Home | History | Annotate | Download | only in CodeGen
      1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "TargetInfo.h"
     16 #include "ABIInfo.h"
     17 #include "CodeGenFunction.h"
     18 #include "clang/AST/RecordLayout.h"
     19 #include "clang/Frontend/CodeGenOptions.h"
     20 #include "llvm/Type.h"
     21 #include "llvm/Target/TargetData.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
     28                                llvm::Value *Array,
     29                                llvm::Value *Value,
     30                                unsigned FirstIndex,
     31                                unsigned LastIndex) {
     32   // Alternatively, we could emit this as a loop in the source.
     33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
     34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
     35     Builder.CreateStore(Value, Cell);
     36   }
     37 }
     38 
     39 static bool isAggregateTypeForABI(QualType T) {
     40   return CodeGenFunction::hasAggregateLLVMType(T) ||
     41          T->isMemberFunctionPointerType();
     42 }
     43 
     44 ABIInfo::~ABIInfo() {}
     45 
     46 ASTContext &ABIInfo::getContext() const {
     47   return CGT.getContext();
     48 }
     49 
     50 llvm::LLVMContext &ABIInfo::getVMContext() const {
     51   return CGT.getLLVMContext();
     52 }
     53 
     54 const llvm::TargetData &ABIInfo::getTargetData() const {
     55   return CGT.getTargetData();
     56 }
     57 
     58 
     59 void ABIArgInfo::dump() const {
     60   raw_ostream &OS = llvm::errs();
     61   OS << "(ABIArgInfo Kind=";
     62   switch (TheKind) {
     63   case Direct:
     64     OS << "Direct Type=";
     65     if (llvm::Type *Ty = getCoerceToType())
     66       Ty->print(OS);
     67     else
     68       OS << "null";
     69     break;
     70   case Extend:
     71     OS << "Extend";
     72     break;
     73   case Ignore:
     74     OS << "Ignore";
     75     break;
     76   case Indirect:
     77     OS << "Indirect Align=" << getIndirectAlign()
     78        << " ByVal=" << getIndirectByVal()
     79        << " Realign=" << getIndirectRealign();
     80     break;
     81   case Expand:
     82     OS << "Expand";
     83     break;
     84   }
     85   OS << ")\n";
     86 }
     87 
     88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
     89 
     90 // If someone can figure out a general rule for this, that would be great.
     91 // It's probably just doomed to be platform-dependent, though.
     92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
     93   // Verified for:
     94   //   x86-64     FreeBSD, Linux, Darwin
     95   //   x86-32     FreeBSD, Linux, Darwin
     96   //   PowerPC    Linux, Darwin
     97   //   ARM        Darwin (*not* EABI)
     98   return 32;
     99 }
    100 
    101 bool TargetCodeGenInfo::isNoProtoCallVariadic(CallingConv CC) const {
    102   // The following conventions are known to require this to be false:
    103   //   x86_stdcall
    104   //   MIPS
    105   // For everything else, we just prefer false unless we opt out.
    106   return false;
    107 }
    108 
    109 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
    110 
    111 /// isEmptyField - Return true iff a the field is "empty", that is it
    112 /// is an unnamed bit-field or an (array of) empty record(s).
    113 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
    114                          bool AllowArrays) {
    115   if (FD->isUnnamedBitfield())
    116     return true;
    117 
    118   QualType FT = FD->getType();
    119 
    120     // Constant arrays of empty records count as empty, strip them off.
    121   if (AllowArrays)
    122     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
    123       FT = AT->getElementType();
    124 
    125   const RecordType *RT = FT->getAs<RecordType>();
    126   if (!RT)
    127     return false;
    128 
    129   // C++ record fields are never empty, at least in the Itanium ABI.
    130   //
    131   // FIXME: We should use a predicate for whether this behavior is true in the
    132   // current ABI.
    133   if (isa<CXXRecordDecl>(RT->getDecl()))
    134     return false;
    135 
    136   return isEmptyRecord(Context, FT, AllowArrays);
    137 }
    138 
    139 /// isEmptyRecord - Return true iff a structure contains only empty
    140 /// fields. Note that a structure with a flexible array member is not
    141 /// considered empty.
    142 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
    143   const RecordType *RT = T->getAs<RecordType>();
    144   if (!RT)
    145     return 0;
    146   const RecordDecl *RD = RT->getDecl();
    147   if (RD->hasFlexibleArrayMember())
    148     return false;
    149 
    150   // If this is a C++ record, check the bases first.
    151   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    152     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    153            e = CXXRD->bases_end(); i != e; ++i)
    154       if (!isEmptyRecord(Context, i->getType(), true))
    155         return false;
    156 
    157   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    158          i != e; ++i)
    159     if (!isEmptyField(Context, *i, AllowArrays))
    160       return false;
    161   return true;
    162 }
    163 
    164 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
    165 /// a non-trivial destructor or a non-trivial copy constructor.
    166 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
    167   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
    168   if (!RD)
    169     return false;
    170 
    171   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
    172 }
    173 
    174 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
    175 /// a record type with either a non-trivial destructor or a non-trivial copy
    176 /// constructor.
    177 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
    178   const RecordType *RT = T->getAs<RecordType>();
    179   if (!RT)
    180     return false;
    181 
    182   return hasNonTrivialDestructorOrCopyConstructor(RT);
    183 }
    184 
    185 /// isSingleElementStruct - Determine if a structure is a "single
    186 /// element struct", i.e. it has exactly one non-empty field or
    187 /// exactly one field which is itself a single element
    188 /// struct. Structures with flexible array members are never
    189 /// considered single element structs.
    190 ///
    191 /// \return The field declaration for the single non-empty field, if
    192 /// it exists.
    193 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
    194   const RecordType *RT = T->getAsStructureType();
    195   if (!RT)
    196     return 0;
    197 
    198   const RecordDecl *RD = RT->getDecl();
    199   if (RD->hasFlexibleArrayMember())
    200     return 0;
    201 
    202   const Type *Found = 0;
    203 
    204   // If this is a C++ record, check the bases first.
    205   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    206     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    207            e = CXXRD->bases_end(); i != e; ++i) {
    208       // Ignore empty records.
    209       if (isEmptyRecord(Context, i->getType(), true))
    210         continue;
    211 
    212       // If we already found an element then this isn't a single-element struct.
    213       if (Found)
    214         return 0;
    215 
    216       // If this is non-empty and not a single element struct, the composite
    217       // cannot be a single element struct.
    218       Found = isSingleElementStruct(i->getType(), Context);
    219       if (!Found)
    220         return 0;
    221     }
    222   }
    223 
    224   // Check for single element.
    225   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    226          i != e; ++i) {
    227     const FieldDecl *FD = *i;
    228     QualType FT = FD->getType();
    229 
    230     // Ignore empty fields.
    231     if (isEmptyField(Context, FD, true))
    232       continue;
    233 
    234     // If we already found an element then this isn't a single-element
    235     // struct.
    236     if (Found)
    237       return 0;
    238 
    239     // Treat single element arrays as the element.
    240     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    241       if (AT->getSize().getZExtValue() != 1)
    242         break;
    243       FT = AT->getElementType();
    244     }
    245 
    246     if (!isAggregateTypeForABI(FT)) {
    247       Found = FT.getTypePtr();
    248     } else {
    249       Found = isSingleElementStruct(FT, Context);
    250       if (!Found)
    251         return 0;
    252     }
    253   }
    254 
    255   return Found;
    256 }
    257 
    258 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
    259   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
    260       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
    261       !Ty->isBlockPointerType())
    262     return false;
    263 
    264   uint64_t Size = Context.getTypeSize(Ty);
    265   return Size == 32 || Size == 64;
    266 }
    267 
    268 /// canExpandIndirectArgument - Test whether an argument type which is to be
    269 /// passed indirectly (on the stack) would have the equivalent layout if it was
    270 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
    271 /// inhibiting optimizations.
    272 ///
    273 // FIXME: This predicate is missing many cases, currently it just follows
    274 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
    275 // should probably make this smarter, or better yet make the LLVM backend
    276 // capable of handling it.
    277 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
    278   // We can only expand structure types.
    279   const RecordType *RT = Ty->getAs<RecordType>();
    280   if (!RT)
    281     return false;
    282 
    283   // We can only expand (C) structures.
    284   //
    285   // FIXME: This needs to be generalized to handle classes as well.
    286   const RecordDecl *RD = RT->getDecl();
    287   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
    288     return false;
    289 
    290   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    291          i != e; ++i) {
    292     const FieldDecl *FD = *i;
    293 
    294     if (!is32Or64BitBasicType(FD->getType(), Context))
    295       return false;
    296 
    297     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    298     // how to expand them yet, and the predicate for telling if a bitfield still
    299     // counts as "basic" is more complicated than what we were doing previously.
    300     if (FD->isBitField())
    301       return false;
    302   }
    303 
    304   return true;
    305 }
    306 
    307 namespace {
    308 /// DefaultABIInfo - The default implementation for ABI specific
    309 /// details. This implementation provides information which results in
    310 /// self-consistent and sensible LLVM IR generation, but does not
    311 /// conform to any particular ABI.
    312 class DefaultABIInfo : public ABIInfo {
    313 public:
    314   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    315 
    316   ABIArgInfo classifyReturnType(QualType RetTy) const;
    317   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    318 
    319   virtual void computeInfo(CGFunctionInfo &FI) const {
    320     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    321     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
    322          it != ie; ++it)
    323       it->info = classifyArgumentType(it->type);
    324   }
    325 
    326   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    327                                  CodeGenFunction &CGF) const;
    328 };
    329 
    330 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
    331 public:
    332   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    333     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
    334 };
    335 
    336 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    337                                        CodeGenFunction &CGF) const {
    338   return 0;
    339 }
    340 
    341 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
    342   if (isAggregateTypeForABI(Ty))
    343     return ABIArgInfo::getIndirect(0);
    344 
    345   // Treat an enum type as its underlying type.
    346   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    347     Ty = EnumTy->getDecl()->getIntegerType();
    348 
    349   return (Ty->isPromotableIntegerType() ?
    350           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    351 }
    352 
    353 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
    354   if (RetTy->isVoidType())
    355     return ABIArgInfo::getIgnore();
    356 
    357   if (isAggregateTypeForABI(RetTy))
    358     return ABIArgInfo::getIndirect(0);
    359 
    360   // Treat an enum type as its underlying type.
    361   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    362     RetTy = EnumTy->getDecl()->getIntegerType();
    363 
    364   return (RetTy->isPromotableIntegerType() ?
    365           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    366 }
    367 
    368 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
    369 /// x86_mmx type.
    370 bool UseX86_MMXType(llvm::Type *IRType) {
    371   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
    372   // special x86_mmx type.
    373   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    374     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    375     IRType->getScalarSizeInBits() != 64;
    376 }
    377 
    378 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    379                                           StringRef Constraint,
    380                                           llvm::Type* Ty) {
    381   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
    382     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
    383   return Ty;
    384 }
    385 
    386 //===----------------------------------------------------------------------===//
    387 // X86-32 ABI Implementation
    388 //===----------------------------------------------------------------------===//
    389 
    390 /// X86_32ABIInfo - The X86-32 ABI information.
    391 class X86_32ABIInfo : public ABIInfo {
    392   static const unsigned MinABIStackAlignInBytes = 4;
    393 
    394   bool IsDarwinVectorABI;
    395   bool IsSmallStructInRegABI;
    396   bool IsMMXDisabled;
    397 
    398   static bool isRegisterSize(unsigned Size) {
    399     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
    400   }
    401 
    402   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
    403 
    404   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    405   /// such that the argument will be passed in memory.
    406   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
    407 
    408   /// \brief Return the alignment to use for the given type on the stack.
    409   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
    410 
    411 public:
    412 
    413   ABIArgInfo classifyReturnType(QualType RetTy) const;
    414   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    415 
    416   virtual void computeInfo(CGFunctionInfo &FI) const {
    417     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    418     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
    419          it != ie; ++it)
    420       it->info = classifyArgumentType(it->type);
    421   }
    422 
    423   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    424                                  CodeGenFunction &CGF) const;
    425 
    426   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
    427     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
    428       IsMMXDisabled(m) {}
    429 };
    430 
    431 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
    432 public:
    433   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
    434     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
    435 
    436   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
    437                            CodeGen::CodeGenModule &CGM) const;
    438 
    439   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    440     // Darwin uses different dwarf register numbers for EH.
    441     if (CGM.isTargetDarwin()) return 5;
    442 
    443     return 4;
    444   }
    445 
    446   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    447                                llvm::Value *Address) const;
    448 
    449   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    450                                   StringRef Constraint,
    451                                   llvm::Type* Ty) const {
    452     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    453   }
    454 
    455 };
    456 
    457 }
    458 
    459 /// shouldReturnTypeInRegister - Determine if the given type should be
    460 /// passed in a register (for the Darwin ABI).
    461 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
    462                                                ASTContext &Context) {
    463   uint64_t Size = Context.getTypeSize(Ty);
    464 
    465   // Type must be register sized.
