1 /* 2 * Mesa 3-D graphics library 3 * Version: 6.3 4 * 5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included 15 * in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26 /** 27 * \file m_matrix.c 28 * Matrix operations. 29 * 30 * \note 31 * -# 4x4 transformation matrices are stored in memory in column major order. 32 * -# Points/vertices are to be thought of as column vectors. 33 * -# Transformation of a point p by a matrix M is: p' = M * p 34 */ 35 36 #include <GLES2/gl2.h> 37 #include <stdio.h> 38 #include <math.h> 39 #include <assert.h> 40 #include <string.h> 41 42 #include "../src/mesa/main/macros.h" 43 44 #include "m_matrix.h" 45 46 #define _mesa_debug(...) 47 /** 48 * \defgroup MatFlags MAT_FLAG_XXX-flags 49 * 50 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags 51 * It would be nice to make all these flags private to m_matrix.c 52 */ 53 /*@{*/ 54 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 55 * (Not actually used - the identity 56 * matrix is identified by the absense 57 * of all other flags.) 58 */ 59 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 60 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 61 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 62 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 63 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 64 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ 65 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ 66 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ 67 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ 68 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ 69 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ 70 71 /** angle preserving matrix flags mask */ 72 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ 73 MAT_FLAG_TRANSLATION | \ 74 MAT_FLAG_UNIFORM_SCALE) 75 76 /** geometry related matrix flags mask */ 77 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ 78 MAT_FLAG_ROTATION | \ 79 MAT_FLAG_TRANSLATION | \ 80 MAT_FLAG_UNIFORM_SCALE | \ 81 MAT_FLAG_GENERAL_SCALE | \ 82 MAT_FLAG_GENERAL_3D | \ 83 MAT_FLAG_PERSPECTIVE | \ 84 MAT_FLAG_SINGULAR) 85 86 /** length preserving matrix flags mask */ 87 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ 88 MAT_FLAG_TRANSLATION) 89 90 91 /** 3D (non-perspective) matrix flags mask */ 92 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ 93 MAT_FLAG_TRANSLATION | \ 94 MAT_FLAG_UNIFORM_SCALE | \ 95 MAT_FLAG_GENERAL_SCALE | \ 96 MAT_FLAG_GENERAL_3D) 97 98 /** dirty matrix flags mask */ 99 #define MAT_DIRTY (MAT_DIRTY_TYPE | \ 100 MAT_DIRTY_FLAGS | \ 101 MAT_DIRTY_INVERSE) 102 103 /*@}*/ 104 105 106 /** 107 * Test geometry related matrix flags. 108 * 109 * \param mat a pointer to a GLmatrix structure. 110 * \param a flags mask. 111 * 112 * \returns non-zero if all geometry related matrix flags are contained within 113 * the mask, or zero otherwise. 114 */ 115 #define TEST_MAT_FLAGS(mat, a) \ 116 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) 117 118 119 120 /** 121 * Names of the corresponding GLmatrixtype values. 122 */ 123 static const char *types[] = { 124 "MATRIX_GENERAL", 125 "MATRIX_IDENTITY", 126 "MATRIX_3D_NO_ROT", 127 "MATRIX_PERSPECTIVE", 128 "MATRIX_2D", 129 "MATRIX_2D_NO_ROT", 130 "MATRIX_3D" 131 }; 132 133 134 /** 135 * Identity matrix. 136 */ 137 static GLfloat Identity[16] = { 138 1.0, 0.0, 0.0, 0.0, 139 0.0, 1.0, 0.0, 0.0, 140 0.0, 0.0, 1.0, 0.0, 141 0.0, 0.0, 0.0, 1.0 142 }; 143 144 145 146 /**********************************************************************/ 147 /** \name Matrix multiplication */ 148 /*@{*/ 149 150 #define A(row,col) a[(col<<2)+row] 151 #define B(row,col) b[(col<<2)+row] 152 #define P(row,col) product[(col<<2)+row] 153 154 /** 155 * Perform a full 4x4 matrix multiplication. 156 * 157 * \param a matrix. 158 * \param b matrix. 159 * \param product will receive the product of \p a and \p b. 160 * 161 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. 162 * 163 * \note KW: 4*16 = 64 multiplications 164 * 165 * \author This \c matmul was contributed by Thomas Malik 166 */ 167 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) 168 { 169 assert(product != b); 170 GLint i; 171 for (i = 0; i < 4; i++) { 172 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 173 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); 174 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); 175 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); 176 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); 177 } 178 } 179 180 /** 181 * Multiply two matrices known to occupy only the top three rows, such 182 * as typical model matrices, and orthogonal matrices. 183 * 184 * \param a matrix. 185 * \param b matrix. 186 * \param product will receive the product of \p a and \p b. 187 */ 188 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) 189 { 190 GLint i; 191 for (i = 0; i < 3; i++) { 192 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 193 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); 194 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); 195 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); 196 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; 197 } 198 P(3,0) = 0; 199 P(3,1) = 0; 200 P(3,2) = 0; 201 P(3,3) = 1; 202 } 203 204 #undef A 205 #undef B 206 #undef P 207 208 /** 209 * Multiply a matrix by an array of floats with known properties. 210 * 211 * \param mat pointer to a GLmatrix structure containing the left multiplication 212 * matrix, and that will receive the product result. 213 * \param m right multiplication matrix array. 214 * \param flags flags of the matrix \p m. 215 * 216 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 217 * if both matrices are 3D, or matmul4() otherwise. 218 */ 219 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) 220 { 221 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); 222 223 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) 224 matmul34( mat->m, mat->m, m ); 225 else 226 matmul4( mat->m, mat->m, m ); 227 } 228 229 /** 230 * Matrix multiplication. 