990     if (!getType()->isPointerType()) {
    991       assert(getType()->isObjCObjectPointerType() ==
    992              getSubExpr()->getType()->isObjCObjectPointerType());
    993       assert(getType()->isBlockPointerType() ==
    994              getSubExpr()->getType()->isBlockPointerType());
    995     }
    996     goto CheckNoBasePath;
    997 
    998   case CK_AnyPointerToBlockPointerCast:
    999     assert(getType()->isBlockPointerType());
   1000     assert(getSubExpr()->getType()->isAnyPointerType() &&
   1001            !getSubExpr()->getType()->isBlockPointerType());
   1002     goto CheckNoBasePath;
   1003 
   1004   // These should not have an inheritance path.
   1005   case CK_Dynamic:
   1006   case CK_ToUnion:
   1007   case CK_ArrayToPointerDecay:
   1008   case CK_FunctionToPointerDecay:
   1009   case CK_NullToMemberPointer:
   1010   case CK_NullToPointer:
   1011   case CK_ConstructorConversion:
   1012   case CK_IntegralToPointer:
   1013   case CK_PointerToIntegral:
   1014   case CK_ToVoid:
   1015   case CK_VectorSplat:
   1016   case CK_IntegralCast:
   1017   case CK_IntegralToFloating:
   1018   case CK_FloatingToIntegral:
   1019   case CK_FloatingCast:
   1020   case CK_ObjCObjectLValueCast:
   1021   case CK_FloatingRealToComplex:
   1022   case CK_FloatingComplexToReal:
   1023   case CK_FloatingComplexCast:
   1024   case CK_FloatingComplexToIntegralComplex:
   1025   case CK_IntegralRealToComplex:
   1026   case CK_IntegralComplexToReal:
   1027   case CK_IntegralComplexCast:
   1028   case CK_IntegralComplexToFloatingComplex:
   1029   case CK_ARCProduceObject:
   1030   case CK_ARCConsumeObject:
   1031   case CK_ARCReclaimReturnedObject:
   1032   case CK_ARCExtendBlockObject:
   1033     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
   1034     goto CheckNoBasePath;
   1035 
   1036   case CK_Dependent:
   1037   case CK_LValueToRValue:
   1038   case CK_GetObjCProperty:
   1039   case CK_NoOp:
   1040   case CK_PointerToBoolean:
   1041   case CK_IntegralToBoolean:
   1042   case CK_FloatingToBoolean:
   1043   case CK_MemberPointerToBoolean:
   1044   case CK_FloatingComplexToBoolean:
   1045   case CK_IntegralComplexToBoolean:
   1046   case CK_LValueBitCast:            // -> bool&
   1047   case CK_UserDefinedConversion:    // operator bool()
   1048   CheckNoBasePath:
   1049     assert(path_empty() && "Cast kind should not have a base path!");
   1050     break;
   1051   }
   1052 }
   1053 
   1054 const char *CastExpr::getCastKindName() const {
   1055   switch (getCastKind()) {
   1056   case CK_Dependent:
   1057     return "Dependent";
   1058   case CK_BitCast:
   1059     return "BitCast";
   1060   case CK_LValueBitCast:
   1061     return "LValueBitCast";
   1062   case CK_LValueToRValue:
   1063     return "LValueToRValue";
   1064   case CK_GetObjCProperty:
   1065     return "GetObjCProperty";
   1066   case CK_NoOp:
   1067     return "NoOp";
   1068   case CK_BaseToDerived:
   1069     return "BaseToDerived";
   1070   case CK_DerivedToBase:
   1071     return "DerivedToBase";
   1072   case CK_UncheckedDerivedToBase:
   1073     return "UncheckedDerivedToBase";
   1074   case CK_Dynamic:
   1075     return "Dynamic";
   1076   case CK_ToUnion:
   1077     return "ToUnion";
   1078   case CK_ArrayToPointerDecay:
   1079     return "ArrayToPointerDecay";
   1080   case CK_FunctionToPointerDecay:
   1081     return "FunctionToPointerDecay";
   1082   case CK_NullToMemberPointer:
   1083     return "NullToMemberPointer";
   1084   case CK_NullToPointer:
   1085     return "NullToPointer";
   1086   case CK_BaseToDerivedMemberPointer:
   1087     return "BaseToDerivedMemberPointer";
   1088   case CK_DerivedToBaseMemberPointer:
   1089     return "DerivedToBaseMemberPointer";
   1090   case CK_UserDefinedConversion:
   1091     return "UserDefinedConversion";
   1092   case CK_ConstructorConversion:
   1093     return "ConstructorConversion";
   1094   case CK_IntegralToPointer:
   1095     return "IntegralToPointer";
   1096   case CK_PointerToIntegral:
   1097     return "PointerToIntegral";
   1098   case CK_PointerToBoolean:
   1099     return "PointerToBoolean";
   1100   case CK_ToVoid:
   1101     return "ToVoid";
   1102   case CK_VectorSplat:
   1103     return "VectorSplat";
   1104   case CK_IntegralCast:
   1105     return "IntegralCast";
   1106   case CK_IntegralToBoolean:
   1107     return "IntegralToBoolean";
   1108   case CK_IntegralToFloating:
   1109     return "IntegralToFloating";
   1110   case CK_FloatingToIntegral:
   1111     return "FloatingToIntegral";
   1112   case CK_FloatingCast:
   1113     return "FloatingCast";
   1114   case CK_FloatingToBoolean:
   1115     return "FloatingToBoolean";
   1116   case CK_MemberPointerToBoolean:
   1117     return "MemberPointerToBoolean";
   1118   case CK_CPointerToObjCPointerCast:
   1119     return "CPointerToObjCPointerCast";
   1120   case CK_BlockPointerToObjCPointerCast:
   1121     return "BlockPointerToObjCPointerCast";
   1122   case CK_AnyPointerToBlockPointerCast:
   1123     return "AnyPointerToBlockPointerCast";
   1124   case CK_ObjCObjectLValueCast:
   1125     return "ObjCObjectLValueCast";
   1126   case CK_FloatingRealToComplex:
   1127     return "FloatingRealToComplex";
   1128   case CK_FloatingComplexToReal:
   1129     return "FloatingComplexToReal";
   1130   case CK_FloatingComplexToBoolean:
   1131     return "FloatingComplexToBoolean";
   1132   case CK_FloatingComplexCast:
   1133     return "FloatingComplexCast";
   1134   case CK_FloatingComplexToIntegralComplex:
   1135     return "FloatingComplexToIntegralComplex";
   1136   case CK_IntegralRealToComplex:
   1137     return "IntegralRealToComplex";
   1138   case CK_IntegralComplexToReal:
   1139     return "IntegralComplexToReal";
   1140   case CK_IntegralComplexToBoolean:
   1141     return "IntegralComplexToBoolean";
   1142   case CK_IntegralComplexCast:
   1143     return "IntegralComplexCast";
   1144   case CK_IntegralComplexToFloatingComplex:
   1145     return "IntegralComplexToFloatingComplex";
   1146   case CK_ARCConsumeObject:
   1147     return "ARCConsumeObject";
   1148   case CK_ARCProduceObject:
   1149     return "ARCProduceObject";
   1150   case CK_ARCReclaimReturnedObject:
   1151     return "ARCReclaimReturnedObject";
   1152   case CK_ARCExtendBlockObject:
   1153     return "ARCCExtendBlockObject";
   1154   }
   1155 
   1156   llvm_unreachable("Unhandled cast kind!");
   1157   return 0;
   1158 }
   1159 
   1160 Expr *CastExpr::getSubExprAsWritten() {
   1161   Expr *SubExpr = 0;
   1162   CastExpr *E = this;
   1163   do {
   1164     SubExpr = E->getSubExpr();
   1165 
   1166     // Skip through reference binding to temporary.
   1167     if (MaterializeTemporaryExpr *Materialize
   1168                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1169       SubExpr = Materialize->GetTemporaryExpr();
   1170 
   1171     // Skip any temporary bindings; they're implicit.
   1172     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1173       SubExpr = Binder->getSubExpr();
   1174 
   1175     // Conversions by constructor and conversion functions have a
   1176     // subexpression describing the call; strip it off.
   1177     if (E->getCastKind() == CK_ConstructorConversion)
   1178       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1179     else if (E->getCastKind() == CK_UserDefinedConversion)
   1180       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1181 
   1182     // If the subexpression we're left with is an implicit cast, look
   1183     // through that, too.
   1184   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1185 
   1186   return SubExpr;
   1187 }
   1188 
   1189 CXXBaseSpecifier **CastExpr::path_buffer() {
   1190   switch (getStmtClass()) {
   1191 #define ABSTRACT_STMT(x)
   1192 #define CASTEXPR(Type, Base) \
   1193   case Stmt::Type##Class: \
   1194     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
   1195 #define STMT(Type, Base)
   1196 #include "clang/AST/StmtNodes.inc"
   1197   default:
   1198     llvm_unreachable("non-cast expressions not possible here");
   1199     return 0;
   1200   }
   1201 }
   1202 
   1203 void CastExpr::setCastPath(const CXXCastPath &Path) {
   1204   assert(Path.size() == path_size());
   1205   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
   1206 }
   1207 
   1208 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
   1209                                            CastKind Kind, Expr *Operand,
   1210                                            const CXXCastPath *BasePath,
   1211                                            ExprValueKind VK) {
   1212   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1213   void *Buffer =
   1214     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1215   ImplicitCastExpr *E =
   1216     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1217   if (PathSize) E->setCastPath(*BasePath);
   1218   return E;
   1219 }
   1220 
   1221 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
   1222                                                 unsigned PathSize) {
   1223   void *Buffer =
   1224     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1225   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1226 }
   1227 
   1228 
   1229 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
   1230                                        ExprValueKind VK, CastKind K, Expr *Op,
   1231                                        const CXXCastPath *BasePath,
   1232                                        TypeSourceInfo *WrittenTy,
   1233                                        SourceLocation L, SourceLocation R) {
   1234   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1235   void *Buffer =
   1236     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1237   CStyleCastExpr *E =
   1238     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1239   if (PathSize) E->setCastPath(*BasePath);
   1240   return E;
   1241 }
   1242 
   1243 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
   1244   void *Buffer =
   1245     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1246   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1247 }
   1248 
   1249 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1250 /// corresponds to, e.g. "<<=".