    466   if (!isRegisterSize(Size))
    467     return false;
    468 
    469   if (Ty->isVectorType()) {
    470     // 64- and 128- bit vectors inside structures are not returned in
    471     // registers.
    472     if (Size == 64 || Size == 128)
    473       return false;
    474 
    475     return true;
    476   }
    477 
    478   // If this is a builtin, pointer, enum, complex type, member pointer, or
    479   // member function pointer it is ok.
    480   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
    481       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
    482       Ty->isBlockPointerType() || Ty->isMemberPointerType())
    483     return true;
    484 
    485   // Arrays are treated like records.
    486   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
    487     return shouldReturnTypeInRegister(AT->getElementType(), Context);
    488 
    489   // Otherwise, it must be a record type.
    490   const RecordType *RT = Ty->getAs<RecordType>();
    491   if (!RT) return false;
    492 
    493   // FIXME: Traverse bases here too.
    494 
    495   // Structure types are passed in register if all fields would be
    496   // passed in a register.
    497   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
    498          e = RT->getDecl()->field_end(); i != e; ++i) {
    499     const FieldDecl *FD = *i;
    500 
    501     // Empty fields are ignored.
    502     if (isEmptyField(Context, FD, true))
    503       continue;
    504 
    505     // Check fields recursively.
    506     if (!shouldReturnTypeInRegister(FD->getType(), Context))
    507       return false;
    508   }
    509 
    510   return true;
    511 }
    512 
    513 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
    514   if (RetTy->isVoidType())
    515     return ABIArgInfo::getIgnore();
    516 
    517   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
    518     // On Darwin, some vectors are returned in registers.
    519     if (IsDarwinVectorABI) {
    520       uint64_t Size = getContext().getTypeSize(RetTy);
    521 
    522       // 128-bit vectors are a special case; they are returned in
    523       // registers and we need to make sure to pick a type the LLVM
    524       // backend will like.
    525       if (Size == 128)
    526         return ABIArgInfo::getDirect(llvm::VectorType::get(
    527                   llvm::Type::getInt64Ty(getVMContext()), 2));
    528 
    529       // Always return in register if it fits in a general purpose
    530       // register, or if it is 64 bits and has a single element.
    531       if ((Size == 8 || Size == 16 || Size == 32) ||
    532           (Size == 64 && VT->getNumElements() == 1))
    533         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    534                                                             Size));
    535 
    536       return ABIArgInfo::getIndirect(0);
    537     }
    538 
    539     return ABIArgInfo::getDirect();
    540   }
    541 
    542   if (isAggregateTypeForABI(RetTy)) {
    543     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
    544       // Structures with either a non-trivial destructor or a non-trivial
    545       // copy constructor are always indirect.
    546       if (hasNonTrivialDestructorOrCopyConstructor(RT))
    547         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
    548 
    549       // Structures with flexible arrays are always indirect.
    550       if (RT->getDecl()->hasFlexibleArrayMember())
    551         return ABIArgInfo::getIndirect(0);
    552     }
    553 
    554     // If specified, structs and unions are always indirect.
    555     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
    556       return ABIArgInfo::getIndirect(0);
    557 
    558     // Classify "single element" structs as their element type.
    559     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
    560       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
    561         if (BT->isIntegerType()) {
    562           // We need to use the size of the structure, padding
    563           // bit-fields can adjust that to be larger than the single
    564           // element type.
    565           uint64_t Size = getContext().getTypeSize(RetTy);
    566           return ABIArgInfo::getDirect(
    567             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
    568         }
    569 
    570         if (BT->getKind() == BuiltinType::Float) {
    571           assert(getContext().getTypeSize(RetTy) ==
    572                  getContext().getTypeSize(SeltTy) &&
    573                  "Unexpect single element structure size!");
    574           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
    575         }
    576 
    577         if (BT->getKind() == BuiltinType::Double) {
    578           assert(getContext().getTypeSize(RetTy) ==
    579                  getContext().getTypeSize(SeltTy) &&
    580                  "Unexpect single element structure size!");
    581           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
    582         }
    583       } else if (SeltTy->isPointerType()) {
    584         // FIXME: It would be really nice if this could come out as the proper
    585         // pointer type.
    586         llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
    587         return ABIArgInfo::getDirect(PtrTy);
    588       } else if (SeltTy->isVectorType()) {
    589         // 64- and 128-bit vectors are never returned in a
    590         // register when inside a structure.
    591         uint64_t Size = getContext().getTypeSize(RetTy);
    592         if (Size == 64 || Size == 128)
    593           return ABIArgInfo::getIndirect(0);
    594 
    595         return classifyReturnType(QualType(SeltTy, 0));
    596       }
    597     }
    598 
    599     // Small structures which are register sized are generally returned
    600     // in a register.
    601     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
    602       uint64_t Size = getContext().getTypeSize(RetTy);
    603       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
    604     }
    605 
    606     return ABIArgInfo::getIndirect(0);
    607   }
    608 
    609   // Treat an enum type as its underlying type.
    610   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    611     RetTy = EnumTy->getDecl()->getIntegerType();
    612 
    613   return (RetTy->isPromotableIntegerType() ?
    614           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    615 }
    616 
    617 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
    618   const RecordType *RT = Ty->getAs<RecordType>();
    619   if (!RT)
    620     return 0;
    621   const RecordDecl *RD = RT->getDecl();
    622 
    623   // If this is a C++ record, check the bases first.
    624   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    625     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    626            e = CXXRD->bases_end(); i != e; ++i)
    627       if (!isRecordWithSSEVectorType(Context, i->getType()))
    628         return false;
    629 
    630   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    631        i != e; ++i) {
    632     QualType FT = i->getType();
    633 
    634     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
    635       return true;
    636 
    637     if (isRecordWithSSEVectorType(Context, FT))
    638       return true;
    639   }
    640 
    641   return false;
    642 }
    643 
    644 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
    645                                                  unsigned Align) const {
    646   // Otherwise, if the alignment is less than or equal to the minimum ABI
    647   // alignment, just use the default; the backend will handle this.
    648   if (Align <= MinABIStackAlignInBytes)
    649     return 0; // Use default alignment.
    650 
    651   // On non-Darwin, the stack type alignment is always 4.
    652   if (!IsDarwinVectorABI) {
    653     // Set explicit alignment, since we may need to realign the top.
    654     return MinABIStackAlignInBytes;
    655   }
    656 
    657   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
    658   if (isRecordWithSSEVectorType(getContext(), Ty))
    659     return 16;
    660 
    661   return MinABIStackAlignInBytes;
    662 }
    663 
    664 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
    665   if (!ByVal)
    666     return ABIArgInfo::getIndirect(0, false);
    667 
    668   // Compute the byval alignment.
    669   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
    670   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
    671   if (StackAlign == 0)
    672     return ABIArgInfo::getIndirect(4);
    673 
    674   // If the stack alignment is less than the type alignment, realign the
    675   // argument.
    676   if (StackAlign < TypeAlign)
    677     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
    678                                    /*Realign=*/true);
    679 
    680   return ABIArgInfo::getIndirect(StackAlign);
    681 }
    682 
    683 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
    684   // FIXME: Set alignment on indirect arguments.
    685   if (isAggregateTypeForABI(Ty)) {
    686     // Structures with flexible arrays are always indirect.
    687     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    688       // Structures with either a non-trivial destructor or a non-trivial
    689       // copy constructor are always indirect.
    690       if (hasNonTrivialDestructorOrCopyConstructor(RT))
    691         return getIndirectResult(Ty, /*ByVal=*/false);
    692 
    693       if (RT->getDecl()->hasFlexibleArrayMember())
    694         return getIndirectResult(Ty);
    695     }
    696 
    697     // Ignore empty structs.
    698     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
    699       return ABIArgInfo::getIgnore();
    700 
    701     // Expand small (<= 128-bit) record types when we know that the stack layout
    702     // of those arguments will match the struct. This is important because the
    703     // LLVM backend isn't smart enough to remove byval, which inhibits many
    704     // optimizations.
    705     if (getContext().getTypeSize(Ty) <= 4*32 &&
    706         canExpandIndirectArgument(Ty, getContext()))
    707       return ABIArgInfo::getExpand();
    708 
    709     return getIndirectResult(Ty);
    710   }
    711 
    712   if (const VectorType *VT = Ty->getAs<VectorType>()) {
    713     // On Darwin, some vectors are passed in memory, we handle this by passing
    714     // it as an i8/i16/i32/i64.
    715     if (IsDarwinVectorABI) {
    716       uint64_t Size = getContext().getTypeSize(Ty);
    717       if ((Size == 8 || Size == 16 || Size == 32) ||
    718           (Size == 64 && VT->getNumElements() == 1))
    719         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    720                                                             Size));
    721     }
    722 
    723     llvm::Type *IRType = CGT.ConvertType(Ty);
    724     if (UseX86_MMXType(IRType)) {
    725       if (IsMMXDisabled)
    726         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    727                                                             64));
    728       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
    729       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
    730       return AAI;
    731     }
    732 
    733     return ABIArgInfo::getDirect();
    734   }
    735 
    736 
    737   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    738     Ty = EnumTy->getDecl()->getIntegerType();
    739 
    740   return (Ty->isPromotableIntegerType() ?
    741           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    742 }
    743 
    744 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    745                                       CodeGenFunction &CGF) const {
    746   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
    747   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
    748 
    749   CGBuilderTy &Builder = CGF.Builder;
    750   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
    751                                                        "ap");
    752   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
    753   llvm::Type *PTy =
    754     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
    755   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
    756 
    757   uint64_t Offset =
    758     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
    759   llvm::Value *NextAddr =
    760     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
    761                       "ap.next");
    762   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
    763 
    764   return AddrTyped;
    765 }
    766 
    767 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
    768                                                   llvm::GlobalValue *GV,
    769                                             CodeGen::CodeGenModule &CGM) const {
    770   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    771     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
    772       // Get the LLVM function.
    773       llvm::Function *Fn = cast<llvm::Function>(GV);
    774 
    775       // Now add the 'alignstack' attribute with a value of 16.
    776       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
    777     }
    778   }
    779 }
    780 
    781 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
    782                                                CodeGen::CodeGenFunction &CGF,
    783                                                llvm::Value *Address) const {
    784   CodeGen::CGBuilderTy &Builder = CGF.Builder;
    785   llvm::LLVMContext &Context = CGF.getLLVMContext();
    786 
    787   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    788   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
    789 
    790   // 0-7 are the eight integer registers;  the order is different
    791   //   on Darwin (for EH), but the range is the same.
    792   // 8 is %eip.
    793   AssignToArrayRange(Builder, Address, Four8, 0, 8);
    794 
    795   if (CGF.CGM.isTargetDarwin()) {
    796     // 12-16 are st(0..4).  Not sure why we stop at 4.
    797     // These have size 16, which is sizeof(long double) on
    798     // platforms with 8-byte alignment for that type.
    799     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
    800     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
    801 
    802   } else {
    803     // 9 is %eflags, which doesn't get a size on Darwin for some
    804     // reason.
    805     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
    806 
    807     // 11-16 are st(0..5).  Not sure why we stop at 5.
    808     // These have size 12, which is sizeof(long double) on
    809     // platforms with 4-byte alignment for that type.
    810     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
    811     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
    812   }
    813 
    814   return false;
    815 }
    816 
    817 //===----------------------------------------------------------------------===//
    818 // X86-64 ABI Implementation
    819 //===----------------------------------------------------------------------===//
    820 
    821 
    822 namespace {
    823 /// X86_64ABIInfo - The X86_64 ABI information.
    824 class X86_64ABIInfo : public ABIInfo {
    825   enum Class {
    826     Integer = 0,
    827     SSE,
    828     SSEUp,
    829     X87,
    830     X87Up,
    831     ComplexX87,
    832     NoClass,
    833     Memory
    834   };
    835 
    836   /// merge - Implement the X86_64 ABI merging algorithm.
    837   ///
    838   /// Merge an accumulating classification \arg Accum with a field
    839   /// classification \arg Field.
    840   ///
    841   /// \param Accum - The accumulating classification. This should
    842   /// always be either NoClass or the result of a previous merge
    843   /// call. In addition, this should never be Memory (the caller
    844   /// should just return Memory for the aggregate).
    845   static Class merge(Class Accum, Class Field);
    846 
    847   /// postMerge - Implement the X86_64 ABI post merging algorithm.
    848   ///
    849   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
    850   /// final MEMORY or SSE classes when necessary.
    851   ///
    852   /// \param AggregateSize - The size of the current aggregate in
    853   /// the classification process.
    854   ///
    855   /// \param Lo - The classification for the parts of the type
    856   /// residing in the low word of the containing object.
    857   ///
    858   /// \param Hi - The classification for the parts of the type
    859   /// residing in the higher words of the containing object.
    860   ///
    861   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
    862 
    863   /// classify - Determine the x86_64 register classes in which the
    864   /// given type T should be passed.
    865   ///
    866   /// \param Lo - The classification for the parts of the type
    867   /// residing in the low word of the containing object.
    868   ///
    869   /// \param Hi - The classification for the parts of the type
    870   /// residing in the high word of the containing object.
