Home | History | Annotate | Download | only in Scalar
      1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs a simple dominator tree walk that eliminates trivially
     11 // redundant instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "early-cse"
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/Pass.h"
     19 #include "llvm/Analysis/Dominators.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Target/TargetData.h"
     22 #include "llvm/Transforms/Utils/Local.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/RecyclingAllocator.h"
     25 #include "llvm/ADT/ScopedHashTable.h"
     26 #include "llvm/ADT/Statistic.h"
     27 using namespace llvm;
     28 
     29 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
     30 STATISTIC(NumCSE,      "Number of instructions CSE'd");
     31 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
     32 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
     33 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
     34 
     35 static unsigned getHash(const void *V) {
     36   return DenseMapInfo<const void*>::getHashValue(V);
     37 }
     38 
     39 //===----------------------------------------------------------------------===//
     40 // SimpleValue
     41 //===----------------------------------------------------------------------===//
     42 
     43 namespace {
     44   /// SimpleValue - Instances of this struct represent available values in the
     45   /// scoped hash table.
     46   struct SimpleValue {
     47     Instruction *Inst;
     48 
     49     SimpleValue(Instruction *I) : Inst(I) {
     50       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
     51     }
     52 
     53     bool isSentinel() const {
     54       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
     55              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
     56     }
     57 
     58     static bool canHandle(Instruction *Inst) {
     59       // This can only handle non-void readnone functions.
     60       if (CallInst *CI = dyn_cast<CallInst>(Inst))
     61         return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
     62       return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
     63              isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
     64              isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
     65              isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
     66              isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
     67     }
     68   };
     69 }
     70 
     71 namespace llvm {
     72 // SimpleValue is POD.
     73 template<> struct isPodLike<SimpleValue> {
     74   static const bool value = true;
     75 };
     76 
     77 template<> struct DenseMapInfo<SimpleValue> {
     78   static inline SimpleValue getEmptyKey() {
     79     return DenseMapInfo<Instruction*>::getEmptyKey();
     80   }
     81   static inline SimpleValue getTombstoneKey() {
     82     return DenseMapInfo<Instruction*>::getTombstoneKey();
     83   }
     84   static unsigned getHashValue(SimpleValue Val);
     85   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
     86 };
     87 }
     88 
     89 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
     90   Instruction *Inst = Val.Inst;
     91 
     92   // Hash in all of the operands as pointers.
     93   unsigned Res = 0;
     94   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
     95     Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
     96 
     97   if (CastInst *CI = dyn_cast<CastInst>(Inst))
     98     Res ^= getHash(CI->getType());
     99   else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
    100     Res ^= CI->getPredicate();
    101   else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
    102     for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
    103          E = EVI->idx_end(); I != E; ++I)
    104       Res ^= *I;
    105   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
    106     for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
    107          E = IVI->idx_end(); I != E; ++I)
    108       Res ^= *I;
    109   } else {
    110     // nothing extra to hash in.
    111     assert((isa<CallInst>(Inst) ||
    112             isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
    113             isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
    114             isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
    115            "Invalid/unknown instruction");
    116   }
    117 
    118   // Mix in the opcode.
    119   return (Res << 1) ^ Inst->getOpcode();
    120 }
    121 
    122 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
    123   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    124 
    125   if (LHS.isSentinel() || RHS.isSentinel())
    126     return LHSI == RHSI;
    127 
    128   if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
    129   return LHSI->isIdenticalTo(RHSI);
    130 }
    131 
    132 //===----------------------------------------------------------------------===//
    133 // CallValue
    134 //===----------------------------------------------------------------------===//
    135 
    136 namespace {
    137   /// CallValue - Instances of this struct represent available call values in
    138   /// the scoped hash table.
    139   struct CallValue {
    140     Instruction *Inst;
    141 
    142     CallValue(Instruction *I) : Inst(I) {
    143       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
    144     }
    145 
    146     bool isSentinel() const {
    147       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
    148              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
    149     }
    150 
    151     static bool canHandle(Instruction *Inst) {
    152       // Don't value number anything that returns void.