   1251 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
   1252   switch (Op) {
   1253   case BO_PtrMemD:   return ".*";
   1254   case BO_PtrMemI:   return "->*";
   1255   case BO_Mul:       return "*";
   1256   case BO_Div:       return "/";
   1257   case BO_Rem:       return "%";
   1258   case BO_Add:       return "+";
   1259   case BO_Sub:       return "-";
   1260   case BO_Shl:       return "<<";
   1261   case BO_Shr:       return ">>";
   1262   case BO_LT:        return "<";
   1263   case BO_GT:        return ">";
   1264   case BO_LE:        return "<=";
   1265   case BO_GE:        return ">=";
   1266   case BO_EQ:        return "==";
   1267   case BO_NE:        return "!=";
   1268   case BO_And:       return "&";
   1269   case BO_Xor:       return "^";
   1270   case BO_Or:        return "|";
   1271   case BO_LAnd:      return "&&";
   1272   case BO_LOr:       return "||";
   1273   case BO_Assign:    return "=";
   1274   case BO_MulAssign: return "*=";
   1275   case BO_DivAssign: return "/=";
   1276   case BO_RemAssign: return "%=";
   1277   case BO_AddAssign: return "+=";
   1278   case BO_SubAssign: return "-=";
   1279   case BO_ShlAssign: return "<<=";
   1280   case BO_ShrAssign: return ">>=";
   1281   case BO_AndAssign: return "&=";
   1282   case BO_XorAssign: return "^=";
   1283   case BO_OrAssign:  return "|=";
   1284   case BO_Comma:     return ",";
   1285   }
   1286 
   1287   return "";
   1288 }
   1289 
   1290 BinaryOperatorKind
   1291 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1292   switch (OO) {
   1293   default: llvm_unreachable("Not an overloadable binary operator");
   1294   case OO_Plus: return BO_Add;
   1295   case OO_Minus: return BO_Sub;
   1296   case OO_Star: return BO_Mul;
   1297   case OO_Slash: return BO_Div;
   1298   case OO_Percent: return BO_Rem;
   1299   case OO_Caret: return BO_Xor;
   1300   case OO_Amp: return BO_And;
   1301   case OO_Pipe: return BO_Or;
   1302   case OO_Equal: return BO_Assign;
   1303   case OO_Less: return BO_LT;
   1304   case OO_Greater: return BO_GT;
   1305   case OO_PlusEqual: return BO_AddAssign;
   1306   case OO_MinusEqual: return BO_SubAssign;
   1307   case OO_StarEqual: return BO_MulAssign;
   1308   case OO_SlashEqual: return BO_DivAssign;
   1309   case OO_PercentEqual: return BO_RemAssign;
   1310   case OO_CaretEqual: return BO_XorAssign;
   1311   case OO_AmpEqual: return BO_AndAssign;
   1312   case OO_PipeEqual: return BO_OrAssign;
   1313   case OO_LessLess: return BO_Shl;
   1314   case OO_GreaterGreater: return BO_Shr;
   1315   case OO_LessLessEqual: return BO_ShlAssign;
   1316   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1317   case OO_EqualEqual: return BO_EQ;
   1318   case OO_ExclaimEqual: return BO_NE;
   1319   case OO_LessEqual: return BO_LE;
   1320   case OO_GreaterEqual: return BO_GE;
   1321   case OO_AmpAmp: return BO_LAnd;
   1322   case OO_PipePipe: return BO_LOr;
   1323   case OO_Comma: return BO_Comma;
   1324   case OO_ArrowStar: return BO_PtrMemI;
   1325   }
   1326 }
   1327 
   1328 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1329   static const OverloadedOperatorKind OverOps[] = {
   1330     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1331     OO_Star, OO_Slash, OO_Percent,
   1332     OO_Plus, OO_Minus,
   1333     OO_LessLess, OO_GreaterGreater,
   1334     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1335     OO_EqualEqual, OO_ExclaimEqual,
   1336     OO_Amp,
   1337     OO_Caret,
   1338     OO_Pipe,
   1339     OO_AmpAmp,
   1340     OO_PipePipe,
   1341     OO_Equal, OO_StarEqual,
   1342     OO_SlashEqual, OO_PercentEqual,
   1343     OO_PlusEqual, OO_MinusEqual,
   1344     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1345     OO_AmpEqual, OO_CaretEqual,
   1346     OO_PipeEqual,
   1347     OO_Comma
   1348   };
   1349   return OverOps[Opc];
   1350 }
   1351 
   1352 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
   1353                            Expr **initExprs, unsigned numInits,
   1354                            SourceLocation rbraceloc)
   1355   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1356          false, false),
   1357     InitExprs(C, numInits),
   1358     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
   1359     HadArrayRangeDesignator(false)
   1360 {
   1361   for (unsigned I = 0; I != numInits; ++I) {
   1362     if (initExprs[I]->isTypeDependent())
   1363       ExprBits.TypeDependent = true;
   1364     if (initExprs[I]->isValueDependent())
   1365       ExprBits.ValueDependent = true;
   1366     if (initExprs[I]->isInstantiationDependent())
   1367       ExprBits.InstantiationDependent = true;
   1368     if (initExprs[I]->containsUnexpandedParameterPack())
   1369       ExprBits.ContainsUnexpandedParameterPack = true;
   1370   }
   1371 
   1372   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
   1373 }
   1374 
   1375 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
   1376   if (NumInits > InitExprs.size())
   1377     InitExprs.reserve(C, NumInits);
   1378 }
   1379 
   1380 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
   1381   InitExprs.resize(C, NumInits, 0);
   1382 }
   1383 
   1384 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
   1385   if (Init >= InitExprs.size()) {
   1386     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
   1387     InitExprs.back() = expr;
   1388     return 0;
   1389   }
   1390 
   1391   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1392   InitExprs[Init] = expr;
   1393   return Result;
   1394 }
   1395 
   1396 void InitListExpr::setArrayFiller(Expr *filler) {
   1397   ArrayFillerOrUnionFieldInit = filler;
   1398   // Fill out any "holes" in the array due to designated initializers.
   1399   Expr **inits = getInits();
   1400   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1401     if (inits[i] == 0)
   1402       inits[i] = filler;
   1403 }
   1404 
   1405 SourceRange InitListExpr::getSourceRange() const {
   1406   if (SyntacticForm)
   1407     return SyntacticForm->getSourceRange();
   1408   SourceLocation Beg = LBraceLoc, End = RBraceLoc;
   1409   if (Beg.isInvalid()) {
   1410     // Find the first non-null initializer.
   1411     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1412                                      E = InitExprs.end();
   1413       I != E; ++I) {
   1414       if (Stmt *S = *I) {
   1415         Beg = S->getLocStart();
   1416         break;
   1417       }
   1418     }
   1419   }
   1420   if (End.isInvalid()) {
   1421     // Find the first non-null initializer from the end.
   1422     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   1423                                              E = InitExprs.rend();
   1424       I != E; ++I) {
   1425       if (Stmt *S = *I) {
   1426         End = S->getSourceRange().getEnd();
   1427         break;
   1428       }
   1429     }
   1430   }
   1431   return SourceRange(Beg, End);
   1432 }
   1433 
   1434 /// getFunctionType - Return the underlying function type for this block.
   1435 ///
   1436 const FunctionType *BlockExpr::getFunctionType() const {
   1437   return getType()->getAs<BlockPointerType>()->
   1438                     getPointeeType()->getAs<FunctionType>();
   1439 }
   1440 
   1441 SourceLocation BlockExpr::getCaretLocation() const {
   1442   return TheBlock->getCaretLocation();
   1443 }
   1444 const Stmt *BlockExpr::getBody() const {
   1445   return TheBlock->getBody();
   1446 }
   1447 Stmt *BlockExpr::getBody() {
   1448   return TheBlock->getBody();
   1449 }
   1450 
   1451 
   1452 //===----------------------------------------------------------------------===//
   1453 // Generic Expression Routines
   1454 //===----------------------------------------------------------------------===//
   1455 
   1456 /// isUnusedResultAWarning - Return true if this immediate expression should
   1457 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   1458 /// with location to warn on and the source range[s] to report with the
   1459 /// warning.
   1460 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
   1461                                   SourceRange &R2, ASTContext &Ctx) const {
   1462   // Don't warn if the expr is type dependent. The type could end up
   1463   // instantiating to void.
   1464   if (isTypeDependent())
   1465     return false;
   1466 
   1467   switch (getStmtClass()) {
   1468   default:
   1469     if (getType()->isVoidType())
   1470       return false;
   1471     Loc = getExprLoc();
   1472     R1 = getSourceRange();
   1473     return true;
   1474   case ParenExprClass:
   1475     return cast<ParenExpr>(this)->getSubExpr()->
   1476       isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1477   case GenericSelectionExprClass:
   1478     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   1479       isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1480   case UnaryOperatorClass: {
   1481     const UnaryOperator *UO = cast<UnaryOperator>(this);
   1482 
   1483     switch (UO->getOpcode()) {
   1484     default: break;
   1485     case UO_PostInc:
   1486     case UO_PostDec:
   1487     case UO_PreInc:
   1488     case UO_PreDec:                 // ++/--
   1489       return false;  // Not a warning.
   1490     case UO_Deref:
   1491       // Dereferencing a volatile pointer is a side-effect.
   1492       if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1493         return false;
   1494       break;
   1495     case UO_Real:
   1496     case UO_Imag:
   1497       // accessing a piece of a volatile complex is a side-effect.
   1498       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   1499           .isVolatileQualified())
   1500         return false;
   1501       break;
   1502     case UO_Extension:
   1503       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1504     }
   1505     Loc = UO->getOperatorLoc();
   1506     R1 = UO->getSubExpr()->getSourceRange();
   1507     return true;
   1508   }
   1509   case BinaryOperatorClass: {
   1510     const BinaryOperator *BO = cast<BinaryOperator>(this);
   1511     switch (BO->getOpcode()) {
   1512       default:
   1513         break;
   1514       // Consider the RHS of comma for side effects. LHS was checked by
   1515       // Sema::CheckCommaOperands.
   1516       case BO_Comma:
   1517         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   1518         // lvalue-ness) of an assignment written in a macro.