    871   ///
    872   /// \param OffsetBase - The bit offset of this type in the
    873   /// containing object.  Some parameters are classified different
    874   /// depending on whether they straddle an eightbyte boundary.
    875   ///
    876   /// If a word is unused its result will be NoClass; if a type should
    877   /// be passed in Memory then at least the classification of \arg Lo
    878   /// will be Memory.
    879   ///
    880   /// The \arg Lo class will be NoClass iff the argument is ignored.
    881   ///
    882   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
    883   /// also be ComplexX87.
    884   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
    885 
    886   llvm::Type *GetByteVectorType(QualType Ty) const;
    887   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
    888                                  unsigned IROffset, QualType SourceTy,
    889                                  unsigned SourceOffset) const;
    890   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
    891                                      unsigned IROffset, QualType SourceTy,
    892                                      unsigned SourceOffset) const;
    893 
    894   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    895   /// such that the argument will be returned in memory.
    896   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
    897 
    898   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    899   /// such that the argument will be passed in memory.
    900   ABIArgInfo getIndirectResult(QualType Ty) const;
    901 
    902   ABIArgInfo classifyReturnType(QualType RetTy) const;
    903 
    904   ABIArgInfo classifyArgumentType(QualType Ty,
    905                                   unsigned &neededInt,
    906                                   unsigned &neededSSE) const;
    907 
    908   /// The 0.98 ABI revision clarified a lot of ambiguities,
    909   /// unfortunately in ways that were not always consistent with
    910   /// certain previous compilers.  In particular, platforms which
    911   /// required strict binary compatibility with older versions of GCC
    912   /// may need to exempt themselves.
    913   bool honorsRevision0_98() const {
    914     return !getContext().getTargetInfo().getTriple().isOSDarwin();
    915   }
    916 
    917 public:
    918   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    919 
    920   virtual void computeInfo(CGFunctionInfo &FI) const;
    921 
    922   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    923                                  CodeGenFunction &CGF) const;
    924 };
    925 
    926 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
    927 class WinX86_64ABIInfo : public ABIInfo {
    928 
    929   ABIArgInfo classify(QualType Ty) const;
    930 
    931 public:
    932   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    933 
    934   virtual void computeInfo(CGFunctionInfo &FI) const;
    935 
    936   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    937                                  CodeGenFunction &CGF) const;
    938 };
    939 
    940 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
    941 public:
    942   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    943     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
    944 
    945   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    946     return 7;
    947   }
    948 
    949   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    950                                llvm::Value *Address) const {
    951     CodeGen::CGBuilderTy &Builder = CGF.Builder;
    952     llvm::LLVMContext &Context = CGF.getLLVMContext();
    953 
    954     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    955     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
    956 
    957     // 0-15 are the 16 integer registers.
    958     // 16 is %rip.
    959     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
    960 
    961     return false;
    962   }
    963 
    964   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    965                                   StringRef Constraint,
    966                                   llvm::Type* Ty) const {
    967     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    968   }
    969 
    970   bool isNoProtoCallVariadic(CallingConv CC) const {
    971     // The default CC on x86-64 sets %al to the number of SSA
    972     // registers used, and GCC sets this when calling an unprototyped
    973     // function, so we override the default behavior.
    974     if (CC == CC_Default || CC == CC_C) return true;
    975 
    976     return TargetCodeGenInfo::isNoProtoCallVariadic(CC);
    977   }
    978 
    979 };
    980 
    981 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
    982 public:
    983   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    984     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
    985 
    986   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    987     return 7;
    988   }
    989 
    990   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    991                                llvm::Value *Address) const {
    992     CodeGen::CGBuilderTy &Builder = CGF.Builder;
    993     llvm::LLVMContext &Context = CGF.getLLVMContext();
    994 
    995     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    996     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
    997 
    998     // 0-15 are the 16 integer registers.
    999     // 16 is %rip.
   1000     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
   1001 
   1002     return false;
   1003   }
   1004 };
   1005 
   1006 }
   1007 
   1008 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
   1009                               Class &Hi) const {
   1010   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
   1011   //
   1012   // (a) If one of the classes is Memory, the whole argument is passed in
   1013   //     memory.
   1014   //
   1015   // (b) If X87UP is not preceded by X87, the whole argument is passed in
   1016   //     memory.
   1017   //
   1018   // (c) If the size of the aggregate exceeds two eightbytes and the first
   1019   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
   1020   //     argument is passed in memory. NOTE: This is necessary to keep the
   1021   //     ABI working for processors that don't support the __m256 type.
   1022   //
   1023   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
   1024   //
   1025   // Some of these are enforced by the merging logic.  Others can arise
   1026   // only with unions; for example:
   1027   //   union { _Complex double; unsigned; }
   1028   //
   1029   // Note that clauses (b) and (c) were added in 0.98.
   1030   //
   1031   if (Hi == Memory)
   1032     Lo = Memory;
   1033   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
   1034     Lo = Memory;
   1035   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
   1036     Lo = Memory;
   1037   if (Hi == SSEUp && Lo != SSE)
   1038     Hi = SSE;
   1039 }
   1040 
   1041 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
   1042   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
   1043   // classified recursively so that always two fields are
   1044   // considered. The resulting class is calculated according to
   1045   // the classes of the fields in the eightbyte:
   1046   //
   1047   // (a) If both classes are equal, this is the resulting class.
   1048   //
   1049   // (b) If one of the classes is NO_CLASS, the resulting class is
   1050   // the other class.
   1051   //
   1052   // (c) If one of the classes is MEMORY, the result is the MEMORY
   1053   // class.
   1054   //
   1055   // (d) If one of the classes is INTEGER, the result is the
   1056   // INTEGER.
   1057   //
   1058   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
   1059   // MEMORY is used as class.
   1060   //
   1061   // (f) Otherwise class SSE is used.
   1062 
   1063   // Accum should never be memory (we should have returned) or
   1064   // ComplexX87 (because this cannot be passed in a structure).
   1065   assert((Accum != Memory && Accum != ComplexX87) &&
   1066          "Invalid accumulated classification during merge.");
   1067   if (Accum == Field || Field == NoClass)
   1068     return Accum;
   1069   if (Field == Memory)
   1070     return Memory;
   1071   if (Accum == NoClass)
   1072     return Field;
   1073   if (Accum == Integer || Field == Integer)
   1074     return Integer;
   1075   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
   1076       Accum == X87 || Accum == X87Up)
   1077     return Memory;
   1078   return SSE;
   1079 }
   1080 
   1081 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
   1082                              Class &Lo, Class &Hi) const {
   1083   // FIXME: This code can be simplified by introducing a simple value class for
   1084   // Class pairs with appropriate constructor methods for the various
   1085   // situations.
   1086 
   1087   // FIXME: Some of the split computations are wrong; unaligned vectors
   1088   // shouldn't be passed in registers for example, so there is no chance they
   1089   // can straddle an eightbyte. Verify & simplify.
   1090 
   1091   Lo = Hi = NoClass;
   1092 
   1093   Class &Current = OffsetBase < 64 ? Lo : Hi;
   1094   Current = Memory;
   1095 
   1096   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   1097     BuiltinType::Kind k = BT->getKind();
   1098 
   1099     if (k == BuiltinType::Void) {
   1100       Current = NoClass;
   1101     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
   1102       Lo = Integer;
   1103       Hi = Integer;
   1104     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
   1105       Current = Integer;
   1106     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
   1107       Current = SSE;
   1108     } else if (k == BuiltinType::LongDouble) {
   1109       Lo = X87;
   1110       Hi = X87Up;
   1111     }
   1112     // FIXME: _Decimal32 and _Decimal64 are SSE.
   1113     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
   1114     return;
   1115   }
   1116 
   1117   if (const EnumType *ET = Ty->getAs<EnumType>()) {
   1118     // Classify the underlying integer type.
   1119     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
   1120     return;
   1121   }
   1122 
   1123   if (Ty->hasPointerRepresentation()) {
   1124     Current = Integer;
   1125     return;
   1126   }
   1127 
   1128   if (Ty->isMemberPointerType()) {
   1129     if (Ty->isMemberFunctionPointerType())
   1130       Lo = Hi = Integer;
   1131     else
   1132       Current = Integer;
   1133     return;
   1134   }
   1135 
   1136   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   1137     uint64_t Size = getContext().getTypeSize(VT);
   1138     if (Size == 32) {
   1139       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
   1140       // float> as integer.
   1141       Current = Integer;
   1142 
   1143       // If this type crosses an eightbyte boundary, it should be
   1144       // split.
   1145       uint64_t EB_Real = (OffsetBase) / 64;
   1146       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
   1147       if (EB_Real != EB_Imag)
   1148         Hi = Lo;
   1149     } else if (Size == 64) {
   1150       // gcc passes <1 x double> in memory. :(
   1151       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
   1152         return;
   1153 
   1154       // gcc passes <1 x long long> as INTEGER.
   1155       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1156           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
   1157           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
   1158           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
   1159         Current = Integer;
   1160       else
   1161         Current = SSE;
   1162 
   1163       // If this type crosses an eightbyte boundary, it should be
   1164       // split.
   1165       if (OffsetBase && OffsetBase != 64)
   1166         Hi = Lo;
   1167     } else if (Size == 128 || Size == 256) {
   1168       // Arguments of 256-bits are split into four eightbyte chunks. The
   1169       // least significant one belongs to class SSE and all the others to class
   1170       // SSEUP. The original Lo and Hi design considers that types can't be
   1171       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
   1172       // This design isn't correct for 256-bits, but since there're no cases
   1173       // where the upper parts would need to be inspected, avoid adding
   1174       // complexity and just consider Hi to match the 64-256 part.
   1175       Lo = SSE;
   1176       Hi = SSEUp;
   1177     }
   1178     return;
   1179   }
   1180 
   1181   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   1182     QualType ET = getContext().getCanonicalType(CT->getElementType());
   1183 
   1184     uint64_t Size = getContext().getTypeSize(Ty);
   1185     if (ET->isIntegralOrEnumerationType()) {
   1186       if (Size <= 64)
   1187         Current = Integer;
   1188       else if (Size <= 128)
   1189         Lo = Hi = Integer;
   1190     } else if (ET == getContext().FloatTy)
   1191       Current = SSE;
   1192     else if (ET == getContext().DoubleTy)
   1193       Lo = Hi = SSE;
   1194     else if (ET == getContext().LongDoubleTy)
   1195       Current = ComplexX87;
   1196 
   1197     // If this complex type crosses an eightbyte boundary then it
   1198     // should be split.
   1199     uint64_t EB_Real = (OffsetBase) / 64;
   1200     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
   1201     if (Hi == NoClass && EB_Real != EB_Imag)
   1202       Hi = Lo;
   1203 
   1204     return;
   1205   }
   1206 
   1207   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   1208     // Arrays are treated like structures.
   1209 
   1210     uint64_t Size = getContext().getTypeSize(Ty);
   1211 
   1212     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   1213     // than four eightbytes, ..., it has class MEMORY.
   1214     if (Size > 256)
   1215       return;
   1216 
   1217     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
   1218     // fields, it has class MEMORY.
   1219     //
   1220     // Only need to check alignment of array base.
   1221     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
   1222       return;
   1223 
   1224     // Otherwise implement simplified merge. We could be smarter about
   1225     // this, but it isn't worth it and would be harder to verify.
   1226     Current = NoClass;
   1227     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
   1228     uint64_t ArraySize = AT->getSize().getZExtValue();
   1229 
   1230     // The only case a 256-bit wide vector could be used is when the array
   1231     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   1232     // to work for sizes wider than 128, early check and fallback to memory.
   1233     if (Size > 128 && EltSize != 256)
   1234       return;
   1235 
   1236     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
   1237       Class FieldLo, FieldHi;
   1238       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
   1239       Lo = merge(Lo, FieldLo);
   1240       Hi = merge(Hi, FieldHi);
   1241       if (Lo == Memory || Hi == Memory)
   1242         break;
   1243     }
   1244 
   1245     postMerge(Size, Lo, Hi);
   1246     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
   1247     return;
   1248   }
   1249 
   1250   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1251     uint64_t Size = getContext().getTypeSize(Ty);
   1252 
   1253     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   1254     // than four eightbytes, ..., it has class MEMORY.
   1255     if (Size > 256)
   1256       return;
   1257 
   1258     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
   1259     // copy constructor or a non-trivial destructor, it is passed by invisible
   1260     // reference.
   1261     if (hasNonTrivialDestructorOrCopyConstructor(RT))
   1262       return;
   1263 
   1264     const RecordDecl *RD = RT->getDecl();
   1265 
   1266     // Assume variable sized types are passed in memory.
   1267     if (RD->hasFlexibleArrayMember())
   1268       return;
   1269 
   1270     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1271 
   1272     // Reset Lo class, this will be recomputed.
   1273     Current = NoClass;
   1274 
   1275     // If this is a C++ record, classify the bases first.
   1276     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   1277       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
   1278              e = CXXRD->bases_end(); i != e; ++i) {
   1279         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
   1280                "Unexpected base class!");
   1281         const CXXRecordDecl *Base =
   1282           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   1283 
   1284         // Classify this field.