231 * 232 * \param dest destination matrix. 233 * \param a left matrix. 234 * \param b right matrix. 235 * 236 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 237 * if both matrices are 3D, or matmul4() otherwise. 238 */ 239 void 240 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) 241 { 242 dest->flags = (a->flags | 243 b->flags | 244 MAT_DIRTY_TYPE | 245 MAT_DIRTY_INVERSE); 246 247 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) 248 matmul34( dest->m, a->m, b->m ); 249 else 250 matmul4( dest->m, a->m, b->m ); 251 } 252 253 /** 254 * Matrix multiplication. 255 * 256 * \param dest left and destination matrix. 257 * \param m right matrix array. 258 * 259 * Marks the matrix flags with general flag, and type and inverse dirty flags. 260 * Calls matmul4() for the multiplication. 261 */ 262 void 263 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) 264 { 265 dest->flags |= (MAT_FLAG_GENERAL | 266 MAT_DIRTY_TYPE | 267 MAT_DIRTY_INVERSE | 268 MAT_DIRTY_FLAGS); 269 270 matmul4( dest->m, dest->m, m ); 271 } 272 273 /*@}*/ 274 275 276 /**********************************************************************/ 277 /** \name Matrix output */ 278 /*@{*/ 279 280 /** 281 * Print a matrix array. 282 * 283 * \param m matrix array. 284 * 285 * Called by _math_matrix_print() to print a matrix or its inverse. 286 */ 287 static void print_matrix_floats( const GLfloat m[16] ) 288 { 289 int i; 290 for (i=0;i<4;i++) { 291 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); 292 } 293 } 294 295 /** 296 * Dumps the contents of a GLmatrix structure. 297 * 298 * \param m pointer to the GLmatrix structure. 299 */ 300 void 301 _math_matrix_print( const GLmatrix *m ) 302 { 303 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); 304 print_matrix_floats(m->m); 305 _mesa_debug(NULL, "Inverse: \n"); 306 if (m->inv) { 307 GLfloat prod[16]; 308 print_matrix_floats(m->inv); 309 matmul4(prod, m->m, m->inv); 310 _mesa_debug(NULL, "Mat * Inverse:\n"); 311 print_matrix_floats(prod); 312 } 313 else { 314 _mesa_debug(NULL, " - not available\n"); 315 } 316 } 317 318 /*@}*/ 319 320 321 /** 322 * References an element of 4x4 matrix. 323 * 324 * \param m matrix array. 325 * \param c column of the desired element. 326 * \param r row of the desired element. 327 * 328 * \return value of the desired element. 329 * 330 * Calculate the linear storage index of the element and references it. 331 */ 332 #define MAT(m,r,c) (m)[(c)*4+(r)] 333 334 335 /**********************************************************************/ 336 /** \name Matrix inversion */ 337 /*@{*/ 338 339 /** 340 * Swaps the values of two floating pointer variables. 341 * 342 * Used by invert_matrix_general() to swap the row pointers. 343 */ 344 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } 345 346 /** 347 * Compute inverse of 4x4 transformation matrix. 348 * 349 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 350 * stored in the GLmatrix::inv attribute. 351 * 352 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 353 * 354 * \author 355 * Code contributed by Jacques Leroy jle (at) star.be 356 * 357 * Calculates the inverse matrix by performing the gaussian matrix reduction 358 * with partial pivoting followed by back/substitution with the loops manually 359 * unrolled. 360 */ 361 static GLboolean invert_matrix_general( GLmatrix *mat ) 362 { 363 const GLfloat *m = mat->m; 364 GLfloat *out = mat->inv; 365 GLfloat wtmp[4][8]; 366 GLfloat m0, m1, m2, m3, s; 367 GLfloat *r0, *r1, *r2, *r3; 368 369 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; 370 371 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), 372 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), 373 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, 374 375 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), 376 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), 377 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, 378 379 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), 380 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), 381 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, 382 383 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), 384 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), 385 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; 386 387 /* choose pivot - or die */ 388 if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2); 389 if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1); 390 if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0); 391 if (0.0 == r0[0]) return GL_FALSE; 392 393 /* eliminate first variable */ 394 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; 395 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; 396 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; 397 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; 398 s = r0[4]; 399 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } 400 s = r0[5]; 401 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } 402 s = r0[6]; 403 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } 404 s = r0[7]; 405 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } 406 407 /* choose pivot - or die */ 408 if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2); 409 if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1); 410 if (0.0 == r1[1]) return GL_FALSE; 411 412 /* eliminate second variable */ 413 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; 414 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; 415 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; 416 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } 417 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } 418 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } 419 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } 420 421 /* choose pivot - or die */ 422 if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2); 423 if (0.0 == r2[2]) return GL_FALSE; 424 425 /* eliminate third variable */ 426 m3 = r3[2]/r2[2]; 427 