   1519         if (IntegerLiteral *IE =
   1520               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   1521           if (IE->getValue() == 0)
   1522             return false;
   1523         return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1524       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   1525       case BO_LAnd:
   1526       case BO_LOr:
   1527         if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
   1528             !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
   1529           return false;
   1530         break;
   1531     }
   1532     if (BO->isAssignmentOp())
   1533       return false;
   1534     Loc = BO->getOperatorLoc();
   1535     R1 = BO->getLHS()->getSourceRange();
   1536     R2 = BO->getRHS()->getSourceRange();
   1537     return true;
   1538   }
   1539   case CompoundAssignOperatorClass:
   1540   case VAArgExprClass:
   1541   case AtomicExprClass:
   1542     return false;
   1543 
   1544   case ConditionalOperatorClass: {
   1545     // If only one of the LHS or RHS is a warning, the operator might
   1546     // be being used for control flow. Only warn if both the LHS and
   1547     // RHS are warnings.
   1548     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   1549     if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
   1550       return false;
   1551     if (!Exp->getLHS())
   1552       return true;
   1553     return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1554   }
   1555 
   1556   case MemberExprClass:
   1557     // If the base pointer or element is to a volatile pointer/field, accessing
   1558     // it is a side effect.
   1559     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1560       return false;
   1561     Loc = cast<MemberExpr>(this)->getMemberLoc();
   1562     R1 = SourceRange(Loc, Loc);
   1563     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   1564     return true;
   1565 
   1566   case ArraySubscriptExprClass:
   1567     // If the base pointer or element is to a volatile pointer/field, accessing
   1568     // it is a side effect.
   1569     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1570       return false;
   1571     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   1572     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   1573     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   1574     return true;
   1575 
   1576   case CXXOperatorCallExprClass: {
   1577     // We warn about operator== and operator!= even when user-defined operator
   1578     // overloads as there is no reasonable way to define these such that they
   1579     // have non-trivial, desirable side-effects. See the -Wunused-comparison
   1580     // warning: these operators are commonly typo'ed, and so warning on them
   1581     // provides additional value as well. If this list is updated,
   1582     // DiagnoseUnusedComparison should be as well.
   1583     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
   1584     if (Op->getOperator() == OO_EqualEqual ||
   1585         Op->getOperator() == OO_ExclaimEqual) {
   1586       Loc = Op->getOperatorLoc();
   1587       R1 = Op->getSourceRange();
   1588       return true;
   1589     }
   1590 
   1591     // Fallthrough for generic call handling.
   1592   }
   1593   case CallExprClass:
   1594   case CXXMemberCallExprClass: {
   1595     // If this is a direct call, get the callee.
   1596     const CallExpr *CE = cast<CallExpr>(this);
   1597     if (const Decl *FD = CE->getCalleeDecl()) {
   1598       // If the callee has attribute pure, const, or warn_unused_result, warn
   1599       // about it. void foo() { strlen("bar"); } should warn.
   1600       //
   1601       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   1602       // updated to match for QoI.
   1603       if (FD->getAttr<WarnUnusedResultAttr>() ||
   1604           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
   1605         Loc = CE->getCallee()->getLocStart();
   1606         R1 = CE->getCallee()->getSourceRange();
   1607 
   1608         if (unsigned NumArgs = CE->getNumArgs())
   1609           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   1610                            CE->getArg(NumArgs-1)->getLocEnd());
   1611         return true;
   1612       }
   1613     }
   1614     return false;
   1615   }
   1616 
   1617   case CXXTemporaryObjectExprClass:
   1618   case CXXConstructExprClass:
   1619     return false;
   1620 
   1621   case ObjCMessageExprClass: {
   1622     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   1623     if (Ctx.getLangOptions().ObjCAutoRefCount &&
   1624         ME->isInstanceMessage() &&
   1625         !ME->getType()->isVoidType() &&
   1626         ME->getSelector().getIdentifierInfoForSlot(0) &&
   1627         ME->getSelector().getIdentifierInfoForSlot(0)
   1628                                                ->getName().startswith("init")) {
   1629       Loc = getExprLoc();
   1630       R1 = ME->getSourceRange();
   1631       return true;
   1632     }
   1633 
   1634     const ObjCMethodDecl *MD = ME->getMethodDecl();
   1635     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
   1636       Loc = getExprLoc();
   1637       return true;
   1638     }
   1639     return false;
   1640   }
   1641 
   1642   case ObjCPropertyRefExprClass:
   1643     Loc = getExprLoc();
   1644     R1 = getSourceRange();
   1645     return true;
   1646 
   1647   case StmtExprClass: {
   1648     // Statement exprs don't logically have side effects themselves, but are
   1649     // sometimes used in macros in ways that give them a type that is unused.
   1650     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   1651     // however, if the result of the stmt expr is dead, we don't want to emit a
   1652     // warning.
   1653     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   1654     if (!CS->body_empty()) {
   1655       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   1656         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1657       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   1658         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   1659           return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1660     }
   1661 
   1662     if (getType()->isVoidType())
   1663       return false;
   1664     Loc = cast<StmtExpr>(this)->getLParenLoc();
   1665     R1 = getSourceRange();
   1666     return true;
   1667   }
   1668   case CStyleCastExprClass:
   1669     // If this is an explicit cast to void, allow it.  People do this when they
   1670     // think they know what they're doing :).
   1671     if (getType()->isVoidType())
   1672       return false;
   1673     Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
   1674     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
   1675     return true;
   1676   case CXXFunctionalCastExprClass: {
   1677     if (getType()->isVoidType())
   1678       return false;
   1679     const CastExpr *CE = cast<CastExpr>(this);
   1680 
   1681     // If this is a cast to void or a constructor conversion, check the operand.
   1682     // Otherwise, the result of the cast is unused.
   1683     if (CE->getCastKind() == CK_ToVoid ||
   1684         CE->getCastKind() == CK_ConstructorConversion)
   1685       return (cast<CastExpr>(this)->getSubExpr()
   1686               ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1687     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
   1688     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
   1689     return true;
   1690   }
   1691 
   1692   case ImplicitCastExprClass:
   1693     // Check the operand, since implicit casts are inserted by Sema
   1694     return (cast<ImplicitCastExpr>(this)
   1695             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1696 
   1697   case CXXDefaultArgExprClass:
   1698     return (cast<CXXDefaultArgExpr>(this)
   1699             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1700 
   1701   case CXXNewExprClass:
   1702     // FIXME: In theory, there might be new expressions that don't have side
   1703     // effects (e.g. a placement new with an uninitialized POD).
   1704   case CXXDeleteExprClass:
   1705     return false;
   1706   case CXXBindTemporaryExprClass:
   1707     return (cast<CXXBindTemporaryExpr>(this)
   1708             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1709   case ExprWithCleanupsClass:
   1710     return (cast<ExprWithCleanups>(this)
   1711             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1712   }
   1713 }
   1714 
   1715 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   1716 /// returns true, if it is; false otherwise.
   1717 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   1718   const Expr *E = IgnoreParens();
   1719   switch (E->getStmtClass()) {
   1720   default:
   1721     return false;
   1722   case ObjCIvarRefExprClass:
   1723     return true;
   1724   case Expr::UnaryOperatorClass:
   1725     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1726   case ImplicitCastExprClass:
   1727     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1728   case MaterializeTemporaryExprClass:
   1729     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   1730                                                       ->isOBJCGCCandidate(Ctx);
   1731   case CStyleCastExprClass:
   1732     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1733   case BlockDeclRefExprClass:
   1734   case DeclRefExprClass: {
   1735 
   1736     const Decl *D;
   1737     if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E))
   1738         D = BDRE->getDecl();
   1739     else
   1740         D = cast<DeclRefExpr>(E)->getDecl();
   1741 
   1742     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1743       if (VD->hasGlobalStorage())
   1744         return true;
   1745       QualType T = VD->getType();
   1746       // dereferencing to a  pointer is always a gc'able candidate,
   1747       // unless it is __weak.
   1748       return T->isPointerType() &&
   1749              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   1750     }
   1751     return false;
   1752   }
   1753   case MemberExprClass: {
   1754     const MemberExpr *M = cast<MemberExpr>(E);
   1755     return M->getBase()->isOBJCGCCandidate(Ctx);
   1756   }
   1757   case ArraySubscriptExprClass:
   1758     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   1759   }
   1760 }
   1761 
   1762 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   1763   if (isTypeDependent())
   1764     return false;
   1765   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   1766 }
   1767 
   1768 QualType Expr::findBoundMemberType(const Expr *expr) {
   1769   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
   1770 
   1771   // Bound member expressions are always one of these possibilities:
   1772   //   x->m      x.m      x->*y      x.*y
   1773   // (possibly parenthesized)
   1774 
   1775   expr = expr->IgnoreParens();
   1776   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   1777     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   1778     return mem->getMemberDecl()->getType();
   1779   }
   1780 
   1781   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   1782     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   1783                       ->getPointeeType();
   1784     assert(type->isFunctionType());
   1785     return type;
   1786   }
   1787 
   1788   assert(isa<UnresolvedMemberExpr>(expr));
   1789   return QualType();
   1790 }
   1791 
   1792 static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
   1793                                           Expr::CanThrowResult CT2) {
   1794   // CanThrowResult constants are ordered so that the maximum is the correct
   1795   // merge result.
   1796   return CT1 > CT2 ? CT1 : CT2;
   1797 }
   1798 
   1799 static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
   1800   Expr *E = const_cast<Expr*>(CE);
   1801   Expr::CanThrowResult R = Expr::CT_Cannot;
   1802   for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
   1803     R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
   1804   }
   1805   return R;
   1806 }
   1807 
   1808 static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
   1809                                            const Decl *D,
   1810                                            bool NullThrows = true) {
   1811   if (!D)
   1812     return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
   1813 
   1814   // See if we can get a function type from the decl somehow.
   1815   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
   1816   if (!VD) // If we have no clue what we're calling, assume the worst.
   1817     return Expr::CT_Can;
   1818 
   1819   // As an extension, we assume that __attribute__((nothrow)) functions don't
   1820   // throw.