   1285         //
   1286         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
   1287         // single eightbyte, each is classified separately. Each eightbyte gets
   1288         // initialized to class NO_CLASS.
   1289         Class FieldLo, FieldHi;
   1290         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
   1291         classify(i->getType(), Offset, FieldLo, FieldHi);
   1292         Lo = merge(Lo, FieldLo);
   1293         Hi = merge(Hi, FieldHi);
   1294         if (Lo == Memory || Hi == Memory)
   1295           break;
   1296       }
   1297     }
   1298 
   1299     // Classify the fields one at a time, merging the results.
   1300     unsigned idx = 0;
   1301     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1302            i != e; ++i, ++idx) {
   1303       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   1304       bool BitField = i->isBitField();
   1305 
   1306       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
   1307       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
   1308       //
   1309       // The only case a 256-bit wide vector could be used is when the struct
   1310       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   1311       // to work for sizes wider than 128, early check and fallback to memory.
   1312       //
   1313       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
   1314         Lo = Memory;
   1315         return;
   1316       }
   1317       // Note, skip this test for bit-fields, see below.
   1318       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
   1319         Lo = Memory;
   1320         return;
   1321       }
   1322 
   1323       // Classify this field.
   1324       //
   1325       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
   1326       // exceeds a single eightbyte, each is classified
   1327       // separately. Each eightbyte gets initialized to class
   1328       // NO_CLASS.
   1329       Class FieldLo, FieldHi;
   1330 
   1331       // Bit-fields require special handling, they do not force the
   1332       // structure to be passed in memory even if unaligned, and
   1333       // therefore they can straddle an eightbyte.
   1334       if (BitField) {
   1335         // Ignore padding bit-fields.
   1336         if (i->isUnnamedBitfield())
   1337           continue;
   1338 
   1339         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   1340         uint64_t Size = i->getBitWidthValue(getContext());
   1341 
   1342         uint64_t EB_Lo = Offset / 64;
   1343         uint64_t EB_Hi = (Offset + Size - 1) / 64;
   1344         FieldLo = FieldHi = NoClass;
   1345         if (EB_Lo) {
   1346           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
   1347           FieldLo = NoClass;
   1348           FieldHi = Integer;
   1349         } else {
   1350           FieldLo = Integer;
   1351           FieldHi = EB_Hi ? Integer : NoClass;
   1352         }
   1353       } else
   1354         classify(i->getType(), Offset, FieldLo, FieldHi);
   1355       Lo = merge(Lo, FieldLo);
   1356       Hi = merge(Hi, FieldHi);
   1357       if (Lo == Memory || Hi == Memory)
   1358         break;
   1359     }
   1360 
   1361     postMerge(Size, Lo, Hi);
   1362   }
   1363 }
   1364 
   1365 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
   1366   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   1367   // place naturally.
   1368   if (!isAggregateTypeForABI(Ty)) {
   1369     // Treat an enum type as its underlying type.
   1370     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1371       Ty = EnumTy->getDecl()->getIntegerType();
   1372 
   1373     return (Ty->isPromotableIntegerType() ?
   1374             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1375   }
   1376 
   1377   return ABIArgInfo::getIndirect(0);
   1378 }
   1379 
   1380 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
   1381   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   1382   // place naturally.
   1383   if (!isAggregateTypeForABI(Ty)) {
   1384     // Treat an enum type as its underlying type.
   1385     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1386       Ty = EnumTy->getDecl()->getIntegerType();
   1387 
   1388     return (Ty->isPromotableIntegerType() ?
   1389             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1390   }
   1391 
   1392   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   1393     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   1394 
   1395   // Compute the byval alignment. We specify the alignment of the byval in all
   1396   // cases so that the mid-level optimizer knows the alignment of the byval.
   1397   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
   1398   return ABIArgInfo::getIndirect(Align);
   1399 }
   1400 
   1401 /// GetByteVectorType - The ABI specifies that a value should be passed in an
   1402 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
   1403 /// vector register.
   1404 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
   1405   llvm::Type *IRType = CGT.ConvertType(Ty);
   1406 
   1407   // Wrapper structs that just contain vectors are passed just like vectors,
   1408   // strip them off if present.
   1409   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
   1410   while (STy && STy->getNumElements() == 1) {
   1411     IRType = STy->getElementType(0);
   1412     STy = dyn_cast<llvm::StructType>(IRType);
   1413   }
   1414 
   1415   // If the preferred type is a 16-byte vector, prefer to pass it.
   1416   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
   1417     llvm::Type *EltTy = VT->getElementType();
   1418     unsigned BitWidth = VT->getBitWidth();
   1419     if ((BitWidth == 128 || BitWidth == 256) &&
   1420         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
   1421          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
   1422          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
   1423          EltTy->isIntegerTy(128)))
   1424       return VT;
   1425   }
   1426 
   1427   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
   1428 }
   1429 
   1430 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
   1431 /// is known to either be off the end of the specified type or being in
   1432 /// alignment padding.  The user type specified is known to be at most 128 bits
   1433 /// in size, and have passed through X86_64ABIInfo::classify with a successful
   1434 /// classification that put one of the two halves in the INTEGER class.
   1435 ///
   1436 /// It is conservatively correct to return false.
   1437 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
   1438                                   unsigned EndBit, ASTContext &Context) {
   1439   // If the bytes being queried are off the end of the type, there is no user
   1440   // data hiding here.  This handles analysis of builtins, vectors and other
   1441   // types that don't contain interesting padding.
   1442   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
   1443   if (TySize <= StartBit)
   1444     return true;
   1445 
   1446   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
   1447     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
   1448     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
   1449 
   1450     // Check each element to see if the element overlaps with the queried range.
   1451     for (unsigned i = 0; i != NumElts; ++i) {
   1452       // If the element is after the span we care about, then we're done..
   1453       unsigned EltOffset = i*EltSize;
   1454       if (EltOffset >= EndBit) break;
   1455 
   1456       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
   1457       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
   1458                                  EndBit-EltOffset, Context))
   1459         return false;
   1460     }
   1461     // If it overlaps no elements, then it is safe to process as padding.
   1462     return true;
   1463   }
   1464 
   1465   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1466     const RecordDecl *RD = RT->getDecl();
   1467     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1468 
   1469     // If this is a C++ record, check the bases first.
   1470     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   1471       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
   1472            e = CXXRD->bases_end(); i != e; ++i) {
   1473         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
   1474                "Unexpected base class!");
   1475         const CXXRecordDecl *Base =
   1476           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   1477 
   1478         // If the base is after the span we care about, ignore it.
   1479         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
   1480         if (BaseOffset >= EndBit) continue;
   1481 
   1482         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
   1483         if (!BitsContainNoUserData(i->getType(), BaseStart,
   1484                                    EndBit-BaseOffset, Context))
   1485           return false;
   1486       }
   1487     }
   1488 
   1489     // Verify that no field has data that overlaps the region of interest.  Yes
   1490     // this could be sped up a lot by being smarter about queried fields,
   1491     // however we're only looking at structs up to 16 bytes, so we don't care
   1492     // much.
   1493     unsigned idx = 0;
   1494     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1495          i != e; ++i, ++idx) {
   1496       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
   1497 
   1498       // If we found a field after the region we care about, then we're done.
   1499       if (FieldOffset >= EndBit) break;
   1500 
   1501       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
   1502       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
   1503                                  Context))
   1504         return false;
   1505     }
   1506 
   1507     // If nothing in this record overlapped the area of interest, then we're
   1508     // clean.
   1509     return true;
   1510   }
   1511 
   1512   return false;
   1513 }
   1514 
   1515 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
   1516 /// float member at the specified offset.  For example, {int,{float}} has a
   1517 /// float at offset 4.  It is conservatively correct for this routine to return
   1518 /// false.
   1519 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
   1520                                   const llvm::TargetData &TD) {
   1521   // Base case if we find a float.
   1522   if (IROffset == 0 && IRType->isFloatTy())
   1523     return true;
   1524 
   1525   // If this is a struct, recurse into the field at the specified offset.
   1526   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   1527     const llvm::StructLayout *SL = TD.getStructLayout(STy);
   1528     unsigned Elt = SL->getElementContainingOffset(IROffset);
   1529     IROffset -= SL->getElementOffset(Elt);
   1530     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
   1531   }
   1532 
   1533   // If this is an array, recurse into the field at the specified offset.
   1534   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   1535     llvm::Type *EltTy = ATy->getElementType();
   1536     unsigned EltSize = TD.getTypeAllocSize(EltTy);
   1537     IROffset -= IROffset/EltSize*EltSize;
   1538     return ContainsFloatAtOffset(EltTy, IROffset, TD);
   1539   }
   1540 
   1541   return false;
   1542 }
   1543 
   1544 
   1545 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
   1546 /// low 8 bytes of an XMM register, corresponding to the SSE class.
   1547 llvm::Type *X86_64ABIInfo::
   1548 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   1549                    QualType SourceTy, unsigned SourceOffset) const {
   1550   // The only three choices we have are either double, <2 x float>, or float. We
   1551   // pass as float if the last 4 bytes is just padding.  This happens for
   1552   // structs that contain 3 floats.
   1553   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
   1554                             SourceOffset*8+64, getContext()))
   1555     return llvm::Type::getFloatTy(getVMContext());
   1556 
   1557   // We want to pass as <2 x float> if the LLVM IR type contains a float at
   1558   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
   1559   // case.
   1560   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
   1561       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
   1562     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
   1563 
   1564   return llvm::Type::getDoubleTy(getVMContext());
   1565 }
   1566 
   1567 
   1568 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
   1569 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
   1570 /// about the high or low part of an up-to-16-byte struct.  This routine picks
   1571 /// the best LLVM IR type to represent this, which may be i64 or may be anything
   1572 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
   1573 /// etc).
   1574 ///
   1575 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
   1576 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
   1577 /// the 8-byte value references.  PrefType may be null.
   1578 ///
   1579 /// SourceTy is the source level type for the entire argument.  SourceOffset is
   1580 /// an offset into this that we're processing (which is always either 0 or 8).
   1581 ///
   1582 llvm::Type *X86_64ABIInfo::
   1583 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   1584                        QualType SourceTy, unsigned SourceOffset) const {
   1585   // If we're dealing with an un-offset LLVM IR type, then it means that we're
   1586   // returning an 8-byte unit starting with it.  See if we can safely use it.
   1587   if (IROffset == 0) {
   1588     // Pointers and int64's always fill the 8-byte unit.
   1589     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
   1590       return IRType;
   1591 
   1592     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
   1593     // goodness in the source type is just tail padding.  This is allowed to
   1594     // kick in for struct {double,int} on the int, but not on
   1595     // struct{double,int,int} because we wouldn't return the second int.  We
   1596     // have to do this analysis on the source type because we can't depend on
   1597     // unions being lowered a specific way etc.
   1598     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
   1599         IRType->isIntegerTy(32)) {
   1600       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
   1601 
   1602       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
   1603                                 SourceOffset*8+64, getContext()))
   1604         return IRType;
   1605     }
   1606   }
   1607 
   1608   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   1609     // If this is a struct, recurse into the field at the specified offset.
   1610     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
   1611     if (IROffset < SL->getSizeInBytes()) {
   1612       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
   1613       IROffset -= SL->getElementOffset(FieldIdx);
   1614 
   1615       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
   1616                                     SourceTy, SourceOffset);
   1617     }
   1618   }
   1619 
   1620   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   1621     llvm::Type *EltTy = ATy->getElementType();
   1622     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
   1623     unsigned EltOffset = IROffset/EltSize*EltSize;
   1624     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
   1625                                   SourceOffset);
   1626   }
   1627 
   1628   // Okay, we don't have any better idea of what to pass, so we pass this in an
   1629   // integer register that isn't too big to fit the rest of the struct.
   1630   unsigned TySizeInBytes =
   1631     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
   1632 
   1633   assert(TySizeInBytes != SourceOffset && "Empty field?");
   1634 
   1635   // It is always safe to classify this as an integer type up to i64 that
   1636   // isn't larger than the structure.
   1637   return llvm::IntegerType::get(getVMContext(),
   1638                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
   1639 }
   1640 
   1641 
   1642 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
   1643 /// be used as elements of a two register pair to pass or return, return a
   1644 /// first class aggregate to represent them.  For example, if the low part of
   1645 /// a by-value argument should be passed as i32* and the high part as float,
   1646 /// return {i32*, float}.
   1647 static llvm::Type *
   1648 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
   1649                            const llvm::TargetData &TD) {
   1650   // In order to correctly satisfy the ABI, we need to the high part to start
   1651   // at offset 8.  If the high and low parts we inferred are both 4-byte types
   1652   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
   1653   // the second element at offset 8.  Check for this:
   1654   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
   1655   unsigned HiAlign = TD.getABITypeAlignment(Hi);
   1656   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
   1657   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
   1658 
   1659   // To handle this, we have to increase the size of the low part so that the
   1660   // second element will start at an 8 byte offset.  We can't increase the size
   1661   // of the second element because it might make us access off the end of the
   1662   // struct.
   1663   if (HiStart != 8) {
   1664     // There are only two sorts of types the ABI generation code can produce for
   1665     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
   1666     // Promote these to a larger type.
