Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #define DEBUG_TYPE "x86-codegen"
     27 #include "X86.h"
     28 #include "X86InstrInfo.h"
     29 #include "llvm/ADT/DepthFirstIterator.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/CodeGen/EdgeBundles.h"
     36 #include "llvm/CodeGen/MachineFunctionPass.h"
     37 #include "llvm/CodeGen/MachineInstrBuilder.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/CodeGen/Passes.h"
     40 #include "llvm/InlineAsm.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include <algorithm>
     47 using namespace llvm;
     48 
     49 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     50 STATISTIC(NumFP  , "Number of floating point instructions");
     51 
     52 namespace {
     53   struct FPS : public MachineFunctionPass {
     54     static char ID;
     55     FPS() : MachineFunctionPass(ID) {
     56       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     57       // This is really only to keep valgrind quiet.
     58       // The logic in isLive() is too much for it.
     59       memset(Stack, 0, sizeof(Stack));
     60       memset(RegMap, 0, sizeof(RegMap));
     61     }
     62 
     63     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     64       AU.setPreservesCFG();
     65       AU.addRequired<EdgeBundles>();
     66       AU.addPreservedID(MachineLoopInfoID);
     67       AU.addPreservedID(MachineDominatorsID);
     68       MachineFunctionPass::getAnalysisUsage(AU);
     69     }
     70 
     71     virtual bool runOnMachineFunction(MachineFunction &MF);
     72 
     73     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
     74 
     75   private:
     76     const TargetInstrInfo *TII; // Machine instruction info.
     77 
     78     // Two CFG edges are related if they leave the same block, or enter the same
     79     // block. The transitive closure of an edge under this relation is a
     80     // LiveBundle. It represents a set of CFG edges where the live FP stack
     81     // registers must be allocated identically in the x87 stack.
     82     //
     83     // A LiveBundle is usually all the edges leaving a block, or all the edges
     84     // entering a block, but it can contain more edges if critical edges are
     85     // present.
     86     //
     87     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     88     // but the exact mapping of FP registers to stack slots is fixed later.
     89     struct LiveBundle {
     90       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
     91       unsigned Mask;
     92 
     93       // Number of pre-assigned live registers in FixStack. This is 0 when the
     94       // stack order has not yet been fixed.
     95       unsigned FixCount;
     96 
     97       // Assigned stack order for live-in registers.
     98       // FixStack[i] == getStackEntry(i) for all i < FixCount.
     99       unsigned char FixStack[8];
    100 
    101       LiveBundle() : Mask(0), FixCount(0) {}
    102 
    103       // Have the live registers been assigned a stack order yet?
    104       bool isFixed() const { return !Mask || FixCount; }
    105     };
    106 
    107     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    108     // with no live FP registers.
    109     SmallVector<LiveBundle, 8> LiveBundles;
    110 
    111     // The edge bundle analysis provides indices into the LiveBundles vector.
    112     EdgeBundles *Bundles;
    113 
    114     // Return a bitmask of FP registers in block's live-in list.
    115     unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    116       unsigned Mask = 0;
    117       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    118            E = MBB->livein_end(); I != E; ++I) {
    119         unsigned Reg = *I - X86::FP0;
    120         if (Reg < 8)
    121           Mask |= 1 << Reg;
    122       }
    123       return Mask;
    124     }
    125 
    126     // Partition all the CFG edges into LiveBundles.
    127     void bundleCFG(MachineFunction &MF);
    128 
    129     MachineBasicBlock *MBB;     // Current basic block
    130 
    131     // The hardware keeps track of how many FP registers are live, so we have
    132     // to model that exactly. Usually, each live register corresponds to an
    133     // FP<n> register, but when dealing with calls, returns, and inline
    134     // assembly, it is sometimes neccesary to have live scratch registers.
    135     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    136     unsigned StackTop;          // The current top of the FP stack.
    137 
    138     enum {
    139       NumFPRegs = 16            // Including scratch pseudo-registers.
    140     };
    141 
    142     // For each live FP<n> register, point to its Stack[] entry.
    143     // The first entries correspond to FP0-FP6, the rest are scratch registers
    144     // used when we need slightly different live registers than what the
    145     // register allocator thinks.
    146     unsigned RegMap[NumFPRegs];
    147 
    148     // Pending fixed registers - Inline assembly needs FP registers to appear
    149     // in fixed stack slot positions. This is handled by copying FP registers
    150     // to ST registers before the instruction, and copying back after the
    151     // instruction.
    152     //
    153     // This is modeled with pending ST registers. NumPendingSTs is the number
    154     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
    155     // register that holds the ST value. The ST registers are not moved into
    156     // place until immediately before the instruction that needs them.
    157     //
    158     // It can happen that we need an ST register to be live when no FP register
    159     // holds the value:
    160     //
    161     //   %ST0 = COPY %FP4<kill>
    162     //
    163     // When that happens, we allocate a scratch FP register to hold the ST
    164     // value. That means every register in PendingST must be live.
    165 
    166     unsigned NumPendingSTs;
    167     unsigned char PendingST[8];
    168 
    169     // Set up our stack model to match the incoming registers to MBB.
    170     void setupBlockStack();
    171 
    172     // Shuffle live registers to match the expectations of successor blocks.
    173     void finishBlockStack();
    174 
    175     void dumpStack() const {
    176       dbgs() << "Stack contents:";
    177       for (unsigned i = 0; i != StackTop; ++i) {
    178         dbgs() << " FP" << Stack[i];
    179         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    180       }
    181       for (unsigned i = 0; i != NumPendingSTs; ++i)
    182         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
    183       dbgs() << "\n";
    184     }
    185 
    186     /// getSlot - Return the stack slot number a particular register number is
    187     /// in.
    188     unsigned getSlot(unsigned RegNo) const {
    189       assert(RegNo < NumFPRegs && "Regno out of range!");
    190       return RegMap[RegNo];
    191     }
    192 
    193     /// isLive - Is RegNo currently live in the stack?
    194     bool isLive(unsigned RegNo) const {
    195       unsigned Slot = getSlot(RegNo);
    196       return Slot < StackTop && Stack[Slot] == RegNo;
    197     }
    198 
    199     /// getScratchReg - Return an FP register that is not currently in use.
    200     unsigned getScratchReg() {
    201       for (int i = NumFPRegs - 1; i >= 8; --i)
    202         if (!isLive(i))
    203           return i;
    204       llvm_unreachable("Ran out of scratch FP registers");
    205     }
    206 
    207     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
    208     bool isScratchReg(unsigned RegNo) {
    209       return RegNo > 8 && RegNo < NumFPRegs;
    210     }
    211 
    212     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    213     unsigned getStackEntry(unsigned STi) const {
    214       if (STi >= StackTop)
    215         report_fatal_error("Access past stack top!");
    216       return Stack[StackTop-1-STi];
    217     }
    218 
    219     /// getSTReg - Return the X86::ST(i) register which contains the specified
    220     /// FP<RegNo> register.
    221     unsigned getSTReg(unsigned RegNo) const {
    222       return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
    223     }
    224 
    225     // pushReg - Push the specified FP<n> register onto the stack.