   1821   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
   1822     return Expr::CT_Cannot;
   1823 
   1824   QualType T = VD->getType();
   1825   const FunctionProtoType *FT;
   1826   if ((FT = T->getAs<FunctionProtoType>())) {
   1827   } else if (const PointerType *PT = T->getAs<PointerType>())
   1828     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
   1829   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   1830     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
   1831   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
   1832     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
   1833   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
   1834     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
   1835 
   1836   if (!FT)
   1837     return Expr::CT_Can;
   1838 
   1839   if (FT->getExceptionSpecType() == EST_Delayed) {
   1840     assert(isa<CXXConstructorDecl>(D) &&
   1841            "only constructor exception specs can be unknown");
   1842     Ctx.getDiagnostics().Report(E->getLocStart(),
   1843                                 diag::err_exception_spec_unknown)
   1844       << E->getSourceRange();
   1845     return Expr::CT_Can;
   1846   }
   1847 
   1848   return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
   1849 }
   1850 
   1851 static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
   1852   if (DC->isTypeDependent())
   1853     return Expr::CT_Dependent;
   1854 
   1855   if (!DC->getTypeAsWritten()->isReferenceType())
   1856     return Expr::CT_Cannot;
   1857 
   1858   if (DC->getSubExpr()->isTypeDependent())
   1859     return Expr::CT_Dependent;
   1860 
   1861   return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
   1862 }
   1863 
   1864 static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
   1865                                            const CXXTypeidExpr *DC) {
   1866   if (DC->isTypeOperand())
   1867     return Expr::CT_Cannot;
   1868 
   1869   Expr *Op = DC->getExprOperand();
   1870   if (Op->isTypeDependent())
   1871     return Expr::CT_Dependent;
   1872 
   1873   const RecordType *RT = Op->getType()->getAs<RecordType>();
   1874   if (!RT)
   1875     return Expr::CT_Cannot;
   1876 
   1877   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
   1878     return Expr::CT_Cannot;
   1879 
   1880   if (Op->Classify(C).isPRValue())
   1881     return Expr::CT_Cannot;
   1882 
   1883   return Expr::CT_Can;
   1884 }
   1885 
   1886 Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
   1887   // C++ [expr.unary.noexcept]p3:
   1888   //   [Can throw] if in a potentially-evaluated context the expression would
   1889   //   contain:
   1890   switch (getStmtClass()) {
   1891   case CXXThrowExprClass:
   1892     //   - a potentially evaluated throw-expression
   1893     return CT_Can;
   1894 
   1895   case CXXDynamicCastExprClass: {
   1896     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
   1897     //     where T is a reference type, that requires a run-time check
   1898     CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
   1899     if (CT == CT_Can)
   1900       return CT;
   1901     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1902   }
   1903 
   1904   case CXXTypeidExprClass:
   1905     //   - a potentially evaluated typeid expression applied to a glvalue
   1906     //     expression whose type is a polymorphic class type
   1907     return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
   1908 
   1909     //   - a potentially evaluated call to a function, member function, function
   1910     //     pointer, or member function pointer that does not have a non-throwing
   1911     //     exception-specification
   1912   case CallExprClass:
   1913   case CXXOperatorCallExprClass:
   1914   case CXXMemberCallExprClass: {
   1915     const CallExpr *CE = cast<CallExpr>(this);
   1916     CanThrowResult CT;
   1917     if (isTypeDependent())
   1918       CT = CT_Dependent;
   1919     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
   1920       CT = CT_Cannot;
   1921     else
   1922       CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
   1923     if (CT == CT_Can)
   1924       return CT;
   1925     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1926   }
   1927 
   1928   case CXXConstructExprClass:
   1929   case CXXTemporaryObjectExprClass: {
   1930     CanThrowResult CT = CanCalleeThrow(C, this,
   1931         cast<CXXConstructExpr>(this)->getConstructor());
   1932     if (CT == CT_Can)
   1933       return CT;
   1934     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1935   }
   1936 
   1937   case CXXNewExprClass: {
   1938     CanThrowResult CT;
   1939     if (isTypeDependent())
   1940       CT = CT_Dependent;
   1941     else
   1942       CT = MergeCanThrow(
   1943         CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()),
   1944         CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(),
   1945                        /*NullThrows*/false));
   1946     if (CT == CT_Can)
   1947       return CT;
   1948     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1949   }
   1950 
   1951   case CXXDeleteExprClass: {
   1952     CanThrowResult CT;
   1953     QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
   1954     if (DTy.isNull() || DTy->isDependentType()) {
   1955       CT = CT_Dependent;
   1956     } else {
   1957       CT = CanCalleeThrow(C, this,
   1958                           cast<CXXDeleteExpr>(this)->getOperatorDelete());
   1959       if (const RecordType *RT = DTy->getAs<RecordType>()) {
   1960         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1961         CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
   1962       }
   1963       if (CT == CT_Can)
   1964         return CT;
   1965     }
   1966     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1967   }
   1968 
   1969   case CXXBindTemporaryExprClass: {
   1970     // The bound temporary has to be destroyed again, which might throw.
   1971     CanThrowResult CT = CanCalleeThrow(C, this,
   1972       cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
   1973     if (CT == CT_Can)
   1974       return CT;
   1975     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1976   }
   1977 
   1978     // ObjC message sends are like function calls, but never have exception
   1979     // specs.
   1980   case ObjCMessageExprClass:
   1981   case ObjCPropertyRefExprClass:
   1982     return CT_Can;
   1983 
   1984     // Many other things have subexpressions, so we have to test those.
   1985     // Some are simple:
   1986   case ParenExprClass:
   1987   case MemberExprClass:
   1988   case CXXReinterpretCastExprClass:
   1989   case CXXConstCastExprClass:
   1990   case ConditionalOperatorClass:
   1991   case CompoundLiteralExprClass:
   1992   case ExtVectorElementExprClass:
   1993   case InitListExprClass:
   1994   case DesignatedInitExprClass:
   1995   case ParenListExprClass:
   1996   case VAArgExprClass:
   1997   case CXXDefaultArgExprClass:
   1998   case ExprWithCleanupsClass:
   1999   case ObjCIvarRefExprClass:
   2000   case ObjCIsaExprClass:
   2001   case ShuffleVectorExprClass:
   2002     return CanSubExprsThrow(C, this);
   2003 
   2004     // Some might be dependent for other reasons.
   2005   case UnaryOperatorClass:
   2006   case ArraySubscriptExprClass:
   2007   case ImplicitCastExprClass:
   2008   case CStyleCastExprClass:
   2009   case CXXStaticCastExprClass:
   2010   case CXXFunctionalCastExprClass:
   2011   case BinaryOperatorClass:
   2012   case CompoundAssignOperatorClass:
   2013   case MaterializeTemporaryExprClass: {
   2014     CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
   2015     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   2016   }
   2017 
   2018     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
   2019   case StmtExprClass:
   2020     return CT_Can;
   2021 
   2022   case ChooseExprClass:
   2023     if (isTypeDependent() || isValueDependent())
   2024       return CT_Dependent;
   2025     return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
   2026 
   2027   case GenericSelectionExprClass:
   2028     if (cast<GenericSelectionExpr>(this)->isResultDependent())
   2029       return CT_Dependent;
   2030     return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
   2031 
   2032     // Some expressions are always dependent.
   2033   case DependentScopeDeclRefExprClass:
   2034   case CXXUnresolvedConstructExprClass:
   2035   case CXXDependentScopeMemberExprClass:
   2036     return CT_Dependent;
   2037 
   2038   default:
   2039     // All other expressions don't have subexpressions, or else they are
   2040     // unevaluated.
   2041     return CT_Cannot;
   2042   }
   2043 }
   2044 
   2045 Expr* Expr::IgnoreParens() {
   2046   Expr* E = this;
   2047   while (true) {
   2048     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2049       E = P->getSubExpr();
   2050       continue;
   2051     }
   2052     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2053       if (P->getOpcode() == UO_Extension) {
   2054         E = P->getSubExpr();
   2055         continue;
   2056       }
   2057     }
   2058     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2059       if (!P->isResultDependent()) {
   2060         E = P->getResultExpr();
   2061         continue;
   2062       }
   2063     }
   2064     return E;
   2065   }
   2066 }
   2067 
   2068 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   2069 /// or CastExprs or ImplicitCastExprs, returning their operand.
   2070 Expr *Expr::IgnoreParenCasts() {
   2071   Expr *E = this;
   2072   while (true) {
   2073     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2074       E = P->getSubExpr();
   2075       continue;
   2076     }
   2077     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2078       E = P->getSubExpr();
   2079       continue;
   2080     }
   2081     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2082       if (P->getOpcode() == UO_Extension) {
   2083         E = P->getSubExpr();
   2084         continue;
   2085       }
   2086     }
   2087     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2088       if (!P->isResultDependent()) {
   2089         E = P->getResultExpr();
   2090         continue;
   2091       }
   2092     }
   2093     if (MaterializeTemporaryExpr *Materialize
   2094                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2095       E = Materialize->GetTemporaryExpr();
   2096       continue;
   2097     }
   2098     if (SubstNonTypeTemplateParmExpr *NTTP
   2099                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2100       E = NTTP->getReplacement();
   2101       continue;
   2102     }
   2103     return E;
   2104   }
   2105 }
   2106 
   2107 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2108 /// casts.  This is intended purely as a temporary workaround for code
   2109 /// that hasn't yet been rewritten to do the right thing about those
   2110 /// casts, and may disappear along with the last internal use.