   1667     if (Lo->isFloatTy())
   1668       Lo = llvm::Type::getDoubleTy(Lo->getContext());
   1669     else {
   1670       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
   1671       Lo = llvm::Type::getInt64Ty(Lo->getContext());
   1672     }
   1673   }
   1674 
   1675   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
   1676 
   1677 
   1678   // Verify that the second element is at an 8-byte offset.
   1679   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
   1680          "Invalid x86-64 argument pair!");
   1681   return Result;
   1682 }
   1683 
   1684 ABIArgInfo X86_64ABIInfo::
   1685 classifyReturnType(QualType RetTy) const {
   1686   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
   1687   // classification algorithm.
   1688   X86_64ABIInfo::Class Lo, Hi;
   1689   classify(RetTy, 0, Lo, Hi);
   1690 
   1691   // Check some invariants.
   1692   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   1693   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   1694 
   1695   llvm::Type *ResType = 0;
   1696   switch (Lo) {
   1697   case NoClass:
   1698     if (Hi == NoClass)
   1699       return ABIArgInfo::getIgnore();
   1700     // If the low part is just padding, it takes no register, leave ResType
   1701     // null.
   1702     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   1703            "Unknown missing lo part");
   1704     break;
   1705 
   1706   case SSEUp:
   1707   case X87Up:
   1708     llvm_unreachable("Invalid classification for lo word.");
   1709 
   1710     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
   1711     // hidden argument.
   1712   case Memory:
   1713     return getIndirectReturnResult(RetTy);
   1714 
   1715     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
   1716     // available register of the sequence %rax, %rdx is used.
   1717   case Integer:
   1718     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   1719 
   1720     // If we have a sign or zero extended integer, make sure to return Extend
   1721     // so that the parameter gets the right LLVM IR attributes.
   1722     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   1723       // Treat an enum type as its underlying type.
   1724       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   1725         RetTy = EnumTy->getDecl()->getIntegerType();
   1726 
   1727       if (RetTy->isIntegralOrEnumerationType() &&
   1728           RetTy->isPromotableIntegerType())
   1729         return ABIArgInfo::getExtend();
   1730     }
   1731     break;
   1732 
   1733     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
   1734     // available SSE register of the sequence %xmm0, %xmm1 is used.
   1735   case SSE:
   1736     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   1737     break;
   1738 
   1739     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
   1740     // returned on the X87 stack in %st0 as 80-bit x87 number.
   1741   case X87:
   1742     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
   1743     break;
   1744 
   1745     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
   1746     // part of the value is returned in %st0 and the imaginary part in
   1747     // %st1.
   1748   case ComplexX87:
   1749     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
   1750     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
   1751                                     llvm::Type::getX86_FP80Ty(getVMContext()),
   1752                                     NULL);
   1753     break;
   1754   }
   1755 
   1756   llvm::Type *HighPart = 0;
   1757   switch (Hi) {
   1758     // Memory was handled previously and X87 should
   1759     // never occur as a hi class.
   1760   case Memory:
   1761   case X87:
   1762     llvm_unreachable("Invalid classification for hi word.");
   1763 
   1764   case ComplexX87: // Previously handled.
   1765   case NoClass:
   1766     break;
   1767 
   1768   case Integer:
   1769     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1770     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1771       return ABIArgInfo::getDirect(HighPart, 8);
   1772     break;
   1773   case SSE:
   1774     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1775     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1776       return ABIArgInfo::getDirect(HighPart, 8);
   1777     break;
   1778 
   1779     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
   1780     // is passed in the next available eightbyte chunk if the last used
   1781     // vector register.
   1782     //
   1783     // SSEUP should always be preceded by SSE, just widen.
   1784   case SSEUp:
   1785     assert(Lo == SSE && "Unexpected SSEUp classification.");
   1786     ResType = GetByteVectorType(RetTy);
   1787     break;
   1788 
   1789     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
   1790     // returned together with the previous X87 value in %st0.
   1791   case X87Up:
   1792     // If X87Up is preceded by X87, we don't need to do
   1793     // anything. However, in some cases with unions it may not be
   1794     // preceded by X87. In such situations we follow gcc and pass the
   1795     // extra bits in an SSE reg.
   1796     if (Lo != X87) {
   1797       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1798       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1799         return ABIArgInfo::getDirect(HighPart, 8);
   1800     }
   1801     break;
   1802   }
   1803 
   1804   // If a high part was specified, merge it together with the low part.  It is
   1805   // known to pass in the high eightbyte of the result.  We do this by forming a
   1806   // first class struct aggregate with the high and low part: {low, high}
   1807   if (HighPart)
   1808     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
   1809 
   1810   return ABIArgInfo::getDirect(ResType);
   1811 }
   1812 
   1813 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
   1814                                                unsigned &neededSSE) const {
   1815   X86_64ABIInfo::Class Lo, Hi;
   1816   classify(Ty, 0, Lo, Hi);
   1817 
   1818   // Check some invariants.
   1819   // FIXME: Enforce these by construction.
   1820   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   1821   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   1822 
   1823   neededInt = 0;
   1824   neededSSE = 0;
   1825   llvm::Type *ResType = 0;
   1826   switch (Lo) {
   1827   case NoClass:
   1828     if (Hi == NoClass)
   1829       return ABIArgInfo::getIgnore();
   1830     // If the low part is just padding, it takes no register, leave ResType
   1831     // null.
   1832     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   1833            "Unknown missing lo part");
   1834     break;
   1835 
   1836     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
   1837     // on the stack.
   1838   case Memory:
   1839 
   1840     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
   1841     // COMPLEX_X87, it is passed in memory.
   1842   case X87:
   1843   case ComplexX87:
   1844     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   1845       ++neededInt;
   1846     return getIndirectResult(Ty);
   1847 
   1848   case SSEUp:
   1849   case X87Up:
   1850     llvm_unreachable("Invalid classification for lo word.");
   1851 
   1852     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
   1853     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
   1854     // and %r9 is used.
   1855   case Integer:
   1856     ++neededInt;
   1857 
   1858     // Pick an 8-byte type based on the preferred type.
   1859     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
   1860 
   1861     // If we have a sign or zero extended integer, make sure to return Extend
   1862     // so that the parameter gets the right LLVM IR attributes.
   1863     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   1864       // Treat an enum type as its underlying type.
   1865       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1866         Ty = EnumTy->getDecl()->getIntegerType();
   1867 
   1868       if (Ty->isIntegralOrEnumerationType() &&
   1869           Ty->isPromotableIntegerType())
   1870         return ABIArgInfo::getExtend();
   1871     }
   1872 
   1873     break;
   1874 
   1875     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
   1876     // available SSE register is used, the registers are taken in the
   1877     // order from %xmm0 to %xmm7.
   1878   case SSE: {
   1879     llvm::Type *IRType = CGT.ConvertType(Ty);
   1880     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
   1881     ++neededSSE;
   1882     break;
   1883   }
   1884   }
   1885 
   1886   llvm::Type *HighPart = 0;
   1887   switch (Hi) {
   1888     // Memory was handled previously, ComplexX87 and X87 should
   1889     // never occur as hi classes, and X87Up must be preceded by X87,
   1890     // which is passed in memory.
   1891   case Memory:
   1892   case X87:
   1893   case ComplexX87:
   1894     llvm_unreachable("Invalid classification for hi word.");
   1895 
   1896   case NoClass: break;
   1897 
   1898   case Integer:
   1899     ++neededInt;
   1900     // Pick an 8-byte type based on the preferred type.
   1901     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   1902 
   1903     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   1904       return ABIArgInfo::getDirect(HighPart, 8);
   1905     break;
   1906 
   1907     // X87Up generally doesn't occur here (long double is passed in
   1908     // memory), except in situations involving unions.
   1909   case X87Up:
   1910   case SSE:
   1911     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   1912 
   1913     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   1914       return ABIArgInfo::getDirect(HighPart, 8);
   1915 
   1916     ++neededSSE;
   1917     break;
   1918 
   1919     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
   1920     // eightbyte is passed in the upper half of the last used SSE
   1921     // register.  This only happens when 128-bit vectors are passed.
   1922   case SSEUp:
   1923     assert(Lo == SSE && "Unexpected SSEUp classification");
   1924     ResType = GetByteVectorType(Ty);
   1925     break;
   1926   }
   1927 
   1928   // If a high part was specified, merge it together with the low part.  It is
   1929   // known to pass in the high eightbyte of the result.  We do this by forming a
   1930   // first class struct aggregate with the high and low part: {low, high}
   1931   if (HighPart)
   1932     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
   1933 
   1934   return ABIArgInfo::getDirect(ResType);
   1935 }
   1936 
   1937 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   1938 
   1939   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   1940 
   1941   // Keep track of the number of assigned registers.
   1942   unsigned freeIntRegs = 6, freeSSERegs = 8;
   1943 
   1944   // If the return value is indirect, then the hidden argument is consuming one
   1945   // integer register.
   1946   if (FI.getReturnInfo().isIndirect())
   1947     --freeIntRegs;
   1948 
   1949   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
   1950   // get assigned (in left-to-right order) for passing as follows...
   1951   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   1952        it != ie; ++it) {
   1953     unsigned neededInt, neededSSE;
   1954     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
   1955 
   1956     // AMD64-ABI 3.2.3p3: If there are no registers available for any
   1957     // eightbyte of an argument, the whole argument is passed on the
   1958     // stack. If registers have already been assigned for some
   1959     // eightbytes of such an argument, the assignments get reverted.
   1960     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
   1961       freeIntRegs -= neededInt;
   1962       freeSSERegs -= neededSSE;
   1963     } else {
   1964       it->info = getIndirectResult(it->type);
   1965     }
   1966   }
   1967 }
   1968 
   1969 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
   1970                                         QualType Ty,
   1971                                         CodeGenFunction &CGF) {
   1972   llvm::Value *overflow_arg_area_p =
   1973     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
   1974   llvm::Value *overflow_arg_area =
   1975     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
   1976 
   1977   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
   1978   // byte boundary if alignment needed by type exceeds 8 byte boundary.
   1979   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
   1980   if (Align > 8) {
   1981     // Note that we follow the ABI & gcc here, even though the type
   1982     // could in theory have an alignment greater than 16. This case
   1983     // shouldn't ever matter in practice.
   1984 
   1985     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
   1986     llvm::Value *Offset =
   1987       llvm::ConstantInt::get(CGF.Int32Ty, 15);
   1988     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
   1989     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
   1990                                                     CGF.Int64Ty);
   1991     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
   1992     overflow_arg_area =
   1993       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
   1994                                  overflow_arg_area->getType(),
   1995                                  "overflow_arg_area.align");
   1996   }
   1997 
   1998   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
   1999   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   2000   llvm::Value *Res =
   2001     CGF.Builder.CreateBitCast(overflow_arg_area,
   2002                               llvm::PointerType::getUnqual(LTy));
   2003 
   2004   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
   2005   // l->overflow_arg_area + sizeof(type).
   2006   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
   2007   // an 8 byte boundary.
   2008 
   2009   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
   2010   llvm::Value *Offset =
   2011       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
   2012   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
   2013                                             "overflow_arg_area.next");
   2014   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
   2015 
   2016   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
   2017   return Res;
   2018 }
   2019 
   2020 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2021                                       CodeGenFunction &CGF) const {
   2022   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
   2023 
   2024   // Assume that va_list type is correct; should be pointer to LLVM type:
   2025   // struct {
   2026   //   i32 gp_offset;
   2027   //   i32 fp_offset;
   2028   //   i8* overflow_arg_area;
   2029   //   i8* reg_save_area;
   2030   // };
   2031   unsigned neededInt, neededSSE;
   2032 
   2033   Ty = CGF.getContext().getCanonicalType(Ty);
   2034   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
   2035 
   2036   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
   2037   // in the registers. If not go to step 7.
   2038   if (!neededInt && !neededSSE)
   2039     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
   2040 
   2041   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
   2042   // general purpose registers needed to pass type and num_fp to hold
   2043   // the number of floating point registers needed.
   2044 
   2045   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
   2046   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
   2047   // l->fp_offset > 304 - num_fp * 16 go to step 7.
   2048   //
   2049   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
   2050   // register save space).
   2051 
   2052   llvm::Value *InRegs = 0;
   2053   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
   2054   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
   2055   if (neededInt) {
   2056     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
   2057     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
   2058     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
   2059     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
   2060   }
   2061 
   2062   if (neededSSE) {
   2063     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
   2064     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
   2065     llvm::Value *FitsInFP =
   2066       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
   2067     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
   2068     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
   2069   }
   2070 
   2071   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   2072   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   2073   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   2074   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   2075 
   2076   // Emit code to load the value if it was passed in registers.
   2077 
   2078   CGF.EmitBlock(InRegBlock);
   2079 
   2080   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
   2081   // an offset of l->gp_offset and/or l->fp_offset. This may require
   2082   // copying to a temporary location in case the parameter is passed
   2083   // in different register classes or requires an alignment greater
   2084   // than 8 for general purpose registers and 16 for XMM registers.