    226     void pushReg(unsigned Reg) {
    227       assert(Reg < NumFPRegs && "Register number out of range!");
    228       if (StackTop >= 8)
    229         report_fatal_error("Stack overflow!");
    230       Stack[StackTop] = Reg;
    231       RegMap[Reg] = StackTop++;
    232     }
    233 
    234     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    235     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    236       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    237       if (isAtTop(RegNo)) return;
    238 
    239       unsigned STReg = getSTReg(RegNo);
    240       unsigned RegOnTop = getStackEntry(0);
    241 
    242       // Swap the slots the regs are in.
    243       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    244 
    245       // Swap stack slot contents.
    246       if (RegMap[RegOnTop] >= StackTop)
    247         report_fatal_error("Access past stack top!");
    248       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    249 
    250       // Emit an fxch to update the runtime processors version of the state.
    251       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    252       ++NumFXCH;
    253     }
    254 
    255     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
    256       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    257       unsigned STReg = getSTReg(RegNo);
    258       pushReg(AsReg);   // New register on top of stack
    259 
    260       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    261     }
    262 
    263     /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
    264     /// RegNo. If any PendingST registers still need the RegNo value, duplicate
    265     /// them to new scratch registers.
    266     void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
    267       for (unsigned i = 0; i != NumPendingSTs; ++i) {
    268         if (PendingST[i] != RegNo)
    269           continue;
    270         unsigned SR = getScratchReg();
    271         DEBUG(dbgs() << "Duplicating pending ST" << i
    272                      << " in FP" << RegNo << " to FP" << SR << '\n');
    273         duplicateToTop(RegNo, SR, I);
    274         PendingST[i] = SR;
    275       }
    276     }
    277 
    278     /// popStackAfter - Pop the current value off of the top of the FP stack
    279     /// after the specified instruction.
    280     void popStackAfter(MachineBasicBlock::iterator &I);
    281 
    282     /// freeStackSlotAfter - Free the specified register from the register
    283     /// stack, so that it is no longer in a register.  If the register is
    284     /// currently at the top of the stack, we just pop the current instruction,
    285     /// otherwise we store the current top-of-stack into the specified slot,
    286     /// then pop the top of stack.
    287     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    288 
    289     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    290     /// instruction.
    291     MachineBasicBlock::iterator
    292     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    293 
    294     /// Adjust the live registers to be the set in Mask.
    295     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    296 
    297     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    298     /// st(0), FP reg FixStack[1] is st(1) etc.
    299     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    300                          MachineBasicBlock::iterator I);
    301 
    302     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    303 
    304     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    305     void handleOneArgFP(MachineBasicBlock::iterator &I);
    306     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    307     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    308     void handleCompareFP(MachineBasicBlock::iterator &I);
    309     void handleCondMovFP(MachineBasicBlock::iterator &I);
    310     void handleSpecialFP(MachineBasicBlock::iterator &I);
    311 
    312     // Check if a COPY instruction is using FP registers.
    313     bool isFPCopy(MachineInstr *MI) {
    314       unsigned DstReg = MI->getOperand(0).getReg();
    315       unsigned SrcReg = MI->getOperand(1).getReg();
    316 
    317       return X86::RFP80RegClass.contains(DstReg) ||
    318         X86::RFP80RegClass.contains(SrcReg);
    319     }
    320   };
    321   char FPS::ID = 0;
    322 }
    323 
    324 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    325 
    326 /// getFPReg - Return the X86::FPx register number for the specified operand.
    327 /// For example, this returns 3 for X86::FP3.
    328 static unsigned getFPReg(const MachineOperand &MO) {
    329   assert(MO.isReg() && "Expected an FP register!");
    330   unsigned Reg = MO.getReg();
    331   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    332   return Reg - X86::FP0;
    333 }
    334 
    335 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    336 /// register references into FP stack references.
    337 ///
    338 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    339   // We only need to run this pass if there are any FP registers used in this
    340   // function.  If it is all integer, there is nothing for us to do!
    341   bool FPIsUsed = false;
    342 
    343   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
    344   for (unsigned i = 0; i <= 6; ++i)
    345     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
    346       FPIsUsed = true;
    347       break;
    348     }
    349 
    350   // Early exit.
    351   if (!FPIsUsed) return false;
    352 
    353   Bundles = &getAnalysis<EdgeBundles>();
    354   TII = MF.getTarget().getInstrInfo();
    355 
    356   // Prepare cross-MBB liveness.
    357   bundleCFG(MF);
    358 
    359   StackTop = 0;
    360 
    361   // Process the function in depth first order so that we process at least one
    362   // of the predecessors for every reachable block in the function.
    363   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    364   MachineBasicBlock *Entry = MF.begin();
    365 
    366   bool Changed = false;
    367   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
    368          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
    369        I != E; ++I)
    370     Changed |= processBasicBlock(MF, **I);
    371 
    372   // Process any unreachable blocks in arbitrary order now.
    373   if (MF.size() != Processed.size())
    374     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    375       if (Processed.insert(BB))
    376         Changed |= processBasicBlock(MF, *BB);
    377 
    378   LiveBundles.clear();
    379 
    380   return Changed;
    381 }
    382 
    383 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    384 /// live-out sets for the FP registers. Consistent means that the set of
    385 /// registers live-out from a block is identical to the live-in set of all
    386 /// successors. This is not enforced by the normal live-in lists since
    387 /// registers may be implicitly defined, or not used by all successors.
    388 void FPS::bundleCFG(MachineFunction &MF) {
    389   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    390   LiveBundles.resize(Bundles->getNumBundles());
    391 
    392   // Gather the actual live-in masks for all MBBs.
    393   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    394     MachineBasicBlock *MBB = I;
    395     const unsigned Mask = calcLiveInMask(MBB);
    396     if (!Mask)
    397       continue;
    398     // Update MBB ingoing bundle mask.
    399     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
    400   }
    401 }
    402 
    403 /// processBasicBlock - Loop over all of the instructions in the basic block,
    404 /// transforming FP instructions into their stack form.
    405 ///
    406 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    407   bool Changed = false;
    408   MBB = &BB;
    409   NumPendingSTs = 0;
    410 
    411   setupBlockStack();
    412 
    413   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    414     MachineInstr *MI = I;
    415     uint64_t Flags = MI->getDesc().TSFlags;
    416 
    417     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    418     if (MI->isInlineAsm())
    419       FPInstClass = X86II::SpecialFP;
    420 
    421     if (MI->isCopy() && isFPCopy(MI))
    422       FPInstClass = X86II::SpecialFP;
    423 
    424     if (MI->isImplicitDef() &&
    425         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
    426       FPInstClass = X86II::SpecialFP;
    427 
    428     if (FPInstClass == X86II::NotFP)
    429       continue;  // Efficiently ignore non-fp insts!
    430 
    431     MachineInstr *PrevMI = 0;
    432     if (I != BB.begin())
    433       PrevMI = prior(I);
    434 
    435     ++NumFP;  // Keep track of # of pseudo instrs
    436     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
    437 
    438     // Get dead variables list now because the MI pointer may be deleted as part
    439     // of processing!
    440     SmallVector<unsigned, 8> DeadRegs;
    441     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    442       const MachineOperand &MO = MI->getOperand(i);
    443       if (MO.isReg() && MO.isDead())
    444         DeadRegs.push_back(MO.getReg());
    445     }
    446 
    447     switch (FPInstClass) {
    448     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    449     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    450     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    451     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    452     case X86II::CompareFP:  handleCompareFP(I); break;
    453     case X86II::CondMovFP:  handleCondMovFP(I); break;
    454     case X86II::SpecialFP:  handleSpecialFP(I); break;
    455     default: llvm_unreachable("Unknown FP Type!");
    456     }
    457 
    458     // Check to see if any of the values defined by this instruction are dead
    459     // after definition.  If so, pop them.