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], 428 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], 429 r3[7] -= m3 * r2[7]; 430 431 /* last check */ 432 if (0.0 == r3[3]) return GL_FALSE; 433 434 s = 1.0F/r3[3]; /* now back substitute row 3 */ 435 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; 436 437 m2 = r2[3]; /* now back substitute row 2 */ 438 s = 1.0F/r2[2]; 439 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), 440 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); 441 m1 = r1[3]; 442 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, 443 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; 444 m0 = r0[3]; 445 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, 446 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; 447 448 m1 = r1[2]; /* now back substitute row 1 */ 449 s = 1.0F/r1[1]; 450 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), 451 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); 452 m0 = r0[2]; 453 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, 454 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; 455 456 m0 = r0[1]; /* now back substitute row 0 */ 457 s = 1.0F/r0[0]; 458 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), 459 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); 460 461 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], 462 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], 463 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], 464 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], 465 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], 466 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], 467 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], 468 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; 469 470 return GL_TRUE; 471 } 472 #undef SWAP_ROWS 473 474 /** 475 * Compute inverse of a general 3d transformation matrix. 476 * 477 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 478 * stored in the GLmatrix::inv attribute. 479 * 480 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 481 * 482 * \author Adapted from graphics gems II. 483 * 484 * Calculates the inverse of the upper left by first calculating its 485 * determinant and multiplying it to the symmetric adjust matrix of each 486 * element. Finally deals with the translation part by transforming the 487 * original translation vector using by the calculated submatrix inverse. 488 */ 489 static GLboolean invert_matrix_3d_general( GLmatrix *mat ) 490 { 491 const GLfloat *in = mat->m; 492 GLfloat *out = mat->inv; 493 GLfloat pos, neg, t; 494 GLfloat det; 495 496 /* Calculate the determinant of upper left 3x3 submatrix and 497 * determine if the matrix is singular. 498 */ 499 pos = neg = 0.0; 500 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); 501 if (t >= 0.0) pos += t; else neg += t; 502 503 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); 504 if (t >= 0.0) pos += t; else neg += t; 505 506 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); 507 if (t >= 0.0) pos += t; else neg += t; 508 509 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); 510 if (t >= 0.0) pos += t; else neg += t; 511 512 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); 513 if (t >= 0.0) pos += t; else neg += t; 514 515 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); 516 if (t >= 0.0) pos += t; else neg += t; 517 518 det = pos + neg; 519 520 if (det*det < 1e-25) 521 return GL_FALSE; 522 523 det = 1.0F / det; 524 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); 525 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); 526 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); 527 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); 528 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); 529 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); 530 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); 531 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); 532 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); 533 534 /* Do the translation part */ 535 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 536 MAT(in,1,3) * MAT(out,0,1) + 537 MAT(in,2,3) * MAT(out,0,2) ); 538 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 539 MAT(in,1,3) * MAT(out,1,1) + 540 MAT(in,2,3) * MAT(out,1,2) ); 541 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 542 MAT(in,1,3) * MAT(out,2,1) + 543 MAT(in,2,3) * MAT(out,2,2) ); 544 545 return GL_TRUE; 546 } 547 548 /** 549 * Compute inverse of a 3d transformation matrix. 550 * 551 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 552 * stored in the GLmatrix::inv attribute. 553 * 554 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 555 * 556 * If the matrix is not an angle preserving matrix then calls 557 * invert_matrix_3d_general for the actual calculation. Otherwise calculates 558 * the inverse matrix analyzing and inverting each of the scaling, rotation and 559 * translation parts. 560 */ 561 static GLboolean invert_matrix_3d( GLmatrix *mat ) 562 { 563 const GLfloat *in = mat->m; 564 GLfloat *out = mat->inv; 565 566 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { 567 return invert_matrix_3d_general( mat ); 568 } 569 570 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { 571 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + 572 MAT(in,0,1) * MAT(in,0,1) + 573 MAT(in,0,2) * MAT(in,0,2)); 574 575 if (scale == 0.0) 576 return GL_FALSE; 577 578 scale = 1.0F / scale; 579 580 /* Transpose and scale the 3 by 3 upper-left submatrix. */ 581 MAT(out,0,0) = scale * MAT(in,0,0); 582 MAT(out,1,0) = scale * MAT(in,0,1); 583 MAT(out,2,0) = scale * MAT(in,0,2); 584 MAT(out,0,1) = scale * MAT(in,1,0); 585 MAT(out,1,1) = scale * MAT(in,1,1); 586 MAT(out,2,1) = scale * MAT(in,1,2); 587 MAT(out,0,2) = scale * MAT(in,2,0); 588 MAT(out,1,2) = scale * MAT(in,2,1); 589 MAT(out,2,2) = scale * MAT(in,2,2); 590 } 591 else if (mat->flags & MAT_FLAG_ROTATION) { 592 /* Transpose the 3 by 3 upper-left submatrix. */ 593 MAT(out,0,0) = MAT(in,0,0); 