   2111 Expr *Expr::IgnoreParenLValueCasts() {
   2112   Expr *E = this;
   2113   while (true) {
   2114     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2115       E = P->getSubExpr();
   2116       continue;
   2117     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2118       if (P->getCastKind() == CK_LValueToRValue) {
   2119         E = P->getSubExpr();
   2120         continue;
   2121       }
   2122     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2123       if (P->getOpcode() == UO_Extension) {
   2124         E = P->getSubExpr();
   2125         continue;
   2126       }
   2127     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2128       if (!P->isResultDependent()) {
   2129         E = P->getResultExpr();
   2130         continue;
   2131       }
   2132     } else if (MaterializeTemporaryExpr *Materialize
   2133                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2134       E = Materialize->GetTemporaryExpr();
   2135       continue;
   2136     } else if (SubstNonTypeTemplateParmExpr *NTTP
   2137                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2138       E = NTTP->getReplacement();
   2139       continue;
   2140     }
   2141     break;
   2142   }
   2143   return E;
   2144 }
   2145 
   2146 Expr *Expr::IgnoreParenImpCasts() {
   2147   Expr *E = this;
   2148   while (true) {
   2149     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2150       E = P->getSubExpr();
   2151       continue;
   2152     }
   2153     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2154       E = P->getSubExpr();
   2155       continue;
   2156     }
   2157     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2158       if (P->getOpcode() == UO_Extension) {
   2159         E = P->getSubExpr();
   2160         continue;
   2161       }
   2162     }
   2163     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2164       if (!P->isResultDependent()) {
   2165         E = P->getResultExpr();
   2166         continue;
   2167       }
   2168     }
   2169     if (MaterializeTemporaryExpr *Materialize
   2170                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2171       E = Materialize->GetTemporaryExpr();
   2172       continue;
   2173     }
   2174     if (SubstNonTypeTemplateParmExpr *NTTP
   2175                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2176       E = NTTP->getReplacement();
   2177       continue;
   2178     }
   2179     return E;
   2180   }
   2181 }
   2182 
   2183 Expr *Expr::IgnoreConversionOperator() {
   2184   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2185     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2186       return MCE->getImplicitObjectArgument();
   2187   }
   2188   return this;
   2189 }
   2190 
   2191 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2192 /// value (including ptr->int casts of the same size).  Strip off any
   2193 /// ParenExpr or CastExprs, returning their operand.
   2194 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2195   Expr *E = this;
   2196   while (true) {
   2197     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2198       E = P->getSubExpr();
   2199       continue;
   2200     }
   2201 
   2202     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2203       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2204       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2205       Expr *SE = P->getSubExpr();
   2206 
   2207       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2208         E = SE;
   2209         continue;
   2210       }
   2211 
   2212       if ((E->getType()->isPointerType() ||
   2213            E->getType()->isIntegralType(Ctx)) &&
   2214           (SE->getType()->isPointerType() ||
   2215            SE->getType()->isIntegralType(Ctx)) &&
   2216           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2217         E = SE;
   2218         continue;
   2219       }
   2220     }
   2221 
   2222     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2223       if (P->getOpcode() == UO_Extension) {
   2224         E = P->getSubExpr();
   2225         continue;
   2226       }
   2227     }
   2228 
   2229     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2230       if (!P->isResultDependent()) {
   2231         E = P->getResultExpr();
   2232         continue;
   2233       }
   2234     }
   2235 
   2236     if (SubstNonTypeTemplateParmExpr *NTTP
   2237                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2238       E = NTTP->getReplacement();
   2239       continue;
   2240     }
   2241 
   2242     return E;
   2243   }
   2244 }
   2245 
   2246 bool Expr::isDefaultArgument() const {
   2247   const Expr *E = this;
   2248   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2249     E = M->GetTemporaryExpr();
   2250 
   2251   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2252     E = ICE->getSubExprAsWritten();
   2253 
   2254   return isa<CXXDefaultArgExpr>(E);
   2255 }
   2256 
   2257 /// \brief Skip over any no-op casts and any temporary-binding
   2258 /// expressions.
   2259 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2260   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2261     E = M->GetTemporaryExpr();
   2262 
   2263   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2264     if (ICE->getCastKind() == CK_NoOp)
   2265       E = ICE->getSubExpr();
   2266     else
   2267       break;
   2268   }
   2269 
   2270   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2271     E = BE->getSubExpr();
   2272 
   2273   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2274     if (ICE->getCastKind() == CK_NoOp)
   2275       E = ICE->getSubExpr();
   2276     else
   2277       break;
   2278   }
   2279 
   2280   return E->IgnoreParens();
   2281 }
   2282 
   2283 /// isTemporaryObject - Determines if this expression produces a
   2284 /// temporary of the given class type.
   2285 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2286   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2287     return false;
   2288 
   2289   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2290 
   2291   // Temporaries are by definition pr-values of class type.
   2292   if (!E->Classify(C).isPRValue()) {
   2293     // In this context, property reference is a message call and is pr-value.
   2294     if (!isa<ObjCPropertyRefExpr>(E))
   2295       return false;
   2296   }
   2297 
   2298   // Black-list a few cases which yield pr-values of class type that don't
   2299   // refer to temporaries of that type:
   2300 
   2301   // - implicit derived-to-base conversions
   2302   if (isa<ImplicitCastExpr>(E)) {
   2303     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2304     case CK_DerivedToBase:
   2305     case CK_UncheckedDerivedToBase:
   2306       return false;
   2307     default:
   2308       break;
   2309     }
   2310   }
   2311 
   2312   // - member expressions (all)
   2313   if (isa<MemberExpr>(E))
   2314     return false;
   2315 
   2316   // - opaque values (all)
   2317   if (isa<OpaqueValueExpr>(E))
   2318     return false;
   2319 
   2320   return true;
   2321 }
   2322 
   2323 bool Expr::isImplicitCXXThis() const {
   2324   const Expr *E = this;
   2325 
   2326   // Strip away parentheses and casts we don't care about.
   2327   while (true) {
   2328     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2329       E = Paren->getSubExpr();
   2330       continue;
   2331     }
   2332 
   2333     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2334       if (ICE->getCastKind() == CK_NoOp ||
   2335           ICE->getCastKind() == CK_LValueToRValue ||
   2336           ICE->getCastKind() == CK_DerivedToBase ||
   2337           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2338         E = ICE->getSubExpr();
   2339         continue;
   2340       }
   2341     }
   2342 
   2343     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2344       if (UnOp->getOpcode() == UO_Extension) {
   2345         E = UnOp->getSubExpr();
   2346         continue;
   2347       }
   2348     }
   2349 
   2350     if (const MaterializeTemporaryExpr *M
   2351                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2352       E = M->GetTemporaryExpr();
   2353       continue;
   2354     }
   2355 
   2356     break;
   2357   }
   2358 
   2359   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2360     return This->isImplicit();
   2361 
   2362   return false;
   2363 }
   2364 
   2365 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2366 /// in Exprs is type-dependent.
   2367 bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
   2368   for (unsigned I = 0; I < NumExprs; ++I)
   2369     if (Exprs[I]->isTypeDependent())
   2370       return true;
   2371 
   2372   return false;
   2373 }
   2374 
   2375 /// hasAnyValueDependentArguments - Determines if any of the expressions
   2376 /// in Exprs is value-dependent.
   2377 bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
   2378   for (unsigned I = 0; I < NumExprs; ++I)
   2379     if (Exprs[I]->isValueDependent())
   2380       return true;
   2381 
   2382   return false;
   2383 }
   2384 
   2385 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
   2386   // This function is attempting whether an expression is an initializer
   2387   // which can be evaluated at compile-time.  isEvaluatable handles most
   2388   // of the cases, but it can't deal with some initializer-specific
   2389   // expressions, and it can't deal with aggregates; we deal with those here,
   2390   // and fall back to isEvaluatable for the other cases.
   2391 
   2392   // If we ever capture reference-binding directly in the AST, we can
   2393   // kill the second parameter.
   2394 
   2395   if (IsForRef) {
   2396     EvalResult Result;
   2397     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
   2398   }
   2399 
   2400   switch (getStmtClass()) {
   2401   default: break;
   2402   case StringLiteralClass:
   2403   case ObjCStringLiteralClass:
   2404   case ObjCEncodeExprClass:
   2405     return true;
   2406   case CXXTemporaryObjectExprClass:
   2407   case CXXConstructExprClass: {
   2408     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2409 
   2410     // Only if it's
   2411     // 1) an application of the trivial default constructor or
   2412     if (!CE->getConstructor()->isTrivial()) return false;
   2413     if (!CE->getNumArgs()) return true;
   2414 
   2415     // 2) an elidable trivial copy construction of an operand which is
   2416     //    itself a constant initializer.  Note that we consider the
   2417     //    operand on its own, *not* as a reference binding.
   2418     return CE->isElidable() &&
   2419            CE->getArg(0)->isConstantInitializer(Ctx, false);
   2420   }
   2421   case CompoundLiteralExprClass: {
   2422     // This handles gcc's extension that allows global initializers like
   2423     // "struct x {int x;} x = (struct x) {};".
   2424     // FIXME: This accepts other cases it shouldn't!
   2425     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2426     return Exp->isConstantInitializer(Ctx, false);
   2427   }
   2428   case InitListExprClass: {
   2429     // FIXME: This doesn't deal with fields with reference types correctly.
   2430     // FIXME: This incorrectly allows pointers cast to integers to be assigned
   2431     // to bitfields.
   2432     const InitListExpr *Exp = cast<InitListExpr>(this);
   2433     unsigned numInits = Exp->getNumInits();
   2434     for (unsigned i = 0; i < numInits; i++) {
   2435       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
   2436         return false;
   2437     }
   2438     return true;
   2439   }
   2440   case ImplicitValueInitExprClass:
   2441     return true;
   2442   case ParenExprClass:
   2443     return cast<ParenExpr>(this)->getSubExpr()
   2444       ->isConstantInitializer(Ctx, IsForRef);
   2445   case GenericSelectionExprClass:
   2446     if (cast<GenericSelectionExpr>(this)->isResultDependent())
   2447       return false;
   2448     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2449       ->isConstantInitializer(Ctx, IsForRef);
   2450   case ChooseExprClass:
   2451     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
   2452       ->isConstantInitializer(Ctx, IsForRef);
   2453   case UnaryOperatorClass: {
   2454     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2455     if (Exp->getOpcode() == UO_Extension)
   2456       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
   2457     break;
   2458   }
   2459   case BinaryOperatorClass: {
   2460     // Special case &&foo - &&bar.  It would be nice to generalize this somehow
   2461     // but this handles the common case.
   2462     const BinaryOperator *Exp = cast<BinaryOperator>(this);
   2463     if (Exp->getOpcode() == BO_Sub &&
   2464         isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
   2465         isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
   2466       return true;
   2467     break;
   2468   }
   2469   case CXXFunctionalCastExprClass:
   2470   case CXXStaticCastExprClass:
   2471   case ImplicitCastExprClass:
   2472   case CStyleCastExprClass:
   2473     // Handle casts with a destination that's a struct or union; this
   2474     // deals with both the gcc no-op struct cast extension and the
   2475     // cast-to-union extension.
   2476     if (getType()->isRecordType())
   2477       return cast<CastExpr>(this)->getSubExpr()
   2478         ->isConstantInitializer(Ctx, false);
   2479 
   2480     // Integer->integer casts can be handled here, which is important for
   2481     // things like (int)(&&x-&&y).  Scary but true.