    460     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    461       unsigned Reg = DeadRegs[i];
    462       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
    463         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    464         freeStackSlotAfter(I, Reg-X86::FP0);
    465       }
    466     }
    467 
    468     // Print out all of the instructions expanded to if -debug
    469     DEBUG(
    470       MachineBasicBlock::iterator PrevI(PrevMI);
    471       if (I == PrevI) {
    472         dbgs() << "Just deleted pseudo instruction\n";
    473       } else {
    474         MachineBasicBlock::iterator Start = I;
    475         // Rewind to first instruction newly inserted.
    476         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
    477         dbgs() << "Inserted instructions:\n\t";
    478         Start->print(dbgs(), &MF.getTarget());
    479         while (++Start != llvm::next(I)) {}
    480       }
    481       dumpStack();
    482     );
    483     (void)PrevMI;
    484 
    485     Changed = true;
    486   }
    487 
    488   finishBlockStack();
    489 
    490   return Changed;
    491 }
    492 
    493 /// setupBlockStack - Use the live bundles to set up our model of the stack
    494 /// to match predecessors' live out stack.
    495 void FPS::setupBlockStack() {
    496   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    497                << " derived from " << MBB->getName() << ".\n");
    498   StackTop = 0;
    499   // Get the live-in bundle for MBB.
    500   const LiveBundle &Bundle =
    501     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    502 
    503   if (!Bundle.Mask) {
    504     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    505     return;
    506   }
    507 
    508   // Depth-first iteration should ensure that we always have an assigned stack.
    509   assert(Bundle.isFixed() && "Reached block before any predecessors");
    510 
    511   // Push the fixed live-in registers.
    512   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    513     MBB->addLiveIn(X86::ST0+i-1);
    514     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    515                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    516     pushReg(Bundle.FixStack[i-1]);
    517   }
    518 
    519   // Kill off unwanted live-ins. This can happen with a critical edge.
    520   // FIXME: We could keep these live registers around as zombies. They may need
    521   // to be revived at the end of a short block. It might save a few instrs.
    522   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    523   DEBUG(MBB->dump());
    524 }
    525 
    526 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    527 /// MBB. Shuffle live registers to match the expected fixed stack of any
    528 /// predecessors, and ensure that all predecessors are expecting the same
    529 /// stack.
    530 void FPS::finishBlockStack() {
    531   // The RET handling below takes care of return blocks for us.
    532   if (MBB->succ_empty())
    533     return;
    534 
    535   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    536                << " derived from " << MBB->getName() << ".\n");
    537 
    538   // Get MBB's live-out bundle.
    539   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    540   LiveBundle &Bundle = LiveBundles[BundleIdx];
    541 
    542   // We may need to kill and define some registers to match successors.
    543   // FIXME: This can probably be combined with the shuffle below.
    544   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    545   adjustLiveRegs(Bundle.Mask, Term);
    546 
    547   if (!Bundle.Mask) {
    548     DEBUG(dbgs() << "No live-outs.\n");
    549     return;
    550   }
    551 
    552   // Has the stack order been fixed yet?
    553   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    554   if (Bundle.isFixed()) {
    555     DEBUG(dbgs() << "Shuffling stack to match.\n");
    556     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    557   } else {
    558     // Not fixed yet, we get to choose.
    559     DEBUG(dbgs() << "Fixing stack order now.\n");
    560     Bundle.FixCount = StackTop;
    561     for (unsigned i = 0; i < StackTop; ++i)
    562       Bundle.FixStack[i] = getStackEntry(i);
    563   }
    564 }
    565 
    566 
    567 //===----------------------------------------------------------------------===//
    568 // Efficient Lookup Table Support
    569 //===----------------------------------------------------------------------===//
    570 
    571 namespace {
    572   struct TableEntry {
    573     unsigned from;
    574     unsigned to;
    575     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    576     friend bool operator<(const TableEntry &TE, unsigned V) {
    577       return TE.from < V;
    578     }
    579     friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
    580                                               const TableEntry &TE) {
    581       return V < TE.from;
    582     }
    583   };
    584 }
    585 
    586 #ifndef NDEBUG
    587 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
    588   for (unsigned i = 0; i != NumEntries-1; ++i)
    589     if (!(Table[i] < Table[i+1])) return false;
    590   return true;
    591 }
    592 #endif
    593 
    594 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
    595   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
    596   if (I != Table+N && I->from == Opcode)
    597     return I->to;
    598   return -1;
    599 }
    600 
    601 #ifdef NDEBUG
    602 #define ASSERT_SORTED(TABLE)
    603 #else
    604 #define ASSERT_SORTED(TABLE)                                              \
    605   { static bool TABLE##Checked = false;                                   \
    606     if (!TABLE##Checked) {                                                \
    607        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
    608               "All lookup tables must be sorted for efficient access!");  \
    609        TABLE##Checked = true;                                             \
    610     }                                                                     \
    611   }
    612 #endif
    613 
    614 //===----------------------------------------------------------------------===//
    615 // Register File -> Register Stack Mapping Methods
    616 //===----------------------------------------------------------------------===//
    617 
    618 // OpcodeTable - Sorted map of register instructions to their stack version.
    619 // The first element is an register file pseudo instruction, the second is the
    620 // concrete X86 instruction which uses the register stack.