   2085   //
   2086   // FIXME: This really results in shameful code when we end up needing to
   2087   // collect arguments from different places; often what should result in a
   2088   // simple assembling of a structure from scattered addresses has many more
   2089   // loads than necessary. Can we clean this up?
   2090   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   2091   llvm::Value *RegAddr =
   2092     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
   2093                            "reg_save_area");
   2094   if (neededInt && neededSSE) {
   2095     // FIXME: Cleanup.
   2096     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
   2097     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
   2098     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
   2099     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
   2100     llvm::Type *TyLo = ST->getElementType(0);
   2101     llvm::Type *TyHi = ST->getElementType(1);
   2102     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
   2103            "Unexpected ABI info for mixed regs");
   2104     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
   2105     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
   2106     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
   2107     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2108     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
   2109     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
   2110     llvm::Value *V =
   2111       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
   2112     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
   2113     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
   2114     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
   2115 
   2116     RegAddr = CGF.Builder.CreateBitCast(Tmp,
   2117                                         llvm::PointerType::getUnqual(LTy));
   2118   } else if (neededInt) {
   2119     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
   2120     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
   2121                                         llvm::PointerType::getUnqual(LTy));
   2122   } else if (neededSSE == 1) {
   2123     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2124     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
   2125                                         llvm::PointerType::getUnqual(LTy));
   2126   } else {
   2127     assert(neededSSE == 2 && "Invalid number of needed registers!");
   2128     // SSE registers are spaced 16 bytes apart in the register save
   2129     // area, we need to collect the two eightbytes together.
   2130     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2131     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
   2132     llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
   2133     llvm::Type *DblPtrTy =
   2134       llvm::PointerType::getUnqual(DoubleTy);
   2135     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
   2136                                                        DoubleTy, NULL);
   2137     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
   2138     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
   2139                                                          DblPtrTy));
   2140     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
   2141     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
   2142                                                          DblPtrTy));
   2143     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
   2144     RegAddr = CGF.Builder.CreateBitCast(Tmp,
   2145                                         llvm::PointerType::getUnqual(LTy));
   2146   }
   2147 
   2148   // AMD64-ABI 3.5.7p5: Step 5. Set:
   2149   // l->gp_offset = l->gp_offset + num_gp * 8
   2150   // l->fp_offset = l->fp_offset + num_fp * 16.
   2151   if (neededInt) {
   2152     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
   2153     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
   2154                             gp_offset_p);
   2155   }
   2156   if (neededSSE) {
   2157     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
   2158     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
   2159                             fp_offset_p);
   2160   }
   2161   CGF.EmitBranch(ContBlock);
   2162 
   2163   // Emit code to load the value if it was passed in memory.
   2164 
   2165   CGF.EmitBlock(InMemBlock);
   2166   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
   2167 
   2168   // Return the appropriate result.
   2169 
   2170   CGF.EmitBlock(ContBlock);
   2171   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
   2172                                                  "vaarg.addr");
   2173   ResAddr->addIncoming(RegAddr, InRegBlock);
   2174   ResAddr->addIncoming(MemAddr, InMemBlock);
   2175   return ResAddr;
   2176 }
   2177 
   2178 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
   2179 
   2180   if (Ty->isVoidType())
   2181     return ABIArgInfo::getIgnore();
   2182 
   2183   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2184     Ty = EnumTy->getDecl()->getIntegerType();
   2185 
   2186   uint64_t Size = getContext().getTypeSize(Ty);
   2187 
   2188   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2189     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
   2190         RT->getDecl()->hasFlexibleArrayMember())
   2191       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2192 
   2193     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
   2194     if (Size == 128 &&
   2195         getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32)
   2196       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2197                                                           Size));
   2198 
   2199     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
   2200     // not 1, 2, 4, or 8 bytes, must be passed by reference."
   2201     if (Size <= 64 &&
   2202         (Size & (Size - 1)) == 0)
   2203       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2204                                                           Size));
   2205 
   2206     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2207   }
   2208 
   2209   if (Ty->isPromotableIntegerType())
   2210     return ABIArgInfo::getExtend();
   2211 
   2212   return ABIArgInfo::getDirect();
   2213 }
   2214 
   2215 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2216 
   2217   QualType RetTy = FI.getReturnType();
   2218   FI.getReturnInfo() = classify(RetTy);
   2219 
   2220   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2221        it != ie; ++it)
   2222     it->info = classify(it->type);
   2223 }
   2224 
   2225 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2226                                       CodeGenFunction &CGF) const {
   2227   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   2228   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
   2229 
   2230   CGBuilderTy &Builder = CGF.Builder;
   2231   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
   2232                                                        "ap");
   2233   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
   2234   llvm::Type *PTy =
   2235     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
   2236   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
   2237 
   2238   uint64_t Offset =
   2239     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
   2240   llvm::Value *NextAddr =
   2241     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
   2242                       "ap.next");
   2243   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
   2244 
   2245   return AddrTyped;
   2246 }
   2247 
   2248 // PowerPC-32
   2249 
   2250 namespace {
   2251 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   2252 public:
   2253   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
   2254 
   2255   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
   2256     // This is recovered from gcc output.
   2257     return 1; // r1 is the dedicated stack pointer
   2258   }
   2259 
   2260   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2261                                llvm::Value *Address) const;
   2262 };
   2263 
   2264 }
   2265 
   2266 bool
   2267 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2268                                                 llvm::Value *Address) const {
   2269   // This is calculated from the LLVM and GCC tables and verified
   2270   // against gcc output.  AFAIK all ABIs use the same encoding.
   2271 
   2272   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   2273   llvm::LLVMContext &Context = CGF.getLLVMContext();
   2274 
   2275   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   2276   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   2277   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   2278   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   2279 
   2280   // 0-31: r0-31, the 4-byte general-purpose registers
   2281   AssignToArrayRange(Builder, Address, Four8, 0, 31);
   2282 
   2283   // 32-63: fp0-31, the 8-byte floating-point registers
   2284   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   2285 
   2286   // 64-76 are various 4-byte special-purpose registers:
   2287   // 64: mq
   2288   // 65: lr
   2289   // 66: ctr
   2290   // 67: ap
   2291   // 68-75 cr0-7
   2292   // 76: xer
   2293   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   2294 
   2295   // 77-108: v0-31, the 16-byte vector registers
   2296   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   2297 
   2298   // 109: vrsave
   2299   // 110: vscr
   2300   // 111: spe_acc
   2301   // 112: spefscr
   2302   // 113: sfp
   2303   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   2304 
   2305   return false;
   2306 }
   2307 
   2308 
   2309 //===----------------------------------------------------------------------===//
   2310 // ARM ABI Implementation
   2311 //===----------------------------------------------------------------------===//
   2312 
   2313 namespace {
   2314 
   2315 class ARMABIInfo : public ABIInfo {
   2316 public:
   2317   enum ABIKind {
   2318     APCS = 0,
   2319     AAPCS = 1,
   2320     AAPCS_VFP
   2321   };
   2322 
   2323 private:
   2324   ABIKind Kind;
   2325 
   2326 public:
   2327   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
   2328 
   2329   bool isEABI() const {
   2330     StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
   2331     return (Env == "gnueabi" || Env == "eabi");
   2332   }
   2333 
   2334 private:
   2335   ABIKind getABIKind() const { return Kind; }
   2336 
   2337   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2338   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2339 
   2340   virtual void computeInfo(CGFunctionInfo &FI) const;
   2341 
   2342   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2343                                  CodeGenFunction &CGF) const;
   2344 };
   2345 
   2346 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
   2347 public:
   2348   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   2349     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
   2350 
   2351   const ARMABIInfo &getABIInfo() const {
   2352     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
   2353   }
   2354 
   2355   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
   2356     return 13;
   2357   }
   2358 
   2359   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
   2360     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
   2361   }
   2362 
   2363   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2364                                llvm::Value *Address) const {
   2365     CodeGen::CGBuilderTy &Builder = CGF.Builder;
   2366     llvm::LLVMContext &Context = CGF.getLLVMContext();
   2367 
   2368     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   2369     llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   2370 
   2371     // 0-15 are the 16 integer registers.
   2372     AssignToArrayRange(Builder, Address, Four8, 0, 15);
   2373 
   2374     return false;
   2375   }
   2376 
   2377   unsigned getSizeOfUnwindException() const {
   2378     if (getABIInfo().isEABI()) return 88;
   2379     return TargetCodeGenInfo::getSizeOfUnwindException();
   2380   }
   2381 };
   2382 
   2383 }
   2384 
   2385 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2386   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2387   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2388        it != ie; ++it)
   2389     it->info = classifyArgumentType(it->type);
   2390 
   2391   // Always honor user-specified calling convention.
   2392   if (FI.getCallingConvention() != llvm::CallingConv::C)
   2393     return;
   2394 
   2395   // Calling convention as default by an ABI.
   2396   llvm::CallingConv::ID DefaultCC;
   2397   if (isEABI())
   2398     DefaultCC = llvm::CallingConv::ARM_AAPCS;
   2399   else
   2400     DefaultCC = llvm::CallingConv::ARM_APCS;
   2401 
   2402   // If user did not ask for specific calling convention explicitly (e.g. via
   2403   // pcs attribute), set effective calling convention if it's different than ABI
   2404   // default.
   2405   switch (getABIKind()) {
   2406   case APCS:
   2407     if (DefaultCC != llvm::CallingConv::ARM_APCS)
   2408       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
   2409     break;
   2410   case AAPCS:
   2411     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
   2412       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
   2413     break;
   2414   case AAPCS_VFP:
   2415     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
   2416       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
   2417     break;
   2418   }
   2419 }
   2420 
   2421 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
   2422 /// aggregate.  If HAMembers is non-null, the number of base elements
   2423 /// contained in the type is returned through it; this is used for the
   2424 /// recursive calls that check aggregate component types.
   2425 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
   2426                                    ASTContext &Context,
   2427                                    uint64_t *HAMembers = 0) {
   2428   uint64_t Members;
   2429   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
   2430     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
   2431       return false;
   2432     Members *= AT->getSize().getZExtValue();
   2433   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2434     const RecordDecl *RD = RT->getDecl();
   2435     if (RD->isUnion() || RD->hasFlexibleArrayMember())
   2436       return false;
   2437     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   2438       if (!CXXRD->isAggregate())
   2439         return false;
   2440     }
   2441     Members = 0;
   2442     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2443          i != e; ++i) {
   2444       const FieldDecl *FD = *i;
   2445       uint64_t FldMembers;
   2446       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
   2447         return false;
   2448       Members += FldMembers;
   2449     }
   2450   } else {
   2451     Members = 1;
   2452     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   2453       Members = 2;
   2454       Ty = CT->getElementType();
   2455     }
   2456 
   2457     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
   2458     // double, or 64-bit or 128-bit vectors.
   2459     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   2460       if (BT->getKind() != BuiltinType::Float &&
   2461           BT->getKind() != BuiltinType::Double)
   2462         return false;
   2463     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   2464       unsigned VecSize = Context.getTypeSize(VT);
   2465       if (VecSize != 64 && VecSize != 128)
   2466         return false;
   2467     } else {
   2468       return false;
   2469     }
   2470 
   2471     // The base type must be the same for all members.  Vector types of the
   2472     // same total size are treated as being equivalent here.
   2473     const Type *TyPtr = Ty.getTypePtr();
   2474     if (!Base)
   2475       Base = TyPtr;
   2476     if (Base != TyPtr &&
   2477         (!Base->isVectorType() || !TyPtr->isVectorType() ||
   2478          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
   2479       return false;
   2480   }
   2481 
   2482   // Homogeneous Aggregates can have at most 4 members of the base type.
   2483   if (HAMembers)
   2484     *HAMembers = Members;
   2485   return (Members <= 4);
   2486 }
   2487 
   2488 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
   2489   if (!isAggregateTypeForABI(Ty)) {
   2490     // Treat an enum type as its underlying type.
   2491     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2492       Ty = EnumTy->getDecl()->getIntegerType();
   2493 
   2494     return (Ty->isPromotableIntegerType() ?
   2495             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2496   }
   2497 
   2498   // Ignore empty records.
   2499   if (isEmptyRecord(getContext(), Ty, true))
   2500     return ABIArgInfo::getIgnore();
   2501 
   2502   // Structures with either a non-trivial destructor or a non-trivial
   2503   // copy constructor are always indirect.
   2504   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   2505     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2506 
   2507   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
   2508     // Homogeneous Aggregates need to be expanded.
   2509     const Type *Base = 0;
   2510     if (isHomogeneousAggregate(Ty, Base, getContext()))
   2511       return ABIArgInfo::getExpand();
   2512   }
   2513 
   2514   // Otherwise, pass by coercing to a structure of the appropriate size.
   2515   //
   2516   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
   2517   // backend doesn't support byval.
   2518   // FIXME: This doesn't handle alignment > 64 bits.