594 MAT(out,1,0) = MAT(in,0,1); 595 MAT(out,2,0) = MAT(in,0,2); 596 MAT(out,0,1) = MAT(in,1,0); 597 MAT(out,1,1) = MAT(in,1,1); 598 MAT(out,2,1) = MAT(in,1,2); 599 MAT(out,0,2) = MAT(in,2,0); 600 MAT(out,1,2) = MAT(in,2,1); 601 MAT(out,2,2) = MAT(in,2,2); 602 } 603 else { 604 /* pure translation */ 605 memcpy( out, Identity, sizeof(Identity) ); 606 MAT(out,0,3) = - MAT(in,0,3); 607 MAT(out,1,3) = - MAT(in,1,3); 608 MAT(out,2,3) = - MAT(in,2,3); 609 return GL_TRUE; 610 } 611 612 if (mat->flags & MAT_FLAG_TRANSLATION) { 613 /* Do the translation part */ 614 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 615 MAT(in,1,3) * MAT(out,0,1) + 616 MAT(in,2,3) * MAT(out,0,2) ); 617 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 618 MAT(in,1,3) * MAT(out,1,1) + 619 MAT(in,2,3) * MAT(out,1,2) ); 620 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 621 MAT(in,1,3) * MAT(out,2,1) + 622 MAT(in,2,3) * MAT(out,2,2) ); 623 } 624 else { 625 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; 626 } 627 628 return GL_TRUE; 629 } 630 631 /** 632 * Compute inverse of an identity transformation matrix. 633 * 634 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 635 * stored in the GLmatrix::inv attribute. 636 * 637 * \return always GL_TRUE. 638 * 639 * Simply copies Identity into GLmatrix::inv. 640 */ 641 static GLboolean invert_matrix_identity( GLmatrix *mat ) 642 { 643 memcpy( mat->inv, Identity, sizeof(Identity) ); 644 return GL_TRUE; 645 } 646 647 /** 648 * Compute inverse of a no-rotation 3d transformation matrix. 649 * 650 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 651 * stored in the GLmatrix::inv attribute. 652 * 653 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 654 * 655 * Calculates the 656 */ 657 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) 658 { 659 const GLfloat *in = mat->m; 660 GLfloat *out = mat->inv; 661 662 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) 663 return GL_FALSE; 664 665 memcpy( out, Identity, 16 * sizeof(GLfloat) ); 666 MAT(out,0,0) = 1.0F / MAT(in,0,0); 667 MAT(out,1,1) = 1.0F / MAT(in,1,1); 668 MAT(out,2,2) = 1.0F / MAT(in,2,2); 669 670 if (mat->flags & MAT_FLAG_TRANSLATION) { 671 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 672 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 673 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); 674 } 675 676 return GL_TRUE; 677 } 678 679 /** 680 * Compute inverse of a no-rotation 2d transformation matrix. 681 * 682 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 683 * stored in the GLmatrix::inv attribute. 684 * 685 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 686 * 687 * Calculates the inverse matrix by applying the inverse scaling and 688 * translation to the identity matrix. 689 */ 690 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) 691 { 692 const GLfloat *in = mat->m; 693 GLfloat *out = mat->inv; 694 695 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) 696 return GL_FALSE; 697 698 memcpy( out, Identity, 16 * sizeof(GLfloat) ); 699 MAT(out,0,0) = 1.0F / MAT(in,0,0); 700 MAT(out,1,1) = 1.0F / MAT(in,1,1); 701 702 if (mat->flags & MAT_FLAG_TRANSLATION) { 703 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 704 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 705 } 706 707 return GL_TRUE; 708 } 709 710 #if 0 711 /* broken */ 712 static GLboolean invert_matrix_perspective( GLmatrix *mat ) 713 { 714 const GLfloat *in = mat->m; 715 GLfloat *out = mat->inv; 716 717 if (MAT(in,2,3) == 0) 718 return GL_FALSE; 719 720 memcpy( out, Identity, 16 * sizeof(GLfloat) ); 721 722 MAT(out,0,0) = 1.0F / MAT(in,0,0); 723 MAT(out,1,1) = 1.0F / MAT(in,1,1); 724 725 MAT(out,0,3) = MAT(in,0,2); 726 MAT(out,1,3) = MAT(in,1,2); 727 728 MAT(out,2,2) = 0; 729 MAT(out,2,3) = -1; 730 731 MAT(out,3,2) = 1.0F / MAT(in,2,3); 732 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); 733 734 return GL_TRUE; 735 } 736 #endif 737 738 /** 739 * Matrix inversion function pointer type. 740 */ 741 typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); 742 743 /** 744 * Table of the matrix inversion functions according to the matrix type. 745 */ 746 static inv_mat_func inv_mat_tab[7] = { 747 invert_matrix_general, 748 invert_matrix_identity, 749 invert_matrix_3d_no_rot, 750 #if 0 751 /* Don't use this function for now - it fails when the projection matrix 752 * is premultiplied by a translation (ala Chromium's tilesort SPU). 753 */ 754 invert_matrix_perspective, 755 #else 756 invert_matrix_general, 757 #endif 758 invert_matrix_3d, /* lazy! */ 759 invert_matrix_2d_no_rot, 760 invert_matrix_3d 761 }; 762 763 /** 764 * Compute inverse of a transformation matrix. 765 * 766 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 767 * stored in the GLmatrix::inv attribute. 768 * 769 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 770 * 771 * Calls the matrix inversion function in inv_mat_tab corresponding to the 772 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, 773 * and copies the identity matrix into GLmatrix::inv. 774 */ 775 static GLboolean matrix_invert( GLmatrix *mat ) 776 { 777 if (inv_mat_tab[mat->type](mat)) { 778 mat->flags &= ~MAT_FLAG_SINGULAR; 779 return GL_TRUE; 780 } else { 781 mat->flags |= MAT_FLAG_SINGULAR; 782 memcpy( mat->inv, Identity, sizeof(Identity) ); 783 return GL_FALSE; 784 } 785 } 786 787 /*@}*/ 788 789 790 /**********************************************************************/ 791 /** \name Matrix generation */ 792 /*@{*/ 793 794 /** 795 * Generate a 4x4 transformation matrix from glRotate parameters, and 796 * post-multiply the input matrix by it. 797 * 798 * \author 799 * This function was contributed by Erich Boleyn (erich (at) uruk.org). 800 * Optimizations contributed by Rudolf Opalla (rudi (at) khm.de). 