    621 //
    622 static const TableEntry OpcodeTable[] = {
    623   { X86::ABS_Fp32     , X86::ABS_F     },
    624   { X86::ABS_Fp64     , X86::ABS_F     },
    625   { X86::ABS_Fp80     , X86::ABS_F     },
    626   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    627   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    628   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    629   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    630   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    631   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    632   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    633   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    634   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    635   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    636   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    637   { X86::CHS_Fp32     , X86::CHS_F     },
    638   { X86::CHS_Fp64     , X86::CHS_F     },
    639   { X86::CHS_Fp80     , X86::CHS_F     },
    640   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    641   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    642   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    643   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    644   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    645   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    646   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    647   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    648   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    649   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    650   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    651   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    652   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    653   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    654   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    655   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    656   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    657   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    658   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    659   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    660   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    661   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    662   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    663   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    664   { X86::COS_Fp32     , X86::COS_F     },
    665   { X86::COS_Fp64     , X86::COS_F     },
    666   { X86::COS_Fp80     , X86::COS_F     },
    667   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    668   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    669   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    670   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    671   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    672   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    673   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    674   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    675   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    676   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    677   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    678   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    679   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    680   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    681   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    682   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    683   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    684   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    685   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    686   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    687   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    688   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    689   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    690   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    691   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    692   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    693   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    694   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    695   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    696   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    697   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    698   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    699   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    700   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    701   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    702   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    703   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    704   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    705   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    706   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    707   { X86::IST_Fp16m32  , X86::IST_F16m  },
    708   { X86::IST_Fp16m64  , X86::IST_F16m  },
    709   { X86::IST_Fp16m80  , X86::IST_F16m  },
    710   { X86::IST_Fp32m32  , X86::IST_F32m  },
    711   { X86::IST_Fp32m64  , X86::IST_F32m  },
    712   { X86::IST_Fp32m80  , X86::IST_F32m  },
    713   { X86::IST_Fp64m32  , X86::IST_FP64m },
    714   { X86::IST_Fp64m64  , X86::IST_FP64m },
    715   { X86::IST_Fp64m80  , X86::IST_FP64m },
    716   { X86::LD_Fp032     , X86::LD_F0     },
    717   { X86::LD_Fp064     , X86::LD_F0     },
    718   { X86::LD_Fp080     , X86::LD_F0     },
    719   { X86::LD_Fp132     , X86::LD_F1     },
    720   { X86::LD_Fp164     , X86::LD_F1     },
    721   { X86::LD_Fp180     , X86::LD_F1     },
    722   { X86::LD_Fp32m     , X86::LD_F32m   },
    723   { X86::LD_Fp32m64   , X86::LD_F32m   },
    724   { X86::LD_Fp32m80   , X86::LD_F32m   },
    725   { X86::LD_Fp64m     , X86::LD_F64m   },
    726   { X86::LD_Fp64m80   , X86::LD_F64m   },
    727   { X86::LD_Fp80m     , X86::LD_F80m   },
    728   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    729   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    730   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    731   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    732   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    733   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    734   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    735   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    736   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    737   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    738   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    739   { X86::SIN_Fp32     , X86::SIN_F     },
    740   { X86::SIN_Fp64     , X86::SIN_F     },
    741   { X86::SIN_Fp80     , X86::SIN_F     },
    742   { X86::SQRT_Fp32    , X86::SQRT_F    },
    743   { X86::SQRT_Fp64    , X86::SQRT_F    },
    744   { X86::SQRT_Fp80    , X86::SQRT_F    },
    745   { X86::ST_Fp32m     , X86::ST_F32m   },
    746   { X86::ST_Fp64m     , X86::ST_F64m   },
    747   { X86::ST_Fp64m32   , X86::ST_F32m   },
    748   { X86::ST_Fp80m32   , X86::ST_F32m   },
    749   { X86::ST_Fp80m64   , X86::ST_F64m   },
    750   { X86::ST_FpP80m    , X86::ST_FP80m  },
    751   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    752   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    753   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    754   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    755   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    756   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    757   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    758   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    759   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    760   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    761   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    762   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    763   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    764   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    765   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    766   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    767   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    768   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    769   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    770   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    771   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    772   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    773   { X86::TST_Fp32     , X86::TST_F     },
    774   { X86::TST_Fp64     , X86::TST_F     },
    775   { X86::TST_Fp80     , X86::TST_F     },
    776   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    777   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    778   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    779   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    780   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    781   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    782 };
    783 
    784 static unsigned getConcreteOpcode(unsigned Opcode) {
    785   ASSERT_SORTED(OpcodeTable);
    786   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
    787   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    788   return Opc;
    789 }
    790 
    791 //===----------------------------------------------------------------------===//
    792 // Helper Methods
    793 //===----------------------------------------------------------------------===//
    794 
    795 // PopTable - Sorted map of instructions to their popping version.  The first
    796 // element is an instruction, the second is the version which pops.
    797 //
    798 static const TableEntry PopTable[] = {
    799   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    800 
    801   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    802   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    803 
    804   { X86::IST_F16m  , X86::IST_FP16m   },
    805   { X86::IST_F32m  , X86::IST_FP32m   },
    806 
    807   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    808 
    809   { X86::ST_F32m   , X86::ST_FP32m    },
    810   { X86::ST_F64m   , X86::ST_FP64m    },
    811   { X86::ST_Frr    , X86::ST_FPrr     },
    812 
    813   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    814   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    815 
    816   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    817 
    818   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    819   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    820 };
    821 
    822 /// popStackAfter - Pop the current value off of the top of the FP stack after
    823 /// the specified instruction.  This attempts to be sneaky and combine the pop
    824 /// into the instruction itself if possible.  The iterator is left pointing to
    825 /// the last instruction, be it a new pop instruction inserted, or the old
    826 /// instruction if it was modified in place.
    827 ///
    828 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    829   MachineInstr* MI = I;
    830   DebugLoc dl = MI->getDebugLoc();
    831   ASSERT_SORTED(PopTable);
    832   if (StackTop == 0)
    833     report_fatal_error("Cannot pop empty stack!");
    834   RegMap[Stack[--StackTop]] = ~0;     // Update state
    835 
    836   // Check to see if there is a popping version of this instruction...
    837   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
    838   if (Opcode != -1) {
    839     I->setDesc(TII->get(Opcode));
    840     if (Opcode == X86::UCOM_FPPr)
    841       I->RemoveOperand(0);
    842   } else {    // Insert an explicit pop
    843     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    844   }
    845 }
    846 
    847 /// freeStackSlotAfter - Free the specified register from the register stack, so
    848 /// that it is no longer in a register.  If the register is currently at the top
    849 /// of the stack, we just pop the current instruction, otherwise we store the
    850 /// current top-of-stack into the specified slot, then pop the top of stack.
    851 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    852   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    853     popStackAfter(I);
    854     return;
    855   }
    856 
    857   // Otherwise, store the top of stack into the dead slot, killing the operand
    858   // without having to add in an explicit xchg then pop.
    859   //
    860   I = freeStackSlotBefore(++I, FPRegNo);
    861 }
    862 
    863 /// freeStackSlotBefore - Free the specified register without trying any
    864 /// folding.
    865 MachineBasicBlock::iterator
    866 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    867   unsigned STReg    = getSTReg(FPRegNo);
    868   unsigned OldSlot  = getSlot(FPRegNo);
    869   unsigned TopReg   = Stack[StackTop-1];
    870   Stack[OldSlot]    = TopReg;
    871   RegMap[TopReg]    = OldSlot;
    872   RegMap[FPRegNo]   = ~0;
    873   Stack[--StackTop] = ~0;
    874   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
    875 }
    876 
    877 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    878 /// registers with a bit in Mask are live.
    879 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    880   unsigned Defs = Mask;
    881   unsigned Kills = 0;
    882   for (unsigned i = 0; i < StackTop; ++i) {
    883     unsigned RegNo = Stack[i];
    884     if (!(Defs & (1 << RegNo)))
    885       // This register is live, but we don't want it.
    886       Kills |= (1 << RegNo);
    887     else
    888       // We don't need to imp-def this live register.
    889       Defs &= ~(1 << RegNo);
    890   }
    891   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    892 
    893   // Produce implicit-defs for free by using killed registers.
    894   while (Kills && Defs) {
    895     unsigned KReg = CountTrailingZeros_32(Kills);
    896     unsigned DReg = CountTrailingZeros_32(Defs);
    897     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    898     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    899     std::swap(RegMap[KReg], RegMap[DReg]);
    900     Kills &= ~(1 << KReg);
    901     Defs &= ~(1 << DReg);
    902   }
    903 
    904   // Kill registers by popping.
    905   if (Kills && I != MBB->begin()) {
    906     MachineBasicBlock::iterator I2 = llvm::prior(I);
    907     while (StackTop) {
    908       unsigned KReg = getStackEntry(0);
    909       if (!(Kills & (1 << KReg)))
    910         break;
    911       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    912       popStackAfter(I2);
    913       Kills &= ~(1 << KReg);
    914     }
    915   }
    916 
    917   // Manually kill the rest.
    918   while (Kills) {
    919     unsigned KReg = CountTrailingZeros_32(Kills);
    920     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    921     freeStackSlotBefore(I, KReg);
    922     Kills &= ~(1 << KReg);
    923   }
    924 
    925   // Load zeros for all the imp-defs.