   2482     if (getType()->isIntegerType() &&
   2483         cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
   2484       return cast<CastExpr>(this)->getSubExpr()
   2485         ->isConstantInitializer(Ctx, false);
   2486 
   2487     break;
   2488 
   2489   case MaterializeTemporaryExprClass:
   2490     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2491                                             ->isConstantInitializer(Ctx, false);
   2492   }
   2493   return isEvaluatable(Ctx);
   2494 }
   2495 
   2496 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   2497 /// pointer constant or not, as well as the specific kind of constant detected.
   2498 /// Null pointer constants can be integer constant expressions with the
   2499 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   2500 /// (a GNU extension).
   2501 Expr::NullPointerConstantKind
   2502 Expr::isNullPointerConstant(ASTContext &Ctx,
   2503                             NullPointerConstantValueDependence NPC) const {
   2504   if (isValueDependent()) {
   2505     switch (NPC) {
   2506     case NPC_NeverValueDependent:
   2507       llvm_unreachable("Unexpected value dependent expression!");
   2508     case NPC_ValueDependentIsNull:
   2509       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   2510         return NPCK_ZeroInteger;
   2511       else
   2512         return NPCK_NotNull;
   2513 
   2514     case NPC_ValueDependentIsNotNull:
   2515       return NPCK_NotNull;
   2516     }
   2517   }
   2518 
   2519   // Strip off a cast to void*, if it exists. Except in C++.
   2520   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   2521     if (!Ctx.getLangOptions().CPlusPlus) {
   2522       // Check that it is a cast to void*.
   2523       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   2524         QualType Pointee = PT->getPointeeType();
   2525         if (!Pointee.hasQualifiers() &&
   2526             Pointee->isVoidType() &&                              // to void*
   2527             CE->getSubExpr()->getType()->isIntegerType())         // from int.
   2528           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2529       }
   2530     }
   2531   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   2532     // Ignore the ImplicitCastExpr type entirely.
   2533     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2534   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   2535     // Accept ((void*)0) as a null pointer constant, as many other
   2536     // implementations do.
   2537     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2538   } else if (const GenericSelectionExpr *GE =
   2539                dyn_cast<GenericSelectionExpr>(this)) {
   2540     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   2541   } else if (const CXXDefaultArgExpr *DefaultArg
   2542                = dyn_cast<CXXDefaultArgExpr>(this)) {
   2543     // See through default argument expressions
   2544     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   2545   } else if (isa<GNUNullExpr>(this)) {
   2546     // The GNU __null extension is always a null pointer constant.
   2547     return NPCK_GNUNull;
   2548   } else if (const MaterializeTemporaryExpr *M
   2549                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   2550     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   2551   }
   2552 
   2553   // C++0x nullptr_t is always a null pointer constant.
   2554   if (getType()->isNullPtrType())
   2555     return NPCK_CXX0X_nullptr;
   2556 
   2557   if (const RecordType *UT = getType()->getAsUnionType())
   2558     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   2559       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   2560         const Expr *InitExpr = CLE->getInitializer();
   2561         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   2562           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   2563       }
   2564   // This expression must be an integer type.
   2565   if (!getType()->isIntegerType() ||
   2566       (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
   2567     return NPCK_NotNull;
   2568 
   2569   // If we have an integer constant expression, we need to *evaluate* it and
   2570   // test for the value 0.
   2571   llvm::APSInt Result;
   2572   bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
   2573 
   2574   return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
   2575 }
   2576 
   2577 /// \brief If this expression is an l-value for an Objective C
   2578 /// property, find the underlying property reference expression.
   2579 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   2580   const Expr *E = this;
   2581   while (true) {
   2582     assert((E->getValueKind() == VK_LValue &&
   2583             E->getObjectKind() == OK_ObjCProperty) &&
   2584            "expression is not a property reference");
   2585     E = E->IgnoreParenCasts();
   2586     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   2587       if (BO->getOpcode() == BO_Comma) {
   2588         E = BO->getRHS();
   2589         continue;
   2590       }
   2591     }
   2592 
   2593     break;
   2594   }
   2595 
   2596   return cast<ObjCPropertyRefExpr>(E);
   2597 }
   2598 
   2599 FieldDecl *Expr::getBitField() {
   2600   Expr *E = this->IgnoreParens();
   2601 
   2602   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2603     if (ICE->getCastKind() == CK_LValueToRValue ||
   2604         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   2605       E = ICE->getSubExpr()->IgnoreParens();
   2606     else
   2607       break;
   2608   }
   2609 
   2610   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   2611     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   2612       if (Field->isBitField())
   2613         return Field;
   2614 
   2615   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   2616     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   2617       if (Field->isBitField())
   2618         return Field;
   2619 
   2620   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   2621     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   2622       return BinOp->getLHS()->getBitField();
   2623 
   2624     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   2625       return BinOp->getRHS()->getBitField();
   2626   }
   2627 
   2628   return 0;
   2629 }
   2630 
   2631 bool Expr::refersToVectorElement() const {
   2632   const Expr *E = this->IgnoreParens();
   2633 
   2634   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2635     if (ICE->getValueKind() != VK_RValue &&
   2636         ICE->getCastKind() == CK_NoOp)
   2637       E = ICE->getSubExpr()->IgnoreParens();
   2638     else
   2639       break;
   2640   }
   2641 
   2642   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   2643     return ASE->getBase()->getType()->isVectorType();
   2644 
   2645   if (isa<ExtVectorElementExpr>(E))
   2646     return true;
   2647 
   2648   return false;
   2649 }
   2650 
   2651 /// isArrow - Return true if the base expression is a pointer to vector,
   2652 /// return false if the base expression is a vector.
   2653 bool ExtVectorElementExpr::isArrow() const {
   2654   return getBase()->getType()->isPointerType();
   2655 }
   2656 
   2657 unsigned ExtVectorElementExpr::getNumElements() const {
   2658   if (const VectorType *VT = getType()->getAs<VectorType>())
   2659     return VT->getNumElements();
   2660   return 1;
   2661 }
   2662 
   2663 /// containsDuplicateElements - Return true if any element access is repeated.
   2664 bool ExtVectorElementExpr::containsDuplicateElements() const {
   2665   // FIXME: Refactor this code to an accessor on the AST node which returns the
   2666   // "type" of component access, and share with code below and in Sema.
   2667   StringRef Comp = Accessor->getName();
   2668 
   2669   // Halving swizzles do not contain duplicate elements.
   2670   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   2671     return false;
   2672 
   2673   // Advance past s-char prefix on hex swizzles.
   2674   if (Comp[0] == 's' || Comp[0] == 'S')
   2675     Comp = Comp.substr(1);
   2676 
   2677   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   2678     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
   2679         return true;
   2680 
   2681   return false;
   2682 }
   2683 
   2684 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   2685 void ExtVectorElementExpr::getEncodedElementAccess(
   2686                                   SmallVectorImpl<unsigned> &Elts) const {
   2687   StringRef Comp = Accessor->getName();
   2688   if (Comp[0] == 's' || Comp[0] == 'S')
   2689     Comp = Comp.substr(1);
   2690 
   2691   bool isHi =   Comp == "hi";
   2692   bool isLo =   Comp == "lo";
   2693   bool isEven = Comp == "even";
   2694   bool isOdd  = Comp == "odd";
   2695 
   2696   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   2697     uint64_t Index;
   2698 
   2699     if (isHi)
   2700       Index = e + i;
   2701     else if (isLo)
   2702       Index = i;
   2703     else if (isEven)
   2704       Index = 2 * i;
   2705     else if (isOdd)
   2706       Index = 2 * i + 1;
   2707     else
   2708       Index = ExtVectorType::getAccessorIdx(Comp[i]);
   2709 
   2710     Elts.push_back(Index);
   2711   }
   2712 }
   2713 
   2714 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2715                                  ExprValueKind VK,
   2716                                  SourceLocation LBracLoc,
   2717                                  SourceLocation SuperLoc,
   2718                                  bool IsInstanceSuper,
   2719                                  QualType SuperType,
   2720                                  Selector Sel,
   2721                                  ArrayRef<SourceLocation> SelLocs,
   2722                                  SelectorLocationsKind SelLocsK,
   2723                                  ObjCMethodDecl *Method,
   2724                                  ArrayRef<Expr *> Args,
   2725                                  SourceLocation RBracLoc)
   2726   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
   2727          /*TypeDependent=*/false, /*ValueDependent=*/false,
   2728          /*InstantiationDependent=*/false,
   2729          /*ContainsUnexpandedParameterPack=*/false),
   2730     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2731                                                        : Sel.getAsOpaquePtr())),
   2732     Kind(IsInstanceSuper? SuperInstance : SuperClass),
   2733     HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc),
   2734     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2735 {
   2736   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   2737   setReceiverPointer(SuperType.getAsOpaquePtr());
   2738 }
   2739 
   2740 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2741                                  ExprValueKind VK,
   2742                                  SourceLocation LBracLoc,
   2743                                  TypeSourceInfo *Receiver,
   2744                                  Selector Sel,
   2745                                  ArrayRef<SourceLocation> SelLocs,
   2746                                  SelectorLocationsKind SelLocsK,
   2747                                  ObjCMethodDecl *Method,
   2748                                  ArrayRef<Expr *> Args,
   2749                                  SourceLocation RBracLoc)
   2750   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
   2751          T->isDependentType(), T->isInstantiationDependentType(),
   2752          T->containsUnexpandedParameterPack()),
   2753     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2754                                                        : Sel.getAsOpaquePtr())),
   2755     Kind(Class),
   2756     HasMethod(Method != 0), IsDelegateInitCall(false),
   2757     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2758 {
   2759   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   2760   setReceiverPointer(Receiver);
   2761 }
   2762 
   2763 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2764                                  ExprValueKind VK,
   2765                                  SourceLocation LBracLoc,
   2766                                  Expr *Receiver,
   2767                                  Selector Sel,
   2768                                  ArrayRef<SourceLocation> SelLocs,
   2769                                  SelectorLocationsKind SelLocsK,
   2770                                  ObjCMethodDecl *Method,
   2771                                  ArrayRef<Expr *> Args,
   2772                                  SourceLocation RBracLoc)
   2773   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
   2774          Receiver->isTypeDependent(),
   2775          Receiver->isInstantiationDependent(),
   2776          Receiver->containsUnexpandedParameterPack()),
   2777     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2778                                                        : Sel.getAsOpaquePtr())),
   2779     Kind(Instance),
   2780     HasMethod(Method != 0), IsDelegateInitCall(false),
   2781     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2782 {
   2783   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   2784   setReceiverPointer(Receiver);
   2785 }
   2786 
   2787 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