    153       if (Inst->getType()->isVoidTy())
    154         return false;
    155 
    156       CallInst *CI = dyn_cast<CallInst>(Inst);
    157       if (CI == 0 || !CI->onlyReadsMemory())
    158         return false;
    159       return true;
    160     }
    161   };
    162 }
    163 
    164 namespace llvm {
    165   // CallValue is POD.
    166   template<> struct isPodLike<CallValue> {
    167     static const bool value = true;
    168   };
    169 
    170   template<> struct DenseMapInfo<CallValue> {
    171     static inline CallValue getEmptyKey() {
    172       return DenseMapInfo<Instruction*>::getEmptyKey();
    173     }
    174     static inline CallValue getTombstoneKey() {
    175       return DenseMapInfo<Instruction*>::getTombstoneKey();
    176     }
    177     static unsigned getHashValue(CallValue Val);
    178     static bool isEqual(CallValue LHS, CallValue RHS);
    179   };
    180 }
    181 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
    182   Instruction *Inst = Val.Inst;
    183   // Hash in all of the operands as pointers.
    184   unsigned Res = 0;
    185   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
    186     assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
    187            "Cannot value number calls with metadata operands");
    188     Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
    189   }
    190 
    191   // Mix in the opcode.
    192   return (Res << 1) ^ Inst->getOpcode();
    193 }
    194 
    195 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
    196   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    197   if (LHS.isSentinel() || RHS.isSentinel())
    198     return LHSI == RHSI;
    199   return LHSI->isIdenticalTo(RHSI);
    200 }
    201 
    202 
    203 //===----------------------------------------------------------------------===//
    204 // EarlyCSE pass.
    205 //===----------------------------------------------------------------------===//
    206 
    207 namespace {
    208 
    209 /// EarlyCSE - This pass does a simple depth-first walk over the dominator
    210 /// tree, eliminating trivially redundant instructions and using instsimplify
    211 /// to canonicalize things as it goes.  It is intended to be fast and catch
    212 /// obvious cases so that instcombine and other passes are more effective.  It
    213 /// is expected that a later pass of GVN will catch the interesting/hard
    214 /// cases.
    215 class EarlyCSE : public FunctionPass {
    216 public:
    217   const TargetData *TD;
    218   DominatorTree *DT;
    219   typedef RecyclingAllocator<BumpPtrAllocator,
    220                       ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
    221   typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
    222                           AllocatorTy> ScopedHTType;
    223 
    224   /// AvailableValues - This scoped hash table contains the current values of
    225   /// all of our simple scalar expressions.  As we walk down the domtree, we
    226   /// look to see if instructions are in this: if so, we replace them with what
    227   /// we find, otherwise we insert them so that dominated values can succeed in
    228   /// their lookup.
    229   ScopedHTType *AvailableValues;
    230 
    231   /// AvailableLoads - This scoped hash table contains the current values
    232   /// of loads.  This allows us to get efficient access to dominating loads when
    233   /// we have a fully redundant load.  In addition to the most recent load, we
    234   /// keep track of a generation count of the read, which is compared against
    235   /// the current generation count.  The current generation count is
    236   /// incremented after every possibly writing memory operation, which ensures
    237   /// that we only CSE loads with other loads that have no intervening store.
    238   typedef RecyclingAllocator<BumpPtrAllocator,
    239     ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
    240   typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
    241                           DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
    242   LoadHTType *AvailableLoads;
    243 
    244   /// AvailableCalls - This scoped hash table contains the current values
    245   /// of read-only call values.  It uses the same generation count as loads.
    246   typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
    247   CallHTType *AvailableCalls;
    248 
    249   /// CurrentGeneration - This is the current generation of the memory value.