    926   while(Defs) {
    927     unsigned DReg = CountTrailingZeros_32(Defs);
    928     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    929     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    930     pushReg(DReg);
    931     Defs &= ~(1 << DReg);
    932   }
    933 
    934   // Now we should have the correct registers live.
    935   DEBUG(dumpStack());
    936   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
    937 }
    938 
    939 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    940 /// FixCount entries into the order given by FixStack.
    941 /// FIXME: Is there a better algorithm than insertion sort?
    942 void FPS::shuffleStackTop(const unsigned char *FixStack,
    943                           unsigned FixCount,
    944                           MachineBasicBlock::iterator I) {
    945   // Move items into place, starting from the desired stack bottom.
    946   while (FixCount--) {
    947     // Old register at position FixCount.
    948     unsigned OldReg = getStackEntry(FixCount);
    949     // Desired register at position FixCount.
    950     unsigned Reg = FixStack[FixCount];
    951     if (Reg == OldReg)
    952       continue;
    953     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    954     moveToTop(Reg, I);
    955     if (FixCount > 0)
    956       moveToTop(OldReg, I);
    957   }
    958   DEBUG(dumpStack());
    959 }
    960 
    961 
    962 //===----------------------------------------------------------------------===//
    963 // Instruction transformation implementation
    964 //===----------------------------------------------------------------------===//
    965 
    966 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
    967 ///
    968 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
    969   MachineInstr *MI = I;
    970   unsigned DestReg = getFPReg(MI->getOperand(0));
    971 
    972   // Change from the pseudo instruction to the concrete instruction.
    973   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
    974   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
    975 
    976   // Result gets pushed on the stack.
    977   pushReg(DestReg);
    978 }
    979 
    980 /// handleOneArgFP - fst <mem>, ST(0)
    981 ///
    982 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
    983   MachineInstr *MI = I;
    984   unsigned NumOps = MI->getDesc().getNumOperands();
    985   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
    986          "Can only handle fst* & ftst instructions!");
    987 
    988   // Is this the last use of the source register?
    989   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
    990   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
    991 
    992   if (KillsSrc)
    993     duplicatePendingSTBeforeKill(Reg, I);
    994 
    995   // FISTP64m is strange because there isn't a non-popping versions.
    996   // If we have one _and_ we don't want to pop the operand, duplicate the value
    997   // on the stack instead of moving it.  This ensure that popping the value is
    998   // always ok.
    999   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
   1000   //
   1001   if (!KillsSrc &&
   1002       (MI->getOpcode() == X86::IST_Fp64m32 ||
   1003        MI->getOpcode() == X86::ISTT_Fp16m32 ||
   1004        MI->getOpcode() == X86::ISTT_Fp32m32 ||
   1005        MI->getOpcode() == X86::ISTT_Fp64m32 ||
   1006        MI->getOpcode() == X86::IST_Fp64m64 ||
   1007        MI->getOpcode() == X86::ISTT_Fp16m64 ||
   1008        MI->getOpcode() == X86::ISTT_Fp32m64 ||
   1009        MI->getOpcode() == X86::ISTT_Fp64m64 ||
   1010        MI->getOpcode() == X86::IST_Fp64m80 ||
   1011        MI->getOpcode() == X86::ISTT_Fp16m80 ||
   1012        MI->getOpcode() == X86::ISTT_Fp32m80 ||
   1013        MI->getOpcode() == X86::ISTT_Fp64m80 ||
   1014        MI->getOpcode() == X86::ST_FpP80m)) {
   1015     duplicateToTop(Reg, getScratchReg(), I);
   1016   } else {
   1017     moveToTop(Reg, I);            // Move to the top of the stack...
   1018   }
   1019 
   1020   // Convert from the pseudo instruction to the concrete instruction.
   1021   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
   1022   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1023 
   1024   if (MI->getOpcode() == X86::IST_FP64m ||
   1025       MI->getOpcode() == X86::ISTT_FP16m ||
   1026       MI->getOpcode() == X86::ISTT_FP32m ||
   1027       MI->getOpcode() == X86::ISTT_FP64m ||
   1028       MI->getOpcode() == X86::ST_FP80m) {
   1029     if (StackTop == 0)
   1030       report_fatal_error("Stack empty??");
   1031     --StackTop;
   1032   } else if (KillsSrc) { // Last use of operand?
   1033     popStackAfter(I);
   1034   }
   1035 }
   1036 
   1037 
   1038 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1039 /// replace the value with a newly computed value.  These instructions may have
   1040 /// non-fp operands after their FP operands.
   1041 ///
   1042 ///  Examples:
   1043 ///     R1 = fchs R2
   1044 ///     R1 = fadd R2, [mem]
   1045 ///
   1046 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1047   MachineInstr *MI = I;
   1048 #ifndef NDEBUG
   1049   unsigned NumOps = MI->getDesc().getNumOperands();
   1050   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1051 #endif
   1052 
   1053   // Is this the last use of the source register?
   1054   unsigned Reg = getFPReg(MI->getOperand(1));
   1055   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
   1056 
   1057   if (KillsSrc) {
   1058     duplicatePendingSTBeforeKill(Reg, I);
   1059     // If this is the last use of the source register, just make sure it's on
   1060     // the top of the stack.
   1061     moveToTop(Reg, I);
   1062     if (StackTop == 0)
   1063       report_fatal_error("Stack cannot be empty!");
   1064     --StackTop;
   1065     pushReg(getFPReg(MI->getOperand(0)));
   1066   } else {
   1067     // If this is not the last use of the source register, _copy_ it to the top
   1068     // of the stack.
   1069     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
   1070   }
   1071 
   1072   // Change from the pseudo instruction to the concrete instruction.
   1073   MI->RemoveOperand(1);   // Drop the source operand.
   1074   MI->RemoveOperand(0);   // Drop the destination operand.
   1075   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1076 }
   1077 
   1078 
   1079 //===----------------------------------------------------------------------===//
   1080 // Define tables of various ways to map pseudo instructions
   1081 //
   1082 
   1083 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1084 static const TableEntry ForwardST0Table[] = {
   1085   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1086   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1087   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1088   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1089   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1090   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1091   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1092   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1093   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1094   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1095   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1096   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1097 };
   1098 
   1099 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1100 static const TableEntry ReverseST0Table[] = {
   1101   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1102   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1103   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1104   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1105   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1106   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1107   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1108   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1109   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1110   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1111   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1112   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1113 };
   1114 
   1115 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1116 static const TableEntry ForwardSTiTable[] = {
   1117   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1118   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1119   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1120   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1121   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1122   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1123   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1124   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1125   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1126   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1127   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1128   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1129 };
   1130 
   1131 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1132 static const TableEntry ReverseSTiTable[] = {
   1133   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1134   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1135   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1136   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1137   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1138   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1139   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1140   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1141   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1142   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1143   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1144   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1145 };
   1146 
   1147 
   1148 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1149 /// instructions which need to be simplified and possibly transformed.
   1150 ///
   1151 /// Result: ST(0) = fsub  ST(0), ST(i)
   1152 ///         ST(i) = fsub  ST(0), ST(i)
   1153 ///         ST(0) = fsubr ST(0), ST(i)
   1154 ///         ST(i) = fsubr ST(0), ST(i)
   1155 ///
   1156 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1157   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1158   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1159   MachineInstr *MI = I;
   1160 
   1161   unsigned NumOperands = MI->getDesc().getNumOperands();
   1162   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1163   unsigned Dest = getFPReg(MI->getOperand(0));
   1164   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1165   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1166   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1167   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1168   DebugLoc dl = MI->getDebugLoc();
   1169 
   1170   unsigned TOS = getStackEntry(0);
   1171 
   1172   // One of our operands must be on the top of the stack.  If neither is yet, we
   1173   // need to move one.