801 */ 802 void 803 _math_matrix_rotate( GLmatrix *mat, 804 GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) 805 { 806 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; 807 GLfloat m[16]; 808 GLboolean optimized; 809 810 s = (GLfloat) sinf( angle * (M_PI / 180.0f) ); 811 c = (GLfloat) cosf( angle * (M_PI / 180.0f) ); 812 813 memcpy(m, Identity, sizeof(GLfloat)*16); 814 optimized = GL_FALSE; 815 816 #define M(row,col) m[col*4+row] 817 818 if (x == 0.0F) { 819 if (y == 0.0F) { 820 if (z != 0.0F) { 821 optimized = GL_TRUE; 822 /* rotate only around z-axis */ 823 M(0,0) = c; 824 M(1,1) = c; 825 if (z < 0.0F) { 826 M(0,1) = s; 827 M(1,0) = -s; 828 } 829 else { 830 M(0,1) = -s; 831 M(1,0) = s; 832 } 833 } 834 } 835 else if (z == 0.0F) { 836 optimized = GL_TRUE; 837 /* rotate only around y-axis */ 838 M(0,0) = c; 839 M(2,2) = c; 840 if (y < 0.0F) { 841 M(0,2) = -s; 842 M(2,0) = s; 843 } 844 else { 845 M(0,2) = s; 846 M(2,0) = -s; 847 } 848 } 849 } 850 else if (y == 0.0F) { 851 if (z == 0.0F) { 852 optimized = GL_TRUE; 853 /* rotate only around x-axis */ 854 M(1,1) = c; 855 M(2,2) = c; 856 if (x < 0.0F) { 857 M(1,2) = s; 858 M(2,1) = -s; 859 } 860 else { 861 M(1,2) = -s; 862 M(2,1) = s; 863 } 864 } 865 } 866 867 if (!optimized) { 868 const GLfloat mag = SQRTF(x * x + y * y + z * z); 869 870 if (mag <= 1.0e-4) { 871 /* no rotation, leave mat as-is */ 872 return; 873 } 874 875 x /= mag; 876 y /= mag; 877 z /= mag; 878 879 880 /* 881 * Arbitrary axis rotation matrix. 882 * 883 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied 884 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation 885 * (which is about the X-axis), and the two composite transforms 886 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary 887 * from the arbitrary axis to the X-axis then back. They are 888 * all elementary rotations. 889 * 890 * Rz' is a rotation about the Z-axis, to bring the axis vector 891 * into the x-z plane. Then Ry' is applied, rotating about the 892 * Y-axis to bring the axis vector parallel with the X-axis. The 893 * rotation about the X-axis is then performed. Ry and Rz are 894 * simply the respective inverse transforms to bring the arbitrary 895 * axis back to it's original orientation. The first transforms 896 * Rz' and Ry' are considered inverses, since the data from the 897 * arbitrary axis gives you info on how to get to it, not how 898 * to get away from it, and an inverse must be applied. 899 * 900 * The basic calculation used is to recognize that the arbitrary 901 * axis vector (x, y, z), since it is of unit length, actually 902 * represents the sines and cosines of the angles to rotate the 903 * X-axis to the same orientation, with theta being the angle about 904 * Z and phi the angle about Y (in the order described above) 905 * as follows: 906 * 907 * cos ( theta ) = x / sqrt ( 1 - z^2 ) 908 * sin ( theta ) = y / sqrt ( 1 - z^2 ) 909 * 910 * cos ( phi ) = sqrt ( 1 - z^2 ) 911 * sin ( phi ) = z 912 * 913 * Note that cos ( phi ) can further be inserted to the above 914 * formulas: 915 * 916 * cos ( theta ) = x / cos ( phi ) 917 * sin ( theta ) = y / sin ( phi ) 918 * 919 * ...etc. Because of those relations and the standard trigonometric 920 * relations, it is pssible to reduce the transforms down to what 921 * is used below. It may be that any primary axis chosen will give the 922 * same results (modulo a sign convention) using thie method. 923 * 924 * Particularly nice is to notice that all divisions that might 925 * have caused trouble when parallel to certain planes or 926 * axis go away with care paid to reducing the expressions. 927 * After checking, it does perform correctly under all cases, since 928 * in all the cases of division where the denominator would have 929 * been zero, the numerator would have been zero as well, giving 930 * the expected result. 931 */ 932 933 xx = x * x; 934 yy = y * y; 935 zz = z * z; 936 xy = x * y; 937 yz = y * z; 938 zx = z * x; 939 xs = x * s; 940 ys = y * s; 941 zs = z * s; 942 one_c = 1.0F - c; 943 944 /* We already hold the identity-matrix so we can skip some statements */ 945 M(0,0) = (one_c * xx) + c; 946 M(0,1) = (one_c * xy) - zs; 947 M(0,2) = (one_c * zx) + ys; 948 /* M(0,3) = 0.0F; */ 949 950 M(1,0) = (one_c * xy) + zs; 951 M(1,1) = (one_c * yy) + c; 952 M(1,2) = (one_c * yz) - xs; 953 /* M(1,3) = 0.0F; */ 954 955 M(2,0) = (one_c * zx) - ys; 956 M(2,1) = (one_c * yz) + xs; 957 M(2,2) = (one_c * zz) + c; 958 /* M(2,3) = 0.0F; */ 959 960 /* 961 M(3,0) = 0.0F; 962 M(3,1) = 0.0F; 963 M(3,2) = 0.0F; 964 M(3,3) = 1.0F; 965 */ 966 } 967 #undef M 968 969 matrix_multf( mat, m, MAT_FLAG_ROTATION ); 970 } 971 972 /** 973 * Apply a perspective projection matrix. 974 * 975 * \param mat matrix to apply the projection. 976 * \param left left clipping plane coordinate. 977 * \param right right clipping plane coordinate. 978 * \param bottom bottom clipping plane coordinate. 979 * \param top top clipping plane coordinate. 980 * \param nearval distance to the near clipping plane. 981 * \param farval distance to the far clipping plane. 982 * 983 * Creates the projection matrix and multiplies it with \p mat, marking the 984 * MAT_FLAG_PERSPECTIVE flag. 985 */ 986 void 987 _math_matrix_frustum( GLmatrix *mat, 988 GLfloat left, GLfloat right, 989 GLfloat bottom, GLfloat top, 990 GLfloat nearval, GLfloat farval ) 991 { 992 GLfloat x, y, a, b, c, d; 993 GLfloat m[16]; 994 995 x = (2.0F*nearval) / (right-left); 996 y = (2.0F*nearval) / (top-bottom); 997 a = (right+left) / (right-left); 998 b = (top+bottom) / (top-bottom); 999 c = -(farval+nearval) / ( farval-nearval); 1000 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ 1001 1002 if (0) 1003 { 1004 c /= farval; // linearize z in vs by gl_Position.z *= gl_Position.w 1005 d /= farval; 1006 } 1007 1008 #define M(row,col) m[col*4+row] 1009 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; 1010 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; 1011 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; 1012 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; 1013 #undef M 1014 1015 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); 1016 } 1017 1018 /** 1019 * Apply an orthographic projection matrix. 1020 * 1021 * \param mat matrix to apply the projection. 