    250   unsigned CurrentGeneration;
    251 
    252   static char ID;
    253   explicit EarlyCSE() : FunctionPass(ID) {
    254     initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
    255   }
    256 
    257   bool runOnFunction(Function &F);
    258 
    259 private:
    260 
    261   bool processNode(DomTreeNode *Node);
    262 
    263   // This transformation requires dominator postdominator info
    264   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    265     AU.addRequired<DominatorTree>();
    266     AU.setPreservesCFG();
    267   }
    268 };
    269 }
    270 
    271 char EarlyCSE::ID = 0;
    272 
    273 // createEarlyCSEPass - The public interface to this file.
    274 FunctionPass *llvm::createEarlyCSEPass() {
    275   return new EarlyCSE();
    276 }
    277 
    278 INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
    279 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    280 INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
    281 
    282 bool EarlyCSE::processNode(DomTreeNode *Node) {
    283   // Define a scope in the scoped hash table.  When we are done processing this
    284   // domtree node and recurse back up to our parent domtree node, this will pop
    285   // off all the values we install.
    286   ScopedHTType::ScopeTy Scope(*AvailableValues);
    287 
    288   // Define a scope for the load values so that anything we add will get
    289   // popped when we recurse back up to our parent domtree node.
    290   LoadHTType::ScopeTy LoadScope(*AvailableLoads);
    291 
    292   // Define a scope for the call values so that anything we add will get
    293   // popped when we recurse back up to our parent domtree node.
    294   CallHTType::ScopeTy CallScope(*AvailableCalls);
    295 
    296   BasicBlock *BB = Node->getBlock();
    297 
    298   // If this block has a single predecessor, then the predecessor is the parent
    299   // of the domtree node and all of the live out memory values are still current
    300   // in this block.  If this block has multiple predecessors, then they could
    301   // have invalidated the live-out memory values of our parent value.  For now,
    302   // just be conservative and invalidate memory if this block has multiple
    303   // predecessors.
    304   if (BB->getSinglePredecessor() == 0)
    305     ++CurrentGeneration;
    306 
    307   /// LastStore - Keep track of the last non-volatile store that we saw... for
    308   /// as long as there in no instruction that reads memory.  If we see a store
    309   /// to the same location, we delete the dead store.  This zaps trivial dead
    310   /// stores which can occur in bitfield code among other things.
    311   StoreInst *LastStore = 0;
    312 
    313   bool Changed = false;
    314 
    315   // See if any instructions in the block can be eliminated.  If so, do it.  If
    316   // not, add them to AvailableValues.
    317   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    318     Instruction *Inst = I++;
    319 
    320     // Dead instructions should just be removed.
    321     if (isInstructionTriviallyDead(Inst)) {
    322       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
    323       Inst->eraseFromParent();
    324       Changed = true;
    325       ++NumSimplify;
    326       continue;
    327     }
    328 
    329     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
    330     // its simpler value.
    331     if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
    332       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
    333       Inst->replaceAllUsesWith(V);
    334       Inst->eraseFromParent();
    335       Changed = true;
    336       ++NumSimplify;
    337       continue;
    338     }
    339 
    340     // If this is a simple instruction that we can value number, process it.
    341     if (SimpleValue::canHandle(Inst)) {
    342       // See if the instruction has an available value.  If so, use it.
    343       if (Value *V = AvailableValues->lookup(Inst)) {
    344         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
    345         Inst->replaceAllUsesWith(V);
    346         Inst->eraseFromParent();
    347         Changed = true;
    348         ++NumCSE;
    349         continue;
    350       }
    351 
    352       // Otherwise, just remember that this value is available.
    353       AvailableValues->insert(Inst, Inst);
    354       continue;
    355     }
    356 
    357     // If this is a non-volatile load, process it.
    358     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    359       // Ignore volatile loads.
    360       if (!LI->isSimple()) {
    361         LastStore = 0;
    362         continue;
    363       }
    364 
    365       // If we have an available version of this load, and if it is the right
    366       // generation, replace this instruction.