   1174   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1175     // We can choose to move either operand to the top of the stack.  If one of
   1176     // the operands is killed by this instruction, we want that one so that we
   1177     // can update right on top of the old version.
   1178     if (KillsOp0) {
   1179       moveToTop(Op0, I);         // Move dead operand to TOS.
   1180       TOS = Op0;
   1181     } else if (KillsOp1) {
   1182       moveToTop(Op1, I);
   1183       TOS = Op1;
   1184     } else {
   1185       // All of the operands are live after this instruction executes, so we
   1186       // cannot update on top of any operand.  Because of this, we must
   1187       // duplicate one of the stack elements to the top.  It doesn't matter
   1188       // which one we pick.
   1189       //
   1190       duplicateToTop(Op0, Dest, I);
   1191       Op0 = TOS = Dest;
   1192       KillsOp0 = true;
   1193     }
   1194   } else if (!KillsOp0 && !KillsOp1) {
   1195     // If we DO have one of our operands at the top of the stack, but we don't
   1196     // have a dead operand, we must duplicate one of the operands to a new slot
   1197     // on the stack.
   1198     duplicateToTop(Op0, Dest, I);
   1199     Op0 = TOS = Dest;
   1200     KillsOp0 = true;
   1201   }
   1202 
   1203   // Now we know that one of our operands is on the top of the stack, and at
   1204   // least one of our operands is killed by this instruction.
   1205   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1206          "Stack conditions not set up right!");
   1207 
   1208   // We decide which form to use based on what is on the top of the stack, and
   1209   // which operand is killed by this instruction.
   1210   const TableEntry *InstTable;
   1211   bool isForward = TOS == Op0;
   1212   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1213   if (updateST0) {
   1214     if (isForward)
   1215       InstTable = ForwardST0Table;
   1216     else
   1217       InstTable = ReverseST0Table;
   1218   } else {
   1219     if (isForward)
   1220       InstTable = ForwardSTiTable;
   1221     else
   1222       InstTable = ReverseSTiTable;
   1223   }
   1224 
   1225   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
   1226                       MI->getOpcode());
   1227   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1228 
   1229   // NotTOS - The register which is not on the top of stack...
   1230   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1231 
   1232   // Replace the old instruction with a new instruction
   1233   MBB->remove(I++);
   1234   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1235 
   1236   // If both operands are killed, pop one off of the stack in addition to
   1237   // overwriting the other one.
   1238   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1239     assert(!updateST0 && "Should have updated other operand!");
   1240     popStackAfter(I);   // Pop the top of stack
   1241   }
   1242 
   1243   // Update stack information so that we know the destination register is now on
   1244   // the stack.
   1245   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1246   assert(UpdatedSlot < StackTop && Dest < 7);
   1247   Stack[UpdatedSlot]   = Dest;
   1248   RegMap[Dest]         = UpdatedSlot;
   1249   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
   1250 }
   1251 
   1252 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1253 /// register arguments and no explicit destinations.
   1254 ///
   1255 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1256   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1257   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1258   MachineInstr *MI = I;
   1259 
   1260   unsigned NumOperands = MI->getDesc().getNumOperands();
   1261   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1262   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1263   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1264   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1265   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1266 
   1267   // Make sure the first operand is on the top of stack, the other one can be
   1268   // anywhere.
   1269   moveToTop(Op0, I);
   1270 
   1271   // Change from the pseudo instruction to the concrete instruction.
   1272   MI->getOperand(0).setReg(getSTReg(Op1));
   1273   MI->RemoveOperand(1);
   1274   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1275 
   1276   // If any of the operands are killed by this instruction, free them.
   1277   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1278   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1279 }
   1280 
   1281 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1282 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1283 /// instructions require that the first operand is at the top of the stack, but
   1284 /// otherwise don't modify the stack at all.
   1285 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1286   MachineInstr *MI = I;
   1287 
   1288   unsigned Op0 = getFPReg(MI->getOperand(0));
   1289   unsigned Op1 = getFPReg(MI->getOperand(2));
   1290   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1291 
   1292   // The first operand *must* be on the top of the stack.
   1293   moveToTop(Op0, I);
   1294 
   1295   // Change the second operand to the stack register that the operand is in.
   1296   // Change from the pseudo instruction to the concrete instruction.
   1297   MI->RemoveOperand(0);
   1298   MI->RemoveOperand(1);
   1299   MI->getOperand(0).setReg(getSTReg(Op1));
   1300   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1301 
   1302   // If we kill the second operand, make sure to pop it from the stack.
   1303   if (Op0 != Op1 && KillsOp1) {
   1304     // Get this value off of the register stack.
   1305     freeStackSlotAfter(I, Op1);
   1306   }
   1307 }
   1308 
   1309 
   1310 /// handleSpecialFP - Handle special instructions which behave unlike other
   1311 /// floating point instructions.  This is primarily intended for use by pseudo
   1312 /// instructions.
   1313 ///
   1314 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
   1315   MachineInstr *MI = I;
   1316   switch (MI->getOpcode()) {
   1317   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1318   case TargetOpcode::COPY: {
   1319     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1320     const MachineOperand &MO1 = MI->getOperand(1);
   1321     const MachineOperand &MO0 = MI->getOperand(0);
   1322     unsigned DstST = MO0.getReg() - X86::ST0;
   1323     unsigned SrcST = MO1.getReg() - X86::ST0;
   1324     bool KillsSrc = MI->killsRegister(MO1.getReg());
   1325 
   1326     // ST = COPY FP. Set up a pending ST register.
   1327     if (DstST < 8) {
   1328       unsigned SrcFP = getFPReg(MO1);
   1329       assert(isLive(SrcFP) && "Cannot copy dead register");
   1330       assert(!MO0.isDead() && "Cannot copy to dead ST register");
   1331 
   1332       // Unallocated STs are marked as the nonexistent FP255.
   1333       while (NumPendingSTs <= DstST)
   1334         PendingST[NumPendingSTs++] = NumFPRegs;
   1335 
   1336       // STi could still be live from a previous inline asm.
   1337       if (isScratchReg(PendingST[DstST])) {
   1338         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
   1339                      << '\n');
   1340         freeStackSlotBefore(MI, PendingST[DstST]);
   1341       }
   1342 
   1343       // When the source is killed, allocate a scratch FP register.
   1344       if (KillsSrc) {
   1345         duplicatePendingSTBeforeKill(SrcFP, I);
   1346         unsigned Slot = getSlot(SrcFP);
   1347         unsigned SR = getScratchReg();
   1348         PendingST[DstST] = SR;
   1349         Stack[Slot] = SR;
   1350         RegMap[SR] = Slot;
   1351       } else
   1352         PendingST[DstST] = SrcFP;
   1353       break;
   1354     }
   1355 
   1356     // FP = COPY ST. Extract fixed stack value.
   1357     // Any instruction defining ST registers must have assigned them to a
   1358     // scratch register.