1022 * \param left left clipping plane coordinate. 1023 * \param right right clipping plane coordinate. 1024 * \param bottom bottom clipping plane coordinate. 1025 * \param top top clipping plane coordinate. 1026 * \param nearval distance to the near clipping plane. 1027 * \param farval distance to the far clipping plane. 1028 * 1029 * Creates the projection matrix and multiplies it with \p mat, marking the 1030 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. 1031 */ 1032 void 1033 _math_matrix_ortho( GLmatrix *mat, 1034 GLfloat left, GLfloat right, 1035 GLfloat bottom, GLfloat top, 1036 GLfloat nearval, GLfloat farval ) 1037 { 1038 GLfloat m[16]; 1039 1040 #define M(row,col) m[col*4+row] 1041 M(0,0) = 2.0F / (right-left); 1042 M(0,1) = 0.0F; 1043 M(0,2) = 0.0F; 1044 M(0,3) = -(right+left) / (right-left); 1045 1046 M(1,0) = 0.0F; 1047 M(1,1) = 2.0F / (top-bottom); 1048 M(1,2) = 0.0F; 1049 M(1,3) = -(top+bottom) / (top-bottom); 1050 1051 M(2,0) = 0.0F; 1052 M(2,1) = 0.0F; 1053 M(2,2) = -2.0F / (farval-nearval); 1054 M(2,3) = -(farval+nearval) / (farval-nearval); 1055 1056 M(3,0) = 0.0F; 1057 M(3,1) = 0.0F; 1058 M(3,2) = 0.0F; 1059 M(3,3) = 1.0F; 1060 #undef M 1061 1062 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); 1063 } 1064 1065 // multiplies mat by a perspective transform matrix 1066 void _math_matrix_perspective(GLmatrix * mat, GLfloat fovy, GLfloat aspect, 1067 GLfloat zNear, GLfloat zFar) 1068 { 1069 GLfloat xmin, xmax, ymin, ymax; 1070 1071 ymax = zNear * tan(fovy * M_PI / 360.0); 1072 ymin = -ymax; 1073 xmin = ymin * aspect; 1074 xmax = ymax * aspect; 1075 1076 _math_matrix_frustum(mat, xmin, xmax, ymin, ymax, zNear, zFar); 1077 } 1078 1079 // multiplies mat by a look at matrix 1080 void _math_matrix_lookat(GLmatrix * mat, GLfloat eyex, GLfloat eyey, GLfloat eyez, 1081 GLfloat centerx, GLfloat centery, GLfloat centerz, 1082 GLfloat upx, GLfloat upy, GLfloat upz) 1083 { 1084 GLfloat m[16]; 1085 GLfloat x[3], y[3], z[3]; 1086 GLfloat mag; 1087 1088 /* Make rotation matrix */ 1089 1090 /* Z vector */ 1091 z[0] = eyex - centerx; 1092 z[1] = eyey - centery; 1093 z[2] = eyez - centerz; 1094 mag = sqrt(z[0] * z[0] + z[1] * z[1] + z[2] * z[2]); 1095 if (mag) { /* mpichler, 19950515 */ 1096 z[0] /= mag; 1097 z[1] /= mag; 1098 z[2] /= mag; 1099 } 1100 1101 /* Y vector */ 1102 y[0] = upx; 1103 y[1] = upy; 1104 y[2] = upz; 1105 1106 /* X vector = Y cross Z */ 1107 x[0] = y[1] * z[2] - y[2] * z[1]; 1108 x[1] = -y[0] * z[2] + y[2] * z[0]; 1109 x[2] = y[0] * z[1] - y[1] * z[0]; 1110 1111 /* Recompute Y = Z cross X */ 1112 y[0] = z[1] * x[2] - z[2] * x[1]; 1113 y[1] = -z[0] * x[2] + z[2] * x[0]; 1114 y[2] = z[0] * x[1] - z[1] * x[0]; 1115 1116 /* mpichler, 19950515 */ 1117 /* cross product gives area of parallelogram, which is < 1.0 for 1118 * non-perpendicular unit-length vectors; so normalize x, y here 1119 */ 1120 1121 mag = sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); 1122 if (mag) { 1123 x[0] /= mag; 1124 x[1] /= mag; 1125 x[2] /= mag; 1126 } 1127 1128 mag = sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]); 1129 if (mag) { 1130 y[0] /= mag; 1131 y[1] /= mag; 1132 y[2] /= mag; 1133 } 1134 1135 #define M(row,col) m[col*4+row] 1136 M(0, 0) = x[0]; 1137 M(0, 1) = x[1]; 1138 M(0, 2) = x[2]; 1139 M(0, 3) = 0.0; 1140 M(1, 0) = y[0]; 1141 M(1, 1) = y[1]; 1142 M(1, 2) = y[2]; 1143 M(1, 3) = 0.0; 1144 M(2, 0) = z[0]; 1145 M(2, 1) = z[1]; 1146 M(2, 2) = z[2]; 1147 M(2, 3) = 0.0; 1148 M(3, 0) = 0.0; 1149 M(3, 1) = 0.0; 1150 M(3, 2) = 0.0; 1151 M(3, 3) = 1.0; 1152 #undef M 1153 1154 GLfloat translate[16] = 1155 { 1156 1, 0, 0, 0, 1157 0, 1, 0, 0, 1158 0, 0, 1, 0, 1159 -eyex, -eyey, -eyez, 1, 1160 }; 1161 1162 _math_matrix_mul_floats(mat, m); 1163 1164 _math_matrix_mul_floats(mat, translate); 1165 1166 /* Translate Eye to Origin */ 1167 // glTranslated(-eyex, -eyey, -eyez); 1168 1169 } 1170 1171 /** 1172 * Multiply a matrix with a general scaling matrix. 1173 * 1174 * \param mat matrix. 1175 * \param x x axis scale factor. 1176 * \param y y axis scale factor. 1177 * \param z z axis scale factor. 1178 * 1179 * Multiplies in-place the elements of \p mat by the scale factors. Checks if 1180 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE 1181 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and 1182 * MAT_DIRTY_INVERSE dirty flags. 1183 */ 1184 void 1185 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1186 { 1187 GLfloat *m = mat->m; 1188 m[0] *= x; m[4] *= y; m[8] *= z; 1189 m[1] *= x; m[5] *= y; m[9] *= z; 1190 m[2] *= x; m[6] *= y; m[10] *= z; 1191 m[3] *= x; m[7] *= y; m[11] *= z; 1192 1193 if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8) 1194 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1195 else 1196 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1197 1198 mat->flags |= (MAT_DIRTY_TYPE | 1199 MAT_DIRTY_INVERSE); 1200 } 1201 1202 /** 1203 * Multiply a matrix with a translation matrix. 1204 * 1205 * \param mat matrix. 1206 * \param x translation vector x coordinate. 1207 * \param y translation vector y coordinate. 1208 * \param z translation vector z coordinate. 1209 * 1210 * Adds the translation coordinates to the elements of \p mat in-place. Marks 1211 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE 1212 * dirty flags. 1213 */ 1214 void 1215 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1216 { 1217 GLfloat *m = mat->m; 1218 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; 1219 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; 1220 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; 1221 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; 1222 1223 mat->flags |= (MAT_FLAG_TRANSLATION | 1224 MAT_DIRTY_TYPE | 1225 MAT_DIRTY_INVERSE); 1226 } 1227 1228 1229 /** 1230 * Set matrix to do viewport and depthrange mapping. 1231 * Transforms Normalized Device Coords to window/Z values. 