    367       std::pair<Value*, unsigned> InVal =
    368         AvailableLoads->lookup(Inst->getOperand(0));
    369       if (InVal.first != 0 && InVal.second == CurrentGeneration) {
    370         DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << "  to: "
    371               << *InVal.first << '\n');
    372         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
    373         Inst->eraseFromParent();
    374         Changed = true;
    375         ++NumCSELoad;
    376         continue;
    377       }
    378 
    379       // Otherwise, remember that we have this instruction.
    380       AvailableLoads->insert(Inst->getOperand(0),
    381                           std::pair<Value*, unsigned>(Inst, CurrentGeneration));
    382       LastStore = 0;
    383       continue;
    384     }
    385 
    386     // If this instruction may read from memory, forget LastStore.
    387     if (Inst->mayReadFromMemory())
    388       LastStore = 0;
    389 
    390     // If this is a read-only call, process it.
    391     if (CallValue::canHandle(Inst)) {
    392       // If we have an available version of this call, and if it is the right
    393       // generation, replace this instruction.
    394       std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
    395       if (InVal.first != 0 && InVal.second == CurrentGeneration) {
    396         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << "  to: "
    397                      << *InVal.first << '\n');
    398         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
    399         Inst->eraseFromParent();
    400         Changed = true;
    401         ++NumCSECall;
    402         continue;
    403       }
    404 
    405       // Otherwise, remember that we have this instruction.
    406       AvailableCalls->insert(Inst,
    407                          std::pair<Value*, unsigned>(Inst, CurrentGeneration));
    408       continue;
    409     }
    410 
    411     // Okay, this isn't something we can CSE at all.  Check to see if it is
    412     // something that could modify memory.  If so, our available memory values
    413     // cannot be used so bump the generation count.
    414     if (Inst->mayWriteToMemory()) {
    415       ++CurrentGeneration;
    416 
    417       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    418         // We do a trivial form of DSE if there are two stores to the same
    419         // location with no intervening loads.  Delete the earlier store.
    420         if (LastStore &&
    421             LastStore->getPointerOperand() == SI->getPointerOperand()) {
    422           DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << "  due to: "
    423                        << *Inst << '\n');
    424           LastStore->eraseFromParent();
    425           Changed = true;
    426           ++NumDSE;
    427           LastStore = 0;
    428           continue;
    429         }
    430 
    431         // Okay, we just invalidated anything we knew about loaded values.  Try
    432         // to salvage *something* by remembering that the stored value is a live
    433         // version of the pointer.  It is safe to forward from volatile stores
    434         // to non-volatile loads, so we don't have to check for volatility of
    435         // the store.
    436         AvailableLoads->insert(SI->getPointerOperand(),
    437          std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
    438 
    439         // Remember that this was the last store we saw for DSE.
    440         if (SI->isSimple())
    441           LastStore = SI;
    442       }
    443     }
    444   }
    445 
    446   unsigned LiveOutGeneration = CurrentGeneration;
    447   for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
    448     Changed |= processNode(*I);
    449     // Pop any generation changes off the stack from the recursive walk.
    450     CurrentGeneration = LiveOutGeneration;
    451   }
    452   return Changed;
    453 }
    454 
    455 
    456 bool EarlyCSE::runOnFunction(Function &F) {
    457   TD = getAnalysisIfAvailable<TargetData>();
    458   DT = &getAnalysis<DominatorTree>();
    459 
    460   // Tables that the pass uses when walking the domtree.
    461   ScopedHTType AVTable;
    462   AvailableValues = &AVTable;
    463   LoadHTType LoadTable;
    464   AvailableLoads = &LoadTable;
    465   CallHTType CallTable;
    466   AvailableCalls = &CallTable;
    467 
    468   CurrentGeneration = 0;
    469   return processNode(DT->getRootNode());
    470 }
    471