   1359     if (SrcST < 8) {
   1360       unsigned DstFP = getFPReg(MO0);
   1361       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
   1362       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
   1363       unsigned SrcFP = PendingST[SrcST];
   1364       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
   1365       assert(isLive(SrcFP) && "Scratch holding ST is dead");
   1366 
   1367       // DstFP steals the stack slot from SrcFP.
   1368       unsigned Slot = getSlot(SrcFP);
   1369       Stack[Slot] = DstFP;
   1370       RegMap[DstFP] = Slot;
   1371 
   1372       // Always treat the ST as killed.
   1373       PendingST[SrcST] = NumFPRegs;
   1374       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1375         --NumPendingSTs;
   1376       break;
   1377     }
   1378 
   1379     // FP <- FP copy.
   1380     unsigned DstFP = getFPReg(MO0);
   1381     unsigned SrcFP = getFPReg(MO1);
   1382     assert(isLive(SrcFP) && "Cannot copy dead register");
   1383     if (KillsSrc) {
   1384       // If the input operand is killed, we can just change the owner of the
   1385       // incoming stack slot into the result.
   1386       unsigned Slot = getSlot(SrcFP);
   1387       Stack[Slot] = DstFP;
   1388       RegMap[DstFP] = Slot;
   1389     } else {
   1390       // For COPY we just duplicate the specified value to a new stack slot.
   1391       // This could be made better, but would require substantial changes.
   1392       duplicateToTop(SrcFP, DstFP, I);
   1393     }
   1394     break;
   1395   }
   1396 
   1397   case TargetOpcode::IMPLICIT_DEF: {
   1398     // All FP registers must be explicitly defined, so load a 0 instead.
   1399     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
   1400     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1401     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1402     pushReg(Reg);
   1403     break;
   1404   }
   1405 
   1406   case X86::FpPOP_RETVAL: {
   1407     // The FpPOP_RETVAL instruction is used after calls that return a value on
   1408     // the floating point stack. We cannot model this with ST defs since CALL
   1409     // instructions have fixed clobber lists. This instruction is interpreted
   1410     // to mean that there is one more live register on the stack than we
   1411     // thought.
   1412     //
   1413     // This means that StackTop does not match the hardware stack between a
   1414     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
   1415     // between CALL and FpPOP_RETVAL as long as they don't overflow the
   1416     // hardware stack.
   1417     unsigned DstFP = getFPReg(MI->getOperand(0));
   1418 
   1419     // Move existing stack elements up to reflect reality.
   1420     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
   1421     if (StackTop) {
   1422       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
   1423       for (unsigned i = 0; i != NumFPRegs; ++i)
   1424         ++RegMap[i];
   1425     }
   1426     ++StackTop;
   1427 
   1428     // DstFP is the new bottom of the stack.
   1429     Stack[0] = DstFP;
   1430     RegMap[DstFP] = 0;
   1431 
   1432     // DstFP will be killed by processBasicBlock if this was a dead def.
   1433     break;
   1434   }
   1435 
   1436   case TargetOpcode::INLINEASM: {
   1437     // The inline asm MachineInstr currently only *uses* FP registers for the
   1438     // 'f' constraint.  These should be turned into the current ST(x) register
   1439     // in the machine instr.
   1440     //
   1441     // There are special rules for x87 inline assembly. The compiler must know
   1442     // exactly how many registers are popped and pushed implicitly by the asm.
   1443     // Otherwise it is not possible to restore the stack state after the inline
   1444     // asm.
   1445     //
   1446     // There are 3 kinds of input operands:
   1447     //
   1448     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1449     //    popped input operand must be in a fixed stack slot, and it is either
   1450     //    tied to an output operand, or in the clobber list. The MI has ST use
   1451     //    and def operands for these inputs.
   1452     //
   1453     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1454     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1455     //    following the popped inputs. A fixed input operand cannot be tied to
   1456     //    an output or appear in the clobber list. The MI has ST use operands
   1457     //    and no defs for these inputs.
   1458     //
   1459     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1460     //    represented as an FP register. The inline asm won't change these
   1461     //    stack slots.
   1462     //
   1463     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1464     // registers do not count as output operands. The inline asm changes the
   1465     // stack as if it popped all the popped inputs and then pushed all the
   1466     // output operands.
   1467 
   1468     // Scan the assembly for ST registers used, defined and clobbered. We can
   1469     // only tell clobbers from defs by looking at the asm descriptor.
   1470     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1471     unsigned NumOps = 0;
   1472     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
   1473          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
   1474       unsigned Flags = MI->getOperand(i).getImm();
   1475       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1476       if (NumOps != 1)
   1477         continue;
   1478       const MachineOperand &MO = MI->getOperand(i + 1);
   1479       if (!MO.isReg())
   1480         continue;
   1481       unsigned STReg = MO.getReg() - X86::ST0;
   1482       if (STReg >= 8)
   1483         continue;
   1484 
   1485       switch (InlineAsm::getKind(Flags)) {
   1486       case InlineAsm::Kind_RegUse:
   1487         STUses |= (1u << STReg);
   1488         break;
   1489       case InlineAsm::Kind_RegDef:
   1490       case InlineAsm::Kind_RegDefEarlyClobber:
   1491         STDefs |= (1u << STReg);
   1492         if (MO.isDead())
   1493           STDeadDefs |= (1u << STReg);
   1494         break;
   1495       case InlineAsm::Kind_Clobber:
   1496         STClobbers |= (1u << STReg);
   1497         break;
   1498       default:
   1499         break;
   1500       }
   1501     }
   1502 
   1503     if (STUses && !isMask_32(STUses))
   1504       MI->emitError("fixed input regs must be last on the x87 stack");
   1505     unsigned NumSTUses = CountTrailingOnes_32(STUses);
   1506 
   1507     // Defs must be contiguous from the stack top. ST0-STn.
   1508     if (STDefs && !isMask_32(STDefs)) {
   1509       MI->emitError("output regs must be last on the x87 stack");
   1510       STDefs = NextPowerOf2(STDefs) - 1;
   1511     }
   1512     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
   1513 
   1514     // So must the clobbered stack slots. ST0-STm, m >= n.
   1515     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1516       MI->emitError("clobbers must be last on the x87 stack");
   1517 
   1518     // Popped inputs are the ones that are also clobbered or defined.
   1519     unsigned STPopped = STUses & (STDefs | STClobbers);
   1520     if (STPopped && !isMask_32(STPopped))
   1521       MI->emitError("implicitly popped regs must be last on the x87 stack");
   1522     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
   1523 
   1524     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1525                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1526 
   1527     // Scan the instruction for FP uses corresponding to "f" constraints.
   1528     // Collect FP registers to kill afer the instruction.
   1529     // Always kill all the scratch regs.
   1530     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1531     unsigned FPUsed = 0;
   1532     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1533       MachineOperand &Op = MI->getOperand(i);
   1534       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1535         continue;
   1536       if (!Op.isUse())
   1537         MI->emitError("illegal \"f\" output constraint");
   1538       unsigned FPReg = getFPReg(Op);
   1539       FPUsed |= 1U << FPReg;
   1540 
   1541       // If we kill this operand, make sure to pop it from the stack after the
   1542       // asm.  We just remember it for now, and pop them all off at the end in
   1543       // a batch.
   1544       if (Op.isKill())
   1545         FPKills |= 1U << FPReg;
   1546     }
   1547 
   1548     // The popped inputs will be killed by the instruction, so duplicate them
   1549     // if the FP register needs to be live after the instruction, or if it is
   1550     // used in the instruction itself. We effectively treat the popped inputs
   1551     // as early clobbers.