1232 */ 1233 void 1234 _math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height, 1235 GLfloat zNear, GLfloat zFar, GLfloat depthMax) 1236 { 1237 m->m[MAT_SX] = (GLfloat) width / 2.0F; 1238 m->m[MAT_TX] = m->m[MAT_SX] + x; 1239 m->m[MAT_SY] = (GLfloat) height / 2.0F; 1240 m->m[MAT_TY] = m->m[MAT_SY] + y; 1241 m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F); 1242 m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear); 1243 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; 1244 m->type = MATRIX_3D_NO_ROT; 1245 } 1246 1247 1248 /** 1249 * Set a matrix to the identity matrix. 1250 * 1251 * \param mat matrix. 1252 * 1253 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. 1254 * Sets the matrix type to identity, and clear the dirty flags. 1255 */ 1256 void 1257 _math_matrix_set_identity( GLmatrix *mat ) 1258 { 1259 memcpy( mat->m, Identity, 16*sizeof(GLfloat) ); 1260 1261 if (mat->inv) 1262 memcpy( mat->inv, Identity, 16*sizeof(GLfloat) ); 1263 1264 mat->type = MATRIX_IDENTITY; 1265 mat->flags &= ~(MAT_DIRTY_FLAGS| 1266 MAT_DIRTY_TYPE| 1267 MAT_DIRTY_INVERSE); 1268 } 1269 1270 /*@}*/ 1271 1272 1273 /**********************************************************************/ 1274 /** \name Matrix analysis */ 1275 /*@{*/ 1276 1277 #define ZERO(x) (1<<x) 1278 #define ONE(x) (1<<(x+16)) 1279 1280 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) 1281 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) 1282 1283 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ 1284 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ 1285 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1286 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1287 1288 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1289 ZERO(1) | ZERO(9) | \ 1290 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1291 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1292 1293 #define MASK_2D ( ZERO(8) | \ 1294 ZERO(9) | \ 1295 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1296 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1297 1298 1299 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1300 ZERO(1) | ZERO(9) | \ 1301 ZERO(2) | ZERO(6) | \ 1302 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1303 1304 #define MASK_3D ( \ 1305 \ 1306 \ 1307 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1308 1309 1310 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ 1311 ZERO(1) | ZERO(13) |\ 1312 ZERO(2) | ZERO(6) | \ 1313 ZERO(3) | ZERO(7) | ZERO(15) ) 1314 1315 #define SQ(x) ((x)*(x)) 1316 1317 /** 1318 * Determine type and flags from scratch. 1319 * 1320 * \param mat matrix. 1321 * 1322 * This is expensive enough to only want to do it once. 1323 */ 1324 static void analyse_from_scratch( GLmatrix *mat ) 1325 { 1326 const GLfloat *m = mat->m; 1327 GLuint mask = 0; 1328 GLuint i; 1329 1330 for (i = 0 ; i < 16 ; i++) { 1331 if (m[i] == 0.0) mask |= (1<<i); 1332 } 1333 1334 if (m[0] == 1.0F) mask |= (1<<16); 1335 if (m[5] == 1.0F) mask |= (1<<21); 1336 if (m[10] == 1.0F) mask |= (1<<26); 1337 if (m[15] == 1.0F) mask |= (1<<31); 1338 1339 mat->flags &= ~MAT_FLAGS_GEOMETRY; 1340 1341 /* Check for translation - no-one really cares 1342 */ 1343 if ((mask & MASK_NO_TRX) != MASK_NO_TRX) 1344 mat->flags |= MAT_FLAG_TRANSLATION; 1345 1346 /* Do the real work 1347 */ 1348 if (mask == (GLuint) MASK_IDENTITY) { 1349 mat->type = MATRIX_IDENTITY; 1350 } 1351 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { 1352 mat->type = MATRIX_2D_NO_ROT; 1353 1354 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) 1355 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1356 } 1357 else if ((mask & MASK_2D) == (GLuint) MASK_2D) { 1358 GLfloat mm = DOT2(m, m); 1359 GLfloat m4m4 = DOT2(m+4,m+4); 1360 GLfloat mm4 = DOT2(m,m+4); 1361 1362 mat->type = MATRIX_2D; 1363 1364 /* Check for scale */ 1365 if (SQ(mm-1) > SQ(1e-6) || 1366 SQ(m4m4-1) > SQ(1e-6)) 1367 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1368 1369 /* Check for rotation */ 1370 if (SQ(mm4) > SQ(1e-6)) 1371 mat->flags |= MAT_FLAG_GENERAL_3D; 1372 else 1373 mat->flags |= MAT_FLAG_ROTATION; 1374 1375 } 1376 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { 1377 mat->type = MATRIX_3D_NO_ROT; 1378 1379 /* Check for scale */ 1380 if (SQ(m[0]-m[5]) < SQ(1e-6) && 1381 SQ(m[0]-m[10]) < SQ(1e-6)) { 1382 if (SQ(m[0]-1.0) > SQ(1e-6)) { 1383 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1384 } 1385 } 1386 else { 1387 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1388 } 1389 } 1390 else if ((mask & MASK_3D) == (GLuint) MASK_3D) { 1391 GLfloat c1 = DOT3(m,m); 1392 GLfloat c2 = DOT3(m+4,m+4); 1393 GLfloat c3 = DOT3(m+8,m+8); 1394 GLfloat d1 = DOT3(m, m+4); 1395 GLfloat cp[3]; 1396 1397 mat->type = MATRIX_3D; 1398 1399 /* Check for scale */ 1400 if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) { 1401 if (SQ(c1-1.0) > SQ(1e-6)) 1402 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1403 /* else no scale at all */ 1404 } 1405 else { 1406 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1407 } 1408 1409 /* Check for rotation */ 1410 if (SQ(d1) < SQ(1e-6)) { 1411 CROSS3( cp, m, m+4 ); 1412 SUB_3V( cp, cp, (m+8) ); 1413 if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) 1414 mat->flags |= MAT_FLAG_ROTATION; 1415 else 1416 mat->flags |= MAT_FLAG_GENERAL_3D; 1417 } 1418 else { 1419 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ 1420 } 1421 } 1422 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { 1423 mat->type = MATRIX_PERSPECTIVE; 1424 mat->flags |= MAT_FLAG_GENERAL; 1425 } 1426 else { 1427 mat->type = MATRIX_GENERAL; 1428 mat->flags |= MAT_FLAG_GENERAL; 1429 } 1430 } 1431 1432 /** 1433 * Analyze a matrix given that its flags are accurate. 1434 * 1435 * This is the more common operation, hopefully. 