   2519   llvm::Type* ElemTy;
   2520   unsigned SizeRegs;
   2521   if (getContext().getTypeAlign(Ty) > 32) {
   2522     ElemTy = llvm::Type::getInt64Ty(getVMContext());
   2523     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
   2524   } else {
   2525     ElemTy = llvm::Type::getInt32Ty(getVMContext());
   2526     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   2527   }
   2528 
   2529   llvm::Type *STy =
   2530     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
   2531   return ABIArgInfo::getDirect(STy);
   2532 }
   2533 
   2534 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
   2535                               llvm::LLVMContext &VMContext) {
   2536   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
   2537   // is called integer-like if its size is less than or equal to one word, and
   2538   // the offset of each of its addressable sub-fields is zero.
   2539 
   2540   uint64_t Size = Context.getTypeSize(Ty);
   2541 
   2542   // Check that the type fits in a word.
   2543   if (Size > 32)
   2544     return false;
   2545 
   2546   // FIXME: Handle vector types!
   2547   if (Ty->isVectorType())
   2548     return false;
   2549 
   2550   // Float types are never treated as "integer like".
   2551   if (Ty->isRealFloatingType())
   2552     return false;
   2553 
   2554   // If this is a builtin or pointer type then it is ok.
   2555   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
   2556     return true;
   2557 
   2558   // Small complex integer types are "integer like".
   2559   if (const ComplexType *CT = Ty->getAs<ComplexType>())
   2560     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
   2561 
   2562   // Single element and zero sized arrays should be allowed, by the definition
   2563   // above, but they are not.
   2564 
   2565   // Otherwise, it must be a record type.
   2566   const RecordType *RT = Ty->getAs<RecordType>();
   2567   if (!RT) return false;
   2568 
   2569   // Ignore records with flexible arrays.
   2570   const RecordDecl *RD = RT->getDecl();
   2571   if (RD->hasFlexibleArrayMember())
   2572     return false;
   2573 
   2574   // Check that all sub-fields are at offset 0, and are themselves "integer
   2575   // like".
   2576   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   2577 
   2578   bool HadField = false;
   2579   unsigned idx = 0;
   2580   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2581        i != e; ++i, ++idx) {
   2582     const FieldDecl *FD = *i;
   2583 
   2584     // Bit-fields are not addressable, we only need to verify they are "integer
   2585     // like". We still have to disallow a subsequent non-bitfield, for example:
   2586     //   struct { int : 0; int x }
   2587     // is non-integer like according to gcc.
   2588     if (FD->isBitField()) {
   2589       if (!RD->isUnion())
   2590         HadField = true;
   2591 
   2592       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   2593         return false;
   2594 
   2595       continue;
   2596     }
   2597 
   2598     // Check if this field is at offset 0.
   2599     if (Layout.getFieldOffset(idx) != 0)
   2600       return false;
   2601 
   2602     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   2603       return false;
   2604 
   2605     // Only allow at most one field in a structure. This doesn't match the
   2606     // wording above, but follows gcc in situations with a field following an
   2607     // empty structure.
   2608     if (!RD->isUnion()) {
   2609       if (HadField)
   2610         return false;
   2611 
   2612       HadField = true;
   2613     }
   2614   }
   2615 
   2616   return true;
   2617 }
   2618 
   2619 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
   2620   if (RetTy->isVoidType())
   2621     return ABIArgInfo::getIgnore();
   2622 
   2623   // Large vector types should be returned via memory.
   2624   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
   2625     return ABIArgInfo::getIndirect(0);
   2626 
   2627   if (!isAggregateTypeForABI(RetTy)) {
   2628     // Treat an enum type as its underlying type.
   2629     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   2630       RetTy = EnumTy->getDecl()->getIntegerType();
   2631 
   2632     return (RetTy->isPromotableIntegerType() ?
   2633             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2634   }
   2635 
   2636   // Structures with either a non-trivial destructor or a non-trivial
   2637   // copy constructor are always indirect.
   2638   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
   2639     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2640 
   2641   // Are we following APCS?
   2642   if (getABIKind() == APCS) {
   2643     if (isEmptyRecord(getContext(), RetTy, false))
   2644       return ABIArgInfo::getIgnore();
   2645 
   2646     // Complex types are all returned as packed integers.
   2647     //
   2648     // FIXME: Consider using 2 x vector types if the back end handles them
   2649     // correctly.
   2650     if (RetTy->isAnyComplexType())
   2651       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2652                                               getContext().getTypeSize(RetTy)));
   2653 
   2654     // Integer like structures are returned in r0.
   2655     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
   2656       // Return in the smallest viable integer type.
   2657       uint64_t Size = getContext().getTypeSize(RetTy);
   2658       if (Size <= 8)
   2659         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   2660       if (Size <= 16)
   2661         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   2662       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   2663     }
   2664 
   2665     // Otherwise return in memory.
   2666     return ABIArgInfo::getIndirect(0);
   2667   }
   2668 
   2669   // Otherwise this is an AAPCS variant.
   2670 
   2671   if (isEmptyRecord(getContext(), RetTy, true))
   2672     return ABIArgInfo::getIgnore();
   2673 
   2674   // Aggregates <= 4 bytes are returned in r0; other aggregates
   2675   // are returned indirectly.
   2676   uint64_t Size = getContext().getTypeSize(RetTy);
   2677   if (Size <= 32) {
   2678     // Return in the smallest viable integer type.
   2679     if (Size <= 8)
   2680       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   2681     if (Size <= 16)
   2682       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   2683     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   2684   }
   2685 
   2686   return ABIArgInfo::getIndirect(0);
   2687 }
   2688 
   2689 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2690                                    CodeGenFunction &CGF) const {
   2691   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   2692   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
   2693 
   2694   CGBuilderTy &Builder = CGF.Builder;
   2695   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
   2696                                                        "ap");
   2697   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
   2698   // Handle address alignment for type alignment > 32 bits
   2699   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
   2700   if (TyAlign > 4) {
   2701     assert((TyAlign & (TyAlign - 1)) == 0 &&
   2702            "Alignment is not power of 2!");
   2703     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
   2704     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
   2705     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
   2706     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
   2707   }
   2708   llvm::Type *PTy =
   2709     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
   2710   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
   2711 
   2712   uint64_t Offset =
   2713     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
   2714   llvm::Value *NextAddr =
   2715     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
   2716                       "ap.next");
   2717   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
   2718 
   2719   return AddrTyped;
   2720 }
   2721 
   2722 //===----------------------------------------------------------------------===//
   2723 // PTX ABI Implementation
   2724 //===----------------------------------------------------------------------===//
   2725 
   2726 namespace {
   2727 
   2728 class PTXABIInfo : public ABIInfo {
   2729 public:
   2730   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2731 
   2732   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2733   ABIArgInfo classifyArgumentType(QualType Ty) const;
   2734 
   2735   virtual void computeInfo(CGFunctionInfo &FI) const;
   2736   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2737                                  CodeGenFunction &CFG) const;
   2738 };
   2739 
   2740 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
   2741 public:
   2742   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
   2743     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
   2744 
   2745   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2746                                    CodeGen::CodeGenModule &M) const;
   2747 };
   2748 
   2749 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
   2750   if (RetTy->isVoidType())
   2751     return ABIArgInfo::getIgnore();
   2752   if (isAggregateTypeForABI(RetTy))
   2753     return ABIArgInfo::getIndirect(0);
   2754   return ABIArgInfo::getDirect();
   2755 }
   2756 
   2757 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
   2758   if (isAggregateTypeForABI(Ty))
   2759     return ABIArgInfo::getIndirect(0);
   2760 
   2761   return ABIArgInfo::getDirect();
   2762 }
   2763 
   2764 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2765   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2766   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2767        it != ie; ++it)
   2768     it->info = classifyArgumentType(it->type);
   2769 
   2770   // Always honor user-specified calling convention.
   2771   if (FI.getCallingConvention() != llvm::CallingConv::C)
   2772     return;
   2773 
   2774   // Calling convention as default by an ABI.
   2775   llvm::CallingConv::ID DefaultCC;
   2776   const LangOptions &LangOpts = getContext().getLangOptions();
   2777   if (LangOpts.OpenCL || LangOpts.CUDA) {
   2778     // If we are in OpenCL or CUDA mode, then default to device functions
   2779     DefaultCC = llvm::CallingConv::PTX_Device;
   2780   } else {
   2781     // If we are in standard C/C++ mode, use the triple to decide on the default
   2782     StringRef Env =
   2783       getContext().getTargetInfo().getTriple().getEnvironmentName();
   2784     if (Env == "device")
   2785       DefaultCC = llvm::CallingConv::PTX_Device;
   2786     else
   2787       DefaultCC = llvm::CallingConv::PTX_Kernel;
   2788   }
   2789   FI.setEffectiveCallingConvention(DefaultCC);
   2790 
   2791 }
   2792 
   2793 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2794                                    CodeGenFunction &CFG) const {
   2795   llvm_unreachable("PTX does not support varargs");
   2796   return 0;
   2797 }
   2798 
   2799 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   2800                                                llvm::GlobalValue *GV,
   2801                                                CodeGen::CodeGenModule &M) const{
   2802   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   2803   if (!FD) return;
   2804 
   2805   llvm::Function *F = cast<llvm::Function>(GV);
   2806 
   2807   // Perform special handling in OpenCL mode
   2808   if (M.getLangOptions().OpenCL) {
   2809     // Use OpenCL function attributes to set proper calling conventions
   2810     // By default, all functions are device functions
   2811     if (FD->hasAttr<OpenCLKernelAttr>()) {
   2812       // OpenCL __kernel functions get a kernel calling convention
   2813       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
   2814       // And kernel functions are not subject to inlining
   2815       F->addFnAttr(llvm::Attribute::NoInline);
   2816     }
   2817   }
   2818 
   2819   // Perform special handling in CUDA mode.
   2820   if (M.getLangOptions().CUDA) {
   2821     // CUDA __global__ functions get a kernel calling convention.  Since
   2822     // __global__ functions cannot be called from the device, we do not
   2823     // need to set the noinline attribute.
   2824     if (FD->getAttr<CUDAGlobalAttr>())
   2825       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
   2826   }
   2827 }
   2828 
   2829 }
   2830 
   2831 //===----------------------------------------------------------------------===//
   2832 // SystemZ ABI Implementation
   2833 //===----------------------------------------------------------------------===//
   2834 
   2835 namespace {
   2836 
   2837 class SystemZABIInfo : public ABIInfo {
   2838 public:
   2839   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2840 
   2841   bool isPromotableIntegerType(QualType Ty) const;
   2842 
   2843   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2844   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2845 
   2846   virtual void computeInfo(CGFunctionInfo &FI) const {
   2847     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2848     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2849          it != ie; ++it)
   2850       it->info = classifyArgumentType(it->type);
   2851   }
   2852 
   2853   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2854                                  CodeGenFunction &CGF) const;
   2855 };
   2856 
   2857 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
   2858 public:
   2859   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
   2860     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
   2861 };
   2862 
   2863 }
   2864 
   2865 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
   2866   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
   2867   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   2868     switch (BT->getKind()) {
   2869     case BuiltinType::Bool:
   2870     case BuiltinType::Char_S:
   2871     case BuiltinType::Char_U:
   2872     case BuiltinType::SChar:
   2873     case BuiltinType::UChar:
   2874     case BuiltinType::Short:
   2875     case BuiltinType::UShort:
   2876     case BuiltinType::Int:
   2877     case BuiltinType::UInt:
   2878       return true;
   2879     default:
   2880       return false;
   2881     }
   2882   return false;
   2883 }
   2884 
   2885 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2886                                        CodeGenFunction &CGF) const {
   2887   // FIXME: Implement
   2888   return 0;
   2889 }
   2890 
   2891 
   2892 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
   2893   if (RetTy->isVoidType())
   2894     return ABIArgInfo::getIgnore();
   2895   if (isAggregateTypeForABI(RetTy))
   2896     return ABIArgInfo::getIndirect(0);
   2897 
   2898   return (isPromotableIntegerType(RetTy) ?
   2899           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2900 }
   2901 
   2902 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
   2903   if (isAggregateTypeForABI(Ty))
   2904     return ABIArgInfo::getIndirect(0);
   2905 
   2906   return (isPromotableIntegerType(Ty) ?
   2907           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2908 }
   2909 
   2910 //===----------------------------------------------------------------------===//
   2911 // MBlaze ABI Implementation
   2912 //===----------------------------------------------------------------------===//
   2913 
   2914 namespace {
   2915 
   2916 class MBlazeABIInfo : public ABIInfo {
   2917 public:
   2918   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2919 
   2920   bool isPromotableIntegerType(QualType Ty) const;
   2921 
   2922   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2923   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2924 
   2925   virtual void computeInfo(CGFunctionInfo &FI) const {
   2926     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2927     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2928          it != ie; ++it)
   2929       it->info = classifyArgumentType(it->type);
   2930   }
   2931 
   2932   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2933                                  CodeGenFunction &CGF) const;
   2934 };
   2935 
   2936 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
   2937 public:
   2938   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
   2939     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
   2940   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2941                            CodeGen::CodeGenModule &M) const;
   2942 };
   2943 
   2944 }
   2945 
   2946 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
   2947   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
   2948   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   2949     switch (BT->getKind()) {
   2950     case BuiltinType::Bool:
   2951     case BuiltinType::Char_S:
   2952     case BuiltinType::Char_U:
   2953     case BuiltinType::SChar:
   2954     case BuiltinType::UChar:
   2955     case BuiltinType::Short:
   2956     case BuiltinType::UShort:
   2957       return true;
   2958     default:
   2959       return false;
   2960     }
   2961   return false;
   2962 }
   2963 
   2964 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2965                                       CodeGenFunction &CGF) const {
   2966   // FIXME: Implement
   2967   return 0;
   2968 }
   2969 
   2970 
   2971 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
   2972   if (RetTy->isVoidType())
   2973     return ABIArgInfo::getIgnore();
   2974   if (isAggregateTypeForABI(RetTy))
   2975     return ABIArgInfo::getIndirect(0);
   2976 
   2977   return (isPromotableIntegerType(RetTy) ?