   1552     for (unsigned i = 0; i < NumSTPopped; ++i) {
   1553       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
   1554         continue;
   1555       unsigned SR = getScratchReg();
   1556       duplicateToTop(PendingST[i], SR, I);
   1557       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1558                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
   1559       PendingST[i] = SR;
   1560     }
   1561 
   1562     // Make sure we have a unique live register for every fixed use. Some of
   1563     // them could be undef uses, and we need to emit LD_F0 instructions.
   1564     for (unsigned i = 0; i < NumSTUses; ++i) {
   1565       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
   1566         // Check for shared assignments.
   1567         for (unsigned j = 0; j < i; ++j) {
   1568           if (PendingST[j] != PendingST[i])
   1569             continue;
   1570           // STi and STj are inn the same register, create a copy.
   1571           unsigned SR = getScratchReg();
   1572           duplicateToTop(PendingST[i], SR, I);
   1573           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1574                        << unsigned(PendingST[i])
   1575                        << " to avoid collision with ST" << j << '\n');
   1576           PendingST[i] = SR;
   1577         }
   1578         continue;
   1579       }
   1580       unsigned SR = getScratchReg();
   1581       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
   1582       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1583       pushReg(SR);
   1584       PendingST[i] = SR;
   1585       if (NumPendingSTs == i)
   1586         ++NumPendingSTs;
   1587     }
   1588     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
   1589 
   1590     // Now we can rearrange the live registers to match what was requested.
   1591     shuffleStackTop(PendingST, NumPendingSTs, I);
   1592     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1593 
   1594     // With the stack layout fixed, rewrite the FP registers.
   1595     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1596       MachineOperand &Op = MI->getOperand(i);
   1597       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1598         continue;
   1599       unsigned FPReg = getFPReg(Op);
   1600       Op.setReg(getSTReg(FPReg));
   1601     }
   1602 
   1603     // Simulate the inline asm popping its inputs and pushing its outputs.
   1604     StackTop -= NumSTPopped;
   1605 
   1606     // Hold the fixed output registers in scratch FP registers. They will be
   1607     // transferred to real FP registers by copies.
   1608     NumPendingSTs = 0;
   1609     for (unsigned i = 0; i < NumSTDefs; ++i) {
   1610       unsigned SR = getScratchReg();
   1611       pushReg(SR);
   1612       FPKills &= ~(1u << SR);
   1613     }
   1614     for (unsigned i = 0; i < NumSTDefs; ++i)
   1615       PendingST[NumPendingSTs++] = getStackEntry(i);
   1616     DEBUG({dbgs() << "After asm: "; dumpStack();});
   1617 
   1618     // If any of the ST defs were dead, pop them immediately. Our caller only
   1619     // handles dead FP defs.
   1620     MachineBasicBlock::iterator InsertPt = MI;
   1621     for (unsigned i = 0; STDefs & (1u << i); ++i) {
   1622       if (!(STDeadDefs & (1u << i)))
   1623         continue;
   1624       freeStackSlotAfter(InsertPt, PendingST[i]);
   1625       PendingST[i] = NumFPRegs;
   1626     }
   1627     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1628       --NumPendingSTs;
   1629 
   1630     // If this asm kills any FP registers (is the last use of them) we must
   1631     // explicitly emit pop instructions for them.  Do this now after the asm has
   1632     // executed so that the ST(x) numbers are not off (which would happen if we
   1633     // did this inline with operand rewriting).
   1634     //
   1635     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1636     // better by trying to pop in stack order or something.
   1637     while (FPKills) {
   1638       unsigned FPReg = CountTrailingZeros_32(FPKills);
   1639       if (isLive(FPReg))
   1640         freeStackSlotAfter(InsertPt, FPReg);
   1641       FPKills &= ~(1U << FPReg);
   1642     }
   1643     // Don't delete the inline asm!
   1644     return;
   1645   }
   1646 
   1647   case X86::RET:
   1648   case X86::RETI:
   1649     // If RET has an FP register use operand, pass the first one in ST(0) and
   1650     // the second one in ST(1).
   1651 
   1652     // Find the register operands.
   1653     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
   1654     unsigned LiveMask = 0;
   1655 
   1656     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1657       MachineOperand &Op = MI->getOperand(i);
   1658       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1659         continue;
   1660       // FP Register uses must be kills unless there are two uses of the same
   1661       // register, in which case only one will be a kill.
   1662       assert(Op.isUse() &&
   1663              (Op.isKill() ||                        // Marked kill.
   1664               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
   1665               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
   1666              "Ret only defs operands, and values aren't live beyond it");
   1667 
   1668       if (FirstFPRegOp == ~0U)
   1669         FirstFPRegOp = getFPReg(Op);
   1670       else {
   1671         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
   1672         SecondFPRegOp = getFPReg(Op);
   1673       }
   1674       LiveMask |= (1 << getFPReg(Op));
   1675 
   1676       // Remove the operand so that later passes don't see it.
   1677       MI->RemoveOperand(i);
   1678       --i, --e;
   1679     }
   1680 
   1681     // We may have been carrying spurious live-ins, so make sure only the returned
   1682     // registers are left live.
   1683     adjustLiveRegs(LiveMask, MI);
   1684     if (!LiveMask) return;  // Quick check to see if any are possible.
   1685 
   1686     // There are only four possibilities here:
   1687     // 1) we are returning a single FP value.  In this case, it has to be in
   1688     //    ST(0) already, so just declare success by removing the value from the
   1689     //    FP Stack.
   1690     if (SecondFPRegOp == ~0U) {
   1691       // Assert that the top of stack contains the right FP register.
   1692       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1693              "Top of stack not the right register for RET!");
   1694 
   1695       // Ok, everything is good, mark the value as not being on the stack
   1696       // anymore so that our assertion about the stack being empty at end of
   1697       // block doesn't fire.
   1698       StackTop = 0;
   1699       return;
   1700     }
   1701 
   1702     // Otherwise, we are returning two values:
   1703     // 2) If returning the same value for both, we only have one thing in the FP
   1704     //    stack.  Consider:  RET FP1, FP1
   1705     if (StackTop == 1) {
   1706       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1707              "Stack misconfiguration for RET!");
   1708 
   1709       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1710       // register to hold it.
   1711       unsigned NewReg = getScratchReg();
   1712       duplicateToTop(FirstFPRegOp, NewReg, MI);
   1713       FirstFPRegOp = NewReg;
   1714     }
   1715 
   1716     /// Okay we know we have two different FPx operands now:
   1717     assert(StackTop == 2 && "Must have two values live!");
   1718 
   1719     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1720     ///    in ST(1).  In this case, emit an fxch.
   1721     if (getStackEntry(0) == SecondFPRegOp) {
   1722       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1723       moveToTop(FirstFPRegOp, MI);
   1724     }
   1725 
   1726     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1727     /// ST(1).  Just remove both from our understanding of the stack and return.
   1728     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1729     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1730     StackTop = 0;
   1731     return;
   1732   }
   1733 
   1734   I = MBB->erase(I);  // Remove the pseudo instruction
   1735 
   1736   // We want to leave I pointing to the previous instruction, but what if we
   1737   // just erased the first instruction?
   1738   if (I == MBB->begin()) {
   1739     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1740     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
   1741   } else
   1742     --I;
   1743 }
   1744