1436 */ 1437 static void analyse_from_flags( GLmatrix *mat ) 1438 { 1439 const GLfloat *m = mat->m; 1440 1441 if (TEST_MAT_FLAGS(mat, 0)) { 1442 mat->type = MATRIX_IDENTITY; 1443 } 1444 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | 1445 MAT_FLAG_UNIFORM_SCALE | 1446 MAT_FLAG_GENERAL_SCALE))) { 1447 if ( m[10]==1.0F && m[14]==0.0F ) { 1448 mat->type = MATRIX_2D_NO_ROT; 1449 } 1450 else { 1451 mat->type = MATRIX_3D_NO_ROT; 1452 } 1453 } 1454 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { 1455 if ( m[ 8]==0.0F 1456 && m[ 9]==0.0F 1457 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { 1458 mat->type = MATRIX_2D; 1459 } 1460 else { 1461 mat->type = MATRIX_3D; 1462 } 1463 } 1464 else if ( m[4]==0.0F && m[12]==0.0F 1465 && m[1]==0.0F && m[13]==0.0F 1466 && m[2]==0.0F && m[6]==0.0F 1467 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { 1468 mat->type = MATRIX_PERSPECTIVE; 1469 } 1470 else { 1471 mat->type = MATRIX_GENERAL; 1472 } 1473 } 1474 1475 /** 1476 * Analyze and update a matrix. 1477 * 1478 * \param mat matrix. 1479 * 1480 * If the matrix type is dirty then calls either analyse_from_scratch() or 1481 * analyse_from_flags() to determine its type, according to whether the flags 1482 * are dirty or not, respectively. If the matrix has an inverse and it's dirty 1483 * then calls matrix_invert(). Finally clears the dirty flags. 1484 */ 1485 void 1486 _math_matrix_analyse( GLmatrix *mat ) 1487 { 1488 if (mat->flags & MAT_DIRTY_TYPE) { 1489 if (mat->flags & MAT_DIRTY_FLAGS) 1490 analyse_from_scratch( mat ); 1491 else 1492 analyse_from_flags( mat ); 1493 } 1494 1495 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { 1496 matrix_invert( mat ); 1497 mat->flags &= ~MAT_DIRTY_INVERSE; 1498 } 1499 1500 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); 1501 } 1502 1503 /*@}*/ 1504 1505 1506 /** 1507 * Test if the given matrix preserves vector lengths. 1508 */ 1509 GLboolean 1510 _math_matrix_is_length_preserving( const GLmatrix *m ) 1511 { 1512 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); 1513 } 1514 1515 1516 /** 1517 * Test if the given matrix does any rotation. 1518 * (or perhaps if the upper-left 3x3 is non-identity) 1519 */ 1520 GLboolean 1521 _math_matrix_has_rotation( const GLmatrix *m ) 1522 { 1523 if (m->flags & (MAT_FLAG_GENERAL | 1524 MAT_FLAG_ROTATION | 1525 MAT_FLAG_GENERAL_3D | 1526 MAT_FLAG_PERSPECTIVE)) 1527 return GL_TRUE; 1528 else 1529 return GL_FALSE; 1530 } 1531 1532 1533 GLboolean 1534 _math_matrix_is_general_scale( const GLmatrix *m ) 1535 { 1536 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; 1537 } 1538 1539 1540 GLboolean 1541 _math_matrix_is_dirty( const GLmatrix *m ) 1542 { 1543 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; 1544 } 1545 1546 1547 /**********************************************************************/ 1548 /** \name Matrix setup */ 1549 /*@{*/ 1550 1551 /** 1552 * Copy a matrix. 1553 * 1554 * \param to destination matrix. 1555 * \param from source matrix. 1556 * 1557 * Copies all fields in GLmatrix, creating an inverse array if necessary. 1558 */ 1559 void 1560 _math_matrix_copy( GLmatrix *to, const GLmatrix *from ) 1561 { 1562 memcpy( to->m, from->m, sizeof(Identity) ); 1563 to->flags = from->flags; 1564 to->type = from->type; 1565 1566 if (to->inv != 0) { 1567 if (from->inv == 0) { 1568 matrix_invert( to ); 1569 } 1570 else { 1571 memcpy(to->inv, from->inv, sizeof(GLfloat)*16); 1572 } 1573 } 1574 } 1575 1576 /** 1577 * Loads a matrix array into GLmatrix. 1578 * 1579 * \param m matrix array. 1580 * \param mat matrix. 1581 * 1582 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY 1583 * flags. 1584 */ 1585 void 1586 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) 1587 { 1588 memcpy( mat->m, m, 16*sizeof(GLfloat) ); 1589 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); 1590 } 1591 1592 /** 1593 * Matrix constructor. 1594 * 1595 * \param m matrix. 1596 * 1597 * Initialize the GLmatrix fields. 1598 */ 1599 void 1600 _math_matrix_ctr( GLmatrix *m ) 1601 { 1602 //m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); 1603 if (m->m) 1604 memcpy( m->m, Identity, sizeof(Identity) ); 1605 m->inv = NULL; 1606 m->type = MATRIX_IDENTITY; 1607 m->flags = 0; 1608 } 1609 1610 /** 1611 * Matrix destructor. 1612 * 1613 * \param m matrix. 1614 * 1615 * Frees the data in a GLmatrix. 1616 */ 1617 void 1618 _math_matrix_dtr( GLmatrix *m ) 1619 { 1620 if (m->m) { 1621 //ALIGN_FREE( m->m ); 1622 //m->m = NULL; 1623 } 1624 if (m->inv) { 1625 free( m->inv ); 1626 m->inv = NULL; 1627 } 1628 } 1629 1630 /** 1631 * Allocate a matrix inverse. 1632 * 1633 * \param m matrix. 1634 * 1635 * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity. 1636 */ 1637 void 1638 _math_matrix_alloc_inv( GLmatrix *m ) 1639 { 1640 if (!m->inv) { 1641 m->inv = (GLfloat *) malloc( 16 * sizeof(GLfloat)); 1642 if (m->inv) 1643 memcpy( m->inv, Identity, 16 * sizeof(GLfloat) ); 1644 } 1645 } 1646 1647 /*@}*/ 1648 1649 1650 /**********************************************************************/ 1651 /** \name Matrix transpose */ 1652 /*@{*/ 1653 1654 /** 1655 * Transpose a GLfloat matrix. 1656 * 1657 * \param to destination array. 1658 * \param from source array. 1659 */ 1660 void 1661 _math_transposef( GLfloat to[16], const GLfloat from[16] ) 1662 { 1663 to[0] = from[0]; 1664 to[1] = from[4]; 1665 to[2] = from[8]; 1666 to[3] = from[12]; 1667 to[4] = from[1]; 1668 to[5] = from[5]; 1669 to[6] = from[9]; 1670 to[7] = from[13]; 1671 to[8] = from[2]; 1672 to[9] = from[6]; 1673 to[10] = from[10]; 1674 to[11] = from[14]; 1675 to[12] = from[3]; 1676 to[13] = from[7]; 1677 to[14] = from[11]; 1678 to[15] = from[15]; 1679 } 1680 1681 1682 /** 1683 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This 1684 * function is used for transforming clipping plane equations and spotlight 1685 * directions. 1686 * Mathematically, u = v * m. 1687 * Input: v - input vector 1688 * m - transformation matrix 1689 * Output: u - transformed vector 1690 */ 1691 void 1692 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) 1693 { 1694 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; 1695 #define M(row,col) m[row + col*4] 1696 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); 1697 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); 1698 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); 1699 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); 1700 #undef M 1701 } 1702