   2978           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2979 }
   2980 
   2981 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
   2982   if (isAggregateTypeForABI(Ty))
   2983     return ABIArgInfo::getIndirect(0);
   2984 
   2985   return (isPromotableIntegerType(Ty) ?
   2986           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2987 }
   2988 
   2989 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   2990                                                   llvm::GlobalValue *GV,
   2991                                                   CodeGen::CodeGenModule &M)
   2992                                                   const {
   2993   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   2994   if (!FD) return;
   2995 
   2996   llvm::CallingConv::ID CC = llvm::CallingConv::C;
   2997   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
   2998     CC = llvm::CallingConv::MBLAZE_INTR;
   2999   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
   3000     CC = llvm::CallingConv::MBLAZE_SVOL;
   3001 
   3002   if (CC != llvm::CallingConv::C) {
   3003       // Handle 'interrupt_handler' attribute:
   3004       llvm::Function *F = cast<llvm::Function>(GV);
   3005 
   3006       // Step 1: Set ISR calling convention.
   3007       F->setCallingConv(CC);
   3008 
   3009       // Step 2: Add attributes goodness.
   3010       F->addFnAttr(llvm::Attribute::NoInline);
   3011   }
   3012 
   3013   // Step 3: Emit _interrupt_handler alias.
   3014   if (CC == llvm::CallingConv::MBLAZE_INTR)
   3015     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
   3016                           "_interrupt_handler", GV, &M.getModule());
   3017 }
   3018 
   3019 
   3020 //===----------------------------------------------------------------------===//
   3021 // MSP430 ABI Implementation
   3022 //===----------------------------------------------------------------------===//
   3023 
   3024 namespace {
   3025 
   3026 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
   3027 public:
   3028   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
   3029     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   3030   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   3031                            CodeGen::CodeGenModule &M) const;
   3032 };
   3033 
   3034 }
   3035 
   3036 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   3037                                                   llvm::GlobalValue *GV,
   3038                                              CodeGen::CodeGenModule &M) const {
   3039   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   3040     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
   3041       // Handle 'interrupt' attribute:
   3042       llvm::Function *F = cast<llvm::Function>(GV);
   3043 
   3044       // Step 1: Set ISR calling convention.
   3045       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
   3046 
   3047       // Step 2: Add attributes goodness.
   3048       F->addFnAttr(llvm::Attribute::NoInline);
   3049 
   3050       // Step 3: Emit ISR vector alias.
   3051       unsigned Num = attr->getNumber() + 0xffe0;
   3052       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
   3053                             "vector_" + Twine::utohexstr(Num),
   3054                             GV, &M.getModule());
   3055     }
   3056   }
   3057 }
   3058 
   3059 //===----------------------------------------------------------------------===//
   3060 // MIPS ABI Implementation.  This works for both little-endian and
   3061 // big-endian variants.
   3062 //===----------------------------------------------------------------------===//
   3063 
   3064 namespace {
   3065 class MipsABIInfo : public ABIInfo {
   3066   static const unsigned MinABIStackAlignInBytes = 4;
   3067 public:
   3068   MipsABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   3069 
   3070   ABIArgInfo classifyReturnType(QualType RetTy) const;
   3071   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   3072   virtual void computeInfo(CGFunctionInfo &FI) const;
   3073   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   3074                                  CodeGenFunction &CGF) const;
   3075 };
   3076 
   3077 const unsigned MipsABIInfo::MinABIStackAlignInBytes;
   3078 
   3079 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
   3080   unsigned SizeOfUnwindException;
   3081 public:
   3082   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, unsigned SZ)
   3083     : TargetCodeGenInfo(new MipsABIInfo(CGT)), SizeOfUnwindException(SZ) {}
   3084 
   3085   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
   3086     return 29;
   3087   }
   3088 
   3089   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3090                                llvm::Value *Address) const;
   3091 
   3092   unsigned getSizeOfUnwindException() const {
   3093     return SizeOfUnwindException;
   3094   }
   3095 };
   3096 }
   3097 
   3098 ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
   3099   if (isAggregateTypeForABI(Ty)) {
   3100     // Ignore empty aggregates.
   3101     if (getContext().getTypeSize(Ty) == 0)
   3102       return ABIArgInfo::getIgnore();
   3103 
   3104     // Records with non trivial destructors/constructors should not be passed
   3105     // by value.
   3106     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   3107       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   3108 
   3109     return ABIArgInfo::getIndirect(0);
   3110   }
   3111 
   3112   // Treat an enum type as its underlying type.
   3113   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   3114     Ty = EnumTy->getDecl()->getIntegerType();
   3115 
   3116   return (Ty->isPromotableIntegerType() ?
   3117           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   3118 }
   3119 
   3120 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
   3121   if (RetTy->isVoidType())
   3122     return ABIArgInfo::getIgnore();
   3123 
   3124   if (isAggregateTypeForABI(RetTy)) {
   3125     if (RetTy->isAnyComplexType())
   3126       return ABIArgInfo::getDirect();
   3127 
   3128     return ABIArgInfo::getIndirect(0);
   3129   }
   3130 
   3131   // Treat an enum type as its underlying type.
   3132   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   3133     RetTy = EnumTy->getDecl()->getIntegerType();
   3134 
   3135   return (RetTy->isPromotableIntegerType() ?
   3136           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   3137 }
   3138 
   3139 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
   3140   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   3141   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   3142        it != ie; ++it)
   3143     it->info = classifyArgumentType(it->type);
   3144 }
   3145 
   3146 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   3147                                     CodeGenFunction &CGF) const {
   3148   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   3149   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
   3150 
   3151   CGBuilderTy &Builder = CGF.Builder;
   3152   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
   3153   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
   3154   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
   3155   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
   3156   llvm::Value *AddrTyped;
   3157 
   3158   if (TypeAlign > MinABIStackAlignInBytes) {
   3159     llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
   3160     llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
   3161     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
   3162     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
   3163     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
   3164     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
   3165   }
   3166   else
   3167     AddrTyped = Builder.CreateBitCast(Addr, PTy);
   3168 
   3169   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
   3170   TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
   3171   uint64_t Offset =
   3172     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
   3173   llvm::Value *NextAddr =
   3174     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
   3175                       "ap.next");
   3176   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
   3177 
   3178   return AddrTyped;
   3179 }
   3180 
   3181 bool
   3182 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3183                                                llvm::Value *Address) const {
   3184   // This information comes from gcc's implementation, which seems to
   3185   // as canonical as it gets.
   3186 
   3187   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   3188   llvm::LLVMContext &Context = CGF.getLLVMContext();
   3189 
   3190   // Everything on MIPS is 4 bytes.  Double-precision FP registers
   3191   // are aliased to pairs of single-precision FP registers.
   3192   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   3193   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   3194 
   3195   // 0-31 are the general purpose registers, $0 - $31.
   3196   // 32-63 are the floating-point registers, $f0 - $f31.
   3197   // 64 and 65 are the multiply/divide registers, $hi and $lo.
   3198   // 66 is the (notional, I think) register for signal-handler return.
   3199   AssignToArrayRange(Builder, Address, Four8, 0, 65);
   3200 
   3201   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
   3202   // They are one bit wide and ignored here.
   3203 
   3204   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
   3205   // (coprocessor 1 is the FP unit)
   3206   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
   3207   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
   3208   // 176-181 are the DSP accumulator registers.
   3209   AssignToArrayRange(Builder, Address, Four8, 80, 181);
   3210 
   3211   return false;
   3212 }
   3213 
   3214 //===----------------------------------------------------------------------===//
   3215 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
   3216 // Currently subclassed only to implement custom OpenCL C function attribute
   3217 // handling.
   3218 //===----------------------------------------------------------------------===//
   3219 
   3220 namespace {
   3221 
   3222 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   3223 public:
   3224   TCETargetCodeGenInfo(CodeGenTypes &CGT)
   3225     : DefaultTargetCodeGenInfo(CGT) {}
   3226 
   3227   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   3228                                    CodeGen::CodeGenModule &M) const;
   3229 };
   3230 
   3231 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   3232                                                llvm::GlobalValue *GV,
   3233                                                CodeGen::CodeGenModule &M) const {
   3234   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   3235   if (!FD) return;
   3236 
   3237   llvm::Function *F = cast<llvm::Function>(GV);
   3238 
   3239   if (M.getLangOptions().OpenCL) {
   3240     if (FD->hasAttr<OpenCLKernelAttr>()) {
   3241       // OpenCL C Kernel functions are not subject to inlining
   3242       F->addFnAttr(llvm::Attribute::NoInline);
   3243 
   3244       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
   3245 
   3246         // Convert the reqd_work_group_size() attributes to metadata.
   3247         llvm::LLVMContext &Context = F->getContext();
   3248         llvm::NamedMDNode *OpenCLMetadata =
   3249             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
   3250 
   3251         SmallVector<llvm::Value*, 5> Operands;
   3252         Operands.push_back(F);
   3253 
   3254         Operands.push_back(llvm::Constant::getIntegerValue(
   3255                              llvm::Type::getInt32Ty(Context),
   3256                              llvm::APInt(
   3257                                32,
   3258                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
   3259         Operands.push_back(llvm::Constant::getIntegerValue(
   3260                              llvm::Type::getInt32Ty(Context),
   3261                              llvm::APInt(
   3262                                32,
   3263                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
   3264         Operands.push_back(llvm::Constant::getIntegerValue(
   3265                              llvm::Type::getInt32Ty(Context),
   3266                              llvm::APInt(
   3267                                32,
   3268                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
   3269 
   3270         // Add a boolean constant operand for "required" (true) or "hint" (false)
   3271         // for implementing the work_group_size_hint attr later. Currently
   3272         // always true as the hint is not yet implemented.
   3273         Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context)));
   3274 
   3275         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
   3276       }
   3277     }
   3278   }
   3279 }
   3280 
   3281 }
   3282 
   3283 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
   3284   if (TheTargetCodeGenInfo)
   3285     return *TheTargetCodeGenInfo;
   3286 
   3287   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
   3288   switch (Triple.getArch()) {
   3289   default:
   3290     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
   3291 
   3292   case llvm::Triple::mips:
   3293   case llvm::Triple::mipsel:
   3294     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, 24));
   3295 
   3296   case llvm::Triple::mips64:
   3297   case llvm::Triple::mips64el:
   3298     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, 32));
   3299 
   3300   case llvm::Triple::arm:
   3301   case llvm::Triple::thumb:
   3302     {
   3303       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
   3304 
   3305       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
   3306         Kind = ARMABIInfo::APCS;
   3307       else if (CodeGenOpts.FloatABI == "hard")
   3308         Kind = ARMABIInfo::AAPCS_VFP;
   3309 
   3310       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
   3311     }
   3312 
   3313   case llvm::Triple::ppc:
   3314     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
   3315 
   3316   case llvm::Triple::ptx32:
   3317   case llvm::Triple::ptx64:
   3318     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
   3319 
   3320   case llvm::Triple::systemz:
   3321     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
   3322 
   3323   case llvm::Triple::mblaze:
   3324     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
   3325 
   3326   case llvm::Triple::msp430:
   3327     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
   3328 
   3329   case llvm::Triple::tce:
   3330     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
   3331 
   3332   case llvm::Triple::x86: {
   3333     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
   3334 
   3335     if (Triple.isOSDarwin())
   3336       return *(TheTargetCodeGenInfo =
   3337                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
   3338 
   3339     switch (Triple.getOS()) {
   3340     case llvm::Triple::Cygwin:
   3341     case llvm::Triple::MinGW32:
   3342     case llvm::Triple::AuroraUX:
   3343     case llvm::Triple::DragonFly:
   3344     case llvm::Triple::FreeBSD:
   3345     case llvm::Triple::OpenBSD:
   3346     case llvm::Triple::NetBSD:
   3347       return *(TheTargetCodeGenInfo =
   3348                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
   3349 
   3350     default:
   3351       return *(TheTargetCodeGenInfo =
   3352                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
   3353     }
   3354   }
   3355 
   3356   case llvm::Triple::x86_64:
   3357     switch (Triple.getOS()) {
   3358     case llvm::Triple::Win32:
   3359     case llvm::Triple::MinGW32:
   3360     case llvm::Triple::Cygwin:
   3361       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
   3362     default:
   3363       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
   3364     }
   3365   }
   3366 }
   3367