   2788                                          ArrayRef<SourceLocation> SelLocs,
   2789                                          SelectorLocationsKind SelLocsK) {
   2790   setNumArgs(Args.size());
   2791   Expr **MyArgs = getArgs();
   2792   for (unsigned I = 0; I != Args.size(); ++I) {
   2793     if (Args[I]->isTypeDependent())
   2794       ExprBits.TypeDependent = true;
   2795     if (Args[I]->isValueDependent())
   2796       ExprBits.ValueDependent = true;
   2797     if (Args[I]->isInstantiationDependent())
   2798       ExprBits.InstantiationDependent = true;
   2799     if (Args[I]->containsUnexpandedParameterPack())
   2800       ExprBits.ContainsUnexpandedParameterPack = true;
   2801 
   2802     MyArgs[I] = Args[I];
   2803   }
   2804 
   2805   SelLocsKind = SelLocsK;
   2806   if (SelLocsK == SelLoc_NonStandard)
   2807     std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
   2808 }
   2809 
   2810 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2811                                          ExprValueKind VK,
   2812                                          SourceLocation LBracLoc,
   2813                                          SourceLocation SuperLoc,
   2814                                          bool IsInstanceSuper,
   2815                                          QualType SuperType,
   2816                                          Selector Sel,
   2817                                          ArrayRef<SourceLocation> SelLocs,
   2818                                          ObjCMethodDecl *Method,
   2819                                          ArrayRef<Expr *> Args,
   2820                                          SourceLocation RBracLoc) {
   2821   SelectorLocationsKind SelLocsK;
   2822   ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   2823   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
   2824                                    SuperType, Sel, SelLocs, SelLocsK,
   2825                                    Method, Args, RBracLoc);
   2826 }
   2827 
   2828 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2829                                          ExprValueKind VK,
   2830                                          SourceLocation LBracLoc,
   2831                                          TypeSourceInfo *Receiver,
   2832                                          Selector Sel,
   2833                                          ArrayRef<SourceLocation> SelLocs,
   2834                                          ObjCMethodDecl *Method,
   2835                                          ArrayRef<Expr *> Args,
   2836                                          SourceLocation RBracLoc) {
   2837   SelectorLocationsKind SelLocsK;
   2838   ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   2839   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   2840                                    SelLocs, SelLocsK, Method, Args, RBracLoc);
   2841 }
   2842 
   2843 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2844                                          ExprValueKind VK,
   2845                                          SourceLocation LBracLoc,
   2846                                          Expr *Receiver,
   2847                                          Selector Sel,
   2848                                          ArrayRef<SourceLocation> SelLocs,
   2849                                          ObjCMethodDecl *Method,
   2850                                          ArrayRef<Expr *> Args,
   2851                                          SourceLocation RBracLoc) {
   2852   SelectorLocationsKind SelLocsK;
   2853   ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   2854   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   2855                                    SelLocs, SelLocsK, Method, Args, RBracLoc);
   2856 }
   2857 
   2858 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
   2859                                               unsigned NumArgs,
   2860                                               unsigned NumStoredSelLocs) {
   2861   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
   2862   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
   2863 }
   2864 
   2865 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
   2866                                         ArrayRef<Expr *> Args,
   2867                                         SourceLocation RBraceLoc,
   2868                                         ArrayRef<SourceLocation> SelLocs,
   2869                                         Selector Sel,
   2870                                         SelectorLocationsKind &SelLocsK) {
   2871   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
   2872   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
   2873                                                                : 0;
   2874   return alloc(C, Args.size(), NumStoredSelLocs);
   2875 }
   2876 
   2877 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
   2878                                         unsigned NumArgs,
   2879                                         unsigned NumStoredSelLocs) {
   2880   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   2881     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
   2882   return (ObjCMessageExpr *)C.Allocate(Size,
   2883                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
   2884 }
   2885 
   2886 void ObjCMessageExpr::getSelectorLocs(
   2887                                SmallVectorImpl<SourceLocation> &SelLocs) const {
   2888   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
   2889     SelLocs.push_back(getSelectorLoc(i));
   2890 }
   2891 
   2892 SourceRange ObjCMessageExpr::getReceiverRange() const {
   2893   switch (getReceiverKind()) {
   2894   case Instance:
   2895     return getInstanceReceiver()->getSourceRange();
   2896 
   2897   case Class:
   2898     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
   2899 
   2900   case SuperInstance:
   2901   case SuperClass:
   2902     return getSuperLoc();
   2903   }
   2904 
   2905   return SourceLocation();
   2906 }
   2907 
   2908 Selector ObjCMessageExpr::getSelector() const {
   2909   if (HasMethod)
   2910     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
   2911                                                                ->getSelector();
   2912   return Selector(SelectorOrMethod);
   2913 }
   2914 
   2915 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
   2916   switch (getReceiverKind()) {
   2917   case Instance:
   2918     if (const ObjCObjectPointerType *Ptr
   2919           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
   2920       return Ptr->getInterfaceDecl();
   2921     break;
   2922 
   2923   case Class:
   2924     if (const ObjCObjectType *Ty
   2925           = getClassReceiver()->getAs<ObjCObjectType>())
   2926       return Ty->getInterface();
   2927     break;
   2928 
   2929   case SuperInstance:
   2930     if (const ObjCObjectPointerType *Ptr
   2931           = getSuperType()->getAs<ObjCObjectPointerType>())
   2932       return Ptr->getInterfaceDecl();
   2933     break;
   2934 
   2935   case SuperClass:
   2936     if (const ObjCObjectType *Iface
   2937           = getSuperType()->getAs<ObjCObjectType>())
   2938       return Iface->getInterface();
   2939     break;
   2940   }
   2941 
   2942   return 0;
   2943 }
   2944 
   2945 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
   2946   switch (getBridgeKind()) {
   2947   case OBC_Bridge:
   2948     return "__bridge";
   2949   case OBC_BridgeTransfer:
   2950     return "__bridge_transfer";
   2951   case OBC_BridgeRetained:
   2952     return "__bridge_retained";
   2953   }
   2954 
   2955   return "__bridge";
   2956 }
   2957 
   2958 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
   2959   return getCond()->EvaluateKnownConstInt(C) != 0;
   2960 }
   2961 
   2962 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
   2963                                      QualType Type, SourceLocation BLoc,
   2964                                      SourceLocation RP)
   2965    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   2966           Type->isDependentType(), Type->isDependentType(),
   2967           Type->isInstantiationDependentType(),
   2968           Type->containsUnexpandedParameterPack()),
   2969      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
   2970 {
   2971   SubExprs = new (C) Stmt*[nexpr];
   2972   for (unsigned i = 0; i < nexpr; i++) {
   2973     if (args[i]->isTypeDependent())
   2974       ExprBits.TypeDependent = true;
   2975     if (args[i]->isValueDependent())
   2976       ExprBits.ValueDependent = true;
   2977     if (args[i]->isInstantiationDependent())
   2978       ExprBits.InstantiationDependent = true;
   2979     if (args[i]->containsUnexpandedParameterPack())
   2980       ExprBits.ContainsUnexpandedParameterPack = true;
   2981 
   2982     SubExprs[i] = args[i];
   2983   }
   2984 }
   2985 
   2986 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
   2987                                  unsigned NumExprs) {
   2988   if (SubExprs) C.Deallocate(SubExprs);
   2989 
   2990   SubExprs = new (C) Stmt* [NumExprs];
   2991   this->NumExprs = NumExprs;
   2992   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
   2993 }
   2994 
   2995 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   2996                                SourceLocation GenericLoc, Expr *ControllingExpr,
   2997                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   2998                                unsigned NumAssocs, SourceLocation DefaultLoc,
   2999                                SourceLocation RParenLoc,
   3000                                bool ContainsUnexpandedParameterPack,
   3001                                unsigned ResultIndex)
   3002   : Expr(GenericSelectionExprClass,
   3003          AssocExprs[ResultIndex]->getType(),
   3004          AssocExprs[ResultIndex]->getValueKind(),
   3005          AssocExprs[ResultIndex]->getObjectKind(),
   3006          AssocExprs[ResultIndex]->isTypeDependent(),
   3007          AssocExprs[ResultIndex]->isValueDependent(),
   3008          AssocExprs[ResultIndex]->isInstantiationDependent(),
   3009          ContainsUnexpandedParameterPack),
   3010     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
   3011     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
   3012     ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
   3013     RParenLoc(RParenLoc) {
   3014   SubExprs[CONTROLLING] = ControllingExpr;
   3015   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
   3016   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
   3017 }
   3018 
   3019 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   3020                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3021                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   3022                                unsigned NumAssocs, SourceLocation DefaultLoc,
   3023                                SourceLocation RParenLoc,
   3024                                bool ContainsUnexpandedParameterPack)
   3025   : Expr(GenericSelectionExprClass,
   3026          Context.DependentTy,
   3027          VK_RValue,
   3028          OK_Ordinary,
   3029          /*isTypeDependent=*/true,
   3030          /*isValueDependent=*/true,
   3031          /*isInstantiationDependent=*/true,
   3032          ContainsUnexpandedParameterPack),
   3033     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
   3034     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
   3035     ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
   3036     RParenLoc(RParenLoc) {
   3037   SubExprs[CONTROLLING] = ControllingExpr;
   3038   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
   3039   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
   3040 }
   3041 
   3042 //===----------------------------------------------------------------------===//
   3043 //  DesignatedInitExpr
   3044 //===----------------------------------------------------------------------===//
   3045 
   3046 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   3047   assert(Kind == FieldDesignator && "Only valid on a field designator");
   3048   if (Field.NameOrField & 0x01)
   3049     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   3050   else
   3051     return getField()->getIdentifier();
   3052 }
   3053 
   3054 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
   3055                                        unsigned NumDesignators,
   3056                                        const Designator *Designators,
   3057                                        SourceLocation EqualOrColonLoc,
   3058                                        bool GNUSyntax,
   3059                                        Expr **IndexExprs,
   3060                                        unsigned NumIndexExprs,
   3061                                        Expr *Init)
   3062   : Expr(DesignatedInitExprClass, Ty,
   3063          Init->getValueKind(), Init->getObjectKind(),
   3064          Init->isTypeDependent(), Init->isValueDependent(),
   3065          Init->isInstantiationDependent(),
   3066          Init->containsUnexpandedParameterPack()),
   3067     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   3068     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
   3069   this->Designators = new (C) Designator[NumDesignators];
   3070 
   3071   // Record the initializer itself.
   3072   child_range Child = children();
   3073   *Child++ = Init;
   3074 
   3075   // Copy the designators and their subexpressions, computing
   3076   // value-dependence along the way.
   3077   unsigned IndexIdx = 0;
   3078   for (unsigned I = 0; I != NumDesignators; ++I) {
   3079     this->Designators[I] = Designators[I];
   3080 
   3081     if (this->Designators[I].isArrayDesignator()) {
   3082       // Compute type- and value-dependence.
   3083       Expr *Index = IndexExprs[IndexIdx];
   3084       if (Index->isTypeDependent() || Index->isValueDependent())
   3085         ExprBits.ValueDependent = true;
   3086       if (Index->isInstantiationDependent())
   3087         ExprBits.InstantiationDependent = true;
   3088       // Propagate unexpanded parameter packs.
   3089       if (Index->containsUnexpandedParameterPack())
   3090         ExprBits.ContainsUnexpandedParameterPack = true;
   3091 
   3092       // Copy the index expressions into permanent storage.
   3093       *Child++ = IndexExprs[IndexIdx++];
   3094     } else if (this->Designators[I].isArrayRangeDesignator()) {
   3095       // Compute type- and value-dependence.
   3096       Expr *Start = IndexExprs[IndexIdx];
   3097       Expr *End = IndexExprs[IndexIdx + 1];
   3098       if (Start->isTypeDependent() || Start->isValueDependent() ||
   3099           End->isTypeDependent() || End->isValueDependent()) {
   3100         ExprBits.ValueDependent = true;
   3101         ExprBits.InstantiationDependent = true;
   3102       } else if (Start->isInstantiationDependent() ||
   3103                  End->isInstantiationDependent()) {
   3104         ExprBits.InstantiationDependent = true;
   3105       }
   3106 
   3107       // Propagate unexpanded parameter packs.
   3108       if (Start->containsUnexpandedParameterPack() ||
   3109           End->containsUnexpandedParameterPack())
   3110         ExprBits.ContainsUnexpandedParameterPack = true;
   3111 
   3112       // Copy the start/end expressions into permanent storage.
   3113       *Child++ = IndexExprs[IndexIdx++];
   3114       *Child++ = IndexExprs[IndexIdx++];
   3115     }
   3116   }
   3117 
   3118   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
   3119 }
   3120 
   3121 DesignatedInitExpr *
   3122 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
   3123                            unsigned NumDesignators,
   3124                            Expr **IndexExprs, unsigned NumIndexExprs,
   3125                            SourceLocation ColonOrEqualLoc,
   3126                            bool UsesColonSyntax, Expr *Init) {
   3127   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3128                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3129   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
   3130                                       ColonOrEqualLoc, UsesColonSyntax,
   3131                                       IndexExprs, NumIndexExprs, Init);
   3132 }
   3133 
   3134 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
   3135                                                     unsigned NumIndexExprs) {
   3136   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3137                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3138   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3139 }
   3140 
   3141 void DesignatedInitExpr::setDesignators(ASTContext &C,
   3142                                         const Designator *Desigs,
   3143                                         unsigned NumDesigs) {
   3144   Designators = new (C) Designator[NumDesigs];
   3145   NumDesignators = NumDesigs;
   3146   for (unsigned I = 0; I != NumDesigs; ++I)
   3147     Designators[I] = Desigs[I];
   3148 }
   3149 
   3150 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3151   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3152   if (size() == 1)
   3153     return DIE->getDesignator(0)->getSourceRange();
   3154   return SourceRange(DIE->getDesignator(0)->getStartLocation(),
   3155                      DIE->getDesignator(size()-1)->getEndLocation());
   3156 }
   3157 
   3158 SourceRange DesignatedInitExpr::getSourceRange() const {
   3159   SourceLocation StartLoc;
   3160   Designator &First =
   3161     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
   3162   if (First.isFieldDesignator()) {
   3163     if (GNUSyntax)
   3164       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3165     else
   3166       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3167   } else
   3168     StartLoc =
   3169       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3170   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
   3171 }
   3172 
   3173 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
   3174   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3175   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3176   Ptr += sizeof(DesignatedInitExpr);
   3177   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3178   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3179 }
   3180 
   3181 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
   3182   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3183          "Requires array range designator");
   3184   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3185   Ptr += sizeof(DesignatedInitExpr);
   3186   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3187   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3188 }
   3189 
   3190 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
   3191   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3192          "Requires array range designator");
   3193   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3194   Ptr += sizeof(DesignatedInitExpr);
   3195   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3196   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
   3197 }
   3198 
   3199 /// \brief Replaces the designator at index @p Idx with the series
   3200 /// of designators in [First, Last).
   3201 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
   3202                                           const Designator *First,
   3203                                           const Designator *Last) {
   3204   unsigned NumNewDesignators = Last - First;
   3205   if (NumNewDesignators == 0) {
   3206     std::copy_backward(Designators + Idx + 1,
   3207                        Designators + NumDesignators,
   3208                        Designators + Idx);
   3209     --NumNewDesignators;
   3210     return;
   3211   } else if (NumNewDesignators == 1) {
   3212     Designators[Idx] = *First;
   3213     return;
   3214   }
   3215 
   3216   Designator *NewDesignators
   3217     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3218   std::copy(Designators, Designators + Idx, NewDesignators);
   3219   std::copy(First, Last, NewDesignators + Idx);
   3220   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3221             NewDesignators + Idx + NumNewDesignators);
   3222   Designators = NewDesignators;
   3223   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3224 }
   3225 
   3226 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
   3227                              Expr **exprs, unsigned nexprs,
   3228                              SourceLocation rparenloc, QualType T)
   3229   : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary,
   3230          false, false, false, false),
   3231     NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3232   assert(!T.isNull() && "ParenListExpr must have a valid type");
   3233   Exprs = new (C) Stmt*[nexprs];
   3234   for (unsigned i = 0; i != nexprs; ++i) {
   3235     if (exprs[i]->isTypeDependent())
   3236       ExprBits.TypeDependent = true;
   3237     if (exprs[i]->isValueDependent())
   3238       ExprBits.ValueDependent = true;
   3239     if (exprs[i]->isInstantiationDependent())
   3240       ExprBits.InstantiationDependent = true;
   3241     if (exprs[i]->containsUnexpandedParameterPack())
   3242       ExprBits.ContainsUnexpandedParameterPack = true;
   3243 
   3244     Exprs[i] = exprs[i];
   3245   }
   3246 }
   3247 
   3248 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   3249   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   3250     e = ewc->getSubExpr();
   3251   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   3252     e = m->GetTemporaryExpr();
   3253   e = cast<CXXConstructExpr>(e)->getArg(0);
   3254   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   3255     e = ice->getSubExpr();
   3256   return cast<OpaqueValueExpr>(e);
   3257 }
   3258 
   3259 //===----------------------------------------------------------------------===//
   3260 //  ExprIterator.
   3261 //===----------------------------------------------------------------------===//
   3262 
   3263 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
   3264 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
   3265 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
   3266 const Expr* ConstExprIterator::operator[](size_t idx) const {
   3267   return cast<Expr>(I[idx]);
   3268 }
   3269 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
   3270 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
   3271 
   3272 //===----------------------------------------------------------------------===//
   3273 //  Child Iterators for iterating over subexpressions/substatements
   3274 //===----------------------------------------------------------------------===//
   3275 
   3276 // UnaryExprOrTypeTraitExpr
   3277 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   3278   // If this is of a type and the type is a VLA type (and not a typedef), the
   3279   // size expression of the VLA needs to be treated as an executable expression.
   3280   // Why isn't this weirdness documented better in StmtIterator?
   3281   if (isArgumentType()) {
   3282     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   3283                                    getArgumentType().getTypePtr()))
   3284       return child_range(child_iterator(T), child_iterator());
   3285     return child_range();
   3286   }
   3287   return child_range(&Argument.Ex, &Argument.Ex + 1);
   3288 }
   3289 
   3290 // ObjCMessageExpr
   3291 Stmt::child_range ObjCMessageExpr::children() {
   3292   Stmt **begin;
   3293   if (getReceiverKind() == Instance)
   3294     begin = reinterpret_cast<Stmt **>(this + 1);
   3295   else
   3296     begin = reinterpret_cast<Stmt **>(getArgs());
   3297   return child_range(begin,
   3298                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
   3299 }
   3300 
   3301 // Blocks
   3302 BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
   3303                                    SourceLocation l, bool ByRef,
   3304                                    bool constAdded)
   3305   : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false,
   3306          d->isParameterPack()),
   3307     D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
   3308 {
   3309   bool TypeDependent = false;
   3310   bool ValueDependent = false;
   3311   bool InstantiationDependent = false;
   3312   computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent,
   3313                            InstantiationDependent);
   3314   ExprBits.TypeDependent = TypeDependent;
   3315   ExprBits.ValueDependent = ValueDependent;
   3316   ExprBits.InstantiationDependent = InstantiationDependent;
   3317 }
   3318 
   3319 
   3320 AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
   3321                        QualType t, AtomicOp op, SourceLocation RP)
   3322   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
   3323          false, false, false, false),
   3324     NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
   3325 {
   3326   for (unsigned i = 0; i < nexpr; i++) {
   3327     if (args[i]->isTypeDependent())
   3328       ExprBits.TypeDependent = true;
   3329     if (args[i]->isValueDependent())
   3330       ExprBits.ValueDependent = true;
   3331     if (args[i]->isInstantiationDependent())
   3332       ExprBits.InstantiationDependent = true;
   3333     if (args[i]->containsUnexpandedParameterPack())
   3334       ExprBits.ContainsUnexpandedParameterPack = true;
   3335 
   3336     SubExprs[i] = args[i];
   3337   }
   3338 }
   3339